高三数学一轮复习24.三角函数的性质学案

合集下载

专题24 三角函数的图象与性质-2025年高考数学一轮复习讲义(知识梳理+真题)(新高考专用)解析版

专题24 三角函数的图象与性质-2025年高考数学一轮复习讲义(知识梳理+真题)(新高考专用)解析版

专题24三角函数的图象与性质(新高考专用)【知识梳理】 (2)【真题自测】 (3)【考点突破】 (10)【考点1】三角函数的定义域和值域 (10)【考点2】三角函数的周期性、奇偶性、对称性 (15)【考点3】三角函数的单调性 (22)【分层检测】 (27)【基础篇】 (27)【能力篇】 (34)【培优篇】 (38)考试要求:1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数、正切函数的性质.1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0)(π,0)(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π,-1),(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.正切曲线相邻两对称中心之间的距离是半个周期.2.三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,偶函数一般可化为y =A cos ωx +b 的形式.3.对于y =tan x 不能认为其在定义域上为增函数,π-π2,k πk ∈Z )内为增函数.一、单选题1.(2023·全国·高考真题)函数()y f x =的图象由函数πcos 26y x ⎛⎫=+ ⎪⎝⎭的图象向左平移π6个单位长度得到,则()y f x =的图象与直线1122y x =-的交点个数为()A .1B .2C .3D .42.(2023·全国·高考真题)已知函数()()()sin ,0f x x ωϕω=+>在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A .B .12-C .12D .23.(2022·全国·高考真题)设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤ ⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦4.(2022·全国·高考真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .5.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭()A .1B .32C .52D .3二、多选题6.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则()A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线2y x =-是曲线()y f x =的切线三、填空题7.(2023·全国·高考真题)已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是.8.(2023·全国·高考真题)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf =.9.(2022·全国·高考真题)记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =9x π=为()f x 的零点,则ω的最小值为.10.(2021·全国·高考真题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为.参考答案:1.C【分析】先利用三角函数平移的性质求得()sin 2f x x =-,再作出()f x 与1122y x =-的部分大致图像,考虑特殊点处()f x 与1122y x =-的大小关系,从而精确图像,由此得解.【详解】因为πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =-,而1122y x =-显然过10,2⎛⎫- ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =-的部分大致图像如下,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,当3π4x =-时,3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭;当3π4x =时,3π3πsin 142f ⎛⎫=-= ⎪⎝⎭,13π13π412428y -=⨯-=<;当7π4x =时,7π7πsin 142f ⎛⎫=-= ⎪⎝⎭,17π17π412428y -=⨯-=>;所以由图可知,()f x 与1122y x =-的交点个数为3.故选:C.2.D【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2T ω==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5πsin 123f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭故选:D.3.C【分析】由x 的取值范围得到3x ω+【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈ ⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .4.A【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.5.A【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<,又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A6.AD【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z ,即4ππ,3k k ϕ=-+∈Z ,又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A ,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫ ⎪⎝⎭上是单调递减;对B ,当π11π,1212x ⎛⎫∈- ⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点;对C ,当7π6x =时,2π23π3x +=,7π(06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭,解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点0,2⎛ ⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)y x -=--即2y x =-.故选:AD .7.[2,3)【分析】令()0f x =,得cos 1x ω=有3个根,从而结合余弦函数的图像性质即可得解.【详解】因为02x π≤≤,所以02x πωω≤≤,令()cos 10f x x ω=-=,则cos 1x ω=有3个根,令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈,结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<,故答案为:[2,3).8.【分析】设1211,,,22A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,依题可得,21π6x x -=,结合1sin 2x =的解可得,()212π3x x ω-=,从而得到ω的值,再根据2π03f ⎛⎫= ⎪⎝⎭以及()00f <,即可得2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,进而求得()πf .【详解】设1211,,,22A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,由π6AB =可得21π6x x -=,由1sin 2x =可知,π2π6x k =+或5π2π6x k =+,Z k ∈,由图可知,()215π2ππ663x x ωϕωϕ+-+=-=,即()212π3x x ω-=,4ω∴=.因为28ππsin 033f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以8ππ3k ϕ+=,即8ππ3k ϕ=-+,Z k ∈.所以82()sin 4ππsin 4ππ33f x x k x k ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭,所以()2sin 4π3f x x ⎛⎫=- ⎪⎝⎭或()2sin 4π3f x x ⎛⎫=-- ⎪⎝⎭,又因为()00f <,所以2()sin 4π3f x x ⎛⎫=- ⎪⎝⎭,()2πsin 4ππ32f ⎛⎫∴=-=- ⎪⎝⎭.故答案为:【点睛】本题主要考查根据图象求出ω以及函数()f x 的表达式,从而解出,熟练掌握三角函数的有关性质,以及特殊角的三角函数值是解题关键.9.3【分析】首先表示出T ,根据()2f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解:因为()()cos f x x ωϕ=+,(0ω>,0πϕ<<)所以最小正周期2πT ω=,因为()()2πcos cos 2πcos 2f T ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈,因为0ω>,所以当0k =时min 3ω=;故答案为:310.2【分析】先根据图象求出函数()f x 的解析式,再求出7((43f f π4π-的值,然后求解三角不等式可得最小正整数或验证数值可得.【详解】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=;由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,(2cos 032f 4π5π⎛⎫== ⎪⎝⎭;所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭,解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2.故答案为:2.【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解ω,根据特殊点求解ϕ.【考点1】三角函数的定义域和值域一、单选题1.(23-24高一上·河北邢台·阶段练习)函数()f x =)A .()ππ2π,2π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z B .()5ππ2π,2π66k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .()π2π2π,2π63k k k ⎡⎤++∈⎢⎥⎣⎦Z D .()π7π2π,2π66k k k ⎡⎤++∈⎢⎥⎣⎦Z 2.(23-24高一上·北京朝阳·期末)函数()|sin |cos f x x x =+是()A .奇函数,且最小值为BC .偶函数,且最小值为D二、多选题3.(23-24高三下·江苏南通·开学考试)已知函数()cos 22sin f x x x =+,则()A .()f x 的最小正周期为2πB .()f x 关于直线π2x =对称C .()f x 关于点π,02⎛⎫⎪⎝⎭中心对称D .()f x 的最小值为3-4.(2024·贵州贵阳·二模)函数()tan()(0,0π)f x A x ωϕωϕ=+><<的部分图象如图所示,则()A .2π3ωϕ⋅=B .()f x在π0,3⎡⎤⎢⎥⎣⎦上的值域为(,)∞∞-⋃+C .函数|()|y f x =的图象关于直线5π3x =对称D .若函数|()|()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调,则实数λ的取值范围是[1,1]-三、填空题5.(2024·辽宁·二模)如图,在矩形ABCD 中,4,2AB BC ==,点,E F 分别在线段,BC CD 上,且π4EAF ∠=,则AE AF ⋅的最小值为.6.(2021·河南郑州·二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是.参考答案:1.A【分析】首先求出定义域,再根据复合函数单调性即可得到单调增区间.【详解】令sin 03x π⎛⎫+≥ ⎪⎝⎭,可得22,3k x k k ππππ≤+≤+∈Z .当22,232k x k k πππππ-≤+≤+∈Z 时,函数sin 3y x π⎛⎫=+ ⎪⎝⎭单调递增.所以当22,32k x k k ππππ≤+≤+∈Z 时,()f x 单调递增.故()f x 在()2,236k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 上单调递增.故选:A.2.D【分析】根据题意,结合函数的奇偶性,判定A 、B 不正确;再结合三角函数的图象与性质,求得函数()f x 的最大值和最小值,即可求解.【详解】由函数()|sin |cos f x x x =+,可得其定义域x ∈R ,关于原点对称,且()|sin()|cos()|sin |cos ()f x x x x x f x -=-+-=+=,所以函数()f x 为偶函数,因为()()()()2πsin 2πcos 2πsin cos f x x x x x f x +=+++=+=,所以2π为()y f x =的一个周期,不妨设[0,2π]x ∈,若[0,π]x ∈时,可得π()sin cos )4f x x x x =++,因为[0,π]x ∈,可得ππ5π[,444x +∈,当ππ42x +=时,即π4x =时,可得max ()f x =当π5π44x +=时,即πx =时,可得min ()1f x =-;若[]π,2πx ∈,可得π()sin cos )4f x x x x =-+=+,因为[π,2π]x ∈,可得π5π9π[,]444x +∈,当π2π4x +=时,即7π4x =时,可得max ()f x =当π5π44x +=时,即πx =时,可得()min 1f x =-,综上可得,函数()f x ,最小值为1-.故选:D.3.ABD【分析】将函数()cos 22sin f x x x =+可变形为213()2sin 22f x x ⎛⎫=--+ ⎪⎝⎭,结合函数性质逐项分析计算即可得.【详解】2213()cos 22sin 12sin 2sin 2sin 22f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,由sin y x =的最小正周期为2π,故()f x 的最小正周期为2π,故A 正确;()()221313(π)2sin π2sin 2222f x x x f x ⎡⎤⎛⎫-=---+=--+= ⎪⎢⎥⎣⎦⎝⎭,且()(π)f x f x -≠-,故()f x 关于直线π2x =,不关于点π,02⎛⎫ ⎪⎝⎭对称,故B 正确,C 错误;由213()2sin 22f x x ⎛⎫=--+ ⎪⎝⎭,且[]sin 1,1x ∈-,故2min13()21322f x ⎛⎫=-⨯--+=- ⎪⎝⎭,故D 正确.故选:ABD.4.CD【分析】根据正切型三角函数的图象性质确定其最小正周期,从而得ω的值,再根据函数特殊点求得,A ϕ的值,从而可得解析式,再由正切型三角函数的性质逐项判断即可.【详解】函数的最小正周期为T ,则有ππ5π166T ωω⎛⎫==--⇒= ⎪⎝⎭,即()tan()f x A x ϕ=+,由函数的图象可知:πππ623ϕϕ+=⇒=,即π()tan 3f x A x ⎛⎫=+ ⎪⎝⎭,由图象可知:π(0)tan23f A A ===,所以π3ωϕ⋅=,因此A 不正确;关于πB,()2tan 3f x x ⎛⎫=+ ⎪⎝⎭,当π6x =时,ππ32x +=,故()f x 在π6x =处无定义,故B 错误.因为55ππ5π5ππ2tan 2tan ,2tan 2tan 333333f x x x f x x x π⎛⎫⎛⎫⎛⎫⎛⎫-=-+=+=++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以5533f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,所以函数|()|y f x =的图象关于直线5π3x =对称,C 正确;ππ()()2tan 2tan 33y f x f x x x λλ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭,当ππ,36x ⎛⎫∈- ⎪⎝⎭时,|()|()y f x f x λ=+=ππππ2tan 2tan 2tan 2tan (22)tan 33333x x x x x πλλλ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+++=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,当5,63x ππ⎛⎤∈-- ⎥⎝⎦时,()()2tan 2tan 2tan 333y f x f x x x x πππλλ⎛⎫⎛⎫⎛⎫=+=+++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππ2tan (22)tan 33x x λλ⎛⎫⎛⎫++=-++ ⎪ ⎪⎝⎭⎝⎭,当函数|()|()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调时,则有(22)(22)011λλλ+-+≤⇒-≤≤,故D 正确.故选:CD .5.)161【分析】根据锐角三角函数可得,πcos cos 4ABAD AE AF θθ==⎛⎫- ⎪⎝⎭,即可由数量积的定义求解,结合和差角公式以及三角函数的性质即可求解最值.【详解】设π02BAE θθ⎛⎫∠=<< ⎪⎝⎭,则π4DAF θ∠=-,故,πcos cos 4ABAD AE AF θθ==⎛⎫- ⎪⎝⎭,故π42cos π42cos cos 4AE AF AE AF θθ=⎛⎫- ⎪⋅⋅⎝⎭ππcos cos 44θθθθ=⎡⎤⎡⎤⎛⎫⎛⎫+-+-- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎝⎭当π2π,Z 4k k θ-=∈时,πcos 214θ⎛⎫-= ⎪⎝⎭,即π8θ=时,此时AE AF ⋅)1612=-.故答案为:)161.【点睛】关键点点睛:本题解决的关键是将所求转化为关于θ的表达式,从而得解,6.2⎛ ⎝【分析】由正弦定理可得sinB sin b cC=b c λ+sin()B θ=+且tan θ=0,4B π⎛⎫∈ ⎪⎝⎭,可知b c λ+存在最大值即2B πθ+=,进而可求λ的范围.【详解】∵1a =,34A π=,由正弦定理得:sinB sin 2b c C =∴)sin sin sin sin cos sin 422b c B C B B B B B πλλ⎫⎛⎫+=+=-=-⎪ ⎪⎪⎝⎭⎭1)sin cos sin()B B B θ=-+⋅+,其中tan θ=0,4B π⎛⎫∈ ⎪⎝⎭,∴b c λ+存在最大值,即2B πθ+=有解,即,42ππθ⎛⎫∈ ⎪⎝⎭,10->,解得2λ>1>,解得λ<,故λ的范围是2⎛ ⎝.故答案为:2⎛ ⎝.【点睛】关键点点睛:应用正弦定理边角关系、辅助角公式,结合三角形内角和、三角函数的性质列不等式组求参数范围.反思提升:1.求三角函数的定义域通常要解三角不等式(组),解三角不等式(组)常借助三角函数的图象.2.求解三角函数的值域(最值)常见的几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【考点2】三角函数的周期性、奇偶性、对称性一、单选题1.(2024·重庆·模拟预测)将函数()πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向右平移()0ϕϕ>个单位后,所得图象关于坐标原点对称,则ϕ的值可以为()A .2π3B .π3C .π6D .π42.(2024·湖北武汉·模拟预测)若函数()()ππ3cos 022f x x ωϕωϕ⎛⎫=+<-<< ⎪⎝⎭,的最小正周期为π,在区间ππ,66⎛⎫- ⎪⎝⎭上单调递减,且在区间π0,6⎛⎫ ⎪⎝⎭上存在零点,则ϕ的取值范围是()A .ππ,62⎛⎫ ⎪⎝⎭B .3π,2π⎛⎤-- ⎥⎝⎦C .ππ,32⎡⎫⎪⎢⎣⎭D .π0,3⎛⎤⎥⎝⎦3.(2024·北京西城·二模)将函数()tan f x x =的图象向右平移1个单位长度,所得图象再关于y 轴对称,得到函数()g x 的图象,则()g x =()A .1tan -xB .1tan --xC .tan (1)--x D .tan (1)-+x 二、多选题4.(2024·河南洛阳·模拟预测)已知函数3ππsin ,2π2π44()()π5πcos ,2π2π44x k x k f x k x k x k ⎧-≤≤+⎪⎪=∈⎨⎪+<<+⎪⎩Z ,则()A .()f x 的对称轴为()ππ,Z 4x k k =+∈B .()f x 的最小正周期为4πC .()f x 的最大值为1,最小值为2-D .()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增5.(2024·辽宁·二模)已知函数π()cos()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭满足πππ(),263f x f x f f ⎛⎫⎛⎫⎛⎫-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0,且在π5π,1212⎛⎫⎪⎝⎭上单调递减,则()A .函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称B .ϕ可以等于π4-C .ω可以等于5D .ω可以等于36.(23-24高三上·山西运城·期末)已知函数()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭,则()A .()f x 的一个周期为2B .()f x 的定义域是1,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭C .()f x 的图象关于点1,12⎛⎫⎪⎝⎭对称D .()f x 在区间[]1,2上单调递增三、填空题7.(2024·全国·模拟预测)已知函数()()21cos cos 02f x x x x ωωωω=->,若()f x 的图象在[]0,π上有且仅有两条对称轴,则ω的取值范围是.8.(2024·四川雅安·三模)已知函数()e cos2e x x a f x x ⎛⎫=- ⎪⎝⎭是偶函数,则实数=a .9.(2023·四川达州·一模)函数()2lntan 32x f x m x x -=+++,且()6f t =,则()f t -的值为.参考答案:1.B【分析】由三角函数的平移变化结合奇函数的性质可得π2π3k k ϕ+=∈Z ,,解方程即可得出答案.【详解】因为()f x 向右平移ϕ个单位后解析式为π=sin 223y x ϕ⎛⎫-- ⎪⎝⎭,又图象关于原点对称,πππ2π,01362k k k k k ϕϕϕ∴+=∈∴=-+∈>∴=Z Z ,,,,时,π3ϕ=,故选:B.2.B【分析】根据给定周期求得2ω=-,再结合余弦函数的单调区间、单调性及零点所在区间列出不等式组,然后结合已知求出范围.【详解】由函数()f x 的最小正周期为π,得2ππ||ω=,而0ω<,解得2ω=-,则()3cos(2)3cos(2)f x x x ϕϕ=-+=-,由2π22ππ,Z k x k k ϕ≤-≤+∈,得2π+22ππ,Z k x k k ϕϕ≤≤++∈,又()f x 在ππ(,)66-上单调递减,因此π2π+3k ϕ≤-,且π2ππ,Z 3k k ϕ≤++∈,解得2ππ2π2π,Z 33k k k ϕ--≤≤--∈①,由余弦函数的零点,得π2π,Z 2x n n ϕ-=+∈,即π2π,Z 2x n n ϕ=++∈,而()f x 在(0,)6π上存在零点,则ππ0π,Z 23n n ϕ<++<∈,于是ππππ,Z 26n n n ϕ--<<--∈②,又ππ22ϕ-<<,联立①②解得ππ23ϕ-<≤-,所以ϕ的取值范围是ππ(,]23--.故选:B 3.D【分析】根据正切函数图象的平移变换、对称变换即可得变换后的函数()g x 的解析式.【详解】将函数()tan f x x =的图象向右平移1个单位长度,所得函数为()(1)tan 1f x x -=-,则函数()(1)tan 1f x x -=-的图象再关于y 轴对称得函数()()()()1tan 1tan 1g x f x x x =--=--=-+.故选:D.4.AD【分析】作出函数()f x 的图象,对于A ,验算()π2π2f k x f x ⎛⎫+-= ⎪⎝⎭是否成立即可;对于B ,由(),(2π)x f x f x ∈+=R 即可判断;对于CD ,借助函数单调性,只需求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值验算即可判断CD.【详解】作出函数()f x 的图象如图中实线所示.对于A ,由图可知,函数()f x 的图象关于直线3ππ5π,,444x x x =-==对称,对任意的k ∈Z ,π1ππ1ππ2πsin 2πcos 2πsin 2πcos 2π2222222f k x k x k x k x k x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-=+-++--+--+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1111(cos sin )cos sin |(sin cos )|sin cos |()2222x x x x x x x x f x =+--=+--=,所以函数()f x 的对称轴为()ππ,Z 4x k k =+∈,A 正确;对于B ,对任意的11,(2π)[sin(2π)cos(2π)]sin(2π)cos(2π)22x f x x x x x ∈+=+++-+-+R 11(sin cos )|sin cos |()22x x x x f x =+--=,结合图象可知,函数()f x 为周期函数,且最小正周期为2π,故B 错误;对于C ,由A 选项可知,函数()f x 的对称轴为()ππ,Z 4x k k =+∈,且该函数的最小正周期为2π,要求函数()f x 的最大值和最小值,只需求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值,因为函数()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,所以当π5π,44x ⎡⎤∈⎢⎥⎣⎦时,min ()(π)cos πf x f ==1=-,因为ππ5π5ππsin sin sin 4424442f f ⎛⎫⎛⎫====-=- ⎪ ⎪⎝⎭⎝⎭,所以max π()42f x f ⎛⎫== ⎪⎝⎭,因此()f x ,最小值为-1,故C 错误;对于D ,由C 选项可知,函数()f x 在π,π4⎡⎤⎢⎥⎣⎦上单调递减,在5ππ,4⎡⎤⎢⎥⎣⎦上单调递增,D 正确,故选:AD .【点睛】关键点点睛:判断C 选项的关键是求出函数()f x 在π5π,44⎡⎤⎢⎥⎣⎦上的最大值和最小值即可,由此即可顺利得解.5.ABD【分析】根据题意,可得函数()y f x =的图象关于π4x =-对称,关于点π,04⎛⎫ ⎪⎝⎭对称,由三角函数的对称性性质可得π4ϕ=±,从而判断选项A 、B ;再根据函数的单调性,可求出ω的值,从而判定选项C 、D.【详解】由π()2f x f x ⎛⎫-=- ⎪⎝⎭,则ππππ(4424f x f x f x ⎛⎫⎛⎫-=+-=-- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于π4x =-对称,又πππ5π126312<<<,且ππ063f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,则1πππ02634f f ⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称,故A 正确;根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,可得,()()2121ππ,1242k k k k ϕω-=+=+-,由于π||2ϕ<,所以π4ϕ=±,故B 正确;当π4ϕ=时,由π5π1212x <<,得πππ5ππ1244124x ωωω+<+<+,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧+≥⎪⎪⎨⎪+≤+⎪⎩,即92424355k ω-≤≤+,又0ω>,所以90,05k ω=<<,又()2112k k ω=+-,所以1ω=,当π4ϕ=-时,由π5π1212x <<,得πππ5ππ1244124x ωωω-<-<-,根据函数()y f x =在π5π,1212⎛⎫⎪⎝⎭上单调递减,可得ππ2π1245πππ2π124k k ωω⎧-≥⎪⎪⎨⎪-≤+⎪⎩,即2424335k k ω+≤≤+,又0ω>,所以0,3k ω==,故C 错误,D 正确.故选:ABD【点睛】关键点点睛:根据函数()y f x =的图象关于π4x =-对称,得11ππ,Z 4k k ωϕ-+=∈,根据函数()y f x =的图象关于点π,04⎛⎫ ⎪⎝⎭对称,22πππ,Z 42k k ωϕ+=+∈,从而()()2121ππ,1242k k k k ϕω-=+=+-.6.ACD 【分析】利用正切函数的图象与性质一一判定选项即可.【详解】对于A ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知其最小正周期π2π2T ==,故A 正确;对于B ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知πππ1π2,Z 2422x k x k k +≠+⇒≠+∈,故B 错误;对于C ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知1πππ2242x x =⇒+=,此时()f x 的图象关于点1,12⎛⎫⎪⎝⎭对称,故C 正确;对于D ,由()ππtan 124f x x ⎛⎫=++ ⎪⎝⎭可知[]ππ3π5π1,2,2444x x ⎡⎤∈⇒+⎢⎥⎣⎦,又tan y x =在π3π,22⎡⎤⎢⎥⎣⎦上递增,显然3π5π,44⎡⎤⊂⎢⎥⎣⎦π3π,22⎡⎤⎢⎥⎣⎦,故D 正确.故选:ACD 7.54,63⎡⎫⎪⎢⎣⎭【分析】运用正余弦二倍角公式及辅助角公式化简()f x ,由已知条件结合正弦函数性质可得结果.【详解】因为()211πcos cos sin2cos2sin 22226f x x x x x x x ωωωωωω⎛⎫=-=-=- ⎪⎝⎭,因为()f x 的图象在[]0,π上有且仅有两条对称轴,所以3ππ5π2π262ω≤-<,解得5463ω≤<,所以ω的取值范围是54,63⎡⎫⎪⎢⎣⎭.故答案为:54,63⎡⎫⎪⎢⎣⎭.8.1-【分析】根据偶函数的定义,即可列关系式求解.【详解】()f x 定义域为R ,()()()1e cos 2e cos2e cos2e e e x xx xx xa af x x a x f x x --⎛⎫⎛⎫⎛⎫-=--=-+==- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()1111e e e e 1e 0e e e e e xxx xx x x x xx a a a a ⎛⎫⎛⎫-+=-⇒-=-⇒+-= ⎪ ⎪⎝⎭⎝⎭,故1a =-,故答案为:1-9.0【分析】构造()()3g x f x =-,得到()g x 为奇函数,从而根据()6f t =得到()3g t =,由()3g t -=-求出()f t -.【详解】令()()23lntan 2x g x f x m x x -=-=++,定义域为{|2x x <-或2x >且ππ,Z}2x k k ≠+∈,关于原点对称,则()()()222lntan ln tan ln tan 222x x x g x m x m x m x g x x x x --+--=+-=-=--=--+-+,故()g x 为奇函数,又()()3633g t t f =-=-=,故()()33t g t f -=--=-,解得()0f t -=.故答案为:0反思提升:(1)三角函数周期的一般求法①公式法;②不能用公式求周期的函数时,可考虑用图象法或定义法求周期.(2)对于可化为f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z )(或令ωx +φ=k π(k ∈Z )),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ωx +φ=π2+k π(k ∈Z x 即可.(3)对于可化为f (x )=A tan(ωx +φ)形式的函数,如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π2(k ∈Z ),求x 即可.(4)三角函数型奇偶性的判断除可以借助定义外,还可以借助其图象与性质,在y =A sin(ωx +φ)中代入x =0,若y =0则为奇函数,若y 为最大或最小值则为偶函数.若y =A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),若y =A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z ).【考点3】三角函数的单调性一、单选题1.(2024·云南·模拟预测)已知函数()f x 为R 上的偶函数,且当()1212,,0,x x x x ∞∈-≠时,()()12120f x f x x x ->-,若12log 3a f ⎛⎫= ⎪⎝⎭,()()0.20.5,sin1b f c f ==,则下列选项正确的是()A .c b a <<B .b<c<aC .a b c<<D .c<a<b2.(2024·陕西榆林·三模)已知()0,2πα∈,若当[]0,1x ∈时,关于x 的不等式()()2sin cos 12sin 1sin 0x x αααα++-++>恒成立,则α的取值范围为()A .π5π,1212⎛⎫⎪⎝⎭B .π5π,66⎛⎫ ⎪⎝⎭C .ππ,63⎛⎫ ⎪⎝⎭D .π5π,36⎛⎫ ⎪⎝⎭二、多选题3.(2022·湖北武汉·三模)已知函数()2cos f x x x =-的零点为0x ,则()A .012x <B .013>xC .0tan 2x >D .001<sin 4x x -4.(2024·湖南长沙·一模)已知函数()()tan (0,0π)f x A x ωϕωϕ=+><<的部分图象如图所示,则()A .π6A ωϕ⋅⋅=B .()f x 的图象过点11π6⎛ ⎝⎭C .函数()y f x =的图象关于直线5π3x =对称D .若函数()()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调,则实数λ的取值范围是[]1,1-三、填空题5.(2023·陕西西安·模拟预测)已知函数()()cos f x A x b ωϕ=++,(0A >,0ω>,π2ϕ<)的大致图象如图所示,将函数()f x 的图象上点的横坐标拉伸为原来的3倍后,再向左平移π2个单位长度,得到函数()g x 的图象,则函数()g x 的一个单调递增区间为.6.(2022·上海闵行·模拟预测)已知[0,π]∈,若sin cos 0αα->,则α的取值范围是.参考答案:1.C【分析】根据条件判断函数的单调性,结合函数奇偶性和单调性的关系进行转化求解即可.【详解】当()12,,0x x ∞∈-时,()()12120f x f x x x ->-,所以()f x 在(),0∞-上单调递增;又有()f x 为R 上的偶函数,所以()f x 在()0,∞+上单调递减.由于我们有()11100.2555522πlog 3log 210.50.50.50.4984210.870.87sin sin 1023>==>=>==>=>>,即0.22sin10log 30.5>>>,故()()()0.22log 30.5sin1f f f <<.而()()1222log 3log 3log 3a f f f ⎛⎫==-= ⎪⎝⎭,()0.20.5b f =,()sin1c f =,故a b c <<.故选:C.2.A【分析】令()()()2sin cos 12sin 1sin f x x x αααα=++-++,易得()f x 的对称轴为()1sin 20,1sin cos 1x ααα+=∈++,则()()00101sin 20sin cos 1f f f ααα⎧⎪⎪⎪>⎪⎪>⎨⎪⎛⎫⎪+ ⎪⎪> ⎪⎪++ ⎪⎪⎝⎭⎩,进而可得出答案.【详解】令()()()2sin cos 12sin 1sin f x x x αααα=++-++,由题意可得()()0010f f ⎧>⎪⎨>⎪⎩,则sin 0cos 0αα>⎧⎨>⎩,又因为()0,2πα∈,所以π0,2α⎛⎫∈ ⎪⎝⎭,函数()f x 的对称轴为()1sin 20,1sin cos 1x ααα+=++,则()()2sin 0cos 011sin sin 22sin cos 12sin 1sin 0sin cos 1sin cos 1αααααααααααα⎧⎪⎪⎪>⎪⎪>⎨⎪⎛⎫⎪++ ⎪⎪++-+⋅+> ⎪⎪++++ ⎪⎪⎝⎭⎩,即()2sin 0cos 0(2sin 1)4sin sin cos 10αααααα⎧>⎪>⎨⎪+-++<⎩,即sin 0cos 01sin22ααα⎧⎪>⎪>⎨⎪⎪>⎩,结合π0,2α⎛⎫∈ ⎪⎝⎭,解得π5π1212α<<.故选:A.3.ABD【分析】对AB ,求导分析可得()f x 为增函数,再根据零点存在性定理可判断;对C ,根据AB 得出的01132x <<结合正切函数的单调性可判断;对D ,构造函数()111sin ,432g x x x x ⎛⎫=--∈ ⎪⎝⎭,再根据零点存在性定理,放缩判断()g x 的正负判断即可【详解】对AB ,由题()2sin 0f x x '=+>,故()f x 为增函数.又111cos 022f ⎛⎫=-> ⎪⎝⎭,12122cos cos 03333632f π⎛⎫=-<-=-< ⎪⎝⎭,故01132x <<,故AB 正确;对C ,因为01132x <<,所以01tan tan 2t n 14a x π<=<1>,故C 错误;对D ,构造函数()111sin ,432g x x x x ⎛⎫=--∈ ⎪⎝⎭,则()1cos 0g x x '=->,故()g x 为增函数.故()111111sin sin sin2424124344g x g πππ⎛⎫⎛⎫<=-<-=--= ⎪ ⎪⎝⎭⎝⎭,因为(2130-=<,故1<,故104<,即()0g x <,故111sin 0,,432x x x ⎛⎫--<∈ ⎪⎝⎭,故001<sin 4x x -,D 正确;故选:ABD【点睛】本题主要考查了利用导数分析函数零点的问题,一般需要用零点存在性定理判断零点所在的区间,同时在判断区间端点正负时,需要适当放缩,根据能够确定取值大小的三角函数值进行判断,属于难题4.BCD【分析】根据函数图象所经过的点,结合正切型函数的对称性、单调性逐一判断即可.【详解】对于A :设该函数的最小正周期为T ,则有ππ5π166T ωω⎛⎫==--⇒= ⎪⎝⎭,即()()tan f x A x ϕ=+,由函数的图象可知:πππππ623k k ϕϕ+=+⇒=++,又0πϕ<<,所以π3ϕ=,即()πtan 3f x A x ⎛⎫=+ ⎪⎝⎭,由图象可知:()π0tan 23f A A ===,所以2π3A ωϕ⋅⋅=,因此A 不正确;对于B :11π11ππ13ππ2tan 2tan 2tan 26636633f ⎛⎫⎛⎫=+===⨯= ⎪⎪⎝⎭⎝⎭,所以B 正确;对于C :因为5π5ππ2tan 2tan 333f x x x ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,5π5ππ2tan 2tan 333f x x x ⎛⎫⎛⎫+=++= ⎪ ⎪⎝⎭⎝⎭,所以5π5π33f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的图象关于直线5π3x =对称,因此C 正确;对于D :()()ππ2tan 2tan 33y f x f x x x λλ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭当ππ,36x ⎛⎫∈- ⎪⎝⎭时,()()ππππ2tan 2tan 2tan 2tan 3333y f x f x x x x x λλλ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()π22tan 3x λ⎛⎫=++ ⎪⎝⎭,当5ππ,63x ⎛⎤∈-- ⎥⎝⎦,()()ππππ2tan 2tan 2tan 2tan 3333y f x f x x x x x λλλ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++=-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()π22tan 3x λ⎛⎫=-++ ⎪⎝⎭,当函数()()y f x f x λ=+在区间5ππ,66⎛⎫- ⎪⎝⎭上不单调时,则有()()2222011λλλ+-+≤⇒-≤≤,D 正确.故选:BCD【点睛】关键点睛:运用函数对称性、函数单调性的性质是解题的关键.5.7ππ,44⎡⎤--⎢⎥⎣⎦(答案不唯一)【分析】先根据()f x 的部分图象得到函数的周期、振幅、初相,进而求出()f x 的解析式,再根据函数图象的伸缩变换和平移变换得到()g x 的解析式,后可求()g x 的单调递增区间.【详解】由图可知πππ==43124T -,得=πT ,所以2π==2Tω,()112A =--=,1b =-,所以()()2cos 21f x x ϕ=+-,由图ππ2cos 2111212f ϕ⎛⎫⎛⎫=⨯+-= ⎪ ⎪⎝⎭⎝⎭,得π2π6k ϕ=-+,Z k ∈,又π2ϕ<,所以π6ϕ=-,故()π2cos 216f x x ⎛⎫ -⎪⎝⎭=-,由题意()1ππ2π2cos 212cos 132636g x x x ⎡⎤⎛⎫⎛⎫=⨯+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令2ππ2π2π36k x k -+≤+≤,Z k ∈,得7ππ3π3π44k x k -+≤≤-+,Z k ∈故函数()g x 的单调递增区间为7ππ3π,3π44k k ⎡⎤-+-+⎢⎥⎣⎦,Z k ∈,当0k =时,函数()g x 的一个单调递增区间为7ππ,44⎡⎤--⎢⎥⎣⎦,故答案为:7ππ,44⎡⎤--⎢⎥⎣⎦(答案不唯一)6.π3π(,)44【分析】根据角的范围分区间讨论,去掉绝对值号,转化为不含绝对值的三角不等式,求解即可.【详解】由题,当π[0,]2α∈时,原不等式可化为sin cos αα>,解得ππ42α<≤,当ππ2α<≤时,由原不等式可得tan 1α<-,解得π3π24α<<,综上π3π(,44α∈.故答案为:π3π(,)44反思提升:1.求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题,利用特值验证排除法求解更为简捷.【基础篇】一、单选题1.(2024·福建·模拟预测)若函数()sin23f x A x =-在3π5π,812⎛⎫ ⎪⎝⎭上有零点,则整数A 的值是()A .3B .4C .5D .62.(2024·贵州黔南·二模)若函数()πcos 3f x x ϕ⎛⎫=-+ ⎪⎝⎭为偶函数,则ϕ的值可以是()A .5π6B .4π3C .πD .π23.(2024·安徽·三模)“ππ,4k k ϕ=-+∈Z ”是“函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(22-23高一下·湖北武汉·期中)若函数()sin 0y x x ωωω=->在区间π,03⎛⎫- ⎪⎝⎭上恰有唯一对称轴,则ω的取值范围为()A .17,22⎡⎫⎪⎢⎣⎭B .17,36⎛⎤ ⎥⎝⎦C .17,33⎛⎤ ⎥⎝⎦D .17,22⎛⎤ ⎥⎝⎦二、多选题5.(2024·云南·模拟预测)已知函数()()()sin ,0,0,πf x x ωϕωϕ=+>∈,如图,图象经过点π,112A ⎛⎫ ⎪⎝⎭,π,03B ⎛⎫⎪⎝⎭,则()A .2ω=B .π6ϕ=C .11π12x =是函数()f x 的一条对称轴D .函数()f x 在区间7π13π,1212⎛⎫⎪⎝⎭上单调递增6.(2023·辽宁·模拟预测)已知定义域为I 的偶函数0(),f x x I ∃∈,使()00f x <,则下列函数中符合上述条件的是()A .2()3f x x =-B .()22x xf x -=+C .2()log||f x x =D .()cos 1f x x =+7.(23-24高一上·广东肇庆·期末)关于函数πtan 3y x ⎛⎫=- ⎪⎝⎭,下列说法中正确的有()A .是奇函数B .在区间ππ,66⎛⎫- ⎪⎝⎭上单调递增C .5π,06⎛⎫⎪⎝⎭为其图象的一个对称中心D .最小正周期为π三、填空题8.(2022·江西·模拟预测)将函数()tan2f x x =的图像向左平移t (0t >)个单位长度,得到函数g (x )的图像,若12g π⎛⎫= ⎪⎝⎭,则t 的最小值是.9.(2022·重庆沙坪坝·模拟预测)若函数cos y x ω=在,06π⎛⎫- ⎪⎝⎭单调递增,在0,3π⎛⎫ ⎪⎝⎭单调递减,则实数ω的取值范围是.10.(21-22高三上·河南·阶段练习)已知函数()3cos 2n f x x x p ⎛⎫=+ ⎪⎝⎭为偶函数,且当()0,x π∈时,()0f x >,则n 的值可能为.四、解答题11.(2022·北京门头沟·一模)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,6x π=是函数()f x 的对称轴,且()f x 在区间2,63ππ⎛⎫⎪⎝⎭上单调.(1)从条件①、条件②、条件③中选一个作为已知,使得()f x 的解析式存在,并求出其解析式;条件①:函数()f x 的图象经过点10,2A ⎛⎫⎪⎝⎭;条件②:,03π⎛⎫⎪⎝⎭是()f x 的对称中心;条件③:5,012π⎛⎫ ⎪⎝⎭是()f x 的对称中心.(2)根据(1)中确定的()f x ,求函数()0,2y f x x π⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的值域.12.(2021·浙江·模拟预测)已知函数()22sin 263f x x x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的最小正周期和单调递减区间.(2)若对任意的()2,2m ∈-,方程()f x m =(其中[)0,x a ∈)始终有两个不同的根1x ,2x .①求实数a 的值;②求12x x +的值.参考答案:1.C【分析】将函数的零点问题转化为sin2y x =与3y A =在3π5π,812⎛⎫⎪⎝⎭上的交点问题,求出sin2y x =的值域即可.【详解】由于函数()sin23f x A x =-在3π5π,812⎛⎫⎪⎝⎭上有零点,所以方程sin230A x -=在3π5π812⎛⎫⎪⎝⎭,上有实数根,即sin2y x =与3y A =在3π5π,812⎛⎫⎪⎝⎭上有交点,令2t x =,则3π5π46t <<,当3π5π46t <<,sin y t =单调递减,故在区间上最多只有1个零点,又1sin 2t ⎛∈ ⎝⎭,即312A ⎛∈ ⎝⎭,解得()6A ∈,由于A 是整数,所以5A =.故选:C.2.B【分析】由题意可知:0x =为函数()f x 的对称轴,结合余弦函数对称性分析求解.【详解】由题意可知:0x =为函数()f x 的对称轴,则ππ,3k k ϕ-+=∈Z ,则ππ,3k k ϕ=+∈Z ,对于选项A :令π5ππ36k ϕ=+=,解得12k =∉Z ,不合题意;对于选项B :令π4ππ33k ϕ=+=,解得1k =∈Z ,符合题意;对于选项C :令πππ3k ϕ=+=,解得23k =∉Z ,不合题意;对于选项D :令πππ32k ϕ=+=,解得16k =∉Z ,不合题意;故选:B.3.A【分析】若函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称,根据正切函数的对称性可得ππ,42k k ϕ=-+∈Z ,再根据充分、必要条件结合包含关系分析求解.【详解】若函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称,则ππ,42k k ϕ+=∈Z ,解得ππ,42k k ϕ=-+∈Z ,因为π|π,4k k ϕϕ⎧⎫=-+∈⎨⎬⎩⎭Z 是ππ|,42k k ϕϕ⎧⎫=-+∈⎨⎬⎩⎭Z 的真子集,所以“ππ,4k k ϕ=-+∈Z ”是“函数()tan y x ϕ=+的图象关于π,04⎛⎫⎪⎝⎭对称”的充分不必要条件.故选:A.4.D【分析】利用辅助角公式化简得到π2cos 6y x ω⎛⎫=+ ⎪⎝⎭,再求出ππππ,6366x ωω⎛⎫ ⎪⎝+∈-⎭+,结合对称轴条数得到不等式,求出答案.【详解】πsin 2cos 6y x x x ωωω⎛⎫=-=+ ⎪⎝⎭,。

高三数学一轮复习精品教案4:4.4 三角函数的图象与性质教学设计

高三数学一轮复习精品教案4:4.4 三角函数的图象与性质教学设计

4.4 三角函数的图象与性质『课前 考点引领』考情分析考点新知① 知道三角函数y =A sin(ωx +φ),y =A cos(ωx +φ)的周期为T =2π|ω|.② 能根据图象理解正弦函数、余弦函数在『0,2π』,正切函数在⎝⎛⎭⎫-π2,π2上的性质(如单调性、最大值和最小值、图象与x 轴的交点等).③ 会画出y =A sin(ωx +φ)的简图,能由正弦曲线 y =sin x 通过平移、伸缩变换得到y =A sin(ωx +φ)的图象. ① 了解三角函数的周期性.② 能画出y =sin x ,y =cos x ,y =tan x 的图象,并能根据图象理解正弦函数、余弦函数在『0,2π』,正切函数在⎝⎛⎭⎫-π2,π2上的性质. ③ 了解三角函数 y =A sin(ωx +φ)的实际意义及其参数A 、ω、φ对函数图象变化的影响. 知识清单1. 周期函数的定义周期函数的概念: ;函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的周期均为 ;函数y =A tan(ωx +φ)的周期为 . 2. 三角函数的图象和性质 三角函数 y =sin xy =cos xy =tan x图象定义域 值域 和最值周期奇偶性 对称性 单调区间3. “五点法”作图“五点法”作图原理:在确定正弦函数y =sin x 在『0,2π』上的图象形状时,起关键作用的五个点是 .4. 函数 y =A sin(ωx +φ)的特征若函数y =A sin(ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A 叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.『课中 技巧点拨』题型1 依据三角函数的图象求解析式例1 已知函数f (x )=2sin(ωx +φ)(ω>0)的部分图象如图所示,则ω=________.变式训练已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则ω=________.题型2 三角函数的图象变换例2 为了得到函数y =2sin ⎝⎛⎭⎫x 3+π6(x ∈R )的图象,只需把函数y =2sin x (x ∈R )的图象上所有的点经过怎样的变换得到?备选变式(教师专享)已知函数f (x )=23·sin ⎝⎛⎭⎫x 2+π4cos ⎝⎛⎭⎫x 2+π4-sin(x +π).(1) 求f (x )的最小正周期;(2) 若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间『0,π』上的最大值和最小值.题型3 五点法作图例3 已知a =(2cos x ,cos2x ),b =(sin x ,-3),f (x )=a ·b . (1) 求f (x )的振幅、周期,并画出它在一个周期内的图象; (2) 说明它可以由函数y =sin x 的图象经过怎样的变换得到.备选变式(教师专享)已知f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32. (1) 求ω和φ的值;(2) 在给定坐标系中作出函数f (x )在『0,π』上的图象; (3) 若f (x )>22,求x 的取值范围.题型4 函数y =A sin(ωx +φ)的图象与性质的综合应用例4 已知函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,0<φ<π2)的周期为π,且图象上有一个最低点为M ⎝⎛⎭⎫2π3,-3. (1) 求f (x )的解析式;(2) 求函数y =f (x )+f ⎝⎛⎭⎫x +π4的最大值及对应x 的值. 变式训练已知函数f (x )=A sin(ωx +φ),x ∈R (其中A >0,ω>0,0<φ<π2)的周期为π,且图象上一个最低点为M ⎝⎛⎭⎫2π3,-2. (1) 求f (x )的解析式;(2) 当x ∈⎣⎡⎦⎤0,π12时,求f (x )的最值.1. 求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意先把ω化为正数.求y =A cos(ωx +φ)和y =A tan(ωx +φ)的单调区间类似.2. 求函数y =A sin(ωx +φ)(A >0,ω>0)的解析式,常用的解题方法是待定系数法,由最高(低)点的纵坐标确定A ,由周期确定ω,由适合解析式的点的坐标来确定φ,但由条件求得y =A sin(ωx +φ)(A >0,ω>0)的解析式一般不唯一,只有限定φ的取值范围,才能得出唯一解.3. 由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.答案1.对于函数y =f (x ),如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,f (x +T )=f (x )都成立,则称y =f (x )为周期函数; T =2π|ω|;T =π|ω|.2. 三角函数的图象和性质 三角函数 y =sin xy =cos xy =tan x图象定义域 R R ⎩⎨⎧⎭⎬⎫x ⎪⎪x≠kπ+π2,k ∈Z值域和最值 『-1,1』最大值:1 最小值:-1『-1,1』 最大值:1最小值:-1R无最值周期 2π 2π π 奇偶性奇函数 偶函数 奇函数对称性关于x =kπ+π2(k ∈Z )对称 关于x =kπ(k ∈Z )对称 对称中心是⎝⎛⎭⎫kπ2,0(k∈Z ) 单调 区间在『2kπ-π2,2kπ+π2』(k ∈Z ) 上单调递增在『2kπ-π2,2kπ+π2』(k∈Z )上单调递减『2kπ+π,2kπ+2π』(k ∈Z )单调递增『2kπ,2kπ+π』(k ∈Z )单调递减在(kπ-π2,kπ+π2)(k ∈Z )上单调递增3. (0,0)、⎝⎛⎭⎫π2,1、(π,0)、⎝⎛⎭⎫3π2,-1、 (2π,0). 例1 『答案』23『解析』由图象可知函数的四分之三周期为15π8-⎝⎛⎭⎫-3π8=34T ,T =3π,ω=2π3π=23. 变式训练 『答案』3『解析』由图知,A =2,将(0,2)、⎝⎛⎭⎫π12,2代入函数,得⎩⎪⎨⎪⎧2sin ⎝⎛⎭⎫π12w +φ=2,2sinφ=2,∴ ⎩⎪⎨⎪⎧φ=π4,ω=3.例2解:y =2sin x 用6x代替x ,左移6个单位y =2sin ⎝⎛⎭⎫x +π6再用3代替x ,各点横坐标伸长到原来的3倍。

高考数学一轮复习 第四章 三角函数、解三角形 4.4 三角函数的图象与性质教学案

高考数学一轮复习 第四章 三角函数、解三角形 4.4 三角函数的图象与性质教学案

【第四节 三角函数的图象与性质】之小船创作[最新考纲] 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图象与x轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎪⎫-π2,π2内的单调性. 1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]图象的五个关键点是:(0,0),⎝ ⎛⎭⎪⎪⎫π2,1,(π,0),⎝⎛⎭⎪⎪⎫3π2,-1,(2π,0). 余弦函数y =cos x ,x ∈[0,2π]图象的五个关键点是:(0,1),⎝ ⎛⎭⎪⎪⎫π2,0,(π,-1),⎝⎛⎭⎪⎪⎫3π2,0,(2π,1). 2.正弦函数、余弦函数、正切函数的图象与性质函数y =sin x y =cos x y =tan x图象定义域 R R ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z值域 [-1,1] [-1,1]R 单调性递增区间:递增区间:递增区间1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.函数具有奇偶性的充要条件函数y=A sin(ωx+φ)(x∈R)是奇函数⇔φ=kπ(k∈Z);函数y=A sin(ωx+φ)(x∈R)是偶函数⇔φ=kπ+π2(k ∈Z );函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).一、思考辨析(正确的打“√”,错误的打“×”) (1)函数y =sin x 的图象关于点(k π,0)(k ∈Z )中心对称.( )(2)正切函数y =tan x 在定义域内是增函数. ( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( )(4)y =sin |x |与y =|sin x |都是周期函数. ( ) [答案](1)√ (2)× (3)× (4)× 二、教材改编1.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≠k π+π8,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≠k π2+π4,k ∈Z D [由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z ,∴y =tan 2x的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x ≠k π2+π4,k ∈Z .] 2.函数f (x )=cos ⎝⎛⎭⎪⎪⎫2x +π4的最小正周期是 . π [T =2π2=π.]3.y =sin ⎝⎛⎭⎪⎪⎫2x -π4的单调减区间是 . ⎣⎢⎢⎡⎦⎥⎥⎤3π8+k π,7π8+k π(k ∈Z ) [由π2+2k π≤2x -π4≤3π2+2k π,k ∈Z 得3π8+k π≤x ≤7π8+k π,k ∈Z .] 4.y =3sin ⎝⎛⎭⎪⎪⎫2x -π6在区间上的值域是 .考点1 三角函数的定义域和值域1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.求三角函数最值或值域的常用方法(1)直接法:直接利用sin x 和cos x 的值域求解. (2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x ,cos x ,sin x cos x 或sin x ±cosx 换成t ,转化为二次函数求解.1.函数f (x )=-2tan ⎝ ⎛⎭⎪⎪⎫2x +π6的定义域是()D [由正切函数的定义域,得2x +π6≠k π+π2,k ∈Z ,即x ≠k π2+π6(k ∈Z ),故选D.]2.(2019·全国卷Ⅰ)函数f (x )=sin ⎝⎛⎭⎪⎪⎫2x +3π2-3cos x 的最小值为 .-4[f (x )=sin ⎝⎛⎭⎪⎪⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1,令cos x =t ,则t ∈[-1,1].f (t )=-2t 2-3t +1=-2⎝ ⎛⎭⎪⎪⎫t +342+178, 易知当t =1时,f (t )min =-2×12-3×1+1=-4. 故f (x )的最小值为-4.] 3.已知函数f (x )=2a sin ⎝⎛⎭⎪⎪⎫2x +π6+a +b (a <0)的定义域为⎣⎢⎢⎡⎦⎥⎥⎤0,π2,值域为[-5,1],则a +b = .-1 [因为x ∈⎣⎢⎢⎡⎦⎥⎥⎤0,π2,所以2x +π6∈⎣⎢⎢⎡⎦⎥⎥⎤π6,7π6,所以sin ⎝ ⎛⎭⎪⎪⎫2x +π6∈⎣⎢⎢⎡⎦⎥⎥⎤-12,1.因为a <0,所以f (x )∈[3a +b ,b ].因为函数的值域为[-5,1],所以3a +b =-5,b =1,所以a =-2,所以a +b =-1.]4.函数y =sin x -cos x +sin x cos x 的值域为 .[设t =sin x -cos x ,则t 2=sin 2x+cos 2x -2sin x ·cos x ,sin x cos x =1-t 22,且-2≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1,t ∈[-2,2].当t =1时,y max =1;当t =-2时,y min =-12- 2.∴函数的值域为.]求解三角函数的值域(最值)常见的几种类型(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sinx =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin 3x +b sin 2x +c sin x +d ,类似于(2)进行换元,然后用导数法求最值.考点2 三角函数的单调性(1)形如y =A sin(ωx +φ)的函数的单调性问题,一般是将ωx +φ看成一个整体,再结合图象利用y =sin x 的单调性求解;(2)如果函数中自变量的系数为负值,要根据诱导公式把自变量系数化为正值,再确定其单调性.求三角函数的单调性 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎪⎫2x -π3的单调递增区间是( )(2)(2019·大连模拟)函数y =12sin x +32cosx 的单调递增区间是 .(1)B (2) [(1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝ ⎛⎭⎪⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.(2)∵y =12sin x +32cos x =sin ⎝⎛⎭⎪⎪⎫x +π3, 由2k π-π2≤x +π3≤2k π+π2(k ∈Z ),解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).∴函数的单调递增区间为 (k ∈Z ),又x ∈,∴单调递增区间为.]本例(2) 在整体求得函数y =12sin x +32cos x的增区间后,采用对k 赋值的方式求得x ∈上的区间.根据函数的单调性求参数 (1)已知ω>0,函数f (x )=sin ⎝⎛⎭⎪⎪⎫ωx +π4在⎝ ⎛⎭⎪⎪⎫π2,π上单调递减,则ω的取值范围是( )A .(0,2]B.⎝⎛⎦⎥⎥⎤0,12 C.⎣⎢⎢⎡⎦⎥⎥⎤12,34 D.⎣⎢⎢⎡⎦⎥⎥⎤12,54 (2)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[0,a ] 是减函数,则a 的最大值是( )A.π4B.π2C.3π4D .π(1)D (2)C [(1)由2k π+π2≤ωx +π4≤2k π+3π2,得2k πω+π4ω≤x ≤2k πω+5π4ω,k ∈Z ,因为f (x )=sin ⎝ ⎛⎭⎪⎪⎫ωx +π4在⎝ ⎛⎭⎪⎪⎫π2,π上单调递减, 所以⎩⎪⎨⎪⎧2k πω+π4ω≤π2,2k πω+5π4ω≥π,解得⎩⎪⎨⎪⎧ω≥4k +12,ω≤2k +54.因为k ∈Z ,ω>0,所以k =0,所以12≤ω≤54,即ω的取值范围为⎣⎢⎢⎡⎦⎥⎥⎤12,54.故选D. (2)f (x )=cos x -sin x =-2sin ⎝⎛⎭⎪⎪⎫x -π4, 当x -π4∈⎣⎢⎢⎡⎦⎥⎥⎤-π2,π2,即x ∈⎣⎢⎢⎡⎦⎥⎥⎤-π4,3π4时, sin ⎝⎛⎭⎪⎪⎫x -π4单调递增,-2sin ⎝⎛⎭⎪⎪⎫x -π4单调递减, ∴⎣⎢⎢⎡⎦⎥⎥⎤-π4,3π4是f (x )在原点附近的单调递减区间,结合条件得[0,a ]⊆⎣⎢⎢⎡⎦⎥⎥⎤-π4,3π4, ∴a ≤3π4,即a max =3π4,故选C.]已知单调区间求参数范围的3种方法子集法求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解反子集法由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解周期性法由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解1.若函数f (x )=sin ωx (ω>0)在区间上单调递增,在区间上单调递减,则ω= .32 [由已知得T 4=π3,∴T =4π3,∴ω=2πT =32.] 2.函数f (x )=sin ⎝⎛⎭⎪⎪⎫-2x +π3的单调减区间为 . [由已知,得函数为y =-sin ⎝ ⎛⎭⎪⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎪⎫2x -π3的单调增区间即可.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调减区间为(k ∈Z ).]考点3 三角函数的周期性、奇偶性、对称性求解三角函数y =sin(ωx +φ)(ω>0)的周期性、奇偶性、对称性问题,其实质都是根据y =sin x 的对应性质,利用整体代换的思想求解.三角函数的周期性(1)(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎪⎫π4,π2单调递增的是()A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |(2)若函数f (x )=2tan ⎝⎛⎭⎪⎪⎫kx +π3的最小正周期T 满足1<T<2,则自然数k 的值为 .(1)A (2)2或3 [(1)对于选项A ,作出y =|cos 2x |的部分图象,如图1所示,则f (x )在⎝ ⎛⎭⎪⎪⎫π4,π2上单调递增,且最小正周期T =π2,故A 正确.对于选项B ,作出f (x )=|sin 2x |的部分图象,如图2所示,则f (x )在⎝⎛⎭⎪⎪⎫π4,π2上单调递减,且最小正周期T =π2,故B 不正确.对于选项C ,∵f (x )=cos|x |=cos x ,∴最小正周期T =2π,故C 不正确.对于选项D ,作出f (x )=sin|x |的部分图象,如图3所示.显然f (x )不是周期函数,故D 不正确.故选A.图1 图2]图3(2)由题意得,1<πk<2,∴k<π<2k,即π2<k<π,又k∈Z,∴k=2或3.]公式莫忘绝对值,对称抓住“心”与“轴”(1)公式法求周期①正弦型函数f(x)=A sin(ωx+φ)+B的周期T=2π|ω|;②余弦型函数f(x)=A cos(ωx+φ)+B的周期T=2π|ω|;③正切型函数f(x)=A tan(ωx+φ)+B的周期T=π|ω|.(2)对称性求周期①两对称轴距离的最小值等于T 2;②两对称中心距离的最小值等于T 2;③对称中心到对称轴距离的最小值等于T 4 .(3)特征点法求周期①两个最大值点之差的最小值等于T;②两个最小值点之差的最小值等于T;③最大值点与最小值点之差的最小值等于T2.特征点法求周期实质上就是由图象的对称性求周期,因为最值点与函数图象的对称轴相对应.(说明:此处的T 均为最小正周期)三角函数的奇偶性 已知函数f (x )=3sin ⎝ ⎛⎭⎪⎪⎫2x -π3+φ,φ∈(0,π). (1)若f (x )为偶函数,则φ= ; (2)若f (x )为奇函数,则φ= .(1)56π (2)π3 [(1)因为f (x )=3sin ⎝⎛⎭⎪⎪⎫2x -π3+φ为偶函数,所以-π3+φ=k π+π2,k ∈Z ,又因为φ∈(0,π),所以φ=5π6.(2)因为f (x )=3sin ⎝⎛⎭⎪⎪⎫2x -π3+φ为奇函数, 所以-π3+φ=k π,k ∈Z ,又φ∈(0,π),所以φ=π3.]若f (x )=A sin(ωx +φ)(A ,ω≠0),则①f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );②f (x )为奇函数的充要条件是φ=k π(k ∈Z ).三角函数的对称性 (1)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎪⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( )A .关于点⎝⎛⎭⎪⎪⎫π3,0对称 B .关于点⎝⎛⎭⎪⎪⎫5π3,0对称 C .关于直线x =π3对称D .关于直线x =5π3对称(2)已知函数y =sin(2x +φ)⎝⎛⎭⎪⎪⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值为 .(1)B (2)-π6 [(1)因为函数f (x )=2sin ⎝⎛⎭⎪⎪⎫ωx +π6(ω>0)的最小正周期是4π,而T =2πω=4π,所以ω=12,即f (x )=2sin ⎝ ⎛⎭⎪⎪⎫x 2+π6. 令x 2+π6=π2+k π(k ∈Z ),解得x =2π3+2k π(k ∈Z ),故f (x )的对称轴为x =2π3+2k π(k ∈Z ),令x 2+π6=k π(k ∈Z ),解得x =-π3+2k π(k ∈Z ).故f (x )的对称中心为⎝⎛⎭⎪⎪⎫-π3+2k π,0(k ∈Z ),对比选项可知B 正确.(2)由题意得f ⎝ ⎛⎭⎪⎪⎫π3=sin ⎝⎛⎭⎪⎪⎫2π3+φ=±1, ∴2π3+φ=k π+π2(k ∈Z ),∴φ=k π-π6(k ∈Z ).∵φ∈⎝⎛⎭⎪⎪⎫-π2,π2,∴φ=-π6.]三角函数图象的对称轴和对称中心的求解方法若求f (x )=A sin(ωx +φ)(ω≠0)图象的对称轴,则只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx+φ)(ω≠0)图象的对称中心的横坐标,则只需令ωx +φ=k π(k ∈Z ),求x .1.设函数f (x )=cos ⎝ ⎛⎭⎪⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝⎛⎭⎪⎪⎫π2,π上单调递减 D [A 项,因为f (x )=cos ⎝⎛⎭⎪⎪⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确;B 项,因为f (x )=cos ⎝⎛⎭⎪⎪⎫x +π3图象的对称轴为直线x =k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确;C项,f (x +π)=cos ⎝⎛⎭⎪⎪⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-5π6,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确;D 项,因为f (x )=cos ⎝⎛⎭⎪⎪⎫x +π3的单调递减区间为2k π-π3,2k π+2π3(k ∈Z ),单调递增区间为2k π+2π3,2k π+5π3(k ∈Z ),所以⎝ ⎛⎭⎪⎪⎫π2,2π3是f (x )的单调递减区间,2π3,π是f (x )的单调递增区间,D 项错误.]2.(2019·成都模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎪⎫ω>0,|φ|<π2的最小正周期为4π,且∀x ∈R ,有f (x )≤f ⎝ ⎛⎭⎪⎪⎫π3成立,则f (x )图象的一个对称中心坐标是( )A.⎝⎛⎭⎪⎪⎫-2π3,0 B.⎝⎛⎭⎪⎪⎫-π3,0 C.⎝⎛⎭⎪⎪⎫2π3,0 D.⎝⎛⎭⎪⎪⎫5π3,0 A [由f (x )=sin(ωx +φ)的最小正周期为4π,得ω=12.因为f (x )≤f ⎝ ⎛⎭⎪⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎪⎫π3,即12×π3+φ=π2+2k π(k ∈Z ),由|φ|<π2,得φ=π3,故f (x )=sin ⎝⎛⎭⎪⎪⎫12x +π3. 令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ),故f (x )图象的对称中心为⎝⎛⎭⎪⎪⎫2k π-2π3,0(k ∈Z ), 当k =0时,f (x )图象的对称中心为⎝⎛⎭⎪⎪⎫-2π3,0.]。

【高三】高考数学复习三角函数的性质及其变换教案

【高三】高考数学复习三角函数的性质及其变换教案

【高三】高考数学复习三角函数的性质及其变换教案三角函数的性质及其变换多年,三角函数试题在全国高考中的题量及其分数都没有较大的变动,每年的分数一般在二十分左右。

试题难度都为中低档题。

主要考察的内容有:三角函数的定义和基本关系式.关于今后几年全国高考对三角函数的命题趋向,我们认为:1.试题数量及其分数在试卷中所占比例将基本保持稳定。

2.所有试题都是中低档难度试题,而解答题的难度还将略有下降,原因有三个:一是需用时将列出有关公式,这实际上是对解题的关键步骤给出了提示;二是“简单的三角方程”已经改为不作高考要求的选学内容,因而需用解简单的三角不等式的试题将会更加简单;三是新的大纲中规定删去了“三角函数中较复杂得恒等变形”,因此,即使在新大纲实施之前,高考命题也会受到它的影响。

3.涉及积化和差与和差化积公式的试题在三角试题中的比例将会明显下降,而同时涉及这两组公式的试题已几乎不可能再出现,因此这两组公式已不再是高考的热点。

4.倍角公式的变形――半角公式、升幂公式与降幂公式考查的可能性较大,掌握这几个公式对解决一些相对复杂的三角变换有好处.即:sin2α=,……5.由于解斜三角形需要较多的应用平面几何知识,因而今后几年涉及这一类中的高考题,仍将会像1998年的三角解答题那样,仅限于简单的应用正弦定理和余弦定理。

另外,这两个定理也很可能在解答几何或结合实际的应用题中使用。

由于2000年的三角解答题的难度已经“略有下降”,因此,今后几年此类试题的难度也将“基本保持稳定”。

在本讲的复习中,我们将注意以下几点:1.以小题为主,中低档题为主,并注重三角函数与其他知识的交汇点处的习题2.适当增大复习题中的求值与求范围的题目的比例3.对正、余弦定理的应用力求熟练,并避免繁杂的近似计算本讲分三个部分:第一部分是三角函数的变换,第二部分是三角函数的图像和性质,第三部分是三角形中的三角函数问题,主要是正弦定理和余弦定理的应用第一部分例1.已知sinθcosθ=,且,那么cosθ-sinθ的值为A. B. C.- D.-分析:由于,所以cosθ<sinθ,于是cosθ-sinθ=- ,选D例2.若tanθ=-2,则=______________提示:将分子中的2θ化为单角,分母中的1用sin2θ+cos2θ替换,然后分子分母同除以cos2θ即可。

三角函数的复习教案

三角函数的复习教案

三角函数的复习教案教案标题:三角函数的复习教案教案目标:1. 复习学生对三角函数的基本概念和性质的理解。

2. 强化学生对三角函数的图像、周期、幅值和相位的掌握。

3. 提高学生解决与三角函数相关问题的能力。

4. 激发学生对数学的兴趣和学习动力。

教学资源:1. 教材:包括相关章节的教科书和练习册。

2. 多媒体设备:投影仪、电脑等。

3. 白板、彩色笔等。

教学过程:引入:1. 利用多媒体设备播放一个与三角函数相关的实际应用视频或图片,引起学生对三角函数的兴趣,并与他们讨论三角函数在现实生活中的应用。

概念复习:2. 回顾三角函数的基本定义:正弦函数、余弦函数和正切函数。

3. 通过示意图和实例,复习三角函数的图像、周期、幅值和相位的概念。

4. 引导学生回顾三角函数的性质,如奇偶性、周期性、对称性等。

图像练习:5. 在白板上绘制不同的三角函数图像,并要求学生根据图像确定函数的周期、幅值和相位。

6. 给学生一些练习题,要求他们根据函数的图像绘制出函数的表达式。

计算与问题解决:7. 给学生提供一些计算题和问题,要求他们运用三角函数的性质和公式进行计算和解决问题。

8. 强调解题过程中的思考方法和步骤,鼓励学生互相讨论和交流解题思路。

拓展应用:9. 提供一些拓展应用题,让学生运用三角函数解决实际问题,如测量高度、角度等。

10. 鼓励学生自主思考和探索,引导他们发现三角函数在不同学科和领域中的应用。

总结:11. 对本节课的内容进行总结,并强调三角函数的重要性和应用价值。

12. 鼓励学生继续深入学习和探索三角函数的更多应用和性质。

作业布置:13. 布置相关的练习题和作业,巩固学生对三角函数的理解和应用能力。

14. 鼓励学生在作业中提出问题和困惑,并在下节课中进行解答和讨论。

教案评估:15. 观察学生在课堂上的参与度和表现。

16. 收集学生完成的作业,评估他们对三角函数的掌握程度。

17. 针对学生的学习情况,进行个别辅导和指导。

高中数学一轮复习三角函数的图象与性质优秀教案

高中数学一轮复习三角函数的图象与性质优秀教案
板书设计
例1解答 学生解答区域 计算区域
变式解答
教学后记
本节课能按照学校的“学-讲-练”教学模式推进教学,学生在整个教学中参与度高,参与面广,在教师的引导下对高考重点考点掌握较好。根据当前的内容,设置情景材料和生动的PPT进行配合教学,增强学生对知识的理解,提高学生数学计算能力。师
授课班级
高三
授课时间
教学流程安排
学生活动设计
教学目标:1.理解三角函数的性质。2。掌握常规题的做法。3培养学生的观察,分析,理解,探索能力。
教学重难点:.掌握单调性和周期及最值的性质
温故知新:对于考试的知识进行回顾
教学流程设计
学生活动设计
学生动手操作
探究与实践:根据例题进行变式研究,自己探究和总结。

高三数学第一轮复习教案 三角函数 新课标 人教版 教案

高三数学第一轮复习教案 三角函数 新课标 人教版 教案

高三数学第一轮复习教案 三角函数一、知识要点:三角函数基本概念、三角函数的恒等变形(化简,求值,等式的证明)、三角函数的图象和性质1、三角变换基本解题方法:切割化弦,异名化同名,异角化同角,高次化低次,无理化有理. 常用的技巧:升幂降幂法、辅助元素法,“1”的代换法、利用倍角公式建立2α与α、α与2α的关系、角的配凑等2、对三角函数性质的考查总是与三角变换相结合.一般解题规律是先对三角函数关系式进行三角变换,使之转化为一个角的三角函数的形式,再利用换元法转化为对基本三角函数性质的研究.3、易错点:要注意正切函数定义域的限制;在三角变形过程中要注意自变量取值区间的变化,以防出现增根或失根;凡遇到参数或字母时,注意分情况进行讨论。

4、主要数学思想:化归思想、函数思想、数形结合思想、分类讨论思想 二、主干知识点、基本方法回顾练习: 1. 若θ是第三象限的角,且95cos sin 44=+θθ,那么θ2sin 的值为( C ) A. 23 B. -23 C. 223 D. -2232. 已知函数)sin(2x y ω=在[3π-,4π]上单调递增,则实数ω的取值X 围是( A ) A .(0,23] B .(0,2]C .(0,1]D .]43,0(3.先将)(x f y =的图象沿x 轴向右平移3π个单位,再将图象上每一个点的横坐标伸长为原来的2倍,而保持它们的纵坐标不变,得到的曲线与x y cos =的图象相同,则)(x f y =的解析式是( C ) A .)62cos(π+=x y B .)32cos(π+=x y C .)322cos(π+=x y D .)322cos(π-=x y4.若α为第二象限的角,则下列各式恒小于0的是( B )A .ααcos sin +B .ααsin tan +C .ααcot cos -D .ααtan sin -CA BD5.已知53)sin(=+B A ,51)sin(=-B A ,则=BA tan tan ( A )A 、 2B 、 3C 、1D 、无法确定6. 如图是由三个相同的正方形相接,在△ABC 中,锐角∠ACB=α,则αtan =(C )A .51B .61C .71D .10277.函数x x x y 2cos 3sin cos +=相邻两条对称轴的距离为 ( C )A .2πB .4πC .2π D .π8. 函数)32sin(π+-=x y 的递减区间是_____5,1212k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭_______,递增区间是______________,511,1212k k k Z ππππ⎛⎫++∈⎪⎝⎭()3sin()(0)53kx f x k π=+≠有一条对称轴为6π=x ,则=k _5_______。

高三数学三角函数的概念与性质的优秀教案范本

高三数学三角函数的概念与性质的优秀教案范本

高三数学三角函数的概念与性质的优秀教案范本一、引言在高三数学课程中,三角函数是一个重要的内容,掌握三角函数的概念和性质对于学生的数学学习有着重要的影响。

本教案旨在通过系统而全面的教学设计,帮助学生深入理解三角函数的概念与性质,提高解决相关数学问题的能力。

二、教学目标1. 理解三角函数的概念;2. 掌握三角函数的性质,包括周期性、奇偶性和单调性;3. 能够运用三角函数的性质解决实际问题。

三、教学重难点1. 三角函数的周期性、奇偶性和单调性;2. 运用三角函数的性质解决实际问题。

四、教学准备1. 教师准备:- PPT演示文稿;- 课堂练习与答案;- 教学板书;- 教学实例。

2. 学生准备:- 数学课本;- 笔、纸。

五、教学过程步骤一:导入(5分钟)教师通过引入数学问题或生活实例,激发学生对三角函数概念与性质的兴趣,引起学生的思考。

步骤二:概念讲解(15分钟)教师使用PPT演示文稿,简明扼要地讲解三角函数的概念,包括正弦函数、余弦函数和正切函数的定义,并给出示意图进行说明。

步骤三:性质讲解(25分钟)1. 周期性的讲解:- 教师引导学生观察函数图像,并指出三角函数都具有周期性;- 引导学生发现周期与函数中参数的关系,总结出正弦函数和余弦函数的周期性;- 引导学生探究正切函数的周期性,并与正弦函数进行比较。

2. 奇偶性的讲解:- 教师给出三角函数的图像,引导学生发现正弦函数为奇函数,余弦函数为偶函数;- 引导学生通过函数的奇偶性,快速判断函数性质。

3. 单调性的讲解:- 教师通过函数图像,引导学生理解三角函数的单调性特点;- 引导学生思考函数的周期性与单调性之间的关系。

步骤四:练习与讨论(30分钟)教师设计一系列练习题让学生巩固所学内容,并引导学生在小组讨论中解答问题。

步骤五:拓展应用(20分钟)教师提供一些实际问题,引导学生运用三角函数的概念与性质进行解决,如测量高楼的高度、船只与灯塔的距离等。

步骤六:总结与课堂反馈(10分钟)教师进行知识点的总结,梳理三角函数的概念与性质,并与学生进行互动交流和答疑解惑。

高三数学人教版A版数学(理)高考一轮复习教案三角函数的图象与性质

高三数学人教版A版数学(理)高考一轮复习教案三角函数的图象与性质

第三节 三角函数的图象与性质三角函数的图象及性质能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 知识点 正弦函数、余弦函数、正切函数的图象 和性质 函数y =sin xy =cos xy =tan x图 象定义域RR⎩⎨⎧x ⎪⎪ x ≠π2 } +k π,k ∈Z值域[-1,1][-1,1]R单调性递增区间:⎣⎡ 2k π-π2, ⎦⎤2k π+π2(k ∈Z )递减区间:⎣⎡2k π+π2,⎦⎤2k π+3π2(k ∈Z )递增区间: [2k π-π,2k π](k ∈Z ) 递减区间: [2k π,2k π+π] (k ∈Z )递增区间:⎝⎛ k π-π2,⎭⎫k π+π2(k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max=1;x =2k π+π(k ∈Z )时,y min =-1无最值奇偶性 奇函数偶函数 奇函数 对称性对称中心(k π,0),k ∈Z对称中心⎝⎛⎭⎫k π2,0,k∈Z对称中心⎝⎛⎭⎫k π+π2,0,k ∈Z对称轴l :x =k π+π2,k ∈Z对称轴l :x =k π,k ∈无对称轴Z周期性 2π2ππ易误提醒1.正切函数的图象是由直线x =k π+π2(k ∈Z )隔开的无穷多支曲线组成,单调增区间是⎝⎛⎭⎫-π2+k π,π2+k π,k ∈Z 不能说它在整个定义域内是增函数,如π4<3π4,但是tan π4>tan 3π4,正切函数不存在减区间.2.三角函数存在多个单调区间时易错用“∪”联结.3.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 必记结论 函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π2(k ∈Z )时是偶函数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π2(k ∈Z )时是奇函数.[自测练习]1.函数y =tan 3x 的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠3π2+3k π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π6+k π,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π3,k ∈Z 解析:由3x ≠π2+k π,得x ≠π6+k π3,k ∈Z .答案:D2.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:∵f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 答案:B3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π3对称B .关于点⎝⎛⎭⎫π3,0对称 C .关于直线x =-π6对称D .关于点⎝⎛⎭⎫π6,0对称解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,∴ω=2,即f (x )=sin ⎝⎛⎭⎫2x +π3. 经验证可知f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+π3=sin π=0, 即⎝⎛⎭⎫π3,0是函数f (x )的一个对称点. 答案:B4.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 解析:函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z ).答案:53π4+2k π(k ∈Z ) 考点一 三角函数的定义域、值域|1.函数y =cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6,k ∈Z C.⎣⎡⎦⎤2k π-π6,2k π+π6,k ∈Z D .R解析:∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 答案:C2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 答案:B3.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析:f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎨⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象(实线),如图,可得函数的最小值为-1,最大值为22,故值域为⎣⎡⎦⎤-1,22.答案:⎣⎡⎦⎤-1,22 1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求三角函数值域(最值)的三种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域.(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决. (3)数形结合法,作出三角函数图象可求.考点二 三角函数的单调性|(2015·高考重庆卷)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.[解] (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 三角函数的单调区间的求法(1)代换法:求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可.若ω为负,则要先把ω化为正数.(2)图象法:作出三角函数的图象,根据图象直接写出单调区间.1.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2]解析:由π2<x <π得π2ω+π4<ωx +π4<πω+π4,又y =sin t 在区间⎝⎛⎭⎫π2,32π上递减.∴π2ω+π4≥π2,且ωπ+π4≤32π,解之得12≤ω≤54.答案:A2.求函数y =tan ⎝⎛⎭⎫π3-2x 的单调区间. 解:把函数y =tan ⎝⎛⎭⎫π3-2x 变为y =-tan ⎝⎛⎭⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z .故函数y =tan ⎝⎛⎭⎫π3-2x 的单调减区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).考点三 三角函数的奇偶性、周期性及对称性|正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有: 1.三角函数的周期性. 2.三角函数的奇偶性.3.三角函数的对称轴或对称中心. 4.三角函数性质的综合应用. 探究一 三角函数的周期性1.函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π3的最小正周期为________. 解析:∵y ′=sin ⎝⎛⎭⎫2x -π3的最小正周期T ′=π, ∴T =T ′2=π2.答案:π22.(2015·高考湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.解析:由题意,两函数图象交点间的最短距离即相邻的两交点间的距离,设相邻的两交点坐标分别为P (x 1,y 1),Q (x 2,y 2),易知|PQ |2=(x 2-x 1)2+(y 2-y 1)2,其中|y 2-y 1|=2-(-2)=22,|x 2-x 1|为函数y =2sin ωx -2cos ωx =22sin ⎝⎛⎭⎫ωx -π4的两个相邻零点之间的距离,恰好为函数最小正周期的一半,所以(23)2=⎝⎛⎭⎫2π2ω2+(22)2,ω=π2. 答案:π2探究二 三角函数的奇偶性3.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2 B.2π3 C.3π2D.5π3解析:由y =sin x +φ3是偶函数知φ3=π2+k π,k ∈Z ,即φ=3π2+3k π,k ∈Z ,又∵φ∈[0,2π],∴φ=3π2.答案:C探究三 三角函数的对称轴或对称中心4.若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( ) A .1 B .2 C .4D .8解析:由题知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z )⇒ωmin =2,故选B.答案:B5.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2解析:∵正弦函数图象的对称轴过图象的最高(低)点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .即k =-1,则x =-π4.答案:C探究四 三角函数性质的综合应用6.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x ( ) A .是奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B .是偶函数且图象关于点(π,0)对称 C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 解析:∵当x =π4时,函数f (x )取得最小值,∴sin ⎝⎛⎭⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝⎛⎭⎫x +2k π-3π4=sin ⎝⎛⎭⎫x -3π4. ∴y =f ⎝⎛⎭⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎫3π4-x 是奇函数,且图象关于直线x =π2对称. 答案:C7.(2015·高考天津卷)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,因为函数f (x )的图象关于直线x =ω对称,所以f (ω)=2sin ⎝⎛⎭⎫ω2+π4=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f (x )在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.答案:π2函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.11.换元法求三角函数的最值问题【典例】 (1)求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. (2)求函数y =sin x +cos x +3cos x sin x 的最值.[思路点拨] 利用换元法求解,令t =sin x 或令t =sin x +cos x .转化为二次函数最值问题.[解] (1)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. (2)令t =sin x +cos x ,∴t ∈[-2, 2 ]. 又(sin x +cos x )2-2sin x cos x =1, ∴sin x cos x =t 2-12,∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53, y 大=f (2)=32+ 2.[方法点评] (1)形如y =a sin 2x +b sin x +c 的三角函数,可设sin x =t ,再化为关于t 的二次函数求值域(最值).(2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).[跟踪练习] 当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:由π6≤x ≤7π6,知-12≤sin x ≤1.又y =3-sin x -2cos 2x =2sin 2x -sin x +1 =2⎝⎛⎭⎫sin x -142+78,∴当sin x =14时,y min =78, 当sin x =1或-12时,y max =2.答案:782A 组 考点能力演练1.(2015·唐山期末)函数f (x )=1-2sin 2x2的最小正周期为( )A .2πB .π C.π2D .4π解析:∵f (x )=1-2sin 2x 2=cos x ,∴f (x )的最小正周期T =2π1=2π,故选A.答案:A2.函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:f (x )=1-2sin 2x +2sin x =-2⎝⎛⎭⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C.答案:C3.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( ) A.π3 B.2π3 C .πD.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为⎣⎡⎦⎤2π3,4π3.答案:A4.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,且f (x )在区间⎝⎛⎭⎫π6,π2上递减,则ω=( )A .3B .2C .6D .5解析:∵f (x )在⎝⎛⎭⎫π6,π2上单调递减,且f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,∴f ⎝ ⎛⎭⎪⎫π6+π22=0, ∵f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎫ωx +π3, ∴f ⎝ ⎛⎭⎪⎫π6+π22=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3ω+π3=0, ∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2. 答案:B5.若函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎫x +π3为( ) A .奇函数且在⎝⎛⎭⎫0,π4上单调递增 B .偶函数且在⎝⎛⎭⎫0,π2上单调递增 C .偶函数且在⎝⎛⎭⎫0,π2上单调递减 D .奇函数且在⎝⎛⎭⎫0,π4上单调递减 解析:因为函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6, 则y =f ⎝⎛⎭⎫x +π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π6=cos ⎝⎛⎭⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝⎛⎭⎫0,π4上单调递减,故选D. 答案:D6.(2015·长沙一模)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3. 答案:2或37.已知函数f (x )=2sin ⎝⎛⎭⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调增区间为________.解析:由题知2π2ω=2,得ω=12π, ∴f (x )=2sin ⎝⎛⎭⎫πx -π4,令-π2+2k π≤πx -π4≤π2+2k π,k ∈Z ,解得-14+2k ≤x ≤34+2k ,k ∈Z ,又x ∈[-1,1],所以-14≤x ≤34,所以函数f (x )在[-1,1]上的单调递增区间为⎣⎡⎦⎤-14,34. 答案:⎣⎡⎦⎤-14,34 8.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称. 其中真命题的是________.解析:f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎡⎦⎤-π4,π4时,2x ∈⎣⎡⎦⎤-π2,π2,故③是真命题;因为f ⎝⎛⎭⎫3π4=12sin 3π2=-12,故f (x )的图象关于直线x =3π4对称,故④是真命题. 答案:③④9.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间. 解:∵由f (x )的最小正周期为π,则T =2πω=π, ∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0,由已知上式对∀x ∈R 都成立,∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎫π6,32时, sin ⎝⎛⎭⎫2×π6+φ=32, 即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z . 10.(2016·长沙模拟)设函数f (x )=sin ⎝⎛⎭⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝⎛⎭⎫πx 3-π3-1, 所以y =f (x )的最小正周期T =2ππ3=6. 由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z , 得6k -12≤x ≤6k +52,k ∈Z , 所以y =f (x )的单调递增区间为⎣⎡⎦⎤6k -12,6k +52,k ∈Z . (2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎡⎦⎤2π3,π,sin ⎝⎛⎭⎫π3x -π3∈ ⎣⎡⎦⎤0,32,f (x )∈⎣⎡⎦⎤-1,12,即当x ∈[0,1]时,函数y =g (x )的最大值为12. B 组 高考题型专练1.(2014·高考陕西卷)函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( ) A.π2B .πC .2πD .4π解析:由周期公式T =2π2=π. 答案:B2.(2015·高考四川卷)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x 解析:采用验证法.由y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,可知该函数的最小正周期为π且为奇函数,故选A.答案:A3.(2015·高考浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析:由题意知,f (x )=22sin ⎝⎛⎭⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ). 答案:π ⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ) 4.(2014·高考北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 解析:记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3, 又f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝⎛⎭⎫π2+π6×12=π3,x 2=⎝⎛⎭⎫π2+2π3×12=7π12,∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 答案:π5.(2015·高考北京卷)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解:(1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3, 所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值. 所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3.。

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案

三角函数的图像与性质复习教案一、教学目标:1. 回顾和巩固三角函数的图像与性质的基本概念和公式。

2. 提高学生对三角函数图像与性质的理解和运用能力。

3. 培养学生的数学思维能力和解决问题的能力。

二、教学内容:1. 三角函数的图像与性质的基本概念和公式。

2. 三角函数的周期性及其图像。

3. 三角函数的奇偶性及其图像。

4. 三角函数的单调性及其图像。

5. 三角函数的极值及其图像。

三、教学重点与难点:1. 三角函数的周期性及其图像。

2. 三角函数的奇偶性及其图像。

3. 三角函数的单调性及其图像。

4. 三角函数的极值及其图像。

四、教学方法:1. 采用讲解法,引导学生回顾和巩固三角函数的图像与性质的基本概念和公式。

2. 采用案例分析法,分析三角函数的周期性、奇偶性、单调性和极值的图像特点。

3. 采用练习法,让学生通过练习题目的形式,巩固所学知识,提高解决问题的能力。

五、教学过程:1. 导入:通过复习三角函数的图像与性质的基本概念和公式,激发学生的学习兴趣。

2. 讲解:讲解三角函数的周期性及其图像,引导学生理解周期性的含义和周期函数的图像特点。

3. 分析:分析三角函数的奇偶性及其图像,引导学生理解奇偶性的含义和奇偶函数的图像特点。

4. 讲解:讲解三角函数的单调性及其图像,引导学生理解单调性的含义和单调函数的图像特点。

5. 分析:分析三角函数的极值及其图像,引导学生理解极值的含义和极值函数的图像特点。

6. 练习:布置练习题目,让学生通过练习的形式,巩固所学知识,提高解决问题的能力。

7. 总结:对本节课的内容进行总结,强调三角函数的图像与性质的重要性。

教学反思:在教学过程中,要注意引导学生理解和掌握三角函数的图像与性质的基本概念和公式,提高他们对三角函数图像与性质的理解和运用能力。

要关注学生的学习情况,及时进行反馈和指导,帮助他们解决学习中的问题。

六、教学评价:1. 通过课堂讲解和练习,评价学生对三角函数图像与性质的基本概念和公式的掌握程度。

高考数学一轮复习 三角函数的图象及性质教案 理 教案

高考数学一轮复习 三角函数的图象及性质教案 理 教案

某某省东北师X大学附属中学2015届高考数学一轮复习三角函数的图象及性质教案理知识梳理:(阅读教材必修4第30页—第72页)1、三角函数的图象及性质函数正弦函数余弦函数正切函数图象定义域值域单调性奇偶性周期性对称中心对称轴2、周期函数:对于函数如果存在一个非零常数T,使得当x取定义内的每一个值时,都有=,那么函数就叫做周期函数,非零常数T叫做函数的周期;最小正周期:对于周期函数,如果在它的所有周期中,存在一个最小正数,那么这个最小的正数就叫做函数的最小正周期,常把最小正周期叫做函数的周期。

3、三角函数的图象的画法:(1)、利用三角函数线的几何画法;(2)、利用变换法(3)、五点法作图4、三角函数方程与三角不等式的解法主要根据三角函数的图象,先找出在一个周期内的方程或不等式的解,再写出和它们终边相同的角的集合。

探究一:三角函数的定义域问题例1:(1)、求函数的定义域;(2)、求函数的定义域;(3)、求函数的定义域。

探究二:三角函数的最值问题例2:(2014某某)(本小题满分13分)已知函数()23cos sin 3cos 34f x x x x π⎛⎫=⋅+-+ ⎪⎝⎭,x R ∈. (Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在闭区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【答案】 (1) π(2)41,21-本小题主要考查两角和与差的正弦公式、二倍角公式与余弦公式,三角函数的最小正周期、单调性等基础知识. 考查基本运算能力. 满分13分.(Ⅰ)解:由已知,有cosx(sinxcos +cosxsin )-= sinxcosx-cos 2x+=+=(1+cos2) +==所以,f x 的最小正周期T==例3:(2014新课标2 理科).函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.探究三:三角函数的图象与性质例4:设函数f(x)的图角的一条对称轴是(1): 求;(2): 求函数的单调区增区间例5:函数在区间[]上的最大值为1,求探究四:三角函数的值域例6:+)例7:sinx+cosx+sinxcosx+1 ,x]例8:一、方法提升1、求三角函数的定义域常用的方法:通过解不等式最后化成一个三角函数值的X围,再利用三角函数的图象或三角函数线求解,若需要解三角不等式组,要注意运用数轴取交集;2、求三角函数的值域或最值常用方法:(1)将三角函数关系式化成一角一函数的形式,利用三角函数的有界性或三角函数的单调性来解;(2)将三角函数关系式化成一个角的三角函数式的二次函数式,利用配方或二次函数的图象求解,要注意变量的X围;(3)数形结合法、换元法。

高三 一轮复习 三角函数的图象及性质 教案

高三 一轮复习 三角函数的图象及性质 教案

三角函数图像与性质正弦、余弦、正切函数的图像与性质(下表中k ∈Z ).函数 y =sin xy =cos xy =tan x图像定义域 R R{x |x ∈R ,且x ≠ k π+π2,k ∈Z }值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性奇函数偶函数奇函数单调性⎣⎡2k π-π2,2k π+⎦⎤π2为增;[ 2k π+⎦⎤π2,2k π+3π2为减[2k π,2k π+π]为 减;[2k π-π,2k π]为增⎝⎛⎭⎫k π-π2,k π+π2为增对称 中心 (k π,0) ⎝⎛⎭⎫k π+π2,0⎝⎛⎭⎫k π2,0对称轴x =k π+π2x =k π无1.三角函数存在多个单调区间时易错用“∪”联结.2.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. [试一试]1.函数y =tan ⎝⎛⎭⎫π4-x 的定义域是________.2.函数y =sin x ⎝⎛⎭⎫-π4≤x ≤3π4的值域是________.1.三角函数单调区间的求法先把函数式化成形如y =A sin(ωx +φ)(ω>0)的形式,再根据基本三角函数的单调区间,求出x 所在的区间.应特别注意,考虑问题应在函数的定义域内考虑.注意区分下列两题的单调增区间的不同: (1)y =sin ⎝⎛⎭⎫2x -π4;(2)y =sin ⎝⎛⎭⎫π4-2x . 2.求三角函数值域(最值)的两种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图像写出函数的值域; (2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决. [练一练]1.函数y =|sin x |的一个单调增区间是________.2.(2013·天津高考)函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________.考点一三角函数的定义域与值域1.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为________.2.(2014·湛江调研)函数y =lg(sin x )+ cos x -12的定义域为________.3.(1)函数y =2cos 2x +5sin x -4的值域为________.(2)当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.[类题通法]1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解. 2.三角函数值域的不同求法 (1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.考点二三角函数的单调性[典例] 求下列函数的单调递减区间: (1)y =2sin ⎝⎛⎭⎫x -π4;(2)y =tan ⎝⎛⎭⎫π3-2x .若将本例(1)改为“y =2⎪⎪⎪⎪sin ⎝⎛⎭⎫x -π4”,如何求解?[类题通法]三角函数的单调区间的求法(1)代换法:所谓代换法,就是将比较复杂的三角函数整理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间. (2)图像法:函数的单调性表现在图像上是:从左到右,图像上升趋势的区间为单调递增区间,图像下降趋势的区间为单调递减区间,画出三角函数的图像,结合图像易求它的单调区间.提醒:求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. [针对训练]1.(2013·盐城二模)函数f (x )=2sin ⎝⎛⎭⎫x -π4,x ∈[-π,0]的单调增区间为________.2.(2013·苏北四市联考)若函数f (x )=2sin ωx (ω>0)在⎣⎡⎦⎤-2π3,2π3上单调递增,则ω的最大值为______.考点三三角函数的对称性与奇偶性正、余弦函数的图像既是中心对称图形,又是轴对称图形.正切函数的图像只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)求三角函数的对称轴或对称中心; (2)由三角函数的对称性求参数值; (3)三角函数对称性的应用.角度一 求三角函数的对称轴或对称中心1.(2013·扬州期末)已知函数f (x )=-2sin 2x +23sin x · cos x +1.(1)求f (x )的最小正周期及对称中心;(2)当x ∈⎣⎡⎦⎤-π6,π3时,求f (x )的最大值和最小值.角度二 由三角函数的对称性求参数值2.(2014·连云港期末)若函数y =3sin(2x +φ)(0<φ<π)的图像关于点⎝⎛⎭⎫π3,0中心对称,则φ=________.3.已知ω>0,函数f (x )=cos ⎝⎛⎭⎫ωx +π3的一条对称轴为x =π3,一个对称中心为点⎝⎛⎭⎫π12,0,则ω的最小值为______.角度三 三角函数对称性的应用4.(2014·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图像如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f ⎝⎛⎭⎫16的值为______.[类题通法]1.若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值. 若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.2.对于函数y =A sin(ωx +φ),其对称轴一定经过图像的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.[课堂练通考点]1.(2014·常州统考)函数f (x )=sin ⎝⎛⎭⎫2x +π4⎝⎛⎭⎫0≤x ≤π2的单调增区间是________.2.已知函数f (x )=2sin ⎝⎛⎭⎫ωx -π6(ω>0)的最小正周期为π,则f (x )的单调递增区间为________.3.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________.4.函数y =tan ⎝⎛⎭⎫2x +π4的图像与x 轴交点的坐标是________.5.(2013·南京二模)对函数f (x )=x sin x ,现有下列命题: (1)函数f (x )是偶函数;(2)函数f (x )的最小正周期是2π;(3)点(π,0)是函数f (x )的图像的一个对称中心;(4)函数f (x )在区间⎣⎡⎦⎤0,π2上单调递增,在区间⎣⎡⎦⎤-π2,0上单调递减. 其中是真命题的是________(填序号).。

三角函数复习教案

三角函数复习教案

三角函数复习教案一、教学目标1. 知识与技能:(1)掌握三角函数的定义及性质;(2)熟练运用三角函数公式进行计算;(3)理解三角函数在实际问题中的应用。

2. 过程与方法:(1)通过复习,巩固三角函数的基本概念;(2)学会运用归纳法、类比法等方法总结三角函数的性质;(3)提高运用三角函数解决实际问题的能力。

3. 情感态度与价值观:(1)培养学生的团队协作精神;二、教学内容1. 三角函数的定义与性质(1)正弦函数、余弦函数、正切函数的定义;(2)三角函数的周期性;(3)三角函数的奇偶性;(4)三角函数的单调性。

2. 三角函数公式(1)和差化积公式;(2)积化和差公式;(3)倍角公式;(4)半角公式。

3. 三角函数在实际问题中的应用(1)角度与弧度的互化;(2)三角函数在几何问题中的应用;(3)三角函数在物理问题中的应用。

三、教学重点与难点1. 教学重点:(1)三角函数的定义与性质;(2)三角函数公式的运用;(3)三角函数在实际问题中的应用。

2. 教学难点:(1)三角函数公式的灵活运用;(2)解决实际问题时的三角函数求解。

四、教学方法1. 采用讲解法、问答法、讨论法等教学方法;2. 利用多媒体课件辅助教学,增强学生的直观感受;3. 设置适量练习,巩固所学知识。

五、教学过程1. 导入:通过复习三角函数的基本概念,引导学生回顾已学知识,为新课的学习做好铺垫。

2. 讲解:(1)讲解三角函数的定义与性质,通过示例让学生理解并掌握;(2)介绍三角函数公式,引导学生学会运用公式解决实际问题;(3)讲解三角函数在实际问题中的应用,培养学生运用数学知识解决实际问题的能力。

3. 练习:布置适量练习题,让学生巩固所学知识,并及时给予解答和指导。

4. 总结:对本节课的主要内容进行总结,强调重点和难点,鼓励学生课后进行自主复习。

5. 课后作业:布置课后作业,巩固课堂所学知识,提高学生的实际运用能力。

六、教学评估1. 课堂问答:通过提问,了解学生对三角函数定义与性质的理解程度。

高三数学一轮复习三角函数性质及应用教案

高三数学一轮复习三角函数性质及应用教案

三角函数的性质及应用一、复习目标:1、理解三角函数的定义域、值域和最值、奇偶性、单调性与周期性.2、会求简单三角函数的定义域、值域和最值、奇偶性、单调区间及其周期,能运用性质解决一些三角函数问题.3、熟悉三角函数的对称性,并能应用对称性解决一些三角函数问题.二.命题走向近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本章复习的重点。

在复习时要充分运用数形结合的思想,把图象与性质结合起来,即利用图象的直观性得出函数的性质,或由单位圆上线段表示的三角函数值来获得函数的性质,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。

三.教学建议本讲以求三角函数的最值、奇偶性、周期性、单调性与对称性的应用为重点。

五、自我演练1、 下列不等式中,正确的是 ( )点评:比较三角函数值大小的一般步骤: ①先判断正负;②利用奇偶性或周期性转化为同一单调区间上的两个同名函数; ③最后利用单调性比较出大小关系。

2、 已知函数的最小正周期为 ,则该函数的图象 ( ) 点评:函数)cos(),sin(ϕωϕω+=+=x A y x A y 的周期ωπ2=T ;函数)cot(),tan(ϕωϕω+=+=x A y x A y 的周期ωπ2=T3、 函数 的单调递增区间是 .点评:把三角函数式化简为:)0()sin(>++=ωϕωk x A y 是求单调区间问题的常用方法.其基本思想是把ϕω+x 看作一个整体来解x 的范围。

4.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于 ( )点评:求三角函数最值的常用方法:化为一个角的一种三角函数形式,利用函数的有界性或的三角函数的单调性求.六、例题讲解例1.已知函数分析:把三角函数式化为)0( )sin(>++=ωϕωk x A y 是解决周期、最值、单调区间问题的常用方法.)49cos()53cos( . )6sin()5sin( .)7tan(815tan 74sin 75sin .ππππππππ->-->-->>D C B. A )0( )3sin()(>+=ωπωx x f π对称关于直线对称),关于点(对称关于直线对称),关于点(3. 04 .4 03 .ππππ==x D C x B. A )( 2cos 2sin 3R x x x y ∈+=5 . 1 .23 .----D C B. A )( )12(sin 2)62sin(3)(2R x x x x f ∈-+-=ππ例2. 已知函数的最大值为1,最小值为-3, 试确定的单调区间解:七、课堂小结1.正弦、余弦、正切三种三角函数的性质;2.比较函数值的大小要注意只有属于同一单调区间的同名函数值才能比较;3.求三角函数的周期、最值及单调区间时常把三角函数式化为 等基本函数类型,然后分别借助周期公式、有界性及整体代换来解决;4.含有参数的问题要注意对参数进行分类讨论。

高三数学一轮复习讲义 三角函数的图像与性质教案

高三数学一轮复习讲义 三角函数的图像与性质教案

芯衣州星海市涌泉学校三角函数的图象与性质根底梳理1.“五点法〞描图(1)y=sinx的图象在[0,2π]上的五个关键点的坐标为(0,0)(π,0)(2π,0)(2)y=cosx的图象在[0,2π]上的五个关键点的坐标为(0,1),,(π,-1),,(2π,1)2.三角函数的图象和性质函数性质y=sinx y=cosx y=tanx 定义域R R {x|x≠kπ+,k∈Z}图象值域[-1,1][-1,1]R对称性对称轴:__x=kπ+(k∈Z)___;对称中心:_(kπ,0)(k∈Z)___对称轴:x=kπ(k∈Z)___;对称中心:_(kπ+,0)(k∈Z)__对称中心:_(k∈Z)__周期2π_ 2ππ单调性单调增区间_[2kπ-,2kπ+](k∈Z)___;单调减区间[2kπ+,2kπ+](k∈Z)__单调增区间[2kπ-π,2kπ](k∈Z)____;单调减区间[2kπ,2kπ+π](k∈Z)______单调增区间_(kπ-,kπ+)(k∈Z)___奇偶性奇函数偶函数奇函数3.=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期)对函数周期性概念的理解周期性是函数的整体性质,要求对于函数整个定义域范围的每一个x值都满足f(x+T)=f(x),其中T是不为零的常数.假设只有个别的x值满足f(x+T)=f(x),或者者找到哪怕只有一个x值不满足f(x+T)=f(x),都不能说T是函数f(x)的周期.函数y=Asin(ωx+φ)和y=Acos(ωx+φ)的最小正周期为,y=tan(ωx+φ)的最小正周期为.4.求三角函数值域(最值)的方法:(1)利用sinx、cosx的有界性;关于正、余弦函数的有界性由于正余弦函数的值域都是[-1,1],因此对于∀x∈R,恒有-1≤sinx≤1,-1≤cosx≤1,所以1叫做y=sinx,y=cosx的上确界,-1叫做y=sinx,y=cosx的下确界.(2)形式复杂的函数应化为y=Asin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;含参数的最值问题,要讨论参数对最值的影响.(3)换元法:把sinx或者者cosx看作一个整体,可化为求函数在区间上的值域(最值)问题.利用换元法求三角函数最值时注意三角函数有界性,如:y=sin2x-4sinx+5,令t=sinx(|t|≤1),那么y =(t-2)2+1≥1,解法错误.5.求三角函数的单调区间时,应先把函数式化成形如y=Asin(ωx+φ)(ω>0)的形式,再根据根本三角函数的单调区间,求出x所在的区间.应特别注意,应在函数的定义域内考虑.注意区分以下两题的单调增区间不同;利用换元法求复合函数的单调区间(要注意x系数的正负号)(1)y=sin;(2)y=sin.热身练习:1.函数y=cos,x∈R().A.是奇函数B.既不是奇函数也不是偶函数C.是偶函数D.既是奇函数又是偶函数2.函数y=tan的定义域为().A. B.C.D.3.函数y=sin(2x+)的图象的对称轴方程可能是()A.x=-B.x=-C.x=D.x=【解析】令2x+=kπ+,那么x=+(k∈Z)∴当k=0时,x=,选D.4.y=sin的图象的一个对称中心是().A.(-π,0) B.C. D.解析∵y=sinx的对称中心为(kπ,0)(k∈Z),∴令x-=kπ(k∈Z),x=kπ+(k∈Z),由k=-1,x=-π得y=sin的一个对称中心是.答案B5.以下区间是函数y=2|cosx|的单调递减区间的是()A.(0,π)B.C.D.6.函数f(x)=sin(2x+φ),其中φ为实数,假设f(x)≤|f()|对任意x∈R恒成立,且f()>f(π),那么f(x)的单调递增区间是()A.[kπ-,kπ+](k∈Z)B.[kπ,kπ+](k∈Z)C.[kπ+,kπ+](k∈Z)D.[kπ-,kπ](k∈Z)【解析】当x∈R时,f(x)≤|f()|恒成立,∴f()=sin(+φ)=±1可得φ=2kπ+或者者φ=2kπ-,k∈Z∵f()=sin(π+φ)=-sinφ>f(π)=sin(2π+φ)=sinφ∴sinφ<0∴φ=2kπ-由-+2kπ≤2x-≤+2kπ得x∈[kπ+,kπ+](k∈Z),选C.7.函数f(x)=cos x∈R的最小正周期为___4π_____.8..y=2-3cos的最大值为___5_____,此时x=_____π+2kπ,k∈Z_________.9.函数y=(sinx-a)2+1,当sinx=1时,y取最大值;当sinx=a时,y取最小值,那么实数-1≤a≤0.10.函数f(x)=sin2x+sinxcosx在区间[,]上的最大值是.【解析】∵f(x)=+sin2x=sin2x-cos2x+=sin(2x-)+,又≤x≤,∴≤2x-≤.∴当2x-=即x=时,f(x)取最大值.题型一与三角函数有关的函数定义域问题例1求以下函数的定义域:(1)y=lgsin(cosx);(2)y=.解(1)要使函数有意义,必须使sin(cosx)>0.∵-1≤cosx≤1,∴0<cosx≤1.利用单位圆中的余弦线OM ,依题意知0<OM≤1, ∴OM 只能在x 轴的正半轴上,∴其定义域为{x|-+2kπ<x<+2kπ,k∈Z}. (2)要使函数有意义,必须使sinx -cosx≥0.利用图象.在同一坐标系中画出[0,2π]上y =sinx 和y =cosx 的图象,如下列图. 在[0,2π]内,满足sinx =cosx 的x 为,,再结合正弦、余弦函数的周期是2π, 所以定义域为.变式训练1(1)求函数y lg(2sin 1)tan 1cos()28x x x π-+--=+的定义域;解(1)要使函数有意义,那么 ⇒图①如图①利用单位圆得:∴函数的定义域为{x|2kπ+<x<2kπ+,k∈Z}. (2)求函数y 122log tan x x =++的定义域.要使函数有意义 那么⇒利用数轴可得图②图②∴函数的定义域是{x|0<x<或者者π≤x≤4}. 题型二、三角函数的五点法作图及图象变换 例2函数f(x)=4cosxsin(x +)-1. (1)用五点法作出f(x)在一个周期内的简图;(2)该函数图象可由y =sinx(x∈R)的图象经过怎样的平移变换与伸缩变换得到? 【解析】(1)y =f(x)=4cosxsin(x +)-1 =4cosx(sinx +cosx)-1=sin2x +2cos2x -1 =sin2x +cos2x =2sin(2x +)2x+0π2πx-y020-20∴函数y=f(x)在[-,]上的图象如下列图.【点评】“五点法作图〞应抓住四条:①化为y=Asin(ωx+φ)(A>0,ω>0)或者者y=Acos(ωx+φ)(A>0,ω>0)的形式;②求出周期T=;③求出振幅A;④列出一个周期内的五个特殊点.当画出某指定区间上的图象时,应列出该区间的特殊点.题型三三角函数图象与解析式的互相转化例3函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ<)的部分图象如下列图.(1)求f(x)的解析式;(2)设g(x)=[f(x-)]2,求函数g(x)在x∈[-,]上的最大值,并确定此时x的值.【解析】(1)由图可知A=2,=,那么=4×∴ω=.又f(-)=2sin[×(-)+φ]=2sin(-+φ)=0∴sin(φ-)=0∵0<φ<,∴-<φ-<∴φ-=0,即φ=∴f(x)=2sin(x+).(2)由(1)可得f(x-)=2sin[(x-)+]=2sin(x+)∴g(x)=[f(x-)]2=4×=2-2cos(3x+)∵x∈[-,]∴-≤3x+≤,∴当3x+=π,即x=时,g(x)max=4.【点评】根据y=Asin(ωx+φ)+K的图象求其解析式的问题,主要从以下四个方面来考虑:①A确实定:根据图象的最高点和最低点,即A=;②K确实定:根据图象的最高点和最低点,即K=;③ω确实定:结合图象,先求出周期,然后由T=(ω>0)来确定ω;④φ确实定:由函数y=Asin(ωx+φ)+K最开始与x轴的交点(最靠近原点)的横坐标为-(即令ωx +φ=0,x=-)确定φ.例4假设方程sinx+cosx=a在[0,2π]上有两个不同的实数根x1,x2,求a的取值范围,并求此时x1+x2的值.【解析】∵sinx+cosx=2sin(x+),x∈[0,2π],作出y=2sin(x+)在[0,2π]内的图象如图.由图象可知,当1<a<2或者者-2<a<1时,直线y=a与y=2sin(x+)有两个交点,故a的取值范围为a∈(-2,1)∪(1,2).当1<a<2时,x1++x2+=π.∴x1+x2=.当-2<a<1时,x1++x2+=3π,∴x1+x2=.【点评】利用三角函数图象形象直观,可使有些问题得到顺利、简捷的解决,因此我们必须准确把握三角函数“形〞的特征.例4函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<)的图象与x轴的交点中,相邻两个交点之间的间隔为,且图象上一个最低点为M(,-2).(1)求f(x)的解析式;(2)将函数f(x)的图象向右平移个单位后,再将所得图象上各点的横坐标缩小到原来的,纵坐标不变,得到y=g(x)的图象,求函数y=g(x)的解析式,并求满足g(x)≥且x∈[0,π]的实数x的取值范围.【解析】(1)由函数图象的最低点为M(,-2),得A=2,由x轴上相邻两个交点间的间隔为,得=,即T=π,∴ω==2.又点M(,-2)在图象上,得2sin(2×+φ)=-2,即sin(+φ)=-1,故+φ=2kπ-,k∈Z,∴φ=2kπ-,又φ∈(0,),∴φ=.综上可得f(x)=2sin(2x+).(2)将f(x)=2sin(2x+)的图象向右平移个单位,得到f1(x)=2sin[2(x-)+],即f1(x)=2sin2x的图象,然后将f1(x)=2sin2x的图象上各点的横坐标缩小到原来的,纵坐标不变,得到g(x)=2sin(2·2x),即g(x)=2sin4x.由得.那么即.故≤x≤或者者≤x≤.题型四、三角函数的奇偶性与周期性及应用例1函数f(x)=sin(ωx+φ),其中ω>0,|φ|<.(1)假设cos cosφ-sin sinφ=0,求φ的值;(2)在(1)的条件下,假设函数f(x)的图象的相邻两条对称轴之间的间隔等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.【解析】(1)由cos cosφ-sin sinφ=0得cos(+φ)=0.∵|φ|<,∴φ=.(2)由得=,∴T=,ω=3∴f(x)=sin(3x+).设函数f(x)的图象向左平移m个单位后所对应的函数为g(x),那么g(x)=sin[3(x+m)+]=sin(3x+3m+)g(x)是偶函数当且仅当3m+=kπ+(k∈Z)即m=+(k∈Z)∴最小正实数m=.题型五三角函数的单调性与周期性例2写出以下函数的单调区间及周期:(1)y=sin;(2)y=|tanx|.解(1)y= sin,它的增区间是y=sin的减区间,它的减区间是y=sin的增区间.由2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z.由2kπ+≤2x-≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z.故所给函数的减区间为,k∈Z;增区间为,k∈Z.最小正周期T==π.(2)观察图象可知,y=|tanx|的增区间是,k∈Z,减区间是,k∈Z.最小正周期:T=π.探究进步(1)求形如y=Asin(ωx+φ)或者者y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答.列不等式的原那么是:①把“ωx+φ(ω>0)〞视为一个“整体〞;②A>0(A<0)时,所列不等式的方向与y =sinx(x∈R),y=cosx(x∈R)的单调区间对应的不等式方向一样(反).(2)对于y=Atan(ωx+φ)(A、ω、φ为常数),其周期T=,单调区间利用ωx+φ∈,解出x的取值范围,即为其单调区间.(3)求含有绝对值的三角函数的单调性及周期时,通常要画出图象,结合图象断定.变式训练2(1)求函数y=sin+cos的周期、单调区间及最大、最小值;(2)函数f(x)=4cosxsin -1.①求f(x)的最小正周期;②求f(x)在区间上的最大值和最小值.解:y =sin +cos 11cos 4sin 4cos 4sin 42222x x x x =+++ (1)周期为T=242,232k x k k Z πππππ-+≤+≤+∈函数的递增区间为(k∈Z);3242,232k x k k Z πππππ+≤+≤+∈函数的递减区间为(k∈Z) ymax =2;ymin =-2 (2)f(x)=4cosxsin -114cos cos )12x x x =+-2cos 2cos 1x x x =+-2cos 22sin(26)x x x π=+=+x ∈,22[,]663x πππ+∈-最大值为2;最小值为-1题型六、三角函数的对称性与单调性及应用例2向量m =(sin2x -1,cosx),n =(1,2cosx),设函数f(x)=m n ⋅,x∈R. (1)求函数f(x)图象的对称轴方程;(2)求函数f(x)的单调递增区间. 【解析】(1)f(x)=m·n=sin2x -1+2cos2x =sin2x +cos2x =2sin(2x +) ∴对称轴方程为:2x +=kπ+,即x =+(k∈Z). (2)由-+2kπ≤2x+≤+2kπ得-+kπ≤x≤kπ+ ∴f(x)的单调递增区间为[kπ-,kπ+](k∈Z). 【点评】对于f(x)=Asin(ωx+φ)(A>0,ω>0):①假设求y =f(x)的对称轴,只需令ωx+φ=kπ+(k∈Z),求出x ; 假设求y =f(x)的对称中心的横坐标,只零令ωx+φ=kπ(k∈Z),求出x ; ②假设求y =f(x)的单调增区间,只需令2kπ-≤ωx+φ≤2kπ+,求出x ; 假设求y =f(x)的单调减区间,只需令2kπ+≤ωx+φ≤2kπ+,求出x. 题型七三角函数的对称性与奇偶性例3(1)f(x)=sinx +cosx(x∈R),函数y =f(x +φ)的图象关于直线x =0对称,那么φ的值是________. (2)假设函数y =3cos(2x +φ)的图象关于点中心对称,那么|φ|的最小值为() A.B.C.D.(1)f (x)=2sin π()3x +,y =f(x +φ)=2sin ()3x πϕ++图象关于x =0对称, 即f(x +φ)为偶函数.∴+φ=+kπ,k∈Z, 即φ=kπ+,k∈Z,所以当k =0时,φ=. (2)A 3cos 4(2)3πϕ⨯+=3cos 2π(2π)3ϕ++=3cos 2()0,3πϕ+= ∴+φ=kπ+,k∈Z,∴φ=kπ-,k∈Z, 取k =0,得|φ|的最小值为.应选探究进步假设f(x)=Asin(ωx+φ)为偶函数,那么当x =0时,f(x)获得最大或者者最小值.假设f(x)=Asin(ωx+φ)为奇函数,那么当x =0时,f(x)=0. 假设求f(x)的对称轴,只需令ωx+φ=+kπ(k∈Z),求x. 假设求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z)即可.变式训练3(1)函数f(x)=sinx +acosx 的图象的一条对称轴是x =,那么函数g(x)=asinx +cosx 的最大值是()A.B.C.D.由题意得f(0)=f 10()3π,∴a=--.∴a=-,g(x)=-sinx +cosx =sin 2()3x π+, ∴g(x)max=.(2)假设函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是x =,函数f′(x)的图象的一个对称中心是,那么f(x)的最小正周期是________.(1)B(2)π 由题设,有π()4f ω=±,即(a +b)=±,由此得到a =b. 又()08f π'=,所以aω(cos sin )88πωπω-=0,从而tan =1,=kπ+,k∈Z,即ω=8k +2,k∈Z,而0<ω<5,所以ω=2, 于是f(x)=a(sin2x +cos2x)=asin (2)4x π+故f(x)的最小正周期是π.题型八三角函数的值域与最值的求法及应用 例3(1)求函数y =的值域;(2)求函数y =sinxcosx +sinx +cosx 的最值;(3)假设函数f(x)=1cos 24sin()2x x π++-asin ·cos(π-)的最大值为2,试确定常数a 的值.【解析】22sin (1sin )11sin x x x-+()y==2sinx(1-sinx)=2sinx -2sin2x =-2(sinx -)2+. ∵1+sinx≠0,∴-1<sinx≤1.∴-4<y≤.故函数y =的值域为(-4,].(2)令t =sinx +cosx ,那么sinxcosx =,且|t|≤. ∴y=(t2-1)+t =(t +1)2-1,∴当t =-1时,ymin =-1;当t =时,ymax =+. (3)f(x)=+asincos =cosx +sinx =sin(x +φ),(其中tanφ=) 由得=2,解得a =±.【点评】求三角函数的最值问题,主要有以下几种题型及对应解法. (1)y =asinx +bcosx 型,可引用辅角化为y =sin(x +φ)(其中tanφ=).(2)y =asin2x +bsinxcosx +ccos2x 型,可通过降次整理化为y =Asin2x +Bcos2x +C. (3)y =asin2x +bcosx +c 型,可换元转化为二次函数. (4)sinxcosx 与sinx±cosx 同时存在型,可换元转化.(5)y =(或者者y =)型,可用别离常数法或者者由|sinx|≤1(或者者|cosx|≤1)来解决,也可化为真分式去求解.(6)y =型,可用斜率公式来解决.例4函数f(x)=sin2x +acos2x(a∈R,a 为常数),且是函数y =f(x)的一个零点. (1)求a 的值,并求函数f(x)的最小正周期;(2)当x∈[0,]时,求函数f(x)的最大值和最小值及相应的x的值.【解析】(1)由是y=f(x)的零点得f()=sin+acos2=0,求解a=-2,那么f(x)=sin2x-2cos2x=sin2x-cos2x-1=sin(2x-)-1,故f(x)的最小正周期为T==π.(2)由x∈[0,]得2x-∈[-,],那么-≤sin(2x-)≤1,因此-2≤sin(2x-)-1≤-1,故当x=0时,f(x)取最小值-2,当x=时,f(x)取最大值-1.设a∈R,f(x)=cosx(asinx-cosx)+cos2(-x)满足f(-)=f(0),求函数f(x)在[,]上的最大值和最小值.【解析】f(x)=asinxcosx-cos2x+sin2x=sin2x-cos2x由f(-)=f(0)得-·+=-1,解得a=2.∴f(x)=sin2x-cos2x=2sin(2x-)当x∈[,]时,2x-∈[,],f(x)为增函数.当x∈[,]时,2x-∈[,],f(x)为减函数.∴f(x)在[,]上的最大值为f()=2又∵f()=,f()=∴f(x)在[,]上的最小值为f()=.题型九分类讨论及方程思想在三角函数中的应用例题:函数f(x)=-2asin+2a+b的定义域为,函数的最大值为1,最小值为-5,(1)求a和b的值.(2)假设a>0,设g(x)=f且lgg(x)>0,求g(x)的单调区间.点评①求出2x+的范围,求出sin(2x+)的值域.②系数a的正、负影响着f(x)的值,因此要分a>0,a<0两类讨论.③根据a>0或者者a<0求f(x)的最值,列方程组求解.解(1)∵x∈,∴2x+∈.∴sin∈,∴-2asin∈[-2a,a].∴f(x)∈[b,3a+b],又∵-5≤f(x)≤1,∴b=-5,3a+b=1,因此a=2,b=-5.(2)由(1)得a=2,b=-5,∴f(x)=-4sin-1,g(x)=f=-4sin-1=4sin-1,又由lgg(x)>0得g(x)>1,∴4sin-1>1,∴sin>,∴2kπ+<2x+<2kπ+,k∈Z,其中当2kπ+<2x+≤2kπ+,k∈Z时,g(x)单调递增,即kπ<x≤kπ+,k∈Z,∴g(x)的单调增区间为,k∈Z.又∵当2kπ+<2x+<2kπ+,k∈Z时,g(x)单调递减,即kπ+<x<kπ+,k∈Z.三角函数的图象与性质练习一一、选择题1.对于函数f(x)=2sinxcosx,以下选项正确的选项是()A.f(x)在(,)上是递增的B.f(x)的图象关于原点对称C.f(x)的最小正周期为2πD.f(x)的最大值为2【解析】f(x)=sin2xf(x)在(,)上是递减的,A错;f(x)的最小正周期为π,C错;f(x)的最大值为1,D错;选B.2.假设α、β∈(-,),那么“α<β〞是“tanα<tanβ〞的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解析】α、β∈(-,),tanx在此区间上单调递增.当α<β时,tanα<tanβ;当tanα<tanβ时,α<β.应选C.3.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,将该函数的图象向左平移个单位后,得到的图象对应的函数为奇函数,那么f(x)的图象()A.关于点(,0)对称B.关于直线x=对称C.关于点(,0)对称D.关于直线x=对称【解析】由得ω=2,那么f(x)=sin(2x+φ)设平移后的函数为g(x),那么g(x)=sin(2x++φ)(|φ|<)且为奇函数∴φ=-,f(x)=sin(2x-)∴图象关于直线x=对称,选B.4.f(x)=sinx,x∈R,g(x)的图象与f(x)的图象关于点(,0)对称,那么在区间[0,2π]上满足f(x)≤g(x)的x的取值范围是()A.[,] B.[,]C.[,] D.[,]【解析】设(x,y)为g(x)的图象上任意一点,那么其关于点(,0)对称的点为(-x,-y),由题意知该点必在f(x)的图象上.∴-y=sin(-x),即g(x)=-sin(-x)=-cosx,由得sinx≤-cosx⇒sinx+cosx=sin(x+)≤0又x∈[0,2π]∴≤x≤.5.函数f(x)=3sin(ωx+φ),g(x)=3cos(ωx+φ),假设对任意x∈R,都有f(+x)=f(-x),那么g()=____.【解析】由f(+x)=f(-x),知y=f(x)关于直线x=对称,∴sin(ω·+φ)=±1.∴g()=3cos(ω·+φ)=3=0.6.设函数f(x)=2sin(+),假设对任意x∈R,都有f(x1)≤f(x)≤f(x2)恒成立,那么|x2-x1|的最小值为____.【解析】由“f(x1)≤f(x)≤f(x2)恒成立〞,可得f(x1)、f(x2)分别是f(x)的最小值、最大值.∴|x2-x1|的最小值为函数f(x)的半周期,又T==4.∴|x2-x1|min=2.7.函数f(x)=sinx+cosx,f′(x)是f(x)的导函数.(1)求f′(x)及函数y=f′(x)的最小正周期;(2)当x∈[0,]时,求函数F(x)=f(x)f′(x)+f2(x)的值域.【解析】(1)f′(x)=cosx-sinx=-sin(x-)∴y=f′(x)的最小正周期为T=2π.(2)F(x)=cos2x-sin2x+1+2sinxcosx=1+sin2x+cos2x=1+sin(2x+)∵x∈[0,],∴2x+∈[,]∴sin(2x+)∈[-,1],∴函数F(x)的值域为[0,1+].8.设函数f(x)=2cosx(sinx+cosx)-1,将函数f(x)的图象向左平移α个单位,得到函数y=g(x)的图象.(1)求函数f(x)的最小正周期;(2)假设0<α<,且g(x)是偶函数,求α的值.【解析】(1)∵f(x)=2sinxcosx+2cos2x-1=sin2x+cos2x=sin(2x+),∴f(x)的最小正周期T==π.(2)g(x)=f(x+α)=sin[2(x+α)+]=sin(2x+2α+),g(x)是偶函数,那么g(0)=±=sin(2α+),∴2α+=kπ+,k∈Z.α=+(k∈Z),∵0<α<,∴α=.三角函数的图象与性质练习二1.函数f(x)=sin 图象的对称轴方程可以为() A.x = B.x =C.x = D.x =解析令2x +=kπ+(k∈Z),得x =+(k∈Z),令k =0得该函数的一条对称轴为x =.此题也可用代入验证法来解.答案D2.y =sin 的图象的一个对称中心是() A.(-π,0) B.C. D.3.函数y =3cos(x +φ)+2的图象关于直线x =对称,那么φ的可能取值是() A. B.-C. D.二、填空题4.函数y =lg(sinx)+的定义域为____(2k ,2k ]3πππ+(k∈Z)_________. 5.函数f(x)=3sin(ωx-)(ω>0)和g(x)=2cos(2x +φ)+1的图象的对称轴完全一样.假设x∈[0,],那么f(x)的取值范围是____32⎡⎤-⎢⎥⎣⎦,3___________. 4.函数f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,那么ω等于________.解析因为f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,所以2sin ω=,且0<ω<,因此ω=.答案6.关于函数f(x)=4sin (x∈R),有以下命题:①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;②y=f(x)的表达式可改写为y =4cos ;③y=f(x)的图象关于点对称;④y=f(x)的图象关于直线x =-对称.其中正确命题的序号是___________.②③解析函数f(x)=4sin 的最小正周期T =π,由相邻两个零点的横坐标间的间隔是=知①错.利用诱导公式得f(x)=4cos =4cos =4cos ,知②正确.由于曲线f(x)与x 轴的每个交点都是它的对称中心,将x =-代入得f(x)=4sin =4sin0=0,因此点是f(x)图象的一个对称中心,故命题③正确.曲线f(x)的对称轴必经过图象的最高点或者者最低点,且与y 轴平行,而x =-时y =0,点不是最高点也不是最低点,故直线x =-不是图象的对称轴,因此命题④不正确.答案②③三、解答题7.设函数f(x)=sin(-π<φ<0),y=f(x)图象的一条对称轴是直线x=.(1)求φ;(2)求函数y=f(x)的单调增区间.解(1)-(2)由(1)得:f(x)=sin,令-+2kπ≤2x-≤+2kπ,k∈Z,可解得+kπ≤x≤+kπ,k∈Z,因此y=f(x)的单调增区间为,k∈Z.8.(1)求函数y=2sin(-<x<)的值域;(2)求函数y=2cos2x+5sinx-4的值域.解(1)∵-<x<,∴0<2x+<,∴0<sin≤1,∴y=2sin的值域为(0,2].(2)y=2cos2x+5sinx-4=2(1-sin2x)+5sinx-4=-2sin2x+5sinx-2=-22+.∴当sinx=1时,ymax=1,当sinx=-1时,ymin=-9,∴y=2cos2x+5sinx-4的值域为[-9,1].三角函数的图象与性质练习三一、选择题1.定义在R上的函数f(x)既是偶函数又是周期函数,假设f(x)的最小正周期是π,且当x∈时,f(x)=sinx,那么f的值是()A.-B.C.-D.2.函数f(x)=2sinωx(ω>0)在区间上的最小值是-2,那么ω的最小值等于()A. B. C.2 D.33.函数f(x)=cos2x+sin是()A.非奇非偶函数B.仅有最小值的奇函数C.仅有最大值的偶函数D.有最大值又有最小值的偶函数二、填空题4.设定义在区间(0,)上的函数y=6cosx的图象与y=5tanx的图象交于点P,过点P作x轴的垂线,垂足为P1,直线PP1与函数y=sinx的图象交于点P2,那么线段P1P2的长为___________.5.函数f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,那么ω=___________.解析因为f(x)=2sinωx(ω>0)在上单调递增,且在这个区间上的最大值是,所以2sinω=,且0<ω<,因此ω=.答案6.给出以下命题:①函数y=cos是奇函数;②存在实数α,使得sinα+cosα=;③假设α、β是第一象限角且α<β,那么tanα<tanβ;④x=是函数y=sin的一条对称轴;⑤函数y=sin的图象关于点成中心对称图形.其中正确的序号为___________.三、解答题7.假设函数f(x)=sin2ax-sinax·cosax(a>0)的图象与直线y=m相切,并且切点的横坐标依次成公差为的等差数列.(1)求m的值;(2)假设点A(x0,y0)是y=f(x)图象的对称中心,且x0∈,求点A的坐标.7.解(1)f(x)=(1-cos2ax)-sin2ax=-(sin2ax+cos2ax)+=-sin+.∵y=f(x)的图象与y=m相切,∴m为f(x)的最大值或者者最小值,即m=或者者m=.(2)∵切点的横坐标依次成公差为的等差数列,∴f(x)的最小正周期为.T==,a>0,∴a=2,即f(x)=-sin+.由题意知sin=0,那么4x0+=kπ(k∈Z),∴x0=-(k∈Z).由0≤-≤(k∈Z)得k=1或者者2,因此点A的坐标为,.三角函数的图象与性质练习四一、选择题1.函数f(x)=2sinxcosx是().A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数解析f(x)=2sinxcosx=sin2x.∴f(x)是最小正周期为π的奇函数.答案C2.函数y=sin2x+sinx-1的值域为().A.[-1,1]B.C.D.解析(数形结合法)y=sin2x+sinx-1,令sinx=t,那么有y=t2+t-1,t∈[-1,1],画出函数图象如下列图,从图象可以看出,当t=-及t=1时,函数取最值,代入y=t2+t-1可得y∈.答案C3.假设函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,那么ω=().A.B.C.2D.3解析由题意知f(x)的一条对称轴为x=,和它相邻的一个对称中心为原点,那么f(x)的周期T=,从而ω=.答案B4.函数f(x)=(1+tanx)cosx的最小正周期为().A.2πB.C.πD.解析依题意,得f(x)=cosx+sinx=2sin.故最小正周期为2π.答案A5.以下函数中,周期为π,且在上为减函数的是().A.y=sin B.y=cosC.y=sin D.y=cos解析(挑选法)∵函数的周期为π.∴排除C、D,∵函数在上是减函数,∴排除B.答案A【点评】此题采用了挑选法,表达了挑选法的方便、快捷、准确性,在解选择题时应注意应用.6.函数f(x)=sin(x∈R),下面结论错误的选项是().A.函数f(x)的最小正周期为2πB.函数f(x)在区间上是增函数C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数解析∵y=sin =-cosx ,∴T=2π,在上是增函数,图象关于y 轴对称,为偶函数.答案D二、 填空题7.y=-|sin 〔x+4π〕|的单调增区间为___[kπ+π4,kπ+3π4]〔k∈Z〕_____. 8.要得到⎪⎭⎫ ⎝⎛-=42cos 3πx y 的图象,可以将函数y=3sin2x 的图象向左平移_8π__单位. 9.假设动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,那么MN 的最大值为____.10函数(02x π≤≤)的值域是_____[-1,0]_____. 11.()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,那么ω=__________.14312、给出下面的3个命题:〔1〕函数|)32sin(|π+=x y 的最小正周期是2π;〔2〕函数)23sin(π-=x y 在区间)23,[ππ上单调递增;〔3〕45π=x 是函数)252sin(π+=x y 的图象的一条对称轴.其中正确命题的序号是. 13.假设函数f(x)=cosωxcos(ω>0)的最小正周期为π,那么ω的值是________.解析f(x)=cosωxcos=cosωxsinωx=sin2ωx,∴T==π.∴ω=1.答案114.函数y =tan 的图象与x 轴交点的坐标是______.解析由2x +=kπ,k∈Z,得:x =-,k∈Z,故交点坐标为(k∈Z).答案(k∈Z)15.函数f(x)=sin(x +θ)+cos(x +θ)是偶函数,那么θ的值是________.解析(回忆检验法)据可得f(x)=2sin ,假设函数为偶函数,那么必有θ+=kπ+(k∈Z),又由于θ∈,故有θ+=,解得θ=,经代入检验符合题意.答案三、解答题16.f(x)=sinx +sin.(1)假设α∈[0,π],且sin2α=,求f(α)的值;(2)假设x∈[0,π],求f(x)的单调递增区间.解(1)由题设知f(α)=sinα+cosα.∵sin2α==2sinα·cosα>0,α∈[0,π],∴α∈,sinα+cosα>0.由(sinα+cosα)2=1+2sinα·cosα=,得sinα+cosα=,∴f(α)=.(2)由(1)知f(x)=sin ,又0≤x≤π,∴f(x)的单调递增区间为.17.设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)图象的一条对称轴是直线x =.(1)求φ;(2)求函数y =f(x)的单调增区间.解(1)令2×+φ=kπ+,k∈Z,∴φ=kπ+,k∈Z,又-π<φ<0,那么-<k <-,k∈Z,∴k=-1,那么φ=-.(2)由(1)得:f(x)=sin ,令-+2kπ≤2x-≤+2kπ,k∈Z,可解得+kπ≤x≤+kπ,k∈Z,因此y =f(x)的单调增区间为,k∈Z.18、设函数2()sin()2cos 1468x x f x πππ=--+.〔1〕求()f x 的最小正周期. 〔2〕假设函数()y g x =与()y f x =的图像关于直线1x =对称,求当4[0,]3x ∈时()y g x =的最大值. 解:〔Ⅰ〕()f x =sin cos cos sin cos 46464x x x πππππ--=3cos 424x x ππ-sin()43x ππ- 故()f x 的最小正周期为T=24ππ=8(Ⅱ)解法一:在()y g x =的图象上任取一点(,())x g x ,它关于1x =的对称点(2,())x g x -.由题设条件,点(2,())x g x -在()y f x =的图象上,从而=sin[]243x πππ--cos()43x ππ+ 当304x ≤≤时,23433x ππππ≤+≤,因此()y g x =在区间4[0,]3上的最大值为 解法二: 因区间4[0,]3关于x=1的对称区间为2[,2]3,且()y g x =与()y f x =的图象关于x=1对称,故()y g x =在4[0,]3上的最大值为()y f x =在2[,2]3上的最大值由〔Ⅰ〕知()f x sin()43x ππ-当223x ≤≤时,6436ππππ-≤-≤因此()y g x =在4[0,]3上的最大值为max 6g π== 19、设函数()f x =·a b ,其中向量(cos2)m x =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭,. 〔1〕务实数m 的值;〔2〕求函数()f x 的最小值及此时x 值的集合.(3)求函数的单调区间;(4)函数图象沿向量c 平移得到x y 2sin 2=的图象,求向量c 。

三角函数复习教案整理

三角函数复习教案整理

三角函数复习教案整理一、教学目标1. 知识与技能:(1)掌握三角函数的定义及性质;(2)了解三角函数在各象限的符号变化;(3)掌握三角函数的图像和几何意义;(4)学会运用三角函数解决实际问题。

2. 过程与方法:(1)通过复习,巩固三角函数的基本概念;(2)借助图像,理解三角函数的性质;(3)运用数形结合的方法,解决三角函数问题。

3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)提高学生对数学美的感知;(3)激发学生学习三角函数的兴趣。

二、教学内容1. 三角函数的定义与性质(1)正弦函数、余弦函数、正切函数的定义;(2)三角函数的周期性;(3)三角函数的奇偶性;(4)三角函数的单调性。

2. 三角函数在各象限的符号变化(1)第一象限:正弦函数、余弦函数、正切函数均为正;(2)第二象限:正弦函数为正,余弦函数、正切函数为负;(3)第三象限:正弦函数、余弦函数、正切函数均为负;(4)第四象限:正弦函数为负,余弦函数、正切函数为正。

3. 三角函数的图像与几何意义(1)正弦函数、余弦函数、正切函数的图像;(2)三角函数在直角坐标系中的几何意义;(3)三角函数图像的变换。

4. 三角函数的应用(1)已知三角函数值,求角度;(2)已知角度,求三角函数值;(3)运用三角函数解决实际问题。

三、教学重点与难点1. 重点:三角函数的定义、性质、图像及应用。

2. 难点:三角函数在各象限的符号变化,三角函数图像的变换。

四、教学方法与手段1. 教学方法:讲解法、演示法、练习法、小组讨论法。

2. 教学手段:多媒体课件、黑板、三角板、教具。

五、教学过程1. 导入新课:回顾上节课的内容,引出本节课的主题——三角函数复习。

2. 知识梳理:讲解三角函数的定义、性质、图像及应用。

3. 课堂演示:利用多媒体课件,展示三角函数的图像,引导学生理解三角函数的性质。

4. 实例分析:分析实际问题,运用三角函数解决,巩固所学知识。

5. 练习巩固:布置练习题,让学生独立完成,检查学习效果。

2022届高考数学统考一轮复习第四章三角函数的图象与性质学案文含解析新人教版

2022届高考数学统考一轮复习第四章三角函数的图象与性质学案文含解析新人教版

高考数学统考一轮复习:第三节三角函数的图象与性质【知识重温】一、必记2个知识点1.周期函数(1)周期函数的定义对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有①________________,那么函数f(x)就叫做周期函数.②________________叫做这个函数的周期.(2)最小正周期,如果在周期函数f(x)的所有周期中存在一个③________________,那么这个④________________就叫做f(x)的最小正周期.2.正弦函数、余弦函数、正切函数的图象和性质1.三角函数存在多个单调区间时易错用“∪”联结.2.研究三角函数单调性、对称中心、奇偶性及对称轴时易受基本函数影响,遗漏问题的多解,同时也可能忽视“k∈Z”这一条件.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”). (1)y =sin x 在第一、第四象限是增函数.( ) (2)余弦函数y =cos x 的对称轴是y 轴.( ) (3)正切函数y =tan x 在定义域内是增函数.( )(4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (5)y =sin|x |是偶函数.( )(6)若sin x >22,则x >π4.( )二、教材改编2.下列关于函数y =4sin x ,x ∈[0,2π]的单调性的叙述,正确的是( ) A .在[0,π]上单调递增,在[π,2π]上单调递减B .在[0,π2]上单调递增,在[3π2,2π]上单调递减C .在[0,π2]及[3π2,2π]上单调递增,在[π2,3π2]上单调递减D .在[π2,3π2]上单调递增,在[0,π2]及[3π2,2π]上单调递减3.函数y =-32cos(12x -π6)的最大值为________,此时x 的集合为________.三、易错易混4.关于三角函数的图象,有下列说法: ①y =sin|x |与y =sin x 的图象关于y 轴对称; ②y =cos(-x )与y =cos|x |的图象相同;③y =|sin x |与y =sin(-x )的图象关于x 轴对称; ④y =cos x 与y =cos(-x )的图象关于y 轴对称. 其中正确的是________.(写出所有正确说法的序号)5.函数y =1+2sin(π6-x )的单调增区间是________.四、走进高考6.[2019·全国卷Ⅱ]下列函数中,以π2为周期且在区间(π4,π2)单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos |x |D .f (x )=sin |x |考点一 三角函数的定义域[自主练透型]1.y =cos x -12的定义域为________.2.函数y =1tan x -1的定义域为________.3.函数y =lg(sin x )+ cos x -12的定义域为________.悟·技法求与三角函数有关的函数定义域的基本方法是“数形结合”,也就是在求这类函数定义域时,往往需要解有关的三角不等式,而解三角不等式的方法是:要么利用正、余弦曲线,正切曲线,要么利用单位圆等图形的直观形象来解决问题.考点二 三角函数的值域与最值[互动讲练型][例1] (1)[2019·全国卷Ⅰ]函数f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x 的最小值为________. (2)函数y =sin x -cos x +sin x ·cos x ,x ∈[0,π]的值域为________. 悟·技法三角函数最值或值域的三种求法(1)直接法:利用sin x ,cos x 的值域.(2)化一法:化为y =A sin(ωx +φ)+k 的形式,确定ωx +φ的范围,根据正弦函数单调性写出函数的值域.(3)换元法:把sin x 或cos x 看作一个整体,转化为二次函数,求给定区间上的值域(最值)问题.[变式练]——(着眼于举一反三)1.函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0C .-1D .-1- 32.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 考点三 三角函数的性质[互动讲练型] 考向一:三角函数的周期性[例2] 函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.3π2 D .2π考向二:三角函数的对称性[例3] 已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则函数f (x )的图象( ) A .关于直线x =π4对称 B .关于直线x =π8对称C .关于点⎝⎛⎭⎫π4,0对称D .关于点⎝⎛⎭⎫π8,0对称 考向三:三角函数的单调性[例4] 已知f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f (x )的单调递增区间为________. 悟·技法1.奇偶性与周期性的判断方法(1)奇偶性:由正、余弦函数的奇偶性可判断y =A sin ωx 和y =A cos ωx 分别为奇函数和偶函数.(2)周期性:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.2.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的图象,结合图象求它的单调区间.[变式练]——(着眼于举一反三)3.[2021·贵阳市监测考试]已知函数f (x )=cos 2x +3sin 2x ,则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )4.关于函数y =tan ⎝⎛⎭⎫2x -π3,下列说法正确的是( ) A .是奇函数B .在区间⎝⎛⎭⎫0,π3上单调递减 C.⎝⎛⎭⎫π6,0为其图象的一个对称中心 D .最小正周期为π5.若函数f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.第三节 三角函数的图象与性质【知识重温】①f (x +T )=f (x ) ②T ③最小正数 ④最小正数 ⑤{y |-1≤y ≤1} ⑥{y |-1≤y ≤1}⑦R ⑧⎣⎡⎦⎤-π2+2k π,π2+2k π ⑨⎣⎡⎦⎤π2+2k π,3π2+2k π ⑩[(2k -1)π,2k π] ⑪[2k π,(2k +1)π] ⑫⎝⎛⎭⎫-π2+k π,π2+k π ⑬π2+2k π ⑭-π2+2k π ⑮2k π ⑯π+2k π ⑰奇函数 ⑱偶函数 ⑲奇函数 ⑳(k π,0),k ∈Z ○21⎝⎛⎭⎫k π+π2,0,k ∈Z ○22⎝⎛⎭⎫k π2,0,k ∈Z ○23x =k π+π2,k ∈Z ○24x =k π,k ∈Z ○252π ○262π ○27π 【小题热身】1.答案:(1)× (2)× (3)× (4)× (5)√ (6)×2.解析:结合正弦函数y =sin x ,x ∈[0,2π]的图象可知C 正确. 答案:C3.解析:当cos(12x -π6)=-1,即12x -π6=π+2k π,k ∈Z ,即x =4k π+7π3,k ∈Z 时,函数y 有最大值32.答案:32 {x |x =4k π+7π3,k ∈Z }4.解析:对于②,y =cos(-x )=cos x ,y =cos|x |=cos x ,故其图象相同;对于④,y =cos(-x )=cos x ,故其图象关于y 轴对称;由图象(图略)可知①③均不正确.故正确的说法是②④.答案:②④5.解析:y =1+2sin(π6-x )=1-2sin(x -π6).令u =x -π6,根据复合函数的单调性知,所给函数的单调递增区间就是y =sin u 的单调递减区间,解π2+2k π≤x -π6≤3π2+2k π(k ∈Z ),得2π3+2k π≤x ≤5π3+2k π(k ∈Z ),故函数y =1+2sin(π6-x )的单调递增区间是[2π3+2k π,5π3+2k π](k ∈Z ).答案:[2π3+2k π,5π3+2k π](k ∈Z )6.解析:当x ∈(π4,π2)时,2x ∈(π2,π),由于f 1(x )=cos 2x 在x ∈(π4,π2)上单调递减,且cos2x <0,故f (x )=|cos 2x |在(π4,π2)上单调递增.f 1(x )=cos 2x 的周期为π,f (x )=|cos 2x |的周期为π2,故A 符合题意.而f (x )=|sin 2x |以π2为周期,在(π4,π2)上单调递减;f (x )=cos|x |=cos x 的周期为2π;f (x )=sin|x |不是周期函数,故选A.答案:A 课堂考点突破考点一1.解析:要使函数有意义,则cos x ≥12,由三角函数图象可得:-π3+2k π≤x ≤π3+2k π,k ∈Z .故函数y 的定义域为{x |-π3+2k π≤x ≤π3+2k π,k ∈Z }.答案:{x |-π3+2k π≤x ≤π3+2k π,k ∈Z }2.解析:要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+k π,k ∈Z即⎩⎨⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z故函数的定义域为{x |x ≠π4+k π,且x ≠π2+k π,k ∈Z }.答案:{x |x ≠π4+k π且x ≠π2+k π,k ∈Z }3.解析:要使函数有意义,则⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12, 解得⎩⎪⎨⎪⎧2k π<x <π+2k π,k ∈Z ,-π3+2k π≤x ≤π3+2k π,k ∈Z . 所以2k π<x ≤π3+2k π(k ∈Z ).所以函数的定义域为{x |2k π<x ≤2k π+π3,k ∈Z }.答案:{x |2k π<x ≤2k π+π3,k ∈Z }考点二例1 解析:(1)f (x )=sin ⎝⎛⎭⎫2x +3π2-3cos x =-cos 2x -3cos x =-2cos 2x -3cos x +1, 令cos x =t ,则t ∈[-1,1]. f (t )=-2t 2-3t +1=-2⎝⎛⎭⎫t +342+178, 易知当t =1时,f (t )min =-2×12-3×1+1=-4. 故f (x )的最小值为-4.(2)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t 22,且-1≤t ≤ 2.∴y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-1时y min =-1 ∴函数的值域为[-1,1]. 答案:(1)-4 (2)[-1,1] 变式练1.解析:∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝⎛⎭⎫π6x -π3∈⎣⎡⎦⎤-32,1. ∴y ∈[-3,2],∴y max +y min =2- 3. 答案:A2.解析:由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π4上的最小值为-22. 答案:-22考点三例2 解析:∵f (x )=(3sin x +cos x )(3cos x -sin x ) =3sin x cos x +3cos 2x -3sin 2x -sin x cos x =sin 2x +3cos 2x=2sin ⎝⎛⎭⎫2x +π3, ∴T =2π2=π.故选B.答案:B例3 解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π4的最小正周期为π, ∴2πω=π,ω=2, ∴f (x )=sin ⎝⎛⎭⎫2x +π4.当x =π4时,2x +π4=3π4, ∴A 、C 两项错误;当x =π8时,2x +π4=π2,∴B 项正确,D 项错误. 答案:B例4 解析:由-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤x ≤π4+2k π,k ∈Z .又x ∈[0,π],所以f (x )的单调递增区间为⎣⎡⎦⎤0,π4. 答案:⎣⎡⎦⎤0,π4 变式练3.解析:f (x )=cos 2x + 3 sin 2x =2sin(2x +π6),则由-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),得-π3+k π≤x ≤π6+k π(k ∈Z ),即函数f (x )的单调递增区间是[k π-π3,k π+π6](k ∈Z ),故选A.答案:A4.解析:y =tan ⎝⎛⎭⎫2x -π3是非奇非偶函数,A 错误;y =tan ⎝⎛⎭⎫2x -π3在区间⎝⎛⎭⎫0,π3上单调递增,B 错误;由2x -π3=k π2得x =k π4+π6(k ∈Z ),得函数y =tan ⎝⎛⎭⎫2x -π3的对称中心为⎝⎛⎭⎫k π4+π6,0,k ∈Z ,故C 正确;函数y =tan ⎝⎛⎭⎫2x -π3的最小正周期为π2,D 错误. 答案:C5.解析:解法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.解法二 由题意,得f (x )max =f ⎝⎛⎭⎫π3=sin π3ω=1. 由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k=0时,ω=32.答案:32。

高三数学第一轮复习 第24课时—任意角的三角函数教案

高三数学第一轮复习 第24课时—任意角的三角函数教案

一.课题:任意角的三角函数二.教学目标:1.掌握角的概念的推广、正角、负角、象限角,终边相同的角的表示,2.掌握弧度制、弧度与角度的转化关系,扇形面积及弧长公式.三.教学重点:与α角终边相同的角的公式、弧长公式、扇形面积公式的运用.四.教学过程:(一)主要知识:1.角的概念的推广;象限角、轴线角;与α角终边相同的角为2()k k Z πα+∈;2.角的度量;角度制、弧度制及其换算关系;弧长公式||l r α=、扇形面积公式12S lr =;3.任意角的三角函数.(二)主要方法:1.本节内容大多以选择、填空题形式出现,要重视一些特殊的解题方法,如数形结合法、代入检验法、特殊值法、待定系数法、排除法、另外还需掌握和运用一些基本结论.(三)例题分析:例1.若,(0,)2παβ∈,且sin cos 0αβ-<, 则 ( C )例2.(1)如果α是第一象限的角,那么3α是第几象限的角? (2)如果α是第二象限的角,判断sin(cos )cos(sin )αα的符号. 解:(1)∵22,2k k k Z ππαπ<<+∈, ∴22,3336k k k Z παππ<<+∈, 当3()k n n Z =∈时,22,36n n n Z απππ<<+∈,3α是第一象限的角,当31()k n n Z =+∈时,2522,336n n n Z παπππ+<<+∈,3α是第二象限的角, 当32()k n n Z =+∈时,4322,332n n n Z παπππ+<<+∈,3α是第三象限的角.∴3α是第一,二,三象限的角. (2)α是第二象限的角,1cos 0α-<<,0sin 1α<<, sin(cos )0α<,cos(sin )0α>,∴sin(cos )0cos(sin )αα<. 例3.(《高考A 计划》考点24“智能训练第6题”) 已知锐角α终边上的一点P 坐标是(2sin 2,2cos 2)-,则α= ( C )例4.扇形AOB 的中心角为2θ,半径为r ,在扇形AOB 中作内切圆1O 及与圆1O 外切,与,OA OB 相切的圆2O ,问sin θ为何值时,圆2O 的面积最大?最大值是多少?解:设圆1O 及与圆2O 的半径分别为12,r r , 则111212()sin ()cos()2r r r r r r r θπθ-=⎧⎪⎨+-=-⎪⎩,得112sin 1sin (1sin )1sin r r r r θθθθ⎧=⎪⎪+⎨-⎪=⎪+⎩, ∴122(1sin )sin (1sin )1sin (1sin )r r r θθθθθ--==++, ∵022θπ<<,∴0θπ<<,令sin 1(12)t t θ=+<<,2222321312()48t t r t t -+-==--+,当134t =,即1sin 3θ=时, 圆2O 的半径最大,圆2O 的面积最大,最大面积为64π. (四)巩固练习:1.设02θπ≤<,如果sin 0θ<且cos 20θ<,则θ的取值范围是 ( D )2.已知α的终边经过点(39,2)a a -+,且sin 0,cos 0αα>≤ ,则a 的取值范围是9(2,]3-.3.若sin tan cot ()22ππαααα>>-<<,则α∈ ( B )五.课后作业:《高考A 计划》考点24,智能训练3,7,9,10,11,12,15,16.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学一轮复习 24.三角函数的性质学案
【学习目标】
1.了解周期函数与最小正周期的意义,会求一些简单三角函数的周期. 2.了解三角函数的奇偶性、单调性、对称性,并会运用这些性质解决问题. 预 习 案
2. y =A sin(ωx +φ)的最小正周期T =
2π|ω|. y =A tan(ωx +φ)的最小正周期T =π
|ω|
. 3. (1)求三角函数的最小正周期,应先化简为只含一个三角函数一次式的形式. (2)形如y =A sin(ωx +φ)形式的函数单调性,应利用复合函数单调性研究. (3)注意各性质应从图像上去认识,充分利用数形结合解决问题. 【预习自测】
1.若函数y =cos(ωx -π6)(w >0)的最小正周期为π
5
,则w =________.
2.比较下列两数的大小.
(1)sin125°________sin152°;(2)cos(-π5)________cos 3π
5
;(3)tan(-
3π5)________tan 2π
5
.
3.(1)函数y =sin(x +π
4
)的单调递增区间是________ ;
函数 y =sin x y =cos x y =tan x
对称性
对称轴
x =
π
2
+k π
x =k π
无 对称中心(k π,0)
(
π
2
+k π,0) (
k π
2
,0)
(2)函数y=tan(1
2
x-
π
4
)的单调递增区间是________ .
4.若y=cos x在区间[-π,α]上为增函数,则α的取值范围是________.
5.函数f(x)=sin x cos x+
3
2
cos2x的最小正周期和振幅分别是 ( )
A.π,1 B.π,2、 C.2π,1 D.2π,2
探究案
题型一:三角函数的周期性
例1. 求下列函数的周期.
(1)y=2|sin(4x-π
3
)|; (2)y=(a sin x+cos x)2(a∈R);
(3)y=2cos x sin(x+π
3
)-3sin2x+sin x cos x.
拓展1. (1)f(x)=|sin x-cos x|的最小正周期为________.
(2)若f(x)=sinωx(ω>0)在[0,1]上至少存在50个最小值点,则ω的取值范围是_____.
题型二:三角函数的奇偶性
例2.判断下列函数的奇偶性.
(1)f(x)=cos(π
2
+2x)c os(π+x); (2)f(x)=x sin(5π-x) (3)f(x)=sin(2x-3)+sin(2x
+3);
(4)f(x)=cos x-sin x
1-sin x
;(5)y=sin(2x+
π
2
);(6)y=tan(x-3π)
拓展2:将函数y=sin(2x+φ)的图像沿x轴向左平移π
8
个单位后,得到一个偶函数的图像,
则φ的一个可能取值为 ( )
A.3π
4
B.
π
4
C.0 D.-
π
4
题型三:三角函数的对称性
例3.(1)函数f(x)=sin(2x-π
6
)的对称中心为 .对称轴方程为.
(2)设函数y=sin2x+a cos2x的图像关于直线x=-π
6
对称,a= .
(3)函数y=tan(x
2

π
3
)的图像的对称中心为__________.
拓展3. (1)函数y=sin(2x+π
3
)的图像的对称轴方程可能是 ( )
A.x=-π
6
B.x=-
π
12
C.x=
π
6
D.x=
π
12
(2)函数y=2cos x(sin x+cos x)的图像的一个对称中心的坐标是 ( )
A.(3π
8
,0) B.(

8
,1) C.(
π
8
,1) D.(-
π
8
,-1)
题型四:三角函数的单调性
例4 (1)求函数y=cos(-2x+π
3
)的单调递减区间;
(2)求函数y=sin(π
3
-2x)的单调递减区间;
(3)求y=3tan(π
6

x
4
)的最小正周期及单调递减区间;
(4)求函数y=-|sin(x+π
4
)|的单调递减区间.
拓展4:(1)已知ω>0,函数f(x)=sin(ωx+π
4
)在(
π
2
,π)上单调递减,则ω的取值范围

A.[1
2

5
4
] B.[
1
2

3
4
] C.(0,
1
2
] D.(0,2] ( )
(2)求函数f(x)=2sin x cos x-2cos2x+2的单调区间.
我的学习总结:
(1)我对知识的总结 .(2)我对数学思想及方法的总结。

相关文档
最新文档