结构力学课后习题答案重庆大学

合集下载

结构力学课后习题答案

结构力学课后习题答案

习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。

(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)7- 327- 33一个角位移,一个线位移 一个角位移,一个线位移 三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。

7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。

(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。

lll7- 34Z 1M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m4m 4m7- 35解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KNm M ⋅图(c)6m6m9m7- 36解:(1)确定基本未知量一个线位移未知量,各种M 图如下1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1114,243p pr EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图7- 3794M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下11Z1111r 252/25EA a 简化a2a a2aa F P7- 38图1pR pp M(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 11126/,55p pr EA a R F ==-126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l7- 39解:(1)确定基本未知量两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M p(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++=(3)确定系数并解方程7- 4011122122121,1,0p p p EA r r r l EA r l R F R ⎛=== ⎝⎭⎛=+ ⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March20 第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.M C.=1=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M kM p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

Aa a9、图示桁架各杆EA =常数,由于荷载P是反对称性质的,故结点B的竖向位移等于零。

2121二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l ll/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

结构力学课后习题答案

结构力学课后习题答案

结构⼒学课后习题答案附录B 部分习题答案2 平⾯体系的⼏何组成分析2-1 (1)× (2)× (3)√ (4)× (5)× (6)×。

2-2 (1)⽆多余约束⼏何不变体系;(2)⽆多余约束⼏何不变体系;(3)6个;(4)9个;(5)⼏何不变体系,0个;(6)⼏何不变体系,2个。

2-3 ⼏何不变,有1个多余约束。

2-4 ⼏何不变,⽆多余约束。

2-5 ⼏何可变。

2-6 ⼏何瞬变。

2-7 ⼏何可变。

2-8 ⼏何不变,⽆多余约束。

2-9⼏何瞬变。

2-10⼏何不变,⽆多余约束。

2-11⼏何不变,有2个多余约束。

2-12⼏何不变,⽆多余约束。

2-13⼏何不变,⽆多余约束。

2-14⼏何不变,⽆多余约束。

5-15⼏何不变,⽆多余约束。

2-16⼏何不变,⽆多余约束。

2-17⼏何不变,有1个多余约束。

2-18⼏何不变,⽆多余约束。

2-19⼏何瞬变。

2-20⼏何不变,⽆多余约束。

2-21⼏何不变,⽆多余约束。

2-22⼏何不变,有2个多余约束。

2-23⼏何不变,有12个多余约束。

2-24⼏何不变,有2个多余约束。

2-25⼏何不变,⽆多余约束。

2-26⼏何瞬变。

3 静定梁和静定刚架3-1 (1) √;(2) ×;(3) ×;(4) √;(5) ×;(6) √;(7) √;(8) √。

3-2 (1) 2,下;(2) CDE ,CDE ,CDEF ;(3) 15,上,45,上;(4) 53,-67,105,下; (5) 16,右,128,右;(6) 27,下,93,左。

3-3 (a) 298AC M ql =-,Q 32AC F ql =;(b) M C = 50kN·m ,F Q C = 25kN ,M D = 35kN·m ,F Q D = -35kN ;(c) M CA = 8kN·m ,M CB = 18kN·m ,M B = -4kN·m ,F Q BC = -20kN ,F Q BD = 13kN ; (d) M A = 2F P a ,M C = F P a ,M B = -F P a ,F Q A = -F P ,F Q B 左 = -2F P ,F Q C 左 = -F P 。

《结构力学》课后习题答案 重庆大学出版社

《结构力学》课后习题答案 重庆大学出版社

第1章绪论(无习题)第2章平面体系的几何组成分析习题解答习题2.1是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( ) (2) 若平面体系的计算自由度W=0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W<0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( ) (5) 习题2.1(5) 图所示体系去掉二元体CEF后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( ) AE CFBD 习题2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC后,成为习题2.1(6) (b)图,故原体系是几何可变体系。

( ) (7) 习题2.1(6)(a)图所示体系去掉二元体EDF后,成为习题2.1(6) (c)图,故原体系是几何可变体系。

( ) B EF DAC(a)(b)(c) 习题 2.1(6)图【解】(1)正确。

(2)错误。

是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF不是二元体。

(6)错误。

ABC不是二元体。

(7)错误。

EDF不是二元体。

习题2.2填空(1) 习题2.2(1)图所示体系为_________体系。

习题2.2(1)图 (2) 习题2.2(2)图所示体系为__________体系。

习题 2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题 2.2(3)图 (4) 习题2.2(4)图所示体系的多余约束个数为___________。

习题 2.2(4)图 (5) 习题2.2(5)图所示体系的多余约束个数为___________。

习题 2.2(5)图 (6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。

结构力学课后习题答案[1]

结构力学课后习题答案[1]

)e( 移位线个 1�移位角个 3 移位角个 1
)d(
)c(
。构结本基出绘并�目数量知未本基法移位的构结示图定确试 1-7
)b(
) a(


33 -7
下如图矩弯各�量知未移位角个 1 m4 m4
量知未本基定确�1� �解 C IE
m4
D Nk01
IE
B
IE2 m/Nk5.2
A )b(
图M
42 lq 2 5
图矩弯终最画�4� 得解�入代
61.53
IE
3
0 � p 2 R , 0 3 � p 1R 6 � 2 2r IE � 1 2r � 2 1r , I E 2 � 1 1r
程方解并数系定确�3�
p2
11
1
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
N K 0 3 � � p 2 R , N K 0 3 � p 1R 4 � � 2 2r 0 � 1 2r � 2 1r , i1 1 � 1 1r
p2
得解�入代
i3
程方解并数系定确�3�
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
程方型典法移位�2�
程方型典法移位�2�
0�
p1
图p M
03 � p 1R � 0 � p 1R
03
04 -7
m2
m2 数常=IE F
B E
m2
m2
D
A
m2
Nk03
C )c(
90.92 55.43
图M
81.8 19.02 54.57 02

结构力学课后习题答案

结构力学课后习题答案

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】「习题11】【习题12】【习题13】【习题14】【参考答衆】习题22-1〜2-14试对图示体系进行儿何组成分析,如果是只有多余联系的儿何不变体系,则应指出多余联系的数目。

d5∑° X 厂^τ"βH题2-2图ΓΛ题2-3图题2-5图题2-6图题2-1图H 2-9 图题2-10图题2-11图题2-12图题2-13图习题3试作图示多跨挣定梁的M及Q图。

(a) (b)题3-1图3-2试不计算反力而绘出梁的M图。

题3-2图习题44-1作图示刚架的M、Q、N图。

40fcN 40kN20kNm4-2作图示刚架的M图。

2OkN m SkN mSkXm 40fcN题4-1图4-3作图示三狡刚架的M图。

4-4作图示刚架的M图。

AEmJnIAr lD1题4-2图4-5己知结构的M图•试绘出荷载。

题4-4图3IOkNnlJ^1.5mC(a)题4-3日6erIB9 9题5-1图5-2带拉杆拱,拱轴线方程y= il(l-χ)χ,求截面K 的弯矩。

题5-2图5-3试求图示带拉杆的半圆三狡拱截面K 的内力・4-6检査F 列刚架的M 图,并予以改正。

题4-5图ω∙I ∣ULL∏ ∏ ⅛)题4-6图习题5图示抛物纟戈三铁拱轴线方程y = ff(l-x)x ,试求D 截面的内力。

IkNm15m [ 5m [ ICm 1=3OmC题5-3图习题6 6-1判定图示桁架中的零杆。

题6-1图6-2用结点法计算图示桁架中各杆内力。

(a) FGH月Λ4x4m=16m题6-2图6-3用截面法计算图示桁架中指定各杆的内力。

40kN题6-3图6-4试求图示组介结构中齐链杆的轴力并作受弯杆件的Q图。

2m ] 2m ]lm]lπ⅝] 2m [题6-4图6-5用适宜方法求桁架中指定杆内力。

题6-6图习题88-1试作图示悬臂梁的反力V B 、MB 及内力Q C 、MC 的影响线。

结构力学课后习题答案

结构力学课后习题答案

结构力学课后习题答案结构力学是一门研究结构在外力作用下的内力、变形和稳定性的学科。

课后习题是帮助学生巩固理论知识和提高解题技巧的重要环节。

以下是一些结构力学课后习题的参考答案,供学习者参考:第一章:结构力学基础1. 静定结构与超静定结构的区别:静定结构是指在已知外力作用下,其内力和位移可以通过静力平衡方程和几何关系唯一确定的结构。

超静定结构则是指静力平衡方程和几何关系不足以唯一确定其内力和位移的结构。

2. 弯矩图的绘制方法:绘制弯矩图首先需要确定结构的支反力,然后通过截面平衡条件,逐步求出各截面的弯矩值,并将其绘制成图形。

第二章:静定梁的内力分析1. 简支梁的内力计算:对于简支梁,可以通过静力平衡条件和截面平衡条件来计算梁的内力,包括剪力和弯矩。

2. 悬臂梁的内力计算:悬臂梁的内力计算需要考虑梁端的外力和力矩,通过静力平衡条件求解。

第三章:静定桁架的内力分析1. 节点法的应用:节点法是通过在桁架的节点上施加平衡条件来求解节点的反力,进而求得杆件的内力。

2. 截面法的应用:截面法是通过选取桁架的某一截面,对该截面进行平衡分析,求得截面两侧杆件的内力。

第四章:静定拱的内力分析1. 三铰拱的内力计算:三铰拱的内力计算通常需要利用静力平衡条件和几何关系,计算出拱的反力和弯矩。

2. 双铰拱和无铰拱的内力特点:双铰拱和无铰拱的内力计算更为复杂,需要考虑更多的平衡条件和几何关系。

第五章:超静定结构的内力分析1. 力法的应用:力法是通过建立力的平衡方程来求解超静定结构的内力,通常需要引入多余未知力。

2. 位移法的应用:位移法是通过建立位移的平衡方程来求解超静定结构的内力,通常需要引入位移未知数。

第六章:结构的稳定性分析1. 欧拉临界载荷的计算:欧拉临界载荷是指细长杆件在轴向压力作用下失稳的临界载荷,可以通过欧拉公式计算。

2. 非线性稳定性分析:对于非线性问题,稳定性分析需要考虑材料的非线性特性和几何非线性,通常需要采用数值方法求解。

结构力学课后习题答案

结构力学课后习题答案

习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。

(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i).7- 33一个角位移,一个线位移 一个角位移,一个线位移 三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。

7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其力图。

(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。

lll.Z 1M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m 4m 4m7- 35解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KNm M ⋅图(c)6m6m9m.解:(1)确定基本未知量一个线位移未知量,各种M 图如下1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 1114,243p pr EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图7- 3794M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下11Z1111r 252/25EA a 简化a 2aa2a aF P.图1pR pp M(2)位移法典型方程11110pr Z R +=(3)确定系数并解方程 11126/,55p pr EA a R F ==-126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l7- 39解:(1)确定基本未知量两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M p(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++=(3)确定系数并解方程.11122122121,4414,0p p p EA r r r l l EA r l R F R ⎛⎫=+== ⎪⎝⎭⎛=+ ⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。

10结构的动力计算习题解答,重庆大学,文国治版教材课后答案

10结构的动力计算习题解答,重庆大学,文国治版教材课后答案

第 10 章结构的动力计算习题解答习题 10.1 是非判断题(1)引起单自由度体系自由振动的初速度值越大,则体系的自振频率越大。

()(2)如果单自由度体系的阻尼增大,将会使体系的自振周期变短。

()(3)在土木工程结构中,阻尼对自振周期的影响很小。

()(4)由于各个质点之间存在几何约束,质点体系的动力自由度数总是小于其质点个数。

()(5)多自由度的自振频率与引起自由振动的初始条件无关。

()(6) n 个自由度体系有n 个自振周期,其中第一周期是最长的。

()(7)如果考虑阻尼,多自由度体系在简谐荷载作用下的质点振幅就不能用列幅值方程的方法求解。

()【解】 (1) 错误。

体系的自振频率与初速度无关,由结构本身的特性所决定。

(2)错误。

由阻尼结构的自振频率周期变长。

(3)正确。

r12可知,阻尼增大使自振频率减小,自振(4)错误。

由动力自由度的概念知,动力自由度数与计算假定有关,而与集中质量数目和超静定次数无关。

(5)正确。

(6)正确。

(7)正确。

习题 10.2 填空题(1) 单自由度体系运动方程为y 2 y 2 y F P ( t) / m ,其中未考虑重力,这是因为__________。

(2)单自由度体系自由振动的振幅取决于__________。

(3)若要改变单自由度体系的自振周期,应从改变体系的__________或__________着手。

(4)若由式1求得的动力系数为负值,则表示 __________ 。

21(5)习题 10.2(5)图所示体系发生共振时,干扰力与__________平衡。

c kWF P sin t习题 12-2(5) 图习题 10.2(5) 图(6)求习题 10.2(6)图所示质点系的自振频率时(EI=常数 ),其质量矩阵[M]= __________。

F P sin t 2m mmm习题 10.2(6) 图习题 10.2(7) 图(7)习题 12-2(6)图习题 12-2(7) 图( 为自振频率 ),其习题 10.2(7)图所示体系不考虑阻尼,EI=常数。

《结构力学习题》(含答案解析)

《结构力学习题》(含答案解析)

第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。

2、按虚力原理所建立的虚功方程等价于几何方程。

3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。

4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;; B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。

6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。

M k M p 21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。

8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。

a a9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。

二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。

q l l l /211、求图示静定梁D 端的竖向位移 ∆DV 。

EI = 常数 ,a = 2m 。

a a a 10kN/m12、求图示结构E 点的竖向位移。

EI = 常数 。

l l l /3 2 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。

求D 点的竖向位移。

P 3m 3m 3m14、求图示刚架B 端的竖向位移。

ql15、求图示刚架结点C 的转角和水平位移,EI = 常数 。

q16、求图示刚架中D点的竖向位移。

EI =常数。

l/217、求图示刚架横梁中D点的竖向位移。

EI=常数。

18、求图示刚架中D点的竖向位移。

E I = 常数。

qll l/219、求图示结构A、B两截面的相对转角,EI=常数。

l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。

ll21、求图示结构B点的竖向位移,EI = 常数。

《结构力学》课后习题答案__重庆大学出版社

《结构力学》课后习题答案__重庆大学出版社

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。

( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。

()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。

习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。

习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。

习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。

结构力学课后习题答案

结构力学课后习题答案

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。

(b)(a)20kN10kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。

(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。

(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。

P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。

(b)(a)题4-3图4-4 作图示刚架的M 图。

(a)题4-4图4-5 已知结构的M 图,试绘出荷载。

(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。

(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l l fy )(42-=,试求D 截面的内力。

题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。

C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。

习题66-1 判定图示桁架中的零杆。

(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。

(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。

(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。

(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。

(c)(b)(a)P题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。

结构力学课后习题答案4

结构力学课后习题答案4

结构力学课后习题答案4结构力学课后习题答案4结构力学是工程学中非常重要的一门学科,它研究物体在受到外力作用下的变形和破坏行为。

通过学习结构力学,我们可以更好地理解和分析各种工程结构的力学性能,为工程设计和施工提供有力的支持。

下面是结构力学课后习题的答案,希望对大家的学习有所帮助。

1. 问题描述:一个悬臂梁的长度为L,横截面形状为矩形,宽度为b,高度为h。

在悬臂梁的自重作用下,梁的挠度为δ。

求悬臂梁在距离支点x处的弯矩M和剪力V。

解答:根据悬臂梁的受力分析,距离支点x处的弯矩M可以通过以下公式计算:M = -wLx + 1/2wL^2其中,w为单位长度的梁的自重。

剪力V可以通过以下公式计算:V = wL - wx2. 问题描述:一个梁的长度为L,横截面形状为矩形,宽度为b,高度为h。

在梁的两端分别施加一个向下的集中力P。

求梁在距离支点x处的弯矩M和剪力V。

解答:根据梁的受力分析,距离支点x处的弯矩M可以通过以下公式计算:M = -Px + P(L-x)剪力V可以通过以下公式计算:V = P3. 问题描述:一个梁的长度为L,横截面形状为矩形,宽度为b,高度为h。

在梁的两端分别施加一个向下的集中力P。

梁的弹性模量为E,截面惯性矩为I。

求梁在距离支点x处的挠度δ。

解答:根据梁的受力分析,梁在距离支点x处的挠度δ可以通过以下公式计算:δ = (Px(L^2-x^2))/(6EI)4. 问题描述:一个梁的长度为L,横截面形状为矩形,宽度为b,高度为h。

在梁的两端分别施加一个向下的集中力P。

梁的弹性模量为E,截面惯性矩为I。

求梁在距离支点x处的剪力V。

解答:根据梁的受力分析,梁在距离支点x处的剪力V可以通过以下公式计算:V = P(L-x)/L5. 问题描述:一个梁的长度为L,横截面形状为矩形,宽度为b,高度为h。

在梁的两端分别施加一个向下的集中力P。

梁的弹性模量为E,截面惯性矩为I。

求梁在距离支点x处的弯矩M。

10结构的动力计算习题解答,重庆大学,文国治版教材课后答案

10结构的动力计算习题解答,重庆大学,文国治版教材课后答案

第10章 结构的动力计算习题解答习题10.1 是非判断题(1) 引起单自由度体系自由振动的初速度值越大,则体系的自振频率越大。

( ) (2) 如果单自由度体系的阻尼增大,将会使体系的自振周期变短。

( ) (3) 在土木工程结构中,阻尼对自振周期的影响很小。

( )(4) 由于各个质点之间存在几何约束,质点体系的动力自由度数总是小于其质点个数。

( )(5) 多自由度的自振频率与引起自由振动的初始条件无关。

( ) (6) n 个自由度体系有n 个自振周期,其中第一周期是最长的。

( )(7) 如果考虑阻尼,多自由度体系在简谐荷载作用下的质点振幅就不能用列幅值方程的方法求解。

( )【解】(1) 错误。

体系的自振频率与初速度无关,由结构本身的特性所决定。

(2) 错误。

由阻尼结构的自振频率r ω=可知,阻尼增大使自振频率减小,自振周期变长。

(3) 正确。

(4) 错误。

由动力自由度的概念知,动力自由度数与计算假定有关,而与集中质量数目和超静定次数无关。

(5) 正确。

(6) 正确。

(7) 正确。

习题10.2 填空题(1) 单自由度体系运动方程为2P 2()/y y y F t m ξωω++=,其中未考虑重力,这是因为__________。

(2) 单自由度体系自由振动的振幅取决于__________。

(3) 若要改变单自由度体系的自振周期, 应从改变体系的__________或__________着手。

(4) 若由式()211βθω=-求得的动力系数为负值,则表示__________。

(5) 习题10.2(5)图所示体系发生共振时,干扰力与__________平衡。

Wsin θ t12-2(5)习题 图习题10.2(5)图(6) 求习题10.2(6)图所示质点系的自振频率时(EI =常数),其质量矩阵[M ]=__________。

m2m12-2(6)习题 图12-2(7)习题 图习题10.2(6)图 习题10.2(7)图(7) 习题10.2(7)图所示体系不考虑阻尼,EI =常数。

结构力学第四版习题及答案

结构力学第四版习题及答案

结构力学第四版习题及答案习题1:一个弹簧的刚度系数为k,长度为L,在其两端分别施加力F1和
F2,求弹簧的形变量。

答案:根据胡克定律,弹簧的形变量与施加的力成正比,即x = (F1 - F2) / k。

习题2:一个悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E,梁上的集中力为P,求梁的最大弯矩。

答案:悬臂梁的最大弯矩发生在集中力作用点,即Mmax = P * L。

习题3:一根悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E,梁上均匀分布的荷载为q,求梁的最大挠度。

答案:悬臂梁的最大挠度发生在梁的自由端,即δmax = (5qL^4) /
(384Ebh^3)。

习题4:一根梁上有两个集中力,分别为P1和P2,作用点距离为a,梁的长度为L,求梁的反力。

答案:根据力的平衡条件,可以得到反力F1和F2的表达式: F1 = (P1 * a + P2 * L) / L F2 = (P1 * (L - a) + P2 * L) / L
习题5:一根悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E,梁上均匀分布的荷载为q,求梁的最大剪力。

答案:悬臂梁的最大剪力发生在梁的支点处,即Vmax = qL / 2。

《结构力学》习题解答(内含解答图)

《结构力学》习题解答(内含解答图)
习题2-12图习题2-12解答图
习题2-13试对图示体系进行几何组成分析。
习题2-13图习题2-13解答图
解:将原图结点进行编号,并将支座6换为单铰,如图(b)。取基础为刚片Ⅰ,△134为刚片Ⅱ,△235为刚片Ⅲ,由规则一知,三刚片用三个不共线的铰联结组成几何不变体。在此基础上增加二元体674、785,而杆38看作多余约束。杆910由铰联结着链杆10,可看作二元体,则整个体系为有一个多余约束的几何不变体系。
习题2-7试对图示体系进行几何组成分析。
习题2-7图习题2-7解答图
解:将题中的折杆用直杆代替,如图(b)所示。杆CD和链杆1由铰D联结构成二元体可以去掉;同理,去掉二元体杆CE和链杆2,去掉二元体ACB,则只剩下基础,故整个体系为几何不变体系,且无多余约束。
另外也可用基础与杆AC、杆BC是由不共线的三个铰联结,组成几何不变体,在此几何不变体上增加二元体杆CD和链杆1、杆CE和链杆2的方法分析。,
习题2-8试对图示体系进行几何组成分析。
习题2-8图习题2-8解答图
解:为了便于分析,对图中的链杆和刚片进行编号,分析过程见图2-21(b)。首先去掉二元体NMI、JNI,然后分析剩余部分。杆AD由固定支撑与基础联结形成一体,构成几何不变体,在此基础上增加二元体DEB、EFC、EHF形成刚片Ⅰ(注意固定铰支座与铰相同);铰结△GIJ为刚片Ⅱ;刚片I与刚片Ⅱ之间用不交于一点的杆DI、杆GI、杆HJ相连,组成几何不变体。
习题2-18试对图示体系进行几何组成分析。
解:将原图结点进行编号,并将固定铰支座换为单铰,如图(b)。折杆AD上联结杆EF,从几何组成来说是多余约束;同理,折杆CD上联结杆EF也是多余约束。取基础为刚片Ⅰ,折杆AD为刚片Ⅱ,折杆CD为刚片Ⅲ。刚片Ⅰ与刚片Ⅱ是由链杆A和杆BD相连,刚片Ⅰ与刚片Ⅲ是由链杆C相连,注意,杆BD只能使用一次。由规则二知,体系为几何可变体系。

结构力学书本后答案解析

结构力学书本后答案解析

依次去用掉二元体FHG、CFD、 DGE以及三个支座链杆。
在依次去用掉二元体CAE和 CBE剩下CDE
CDE可以相对转动。结论是几 何可变体系。
习题2.2a
AB与基础用1、2、3杆,组成几何不变体系成为 刚片Ⅰ,DG与刚片Ⅱ用BD、4、5杆组成几何不 变体系。用掉二元体GH、6杆。 结论:无多余约束的几何不变体系。
习题2.2b
AB与基础用组成几何不变体系成为刚片Ⅱ 和Ⅰ 用BC、1杆组成几何不变体系。用掉二元体EF、 2杆。 结论:无多余约束的几何不变体系。
习题2.2c
BD与基础用AB、3、4杆组成几何不变体系。用 掉二元体EF、5杆。
结论:无多余约束的几何不变体系。Fra bibliotek 习题2.3a
Ⅰ、Ⅱ、Ⅲ用A、B、C相连组成几何不变体系。 结论:无多余约束的几何不变体系。
习题2.3b
与上题相比多一杆 结论:有一个多余约束的几何不变体系。
习题2.3c
去掉1、2、3杆。Ⅰ、Ⅱ、Ⅲ用A、B、C相连组 成几何不变体系。 结论:无多余约束的几何不变体系。
习题2.4
去掉1、2、3杆。铰接三角形ACF上增加两个二元 体CDF、DGA形成刚片Ⅰ,铰接三角形DEH上增加 一个二元体EBH形成刚片Ⅱ,两刚片用D铰和链 杆BG相连组成几何不变体系。 结论:无多余约束的几何不变体系。
习题2.1a 依次去掉二元体FIH、 CFG、GHE、CGE、 ACD、DEB最后剩下 AB与基础用四根杆连 接多一杆,有一个多 余约束的几何不变体 系。
依次去用掉二元体FHG、Ⅰ和ⅡC铰,Ⅰ和 习题2.1b Ⅲ用A铰,Ⅱ和Ⅲ用B角连接,多1、2两个杆, 结论:有两个多余约束的几何不变体系。
习题2.1c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )B DACEF习题 (5)图(6) 习题(6)(a)图所示体系去掉二元体ABC 后,成为习题(6) (b)图,故原体系是几何可变体系。

( )(7) 习题(6)(a)图所示体系去掉二元体EDF 后,成为习题(6) (c)图,故原体系是几何可变体系。

( )(a)(b)(c)D习题 (6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题 填空(1) 习题(1)图所示体系为_________体系。

习题(1)图(2) 习题(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题(3)图(4) 习题(4)图所示体系的多余约束个数为___________。

习题(4)图(5) 习题(5)图所示体系的多余约束个数为___________。

习题(5)图(6) 习题(6)图所示体系为_________体系,有_________个多余约束。

习题(6)图(7) 习题(7)图所示体系为_________体系,有_________个多余约束。

习题(7)图【解】(1)几何不变且无多余约束。

左右两边L形杆及地面分别作为三个刚片。

(2)几何常变。

中间三铰刚架与地面构成一个刚片,其与左边倒L形刚片之间只有两根链杆相联,缺少一个约束。

(3)0、1、2、3。

最后一个封闭的圆环(或框)内部有3个多余约束。

(4)4。

上层可看作二元体去掉,下层多余两个铰。

(5)3。

下层(包括地面)几何不变,为一个刚片;与上层刚片之间用三个铰相联,多余3个约束。

(6)内部几何不变、0。

将左上角水平杆、右上角铰接三角形和下部铰接三角形分别作为刚片,根据三刚片规则分析。

(7)内部几何不变、3。

外围封闭的正方形框为有3个多余约束的刚片;内部铰接四边形可选一对平行的对边看作两个刚片;根据三刚片规则即可分析。

习题对习题图所示各体系进行几何组成分析。

(a)(b)(c)(d)(e)(f)(h)(g)(i)(j)(k)(l)习题图【解】(1)如习题解(a)图所示,刚片AB 与刚片I 由铰A 和支杆①相联组成几何不变的部分;再与刚片BC 由铰B 和支杆②相联,故原体系几何不变且无多余约束。

BAC Ⅰ12习题解(a)图(2)刚片Ⅰ、Ⅱ、Ⅲ由不共线三铰A 、B 、(Ⅰ,Ⅲ)两两相联,组成几何不变的部分,如习题解(b)图所示。

在此部分上添加二元体C -D -E ,故原体系几何不变且无多余约束。

ABCD ⅠⅢⅡ∞( , )ⅠⅢE习题解(b)图(3)如习题解(c)图所示,将左、右两端的折形刚片看成两根链杆,则刚片Ⅰ、Ⅱ、Ⅲ由不共线三铰(Ⅰ,Ⅱ)、(Ⅱ,Ⅲ)、(Ⅰ,Ⅲ)两两相联,故体系几何不变且无多余约束。

Ⅰ( , )( , )ⅠⅢ( , )ⅢⅡⅡⅠⅡⅢ习题解(c)图(4)如习题解(d)图所示,刚片Ⅰ、Ⅱ、Ⅲ由不共线的三铰两两相联,形成大刚片;该大刚片与地基之间由4根支杆相连,有一个多余约束。

故原体系为有一个多余约束的几何不变体系。

Ⅱ( , )ⅠⅢⅠ( , )ⅡⅢ( , )123ⅠⅡⅢ习题解(d)图(5)如习题解(e)图所示,刚片Ⅰ、Ⅱ、Ⅲ组成几何不变且无多余约束的体系,为一个大刚片;该大刚片与地基之间由平行的三根杆①、②、③相联,故原体系几何瞬变。

123Ⅰ( , )Ⅱ( , )ⅢⅡⅠⅢ( , )ⅠⅢ习题解(e)图(6)如习题解(f)图所示,由三刚片规则可知,刚片Ⅰ、Ⅱ及地基组成几何不变且无多余约束的体系,设为扩大的地基。

刚片ABC 与扩大的地基由杆①和铰C 相联;刚片CD 与扩大的地基由杆②和铰C 相联。

故原体系几何不变且无多余约束。

DCBA21ⅠⅡ习题解(f)图(7)如习题解(g)图所示,上部体系与地面之间只有3根支杆相联,可以仅分析上部体系。

去掉二元体1,刚片Ⅰ、Ⅱ由铰A 和不过铰A 的链杆①相联,故原体系几何不变且无多余约束。

ⅠⅡ11A习题解(g)图(8)只分析上部体系,如习题解(h)图所示。

去掉二元体1、2,刚片Ⅰ、Ⅱ由4根链杆①、②、③和④相联,多余一约束。

故原体系几何不变且有一个多余约束。

121234ⅠⅡ习题解(h)图(9)刚片Ⅰ、Ⅱ、Ⅲ由不共线三铰A 、B 、C 组成无多余约束的几何不变部分,该部分再与地基由共点三支杆①、②、③相联,故原体系为几何瞬变体系,如习题解(i)图所示。

ABC OⅠⅡⅢ123习题解(i)图(10)刚片Ⅰ、Ⅱ、Ⅲ由共线三铰两两相连,故体系几何瞬变,如习题解2-3(j)图所示。

Ⅰ( , )Ⅱ( , )ⅢⅡ∞ⅠⅡⅢ习题解(j)图(11)该铰接体系中,结点数j =8,链杆(含支杆)数b =15 ,则计算自由度2281510W j b =-=⨯-=>故体系几何常变。

(12)本题中,可将地基视作一根连接刚片Ⅰ和Ⅱ的链杆。

刚片Ⅰ、Ⅱ、Ⅲ由共线的三个铰两两相联,如习题解(l)图所示。

故原体系几何瞬变。

( , )ⅢⅠⅡ( , )Ⅰ∞ⅢⅠⅡ习题解(l)图第3章 静定结构的内力分析习题解答习题 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。

( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。

( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。

( ) (4) 习题(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。

( )ABCDEF习题(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。

( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。

( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。

( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。

( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。

从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。

荷载发生改变时,合理拱轴线将发生变化; (7)错误。

合理拱轴线与荷载大小无关;(8)错误。

一般从仅包含两个未知轴力的结点开始。

习题 填空(1)习题(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。

ABCDlllllP PF PF PF习题(1)图(2) 习题(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。

4k N /m6m AB C D4m 4m习题(2)图(3) 习题(3)图所示三铰拱的水平推力F H 等于 。

aa aPF习题(3)图(4) 习题(4)图所示桁架中有 根零杆。

F PF习题(4)图【解】(1)M C = 0;M C = F P l ,上侧受拉。

CDE 部分在该荷载作用下自平衡;(2)M AB =288kN·m ,左侧受拉;M B =32kN·m ,右侧受拉; (3)F P /2;(4)11(仅竖向杆件中有轴力,其余均为零杆)。

习题 作习题图所示单跨静定梁的M 图和Q F 图。

2m4m 2m 20kN/mABC DCa aP F aPF P F a 2BA(a) (b)qll/2ABCaaaaPF P F PACD BE(c) (d)qqa2aaABC5kN/m 20kN·m2m2m2m2mABD CE(e) (f)习题图【解】4040808040CDCDBM 图 (单位:kN·m ) F Q 图(单位:kN )(a)F P 2aF F BA2a4F PBA54F P 4F P 54F PM 图 F Q 图(b)AC8ql 38ql 9B8ql 28ql 2BAC2ql 8ql 583M 图 F Q 图(c)F P a F P a F 3P 2F 3P 7AB C EDABEDC F 3P F P4F 3P F 3P 2M 图 F Q 图(d)BACqa 21.5qa 28qa 2BA C 2qaqaM 图 F Q 图(e)AD B101010ADB 1010M 图 (单位:kN·m ) F Q 图(单位:kN )(f)习题 作习题图所示单跨静定梁的内力图。

2m2m2m8kN/m4kNADBC2m2m2m2m4m2kN/m2kN/m 6kN 8kN AB CD FE(a) (b)4kN/m6kN12kN·m 2m2m2m3mA BCDE2m2m2m2m5kN·m10kN·m 5kN·m 10kN·m8kNAB E DC(c) (d)习题图【解】1616436816ADBC20ADB C416M 图 (单位:kN·m ) F Q 图(单位:kN )(a)ADB C12488415kN11kNAB DC69114M 图 (单位:kN·m ) F Q 图(单位:kN )(b)166ACDB7.2121228ACDB886M 图 (单位:kN·m ) F Q 图(单位:kN )(c)ABC558105ABC444M 图 (单位:kN·m ) F Q 图(单位:kN )(d)习题 作习题图所示斜梁的内力图。

4m2m3mABC习题图【解】AB C15152.51020AB C125415ABC9M 图 (单位:kN·m ) F Q 图(单位:kN ) F N 图(单位:kN )习题 作习题图所示多跨梁的内力图。

3m2m3m3m6kN 2kN/m A BCD E(a)A BF C2mED3m3m3m6kN 4m30kN2kN/m(b)2m2m 2m3m3m2kN/m5kNAB CDEF 9kN m .(c)2m2m2m 2m2m3m3mAB CDE F(d) 习题图【解】A BCDE2113ABCDE67121311M 图 (单位:kN·m ) F Q 图(单位:kN )(a)ABFCED44426.519.51245ABFCED42113.54510616.5M 图 (单位:kN·m ) F Q 图(单位:kN )(b)ABCDEF32922.2566336M 图(单位:kN·m )ABCDEF326F Q 图(单位:kN )(c)ABCD EF6103963040423012M 图(单位:kN·m )ABCDE F6F Q 图(单位:kN )(d)习题 改正习题图所示刚架的弯矩图中的错误部分。

相关文档
最新文档