传感器实验参考资料

合集下载

光电传感器实验报告(文档4篇)

光电传感器实验报告(文档4篇)

光电传感器实验报告(文档4篇)以下是网友分享的关于光电传感器实验报告的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。

光电传感器实验报告第一篇实验报告2――光电传感器测距功能测试1.实验目的:了解光电传感器测距的特性曲线;掌握LEGO基本模型的搭建;熟练掌握ROBOLAB软件;2.实验要求:能够用LEGO积木搭建小车模式,并在车头安置光电传感器。

能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。

3.程序设计:编写程序流程图并写出程序,如下所示:ROBOLAB程序设计:4.实验步骤:1) 搭建小车模型,参考附录步骤或自行设计(创新可加分)。

2) 用ROBOLAB编写上述程序。

3) 将小车与电脑用USB数据线连接,并打开NXT的电源。

点击ROBOLAB 的RUN按钮,传送程序。

4) 取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直方向放置直尺,用于记录小车行走的位移。

5) 将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小车,进行光强信号的采样。

从直尺上读取小车的位移。

6) 待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集,将数据放入红色容器。

共进行四次数据采集。

7) 点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平均线及拟和线处理。

8) 利用数据处理结果及图表,得出时间同光强的对应关系。

再利用小车位移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关系表达式。

5.调试与分析a) 采样次数设为24,采样间隔为0.05s,共运行1.2s。

采得数据如下所示。

b) 在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示:c) 对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:d) 取四次实验小车位移的平均值,根据时间与光强的拟合函数求取距离与光强的拟合函数:由上图可得光强与时间的关系为:y=-25.261858×t+56.524457 ; 量取位移为4.5cm,用时1.2s,得:x=3.75×t ;光强与位移的关系为:y= -6.73649547×x+56.524457 ;e) 通过观测上图及导出的光强位移函数可知,光电传感器在短距离里内对位移信号有着良好的线性关系,可以利用光强值进行位移控制。

《传感器实验指导》热敏电阻传感器的应用及特性实验

《传感器实验指导》热敏电阻传感器的应用及特性实验

《传感器实验指导》热敏电阻传感器的应用及特性实验1.掌握热敏电阻的工作原理。

2.掌握热敏电阻测温程序的工作原理。

1.分析热敏电阻传感器测量电路的原理;2.连接传感器物理信号到电信号的转换电路;3.软件观测温度变化时输出信号的变化情况;4.记录实验波形数据并进行分析。

1.开放式传感器电路实验主板;2.热敏电阻温度测量模块;3.温度计;4.导线若干。

热敏电阻是开发早、种类多、发展较成熟的敏感元器件(如图4-1所示)。

热敏电阻由半导体陶瓷材料组成,利用的原理是温度引起电阻变化。

若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为:σ=q(n,μn, p,μp)因为n、p、μn、μp 都是依赖温度T 的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线。

图4-1 热敏电阻外观热敏电阻是电阻值随温度变化的半导体传感器。

它的温度系数很大,比温差电偶和线绕电阻测温元件的灵敏度高几十倍,适用于测量微小的温度变化。

热敏电阻体积小、热容量小、响应速度快,能在空隙和狭缝中测量。

它的阻值高,测量结果受引线的影响小,可用于远距离测量。

它的过载能力强,成本低廉。

但热敏电阻的阻值与温度为非线性关系,所以它只能在较窄的范围内用于精确测量。

热敏电阻在一些精度要求不高的测量和控制装置中得到广泛应用。

热敏电阻按电阻温度特性分为三类。

(1)负温度系数热敏电阻(NTC):在工作温度范围内温度系数一般为-(1~6)%/C°。

(2)正温度系数热敏电阻(PTC):又分为开关型和缓变型,开关型在居里点的温度系数大约(10~60)%/C°,缓变型一般为(0.5~8)%/C°。

(3)临界负温度系数热敏电阻(CTR):NTC热敏电阻可用于温度计、温差计、热辐射计、红外探测器和比热计中作为检测元件。

测温范围为-60 至+300℃,在更高的温度时其稳定性开始变差。

NTC热敏电阻的标称阻值一般在1Ω至100MΩ之间。

传感器实验报告

传感器实验报告

传感器实验报告实验一金属箔式应变片单臂电桥实验数据处理线性拟合V=5.767*x-0.422 灵敏度为5.767思考题:(1) 本实验电路对直流稳压电源有何要求,对放大器有何要求。

直流稳压源输出应稳定,且不超过负载的额定值。

放大器应对差模信号有较好放大作用,无零漂或零漂小可忽略。

(2)将应变片换成横向补偿片后,又会产生怎样的数据,并根据其结构说明原因。

灵敏度将大幅度降低,线性性也将变差,电压随位移的变化将变得十分小。

因为横向补偿片原本是横向粘贴在悬梁臂上的,用于补偿应变片测量的横向效应。

在悬梁臂形变的时候,横向补偿片仅仅横向部分发生形变,而应变片敏感栅往往很粗而且有效长度短,因此阻值变化小。

实验二金属箔式应变片双臂电桥(半桥)实验数据处理V=11.95*x+0.778灵敏度为11.95思考题:(1)根据应变片受力情况变化,对实验结果作出解释。

在梁上下表面受力方向相反的应变片相当于将形变放大两倍,,因此,ΔV/ΔX大约是实验一中的两倍。

(2)将受力方向相反的两片应变片换成同方向应变片后,情况又会怎样。

同方向的两片应变片相互抵消,输出为零。

(3)比较单臂,半桥两种接法的灵敏度。

在相同形变量下,半桥的灵敏度约是单臂的两倍。

实验三金属箔式应变片四臂电桥(全桥)的静态位移性能V=24.15*x+1.4灵敏度问24.15思考题:(1)如果不考虑应变片的受力方向,结果又会怎样。

对臂应变片的受力方向应接成相同,邻臂应变片的受力方向相反,否则相互抵消没有输出(2)比较单臂,半桥,全桥各种接法的灵敏度。

在相同形变量下,半桥灵敏度约是单臂的两倍,全桥灵敏度越是半桥的两倍,即约为全桥的四倍。

实验四金属箔式应变片四臂电桥(全桥)振动时的幅频性能实验数据处理思考题:(1)在实验过程中,观察示波器读出频率与频率表示值是否一致,据此,根据应变片的幅频特性可作何应用。

不一致。

可以根据这个原理反向测出梁的震动频率,利用应变片读出峰值,在找到对应的频率值即可。

《传感器原理》实验教学大纲

《传感器原理》实验教学大纲

《传感器原理》实验教学大纲一、实验目的:1.了解传感器的基本原理和工作机制;2.学习传感器在不同应用领域的原理和特点;3.掌握传感器元件的安装、连接和调试方法;4.学习传感器的性能测试和评价方法;5.培养学生的实验操作能力和问题解决能力。

二、实验内容:1.传感器的分类和原理介绍;2.温度传感器实验:根据实际需求选择合适的温度传感器,并完成相关电路的设计和搭建,通过调节环境温度观察传感器输出信号变化;3.光电传感器实验:根据实际需求选择合适的光电传感器,并完成相关电路的设计和搭建,通过改变光照强度观察传感器输出信号变化;4.压力传感器实验:根据实际需求选择合适的压力传感器,并完成相关电路的设计和搭建,通过改变压力大小观察传感器输出信号变化;5.加速度传感器实验:根据实际需求选择合适的加速度传感器,并完成相关电路的设计和搭建,通过改变物体的加速度观察传感器输出信号变化;6.湿度传感器实验:根据实际需求选择合适的湿度传感器,并完成相关电路的设计和搭建,通过改变环境湿度观察传感器输出信号变化;7.环境气体传感器实验:根据实际需求选择合适的环境气体传感器,并完成相关电路的设计和搭建,通过改变环境气体浓度观察传感器输出信号变化;8.传感器性能测试和评价实验:通过对不同传感器进行性能测试和评价来比较不同传感器的优缺点。

三、实验器材和材料:1.温度传感器;2.光电传感器;3.压力传感器;4.加速度传感器;5.湿度传感器;6.环境气体传感器;7.示波器;8.信号发生器;9.电源;10.连接线;11.实验电路板。

四、实验步骤:1.熟悉各种传感器的原理和特点;2.根据实际需求选择合适的传感器,并完成相关电路的设计和搭建;3.连接传感器和测试设备,如示波器、信号发生器等;4.调整环境条件,通过改变温度、光照强度、压力、加速度、湿度和环境气体浓度等变量,观察传感器输出信号的变化;5.记录实验数据,并进行分析和评价;6.完成实验报告。

传感器论文参考文献

传感器论文参考文献

传感器论文参考文献传感器论文参考文献一[1]梁瑞冰,孙琪真,沃江海,刘德明微纳尺度光纤布拉格光栅折射率传感的理论研究[]物理学报201910[2]钱银博基于的长距离无源光网络理论与实验研究[]华中科技大学2019[3]赵攀,隋成华,叶必卿微纳光纤构建-干涉光路进行液体折射率变化测量[]浙江工业大学学报201903[4]李宇航,童利民微纳光纤马赫-泽德干涉仪[]激光与光电子学进展201902[5]刘盛春基于拍频解调技术的光纤激光传感技术研究[]南京大学2019[6]高学强,杨日杰潜艇辐射噪声声源级经验公式修正[]声学与电子工程201903[7]胡家艳,江山光纤光栅传感器的应力补偿及温度增敏封装[]光电子·激光201903[8]牛嗣亮光纤法布里-珀罗水听器技术研究[]国防科学技术大学2019[9]曹锋新一代周界防入侵软件系统研究及其应用[]华中科技大学2019[10]唐天国,朱以文,蔡德所,刘浩吾,蔡元奇光纤岩层滑动传感监测原理及试验研究[]岩石力学与工程学报201902[11]詹亚歌,蔡海文,耿建新,瞿荣辉,向世清,王向朝铝槽封装光纤光栅传感器的增敏特性研究[]光子学报201908[12]孙运强激光内通道传输的气体热效应研究[]国防科学技术大学2019[13]刘浩吾,吴永红,丁睿,文利光纤应变传感检测的非线性有限元分析和试验[]光电子·激光201905[14]邓磊技术在无源光网络及光无线系统中的应用与研究[]华中科技大学2019[15]胡家雄,伏同先21世纪常规潜艇声隐身技术发展动态[]舰船科学技术201904[16],,--[]20194[17],-[]20191[18],,--[]20192传感器论文参考文献二[1]孙运强激光内通道传输的气体热效应研究[]国防科学技术大学2019[2]赵兴涛掺镱、亚波长空芯及新型高非线性光子晶体光纤的研究[]北京交通大学2019[3]杨春勇智能光网络中波长路由器的研究[]华中科技大学2019[4]许荣荣光纤环形腔光谱技术与传感应用的研究[]华中科技大学2019[5]张磊基于光子晶体光纤非线性效应的超宽带可调谐光源[]清华大学2019[6]王超基于高频等离子体法制备掺镱微结构光纤及其特性的研究[]燕山大学2019[7]林桢新型大模场直径弯曲不敏感单模及少模光纤的研究[]北京交通大学2019[8]苏伟新型光子准晶光纤及石英基光纤的微观机制研究[]北京交通大学2019[9]许艳基于飞秒光频梳的绝对距离测量技术研究[]华中科技大学2019[10]钱新伟单模光纤高速拉丝工艺与光纤性能研究[]华中科技大学2019[11]刘国华高功率光纤激光器的理论研究[]华中科技大学2019[12]常宇光光纤射频传输接入系统及无线局域网应用研究[]华中科技大学2019[13]张雅婷基于光子晶体光纤的表面等离子体传感技术研究[]华中科技大学2019[14]张小龙同轴电缆接入网信道建模与故障诊断方法研究[]华中科技大学2019[15]张传浩电信级以太无源光网络接入理论与实验研究[]华中科技大学2019[16]吴广生无源光网络与电网络复合接入技术研究[]华中科技大学2019[17]江国舟10以太无源光网络关键技术与应用研究[]华中科技大学2019[18]张利以太无源光网络安全性与增强技术研究[]华中科技大学2019[19]冯亭光纤激光系统放大级增益光纤特性与高质量种子源关键技术研究[]北京交通大学2019[20]张曙和融合网络架构下的上行链路调度算法研究[]华中科技大学2019[21]孙琪真分布式光纤传感与信息处理技术的研究及应用[]华中科技大学2019[22]孙运强Ⅰ钳式镍配合物的合成及性质反应研究Ⅱ有机氟化物的合成新方法研究[]山东大学2019传感器论文参考文献三[1]刘钰旻纳米功能材料在能量转换与储存器件中的应用[]武汉大学2019[2]曾谦声表面波技术在微流控芯片中的集成及应用研究[]武汉大学2019[3]彭露,朱红伟,杨旻,国世上微沟道内两相流速比对液滴形成的影响[]传感技术学报201909[4]郭志霄微液滴和海藻酸凝胶颗粒在微流控芯片中的应用研究[]武汉大学2019[5]全祖赐环境友好型多功能氧化物薄膜的微结构、光学、电学和磁学性能研究[]武汉大学2019[6]彭涛功能电极材料在染料敏化太阳能电池中的应用[]武汉大学2019[7]黄妞光阳极修饰和二氧化钛形貌调制在染料敏化太阳能电池中的应用[]武汉大学2019[8]国世上电子辐照铁电共聚物-及超声传感器的研究[]武汉大学2019[9]韩宏伟染料敏化二氧化钛纳米晶薄膜太阳电池研究[]武汉大学2019[10]何荣祥纳米功能材料器件及其在流体和细胞检测中的应用研究[]武汉大学2019[11]周聪华染料敏化太阳能电池中电极材料和寄生电阻的研究[]武汉大学2019[12]胡浩碳材料对电极在染料敏化太阳能电池中的应用[]武汉大学2019[13]李伟平铁电共聚物-的性能和换能器的模拟研究[]武汉大学2019[14]蓝才红,蒋炳炎,刘瑶,陈闻聚合物微流控芯片键合微通道变形仿真研究[]塑料工业201905[15]叶美英,方群,殷学锋,方肇伦聚二甲基硅氧烷基质微流控芯片封接技术的研究[]高等学校化学学报201912[16]龙驭球编着有限元法概论[]高等教育出版社,1991[17]?,?,,,----[]20195[18],-[]20194[19],-[]20193[20]齐小花,张新祥,常文保微流控芯片仪器进展[]现代仪器201904[21]张扬军,吕振华,徐石安,涂尚荣,丛艳吉汽车空气动力学数值仿真研究进展[]汽车工程201902附件下载。

传感器实验指导书

传感器实验指导书

实验一金属箔式应变片单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。

金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。

(E为供桥电压)。

三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)。

四、实验步骤:1、根据图(1-1),应变式传感器已装于应变传感器模板上。

传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。

加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。

2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。

3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW2使数显表显示为零。

4、在传感器托盘上放置一只砝码,读取数显表数值,依次增加砝码并读取相应的数显表数值,记下实验结果填入表(1-1)。

光电传感器实验报告

光电传感器实验报告

一、实验目的1. 了解光电传感器的原理和结构;2. 掌握光电传感器的应用领域;3. 通过实验验证光电传感器的性能;4. 学习光电传感器在实际工程中的应用。

二、实验原理光电传感器是利用光电效应将光信号转换为电信号的传感器。

其基本原理是:当光照射到半导体材料上时,会激发出电子,从而产生光电流。

光电流的大小与光照强度成正比,即光照越强,光电流越大。

三、实验仪器1. 光电传感器;2. 光源;3. 指示仪表;4. 实验电路板;5. 连接线;6. 电源。

四、实验内容1. 光电传感器的基本特性测试;2. 光电传感器在不同光照条件下的响应特性测试;3. 光电传感器在不同距离下的响应特性测试;4. 光电传感器在实际工程中的应用。

五、实验步骤1. 光电传感器的基本特性测试(1)将光电传感器连接到实验电路板上;(2)调整光源的亮度,观察光电传感器的输出电压;(3)记录不同光照强度下的输出电压,绘制光电传感器的光照特性曲线。

2. 光电传感器在不同光照条件下的响应特性测试(1)调整光源的亮度,观察光电传感器的输出电压;(2)记录不同光照强度下的输出电压,绘制光电传感器的光照特性曲线。

3. 光电传感器在不同距离下的响应特性测试(1)调整光源与光电传感器的距离;(2)观察光电传感器的输出电压;(3)记录不同距离下的输出电压,绘制光电传感器的距离特性曲线。

4. 光电传感器在实际工程中的应用(1)搭建一个简单的光电开关电路;(2)观察光电开关在开启和关闭状态下的输出电压;(3)验证光电开关在光照变化时的控制效果。

六、实验结果与分析1. 光电传感器的基本特性测试实验结果表明,光电传感器的光照特性曲线呈非线性关系。

当光照强度增加时,输出电压也随之增加,但曲线并不是严格的线性关系。

2. 光电传感器在不同光照条件下的响应特性测试实验结果表明,随着光照强度的增加,光电传感器的输出电压也随之增加。

在实验条件下,当光照强度达到一定值时,输出电压趋于稳定。

温度传感器实验报告

温度传感器实验报告

温度传感器实验报告
一、实验目的
本实验旨在通过使用温度传感器来检测不同环境下的温度变化,并通过实验数据分析温度传感器的性能和准确度。

二、实验仪器
1. Arduino Uno控制板
2. DS18B20数字温度传感器
3. 杜邦线
4. 电脑
三、实验步骤
1. 连接DS18B20温度传感器到Arduino Uno控制板上。

2. 使用Arduino软件编写读取温度传感器数据的程序。

3. 通过串口监视器读取传感器采集到的温度数据。

4. 将温度传感器放置在不同环境温度下,记录数据并进行分析。

四、实验数据
在室内环境下,温度传感器读取的数据平均值为25摄氏度;在户外阳光下,温度传感器读取的数据平均值为35摄氏度。

五、实验结果分析
通过实验数据分析可知,DS18B20温度传感器对环境温度有较高的
敏感度和准确性,能够较精准地反映环境温度的变化。

在不同环境温
度下,传感器能够稳定地输出准确的温度数据。

六、实验结论
本实验通过对DS18B20温度传感器的测试和分析,验证了其在温
度检测方面的可靠性和准确性。

温度传感器可以广泛应用于各种领域,如气象监测、工业控制等。

通过本次实验,我们对温度传感器的性能
有了更深入的了解。

七、参考文献
1. DS18B20温度传感器数据手册
2. Arduino Uno官方网站
以上为实验报告内容,谢谢!。

传感器综合实验报告

传感器综合实验报告

传感器综合实验报告( 2014-2015年度第二学期)名称:传感器综合实验报告题目: 利用传感器测量重物质量院系:自动化系班级:测控1201 班姓名:蔡攀学号:201202030101指导教师:仝卫国实验周数:一周成绩:日期:2015 年7 月7日传感器综合实验报告一、实验目的1、了解各种传感器的工作原理与工作特性。

2、掌握多种传感器应用于电子称的原理。

3、根据不同传感器的特性,选择不同的传感器测给定物体的重量。

4、能根据原理特性分析结果,加深对传感器的认识与应用。

5、测量精度要求达到1%。

二、实验设备、器材1、差动变压器:差动变压器、音频振荡器、电桥、差动放大器、移相器、相敏检波器、低通滤波器、电压表、示波器、测微器。

2、霍尔式传感器:直流稳压电源、电桥、霍尔传感器、差动放大器、电压表。

3、电涡流式传感器:电涡流式传感器、测微器、铝测片、铁测片、铜测片、电压表、示波器。

三、传感器工作原理1、差动变压器的工作原理:差动变压器的基本元件有衔铁、初级线圈、次级线圈和线圈骨架。

初级线圈作为差动变压器激励用,相当于变压器的原边。

而次级线圈由两个结构尺寸和参数相同的两个线圈反相串接而成,形成变压器的副边。

差动变压器是开磁路,工作是建立在互感变化的基础上。

当差动变压器的衔铁处于中间位置时,理想条件下其输出电压为零。

但实际上,当使用电桥式电路时,在零点仍有一个微小的电压值(从零点几mv到数十mv)存在,称为零点残余电压。

零点残余电压的存在造成零点附近的不灵敏区,零点残余电压输出放大器内会使放大器末级趋向饱和,影响电路正常工作等。

因此需采用适当的方法进行补偿。

2、霍尔式传感器:霍尔传感器是由两个半圆形永久磁钢组成梯度磁场,位于梯度磁场中的霍尔元件——霍尔片通过底座连结在震动台上。

当霍尔片通以恒定的电流时,霍尔元件就有电压输出。

改变振动台的位置,霍尔片就在梯度磁场中上下移动,输出的霍尔电势U 值取决于其在磁场中的位移量Y ,所以由霍尔电势的大小便可获得振动台的静位移。

传感器的测量实验报告

传感器的测量实验报告

一、实验目的1. 了解传感器的原理和结构;2. 掌握传感器测量实验的基本方法;3. 熟悉传感器在工程中的应用。

二、实验原理传感器是一种将物理量、化学量、生物量等非电学量转换为电学量的装置。

本实验主要研究电阻式传感器和光电传感器两种类型的传感器。

1. 电阻式传感器:利用电阻元件的电阻值随被测物理量变化而变化的原理,将非电学量转换为电学量。

常见的电阻式传感器有电阻应变片、热敏电阻等。

2. 光电传感器:利用光电元件的光电效应,将光信号转换为电信号。

常见的光电传感器有光电二极管、光电三极管等。

三、实验仪器与设备1. 电阻式传感器实验装置;2. 光电传感器实验装置;3. 示波器;4. 数字多用表;5. 数据采集器;6. 计算机及实验软件。

四、实验步骤1. 电阻式传感器测量实验(1)将电阻应变片粘贴在悬臂梁上,连接好实验电路;(2)通过数字多用表测量电阻应变片的电阻值;(3)在悬臂梁上施加不同的力,观察电阻应变片的电阻值变化;(4)利用示波器观察电阻应变片电阻值的变化波形;(5)记录实验数据,分析电阻应变片的灵敏度。

2. 光电传感器测量实验(1)将光电传感器安装在实验装置上,连接好实验电路;(2)利用数据采集器采集光电传感器的输出信号;(3)改变光源的强度,观察光电传感器的输出信号变化;(4)利用示波器观察光电传感器输出信号的变化波形;(5)记录实验数据,分析光电传感器的灵敏度。

五、实验结果与分析1. 电阻式传感器测量实验结果(1)当悬臂梁上施加的力增加时,电阻应变片的电阻值也随之增加,两者呈线性关系;(2)根据实验数据,计算电阻应变片的灵敏度为0.2Ω/με。

2. 光电传感器测量实验结果(1)当光源强度增加时,光电传感器的输出信号也随之增加,两者呈线性关系;(2)根据实验数据,计算光电传感器的灵敏度为1mV/lx。

六、实验总结1. 通过本次实验,掌握了电阻式传感器和光电传感器的测量原理和实验方法;2. 熟悉了传感器在工程中的应用,提高了对传感器技术的认识;3. 在实验过程中,发现了实验装置和实验方法的一些不足,为以后的研究提供了参考。

温度传感器实验报告

温度传感器实验报告

一、实验目的1. 了解温度传感器的原理和分类。

2. 掌握温度传感器的应用和特性。

3. 学习温度传感器的安装和调试方法。

4. 通过实验验证温度传感器的测量精度。

二、实验器材1. 温度传感器:DS18B20、热电偶(K型、E型)、热敏电阻(NTC)等。

2. 测量设备:万用表、数据采集器、温度调节器等。

3. 实验平台:温度传感器实验模块、单片机开发板、PC机等。

三、实验原理温度传感器是将温度信号转换为电信号的装置,根据转换原理可分为接触式和非接触式两大类。

本实验主要涉及以下几种温度传感器:1. DS18B20:一款数字温度传感器,具有高精度、高可靠性、易于接口等优点。

2. 热电偶:利用两种不同金属导体的热电效应,将温度信号转换为电信号。

3. 热敏电阻:利用温度变化引起的电阻值变化,将温度信号转换为电信号。

四、实验步骤1. DS18B20温度传感器实验1. 连接DS18B20传感器到单片机开发板。

2. 编写程序读取温度值。

3. 使用数据采集器显示温度值。

4. 验证温度传感器的测量精度。

2. 热电偶温度传感器实验1. 连接热电偶传感器到数据采集器。

2. 调节温度调节器,使热电偶热端温度变化。

3. 使用数据采集器记录热电偶输出电压。

4. 分析热电偶的测温特性。

3. 热敏电阻温度传感器实验1. 连接热敏电阻传感器到单片机开发板。

2. 编写程序读取热敏电阻的电阻值。

3. 使用数据采集器显示温度值。

4. 验证热敏电阻的测温特性。

五、实验结果与分析1. DS18B20温度传感器实验实验结果显示,DS18B20温度传感器的测量精度较高,在±0.5℃范围内。

2. 热电偶温度传感器实验实验结果显示,热电偶的测温特性较好,输出电压与温度呈线性关系。

3. 热敏电阻温度传感器实验实验结果显示,热敏电阻的测温特性较好,电阻值与温度呈非线性关系。

六、实验总结通过本次实验,我们了解了温度传感器的原理和分类,掌握了温度传感器的应用和特性,学会了温度传感器的安装和调试方法。

传感器原理与应用实验报告

传感器原理与应用实验报告

传感器原理与应用实验报告实验名称:传感器原理与应用实验实验目的:1. 了解传感器的基本原理;2. 学习传感器的应用。

实验器材:1. Arduino开发板;2. 温度传感器;3. 光敏传感器;4. 气体传感器;5. 电位器。

实验原理:传感器是一种能够感知或测量特定物理量的装置,它能够将感知到的物理量转化为电信号输出。

传感器的工作原理根据不同的物理量而有所不同,常见的传感器包括温度传感器、光敏传感器、气体传感器等。

温度传感器是一种能够测量温度的传感器,它利用温度对电阻值的影响来测量温度。

常见的温度传感器有热敏电阻和热电偶等。

光敏传感器是一种能够感知光强的传感器,它利用光敏元件对光的敏感性来测量光强。

常见的光敏传感器有光敏电阻和光电二极管等。

气体传感器是一种能够检测、测量和监测气体浓度和组成的传感器。

常见的气体传感器有气敏电阻和气敏传感器等。

电位器是一种能够调节电阻值的装置,它通过改变电阻值来改变电路中的电流或电压。

实验步骤:1. 将温度传感器连接到Arduino开发板的模拟输入引脚;2. 将光敏传感器连接到Arduino开发板的模拟输入引脚;3. 将气体传感器连接到Arduino开发板的模拟输入引脚;4. 将电位器连接到Arduino开发板的模拟输入引脚;5. 编写Arduino代码,读取传感器的电信号,并将其转换为温度、光强、气体浓度等物理量;6. 将物理量通过串口输出或显示到LCD屏幕上。

实验结果:通过实验,我们成功地读取了温度传感器、光敏传感器、气体传感器和电位器的电信号,并将其转换为相应的物理量。

实验结果显示,温度传感器测得的温度为25℃,光敏传感器测得的光强为100 lux,气体传感器测得的气体浓度为200 ppm,电位器调节后的电阻值为500欧姆。

实验总结:通过本实验,我们深入了解了传感器的工作原理和应用。

传感器在现代科技中起着重要的作用,广泛应用于环境监测、工业自动化、智能家居等领域。

传感器在测距中的应用实验

传感器在测距中的应用实验

传感器在测距中的应用实验1.掌握传感器测距的工作原理;2.掌握超声波传感器的测距原理;3.掌握红外测距传感器的测距原理。

1.分析超声波测距传感器和红外测距传感器测量的电路原理;2.连接传感器物理信号到电信号的转换电路;3.软件观测距离变化时输出信号的变化情况;4.记录实验波形数据并进行分析。

1.开放式传感器电路实验主板;2.距离测量模块;3.万用表、卷尺;4.导线若干。

振动在弹性介质内的传播称为波动, 简称波。

频率在16--2×104 Hz之间, 能为人耳所闻的机械波, 称为声波; 低于16 Hz的机械波, 称为次声波; 高于2×104 Hz的机械波, 称为超声波。

当超声波由一种介质入射到另一种介质时, 由于在两种介质中传播速度不同, 在介质面上会产生反射、折射和波形转换等现象。

由于声源在介质中施力方向与波在介质中传播方向的不同, 声波的波型也不同。

通常有:(1)纵波——质点振动方向与波的传播方向一致的波(2)横波——质点振动方向垂直于传播方向的波(3)表面波——质点的振动介于横波与纵波之间,沿着表面传播的波。

横波只能在固体中传播,纵波能在固体、液体和气体中传播, 表面波随深度增加衰减很快。

为了测量各种状态下的物理量,应多采用纵波。

纵波、横波及其表面波的传播速度取决于介质的弹性常数及介质密度,气体中声速为344 m/s,液体中声速在900--1900 m/s。

超声波传感器可以分为压电式、磁致伸缩式、电磁式等,其中以压电式超声波传感器最为常用。

如图6-1所示为超声波传感器外形。

图6-1 超声波传感器外形(T发射、R接收)超声波传感器测距原理由于超声波指向性强,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪、物位测量仪等。

利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此得到了广泛的应用。

在本系统中,我们主要应用的是反射式检测方式。

传感器系列实验实验报告(3篇)

传感器系列实验实验报告(3篇)

第1篇一、实验目的1. 理解传感器的基本原理和分类。

2. 掌握常见传感器的工作原理和特性。

3. 学会传感器信号的采集和处理方法。

4. 提高实验操作能力和数据分析能力。

二、实验设备与器材1. 传感器实验平台2. 数据采集卡3. 信号发生器4. 示波器5. 计算机及相应软件6. 传感器:热敏电阻、霍尔传感器、光电传感器、电容式传感器、差动变压器等三、实验内容及步骤1. 热敏电阻实验(1)目的:了解热敏电阻的工作原理和特性。

(2)步骤:1. 将热敏电阻连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集热敏电阻的输出信号。

3. 使用示波器观察热敏电阻输出信号的波形和幅度。

4. 分析热敏电阻输出信号与温度的关系。

2. 霍尔传感器实验(1)目的:了解霍尔传感器的工作原理和特性。

1. 将霍尔传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集霍尔传感器的输出信号。

3. 使用示波器观察霍尔传感器输出信号的波形和幅度。

4. 分析霍尔传感器输出信号与磁场强度的关系。

3. 光电传感器实验(1)目的:了解光电传感器的工作原理和特性。

(2)步骤:1. 将光电传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集光电传感器的输出信号。

3. 使用示波器观察光电传感器输出信号的波形和幅度。

4. 分析光电传感器输出信号与光照强度的关系。

4. 电容式传感器实验(1)目的:了解电容式传感器的工作原理和特性。

(2)步骤:1. 将电容式传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

2. 通过数据采集卡采集电容式传感器的输出信号。

3. 使用示波器观察电容式传感器输出信号的波形和幅度。

4. 分析电容式传感器输出信号与电容变化的关系。

5. 差动变压器实验(1)目的:了解差动变压器的工作原理和特性。

1. 将差动变压器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。

传感器选择及应用实验报告

传感器选择及应用实验报告

传感器选择及应用实验报告本实验通过研究不同传感器的特性和应用,了解传感器的选择和应用方法,以及对比不同传感器间的性能差异。

实验过程:1. 选择光敏电阻和声音传感器作为实验对象。

2. 将光敏电阻和声音传感器连接到相应的电路中。

3. 测试光敏电阻和声音传感器的响应特性。

4. 使用光敏电阻和声音传感器进行不同应用实验。

实验结果:1. 光敏电阻在光照强度较强时电阻值较小,在光照强度较弱时电阻值较大。

适用于光控开关、光感应报警等应用。

2. 声音传感器在周围有声音时输出高电平,在周围无声音时输出低电平。

适用于声控开关、声音采集等应用。

传感器选择和应用分析:1. 光敏电阻具有响应速度快、灵敏度高、体积小等优点。

适用于对光照强度变化较为敏感的应用场景,如光控开关、光感应报警等。

2. 声音传感器具有响应速度快、体积小、成本低等特点。

适用于对声音变化较为敏感的应用场景,如声控开关、声音采集等。

传感器的性能比较:1. 响应速度:光敏电阻和声音传感器的响应速度都很快,可以满足大多数应用的需求。

2. 灵敏度:光敏电阻的灵敏度比声音传感器高,能够更精确地检测光照强度的变化。

3. 体积:光敏电阻和声音传感器的体积都很小,方便在各种应用中集成。

4. 成本:声音传感器的成本较低,比光敏电阻更经济实惠。

综上所述,根据不同应用场景的需求和预算限制,可以选择光敏电阻或声音传感器进行相应的应用。

如需要对光照强度变化进行精确检测的应用,可以选择光敏电阻;如需要对声音变化进行实时监测的应用,可以选择声音传感器。

同时,还可以考虑传感器的其他特性如功耗、稳定性等因素,以充分满足实际应用的需求。

结论:本实验通过对光敏电阻和声音传感器的选择和应用进行研究,在了解传感器特性和性能的基础上,实现了对光照强度和声音等物理量的检测和应用。

同时,还分析了不同传感器间的差异,为合理选择和应用传感器提供了参考。

通过本实验,加深了对传感器的理解和应用能力。

应变式传感器实验报告

应变式传感器实验报告

应变式传感器实验报告一、引言应变式传感器是一种广泛应用于工业领域的传感器,其主要作用是测量物体的应变量。

本实验旨在通过实验操作和数据分析,深入了解应变式传感器的原理、性能和应用。

二、实验原理1. 应变式传感器的原理应变式传感器是利用金属材料受力时会产生形变而引起电阻值的变化,从而转化成电信号输出。

当物体受到外力作用时,其表面会产生微小的形变,进而改变金属材料内部电阻值,将这种形变转换为电信号输出即可测量物体所受外力大小。

2. 实验仪器与材料(1)多功能测试仪(2)应变片(3)导线3. 实验步骤(1)将应变片粘贴在被测物体表面,并固定好。

(2)将多功能测试仪连接到计算机上,并打开相应软件。

(3)通过测试仪对被测物体施加不同大小的外力,并记录下相应的电信号输出值。

(4)根据实验数据计算出被测物体所受外力大小。

三、实验结果与分析1. 实验数据记录表外力大小(N)电信号输出值(mV)0 010 2.520 5.130 7.840 10.22. 数据分析从实验数据中可以看出,随着被测物体所受外力的增加,其电信号输出值也随之增加,呈现出一定的线性关系。

通过对实验数据进行拟合,可以得到应变式传感器的灵敏度和线性误差等性能指标。

四、实验结论与建议1. 实验结论本实验通过对应变式传感器的原理和性能进行了深入了解,并通过实验操作和数据分析验证了其可靠性和准确性。

应变式传感器在工业领域有着广泛的应用前景。

2. 实验建议(1)在实验过程中要注意被测物体表面必须平整光滑,并且应变片固定牢固。

(2)在进行数据分析时要注意选择合适的拟合方法,并对误差进行修正。

(3)在使用多功能测试仪时要仔细阅读说明书,并按照说明书操作。

五、参考文献[1] 王志勇, 马海彬, 陈明,等. 应变式传感器原理及其应用[J]. 传感器与微系统, 2010(4):1-4.[2] 黄华, 郑海峰. 应变式传感器的原理及应用[J]. 电气自动化,2012(5):25-27.。

传感器实验报告

传感器实验报告

实验一 箔式应变片性能一、实验目地:1、观察了解箔式应变片的结构及粘贴方式。

2、测试应变梁变形的应变输出。

3、了解实际使用的应变电桥的性能和原理。

二、实验原理:本实验说明箔式应变片在单臂直流电桥、半桥、全桥里的性能和工作情况。

应变片是最常用的测力传感元件。

当用应变片测试时,应变片要牢固地粘贴在测试体表面,当被测件受力发生形变,应变片的敏感栅随同变形,其电阻值也随之发生相应的变化。

通过测量电路,转换成电信号输出显示。

电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R 1、R 2、R 3、R 4中,电阻的相对变化率分别为△R 1/R 1、△R 2/R 2、△R 3/R 3、△R 4/R 4,当使用一个应变片时,R ΔR R =∑;当二个应变片组成差动状态工作,则有RR R Δ2=∑;用四个应变片组成二个差动对工作,且R 1=R 2=R 3=R 4=R ,RR R Δ4=∑。

由此可知,单臂,半桥,全桥电路的灵敏度依次增大。

根据戴维南定理可以得出测试电桥的输出电压近似等于1/4·E ·∑R ,电桥灵敏度Ku =V /△R /R ,于是对应于单臂、半桥和全桥的电压灵敏度度分别为1/4E 、1/2E 和E.。

由此可知,当E 和电阻相对变化一定时,电桥及电压灵敏度与各桥臂阻值的大小无关。

三、实验所需部件:直流稳压电源(±4V 档)、电桥、差动放大器、箔式应变片、砝码(20g )、电压表(±4v )。

四、实验步骤:1、调零 开启仪器电源,差动放大器增益至100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。

输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。

调零后电位器位置不要变化。

2、按图(1)将实验部件用实验线连接成测试桥路。

桥路中R 1、R 2、R3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。

传感器实验指导书(天煌)

传感器实验指导书(天煌)

传感器实验指导书(天煌)传感器实验指导书(天煌)一、实验目的本实验旨在帮助学生理解传感器的工作原理和应用场景,培养学生的实验操作能力和数据分析能力。

二、实验器材1:传感器模块 - 1个2: Arduino开发板 - 1个3:连接线 - 若干4:电阻 - 若干5: LED灯 - 若干6:温度计 - 1个三、实验步骤1:搭建电路连接:a:将传感器模块连接至Arduino开发板的数模转换口。

b:将Arduino开发板通过USB线与电脑连接。

c:根据传感器模块的数据手册接入合适的电源。

2:编写程序:a:在Arduino开发环境中创建新的项目。

b:导入传感器模块的库文件。

c:编写代码,初始化传感器模块并设置参数。

d:编写数据采集和数据处理的代码逻辑。

e:将编写好的代码烧录到Arduino开发板中。

3:实验数据采集:a:打开串口监视器,设定合适的波特率。

b:通过串口监视器输出传感器采集到的数据。

c:单独测试和观察每个传感器模块的输出。

d:记录实验数据。

4:数据处理和分析:a:根据传感器的特性和实验需求,对采集到的数据进行初步处理和筛选。

b:运用统计学方法对数据进行分析,计算平均值、标准差等统计量。

c:绘制数据分布直方图、折线图等可视化图表。

d:根据分析结果进一步讨论和解释实验现象。

四、实验注意事项1:在电路连接和编写程序时,务必参考传感器模块的数据手册,遵循正确的接线和设置流程。

2:实验过程中请注意安全,不得擅自改变电路接线或开关设置。

3:在实验数据采集时,应保持传感器模块与待测物理量之间的适当距离和相对位置。

4:在进行数据处理和分析时,遵循科学规范,严谨处理实验数据。

5:实验结束后,关闭所有设备,清理实验台面。

五、实验结果实验数据显示,传感器模块对待测物理量的测量准确性较高,且具有较好的稳定性。

通过数据分析,我们可以得出以下结论:::六、附件本文档涉及的附件包括:1:传感器模块数据手册2: Arduino开发板示例程序3:实验数据记录表七、法律名词及注释1:版权:著作权法规定的对具有独创性的文学、艺术和科技作品所享有的权利。

传感器实验

传感器实验

实验一 金属箔式应变片——单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、实验仪器应变传感器实验模块、托盘、砝码、数显电压表、±15V 、±5V 电源、万用表(自备)。

三、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为ε⋅=∆k RR(1-1)式中RR∆为电阻丝电阻相对变化; k 为应变灵敏系数; ll∆=ε为电阻丝长度相对变化。

金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件。

如图1-1所示,将四个金属箔应变片分别贴在双孔悬臂梁式弹性体的上下两侧,弹性体受到压力发生形变,应变片随弹性体形变被拉伸,或被压缩。

图1-1 双孔悬臂梁式称重传感器结构图通过这些应变片转换弹性体被测部位受力状态变化,电桥的作用完成电阻到电压的比例变化,如图1-2所示R5=R6=R7=R 为固定电阻,与应变片一起构成一个单臂电桥,其输出电压RRR E U ⋅+∆⋅=21/40 (1-2)E 为电桥电源电压;式1-2表明单臂电桥输出为非线性,非线性误差为L=%10021⋅∆⋅-RR 。

图1-2 单臂电桥面板接线图四、实验内容与步骤1.应变传感器上的各应变片已分别接到应变传感器模块左上方的R1、R2、R3、R4上,可用万用表测量判别,R1=R2=R3=R4=350Ω。

2.差动放大器调零。

从主控台接入±15V、±5V电源,检查无误后,合上主控台电源开关,将差动放大器的输入端Ui短接,输出端Uo2接数显电压表(选择2V档)。

调节电位器Rw3使电压表显示为0V。

关闭主控台电源。

3.按图1-2连线,将应变式传感器的其中一个应变电阻(如R1)接入电桥与R5、R6、R7构成一个单臂直流电桥。

4.加托盘后电桥调零。

电桥输出接到差动放大器的输入端Ui,检查接线无误后,合上主控台电源开关,预热五分钟,先调节Rw1使电压表显示近似为零,再调节Rw4约中间位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电传感器测转速实验





简 介
一、本实验装置的设计宗旨:
本实验装置具有设计性、趣味性、开放性和拓展性,实验中大量重复的接线、调试和后续数据处理、分析、可以加深学生对实验仪器构造和原理的理解,有利于培养学生耐心仔细的实验习惯和严谨的实验态度。

非常适合大中专院校开设开放性实验。

本实验装置采用了性能比较稳定,品质较高的敏感器件,同时采用布局较为合理且十分成熟的电路设计。

二、光电传感器测转速实验实验装置 1.传感器实验台部分
2.九孔实验板接口平台部分:九孔实验板作为开放式和设计性实验的一个桥梁(平台); 3.JK-19型直流恒压电源部分:提供实验时所必须的电源;
4.处理电路模块部分:差动放大器、电压放大器、调零、增益、移相等模块组成。

三、主要技术参数、性能及说明:
(1)光电传感器:由一只红外发射管与接收管组成。

(2)差动放大器:通频带kHz 10~0可接成同相、反相、差动结构,增益为100~1倍的直流放大器。

(3)电压放大器:增益约为5位,同相输入,通频带kHz 10~0。

(4)19JK -型直流恒压电源部分:直流V 15±,主要提供给各芯片电源:
V 6 ,V 4 ,V 2±±±分三档输出,提供给实验时的直流激励源;V 12~0:A 1ax Im =作
为电机电源或作其它电源。

光电传感器测转速实验
【实验原理】
如图所示:光电传感器由红外发射二极管、红外接收管、达林顿出管及波形整形组成。

发射管发射红外光经电机转动叶片间隙,接收管接收到反射信号,经放大,波形整形输出方波,再经转换测出其频率,。

图1
【实验目的】
了解光电传感器测转速的基本原理及运用。

【实验仪器】
如图所示,光电式传感器、JK-19型直流恒压电源、示波器、差动放大器、电压放大器、频率计和九孔实验板接口平台。

图2 图3
【实验步骤】
1.先将差动放大器调零,按图1接线;
2.光电式-+,端分别接至直流恒压电源V 12~0的-+,端;
3.-+Vi ,Vi 分别接直流恒压电源的V 6+和GND ,并与V 15±处的GND 相连; 4.调节电压粗调旋钮使电机转动;
5.根据测到的频率及电机上反射面的数目算出此时的电机转速;
即:)/(660P N 分转÷⨯=(式中P 是频率计显示值 转/6秒)填入表1中; 6.实验完毕,先关闭直流恒压电源。

【数据处理】
表1
【思考题】
1.光电传感器测转速产生差大的和稳定性差的原因是什么?主要有哪些因素? 2.通过本实验的学习,是否能够实验对家用电风扇测速如果可行,如何实验,需要注意哪些问题,请给出方案和必要的电路图和文字说明。

温度传感器的温度特性研究




前言
“温度”是一个重要的热学物理量,它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果也是至关重要的,所以温度传感器的应用更是十分广泛的。

【实验目的】
AD典型温度传感器的温度特性。

1.测量590
2.了解温度传感器的原理与应用,学会用温度传感器组装数字式温度测量仪表。

3. 用几种常用的温度传感器组装温度测量仪表(显示)与温度控制装置。

【实验仪器】
FB716型物理设计性(热学)实验装置 1套。

-

【实验原理】
温度传感器是利用一些金属、半导体等材料与温度相关的特性制成的。

本实验将通过测量常用的温度传感器的特征物理量随温度的变化,来了解这些温度传感器的工作原理。

电流
型集成电路温度传感器(590AD ):
590AD 是一种电流型集成电路温度传感器。

其输出电流大小与温度成正比。

它的线性
度极好,590AD 温度传感器的温度适用范围为C 150~55︒-,灵敏度为K /A 1μ。

它具有高准确度、动态电阻大、响应速度快、线性好、使用方便等特点。

590AD 是一个二端器件,符号如图1所示:
图1 图2
590AD 等效于一个高阻抗的恒流源,其输出阻抗Ω>M 10,能大大减小因电源电压变
动而产生的测温误差。

590AD 的工作电压为V 30~4++,
测温范围是C 150~55︒-。

对应于热力学温度T ,每变化K 1,输出电流变化A 1μ。

其输出电流)A (I o μ与热力学温度)K (T 严格成正比。

其电流灵敏度表达式为:
ln8R
e 3k T I ••= (7) 式(7)中e ,k 分别为波尔兹曼常数和电子电量,R 是内部集成化电阻。


Ω==538R ,K /mV 0862.0e /k 代入(9)中得 到
K /A 000.1T
I
μ= (8) 在C 0T ︒=时其输出为A 15.273μ (590AD 有几种级别,一般准确度差异在
A 5~3μ±)。

因此, 590AD 的输出电流o I 的微安数值就代表着被测温度的热力学温度值
(K )。

590AD 的电流-温度(T ~I )特性曲线如图2所示:其输出电流表达式为: B T A I +•= (9)
式(9)中A 为灵敏度,B 为K 0时输出电流。

如需显示摄氏温标)C (︒则要加温标转换电路,其关系式为:
15.273T t += (10) 590AD 温度传感器其准确度在整个测温范围内C 5.0︒±≤,线性极好。

利用590AD 的上述特性,在最简单的应用中,用一个电源,一个电阻,一个数字式电压表即可用于温度的测量。

由于590AD 以热力学温度K 定标,在摄氏温标应用中,应该进行C ︒的转换。

【实验内容】
1、电流型集成温度传感器(590AD )温度特性的测试:
按图3接线,在环境温度高于摄氏零度时,先把温度传感器放入致冷井中,利用半导体致冷把温度降到C 0︒,并以此温度作为起点进行测量,每隔C 10︒测量一次,直到需要待测温度高于环境温度时,就把温度传感器转移到加热干井中,然后开启加热器,控温系统每隔C 10︒设置一次,待控温稳定min 2后,测试Ωk 1电阻上电压。

操作方法同上。

图3
提示:由于工作电源只能轮流对加热井或致冷井服务,所以在使用热电偶时,自由端的基准电压需要另外采取一定措施,可参照以下方法:
(1)用保温瓶盛放冰水混合物作为自由端的基准温度C 0︒。

(2)以室温0t 作为基准温度,以0t t -作为温度差,测量并计算温差电动势。

【实验步骤】
1、按相应的实验线路图,在元件箱中选取合适的元器件;
2、把元器件合理分布在九孔实验板上,用导线或短路片连接成实际实验线路;
3、根据需要温度,把温度传感器插入加热井或致冷井;(在温控仪内控时,必须把100HJK 温度控制仪的1K 两个插孔用导线短接,温控仪才能正常工作)
4、根据需要温度,设置好加热井或致冷井温度;
5、将不同温度下测量到的传感器的输出数据逐一记录到表格中,待数据处理。

【数据处理】
处理实验数据
表1温度特性测试数据表格
序号
1 2 3 4 5 6 7 8 9 10 11 )C (t ︒
0 10 20 30 40 50 60 70 80 90 100 )V (U
)A (I μ
为从电阻上测得电压换算所得(,用最小二乘法进行直线拟合得:
K /A __________A μ= ,____________r = 。

【注意事项】
1.温控仪温度稳定地达到设定值所需要的时间较长,一般需要min 15~10左右,务必耐心等待。

2.为节省实验时间,提高实验效率,同学们可以合理安排实验步骤。

3. 由于外部控制与内部控制是串联的,所以外部控温设置不能超过内部设置值,否则到达内部设置值后,外部设置将不能继续执行。

【附录1】FB716-Ⅰ型物理设计性(热学)实验装置使用说明书
一般温度传感器实验仪的功能都局限于通过实验过程,测量并了解温度传感器的温度
特性,而对温度传感器的应用,往往只是一笔带过。

针对这一状况,本公司开发的这款实验装置,除了可完成对多种温度传感器的温度特性进行测试外,增加了多种最常用的温度传感器的实际应用的实验功能,使学生在了解温度传感器特性的基础上,通过组装温度测试仪表和温度控制装置,了解并掌握其实际应用的方法和技能,更大地提高学生的学习兴趣,更有利于培养学生的实际动手能力。

一、实验装置
二、主要技术指标
1.100HJK 温度控制仪:
(1)输入工作电源:Hz 50 %10V 220 AC ±; (2)输出加热井、致冷井工作电压:V 24≤;
(3)加热井温控范围:室温C 100~︒,有强制风冷功能; (4)致冷井温控范围:室温C 0~︒(室温不高于C 30︒); (5)可进行外部温度控制(仅适用于加热井控制); (6)四位半数字电压表量程可切换: ① 档 mV 0.200~0,分辨率mV 1.0;(最大可测V 2) ② 档 mV 2000~0,分辨率mV 1;(最大可测V 20)
2.九孔实验板:mm 297300 ; 3.温度传感器:
(5)590AD 集成电路型温度传感器;。

相关文档
最新文档