合情推理与演绎推理说课稿 教案 教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合情推理与演绎推理
1.推理
根据一个或几个已知的判断来确定一个新的判断,这种思维方式叫做推理.推理一般分为合情推理与演绎推理两类. 2.合情推理
3.(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理; (2)特点:演绎推理是由一般到特殊的推理;
(3)模式:三段论.“三段论”是演绎推理的一般模式,包括:
题型一 归纳推理
例1 设f (x )=1
3x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,
并给出证明.
思维启迪 解题的关键是由f (x )计算各式,利用归纳推理得出结论并证明. 解 f (0)+f (1)=130+3+1
31+3
=
11+3+13+3
=3-12+3-36=3
3,
同理可得:f (-1)+f (2)=3
3
, f (-2)+f (3)=
3
3
,并注意到在这三个特殊式子中,自变量之和均等于1. 归纳猜想得:当x 1+x 2=1时,均为f (x 1)+f (x 2)=33
. 证明:设x 1+x 2=1,
∵f (x 1)+f (x 2)=
1
3
1
x +3+
1
32
x +3
=
(3
1
x +3)+(32x +3)
(3
1x +3)(32
x +3)
=3
1
x +3
2
x +23
32
1x x ++3(3
1
x +3
2
x )+3
=
3
1x +3
2
x +23
3(3
1
x +3
2
x )+2×3=
3
1
x +3
2
x +23
3(3
1
x +3
2
x +23)
=
33
.
思维升华 (1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.
(2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的. (3)归纳推理所得结论未必正确,有待进一步证明,但对数学结论和 学的发现很有用.
(1)观察下列等式
1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49
…
照此规律,第五个等式应为 .
(2)已知f (n )=1+12+13+…+1n (n ∈N ),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>7
2,则有 .
答案 (1)5+6+7+8+9+10+11+12+13=81 (2)f (2n )>
n +2
2
(n ≥2,n ∈N ) 解析 (1)由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81.
(2)由题意得f (22)>42,f (23)>52,f (24)>62,f (25)>7
2,
所以当n ≥2时,有f (2n )>n +2
2.
故填f (2n )>n +2
2(n ≥2,n ∈N ).
题型二 类比推理
例2 已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N ),则a m +n =
nb -ma
n -m
.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N ),若b m =c ,b n =d (n -m ≥2,m ,n ∈N ),则可以得到b m +n = .
思维启迪 等差数列{a n }和等比数列{b n }类比时,等差数列的公差对应等比数列的公比,等差数列的加减法运算对应等比数列的乘除法运算,等差数列的乘除法运算对应等比数列中的乘方开方运算.
答案 n -m d n
c m
解析 设数列{a n }的公差为d ,数列{b n }的公比为q . 因为a n =a 1+(n -1)d ,b n =b 1q n -
1,a m +n =nb -ma n -m ,
所以类比得b m +n =n -m d n
c m
思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.
(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.
(3)在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.
(1)给出下列三个类比结论:
①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;
②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中结论正确的个数是
( )
A.0
B.1
C.2
D.3
(2)把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r =a 2+b 22
(其中a ,b 为直角三角形两直角边长).类比此方法可得三