人教版九年级数学上册第24章《圆》选择专项练习题(含答案)

合集下载

人教版九年级上册数学 单元练习题:第二十四章 圆(含解析答案)

人教版九年级上册数学 单元练习题:第二十四章 圆(含解析答案)

人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是( )A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是( )A.2B.2C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为( )A.3:2:1B.1:2:3C.2:3:1D.3:1:25.下列说法中,正确的是( )A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为( )A.8B.10C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为( )A.2B.3C.4D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是( )A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为( )A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于( )A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是( )A.4B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为( )A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC 于点F.若AB=6,∠CDF=15°,则阴影部分的面积是 .14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB的度数是 .15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC= .16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC= .17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为 c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB的最短长度是 .三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为 .21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.故选:A.12.解:∵∠C=90°,BC=3cm,AC=2cm,∴AB=cm,如图,由旋转知,∠BAB1=∠CAC1=90°,△ABC≌△AB1C1,则线段BC所扫过的面积S=+﹣S△ABC﹣=﹣=﹣=π(cm2),故选:A.二.填空题(共6小题)13.解:连接OE,∵∠CDF=15°,∠C=75°,∴∠OAE=30°=∠OEA,∴∠AOE=120°,S△OAE=AE×OE sin∠OEA=×2×OE×cos∠OEA×OE sin∠OEA=,S阴影部分=S扇形OAE﹣S△OAE=×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC交AB于E.∵C是的中点,∴OC⊥AB,∴∠AEO=90°,∵∠BAO=20°,∴∠AOE=70°,∵OA=OC,∴∠OAC=∠C=55°,∴∠CAB=∠OAC﹣∠OAB=35°,故答案为35°.15.解:作直径AD,连接CD,如图所示:∵AD是圆O的直径,∴∠ACD=90°,∴∠OAC+∠D=90°,∵∠ABC+∠D=180°,∴∠ABC﹣∠OAC=180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S扇形OAC==4π,S△AOC=×4×4=8,∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.综上所述,满足条件的x的值为或﹣+5或.。

人教版九年级上册数学24章《圆》 期末专项练习 (含答案)

人教版九年级上册数学24章《圆》  期末专项练习 (含答案)

人教版九年级上册数学24章《圆》期末专项练习一.选择题(共10小题)1.如图,点C是⊙O的优弧上一点,∠AOB=80°,则∠ACB的度数为()A.40°B.140°C.80°D.60°2.正方形的外接圆与内切圆的周长比为()A.:1B.2:1C.4:1D.3:13.如图,在⊙O中,∠ABC=50°,则∠ACO等于()A.55°B.50°C.45°D.40°4.若⊙O的半径是3,点P在圆外,则点OP的长可能是()A.B.3C.2D.5.如图,在△ABC中,AB=3,BC=6,∠ABC=60°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.9﹣3πB.C.D.6.如图,AB是O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=2,则△PMN周长的最小值为()A.5B.6C.7D.87.如图,AB是半圆O的直径,C、N为半圆上的两点,且=,过点C作半圆O的切线,交AB的延长线于M,若∠M=40°,则∠BON的度数()A.30°B.25°C.20°D.22.5°8.在练习掷铅球项目时,某同学掷出的铅球在操场地上砸出一个直径为6cm、深2cm的小坑,则该铅球的直径为()A.cm B.6cm C.cm D.8cm9.如图所示的工件槽的两个底角均为90°.尺寸如图(单位:cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,则该球的半径是()cmA.8B.6C.12D.1010.如图,在平面直角坐标系中,⊙P的圆心坐标(6,a)(a>5),半径为5,函数y=x的图象被截得的弦AB的长为8,则a的值为()A.6B.6+C.3D.6+3二.填空题(共5小题)11.如图,以原点O为圆心的圆过点A(4,0),圆内一个固定点B(﹣1,2),过点B作直线,交圆于M,N两点,求MN的最小值为.12.如图,在⊙O中,点D为弧BC的中点,∠COD=40°,则∠BAD=.13.如图,P A,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为.14.如图,△ABC中,AC=3,BC=4,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为.15.如图,△ABC中,AC=BC=6,∠ACB=90°,若D是与点C在直线AB异侧的一个动点,且∠ADB=45°,则CD的最大值为.三.解答题(共6小题)16.如图,AB为⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E,若∠C=23°,试求∠EOB的度数.17.[概念引入]在一个圆中,圆心到该圆的任意一条弦的距离,叫做这条弦的弦心距.[概念理解](1)如图1,在⊙O中,半径是5,弦AB=8,则这条弦的弦心距OC长为.(2)通过大量的做题探究;小明发现:在同一个圆中,如果两条弦相等,那么这两条弦的弦心距也相等.但是小明想证明时却遇到了麻烦.请结合图2帮助小明完成证明过程如图2,在⊙O中,AB=CD,OM⊥AB,ON⊥CD,求证:OM=ON.[概念应用]如图3,在⊙O中AB=CD=16,⊙O的直径为20,且弦AB垂直于弦CD于E,请应用上面得出的结论求OE的长.18.如图,△ABC的三个顶点在⊙O上,⊙O的半径为5,∠A=60°,求弦BC的长.19.如图,已知等边△ABC中,AB=12.以AB为直径的半⊙O与边AC相交于点D.过点D作DE⊥BC,垂足为E;过点E作EF⊥AB,垂足为F,连接DF.(1)求证:DE是⊙O的切线;(2)求EF的长.20.如图,△ABC内接于⊙O,高AD经过圆心O.(1)求证:AB=AC;(2)若BC=16,⊙O的半径为10.求△ABC的面积.21.如图,四边形ABCD是⊙O内正方形,P是圆上一点(点P与点A,B,C,D不重合),连接P A,PB,PC.(1)若点P是上一点,①∠BPC度数为;②求证:P A+PC=PB;小明的思路为:这是线段和差倍半问题,可采用截长补短法,请按小明思路完成下列证明过程(也可按自己的想法给出证明).证明:在PC的延长线上截取点E.使CE=P A,连接BE.(2)探究当点P分别在,,上,求P A,PB,PC的数量关系,直接写出答案,不需要证明.参考答案与试题解析一.选择题(共10小题)1.如图,点C是⊙O的优弧上一点,∠AOB=80°,则∠ACB的度数为()A.40°B.140°C.80°D.60°【分析】根据圆周角定理求解即可.【解答】解:∵∠AOB=2∠ACB,∠AOB=80°,∴∠ACB=40°,故选:A.【点评】此题考查了圆周角定理,熟记圆周角定理是解题的关键.2.正方形的外接圆与内切圆的周长比为()A.:1B.2:1C.4:1D.3:1【分析】根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,设AE=x,则OA===,故==,即正方形的外接圆与内切圆的周长比为::1.故选:A.【点评】本题考查的是正方形的性质及勾股定理.根据题意画出图形,利用数形结合求出答案是解答此题的关键.3.如图,在⊙O中,∠ABC=50°,则∠ACO等于()A.55°B.50°C.45°D.40°【分析】根据圆周角定理得到∠AOC=100°,根据等腰三角形的性质及三角形内角和定理求解即可.【解答】解:∵∠AOC=2∠ABC,∠ABC=50°,∴∠AOC=100°,∵OA=OC,∴∠ACO=∠CAO=×(180°﹣100°)=40°,故选:D.【点评】此题考查了圆周角定理,熟记圆周角定理是解题的关键.4.若⊙O的半径是3,点P在圆外,则点OP的长可能是()A.B.3C.2D.【分析】直接根据点与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径是3,点P在圆外,∴OP的长大于3.故选:A.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.5.如图,在△ABC中,AB=3,BC=6,∠ABC=60°,以点B为圆心,AB长为半径画弧,交BC于点D,则图中阴影部分的面积是()A.9﹣3πB.C.D.【分析】连接AD,根据等边三角形的性质得到AD=AB=3,∠ADB=60°,根据勾股定理得到AC==3,根据扇形和三角形的面积公式即可得到结论.【解答】解:连接AD,∵AB=BD=3,∠ABC=60°,∴△ABD是等边三角形,∴AD=AB=3,∠ADB=60°,∵BC=6,∴CD=3,∴AD=CD,∴∠C=∠CAD,∵∠C+∠CAD=∠ADB=60°,∴∠C=30°,∴∠BAC=90°,∴AC==3,∴图中阴影部分的面积=AB•AC﹣=3×﹣=﹣,故选:D.【点评】本题考查了扇形面积的进行,等边三角形的判定和性质,直角三角形的性质,勾股定理,推出△ABD 是等边三角形是解题的关键.6.如图,AB是O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=2,则△PMN周长的最小值为()A.5B.6C.7D.8【分析】根据轴对称的性质得到:点N关于AB的对称点N′,连接MN′交AB于P,此时PM+PN最小,即△PMN周长的最小,利用圆心角、弧、弦的关系以及轴对称的性质进行计算即可.【解答】解:如图,作点N关于AB的对称点N′,则点N′在⊙O上,连接MN′交AB于P,此时PM+PN最小,即PM+PN=MN′,∵点N是的中点,∠BAM=20°,∴==,∴∠BAN′=10°,∴∠MAN′=20°+10°=30°,∴∠MON′=60°,∴△MON′是正三角形,∴OM=ON′=MN′=AB=4,又∵MN=2,∴△PMN周长的最小值为2+4=6,故选:B.【点评】本题考查圆周角定理,圆心角、弧、弦的关系以及轴对称,掌握圆周角定理,圆心角、弧、弦的关系以及轴对称的性质是解决问题的关键.7.如图,AB是半圆O的直径,C、N为半圆上的两点,且=,过点C作半圆O的切线,交AB的延长线于M,若∠M=40°,则∠BON的度数()A.30°B.25°C.20°D.22.5°【分析】连接OC,根据=,可得∠CON=∠BON,根据MC为半圆O的切线,可得∠OCM=90°,再根据直角三角形两个锐角互余即可解决问题.【解答】解:如图,连接OC,∵=,∴∠CON=∠BON,∵MC为半圆O的切线,∴∠OCM=90°,∵∠M=40°,∴∠COM=50°,∴∠BON=COM=25°,故选:B.【点评】本题主要考查圆周角定理、切线的性质,解决本题的关键是掌握切线的性质.8.在练习掷铅球项目时,某同学掷出的铅球在操场地上砸出一个直径为6cm、深2cm的小坑,则该铅球的直径为()A.cm B.6cm C.cm D.8cm【分析】由题意画出图形,设出未知数,由勾股定理列出方程,解方程,即可解决问题.【解答】解:如图,由题意知,AB=6cm,CD=2cm,OD是半径,且OC⊥AB,∴AC=CB=AB=3(cm),设铅球的半径为rcm,则OC=(r﹣2)cm,在Rt△AOC中,根据勾股定理得:OC2+AC2=OA2,即(r﹣2)2+32=r2,解得:r=,则铅球的直径为:2r=(cm),故选:A.【点评】本题考查的是垂径定理的应用和勾股定理的应用,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.9.如图所示的工件槽的两个底角均为90°.尺寸如图(单位:cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,则该球的半径是()cmA.8B.6C.12D.10【分析】设圆心为O点,连接OE,交AB于C,则OE⊥AB,由垂径定理得AC=BC=8cm,设⊙O的半径为Rcm,则OC=(R﹣4)cm,然后在Rt△OAC中,由勾股定理得出方程,解方程即可.【解答】解:设圆心为O点,连接OA、AB、OE,OE交AB于C,如图,由题意得:AB=16cm,CE=4cm,E为的中点,则OE⊥AB,∴AC=BC=AB=8(cm),设⊙O的半径为Rcm,则OC=(R﹣4)cm,在Rt△OAC中,由勾股定理得:OA2=AC2+OC2,即R2=82+(R﹣4)2,解得R=10,即该球的半径是10cm.故选:D.【点评】本题考查了垂径定理的应用以及勾股定理等知识,熟练掌握垂径定理和勾股定理是解题的关键.10.如图,在平面直角坐标系中,⊙P的圆心坐标(6,a)(a>5),半径为5,函数y=x的图象被截得的弦AB的长为8,则a的值为()A.6B.6+C.3D.6+3【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,由于OC=6,PC=a,易得D点坐标为(6,6),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=4,在Rt△PBE中,利用勾股定理可计算出PE=3,则PD=PE=3,所以a=6+3.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,∵⊙P的圆心坐标是(6,a),∴OC=6,PC=a,把x=6代入y=x得y=6,∴D点坐标为(6,6),∴CD=6,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×8=4,在Rt△PBE中,PB=5,∴PE==3,∴PD=PE=3,∴a=6+3.故选:D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.二.填空题(共5小题)11.如图,以原点O为圆心的圆过点A(4,0),圆内一个固定点B(﹣1,2),过点B作直线,交圆于M,N两点,求MN的最小值为2.【分析】可知当MN⊥OB时,MN最小,根据勾股定理求出BM===,再根据垂径定理得MN=2BM=2即可.【解答】解:如图,连接OB,OM,可知当MN⊥OB时,MN最小,∵B(﹣1,2),∴OB2=12+22=5,∵OM=OA=4,∴BM===,∵MN⊥OB,∴MN=2BM=2,∴MN的最小值为2.故答案为:2.【点评】本题考查了垂径定理,正确作出图形是关键.12.如图,在⊙O中,点D为弧BC的中点,∠COD=40°,则∠BAD=20°.【分析】根据题意推出=,再根据圆周角定理求解即可.【解答】解:∵点D为弧BC的中点,∴=,∴∠BAD=∠COD,∵∠COD=40°,∴∠BAD=20°,故答案为:20°.【点评】此题考查了圆周角定理,熟记圆周角定理是解题的关键.13.如图,P A,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为40°.【分析】连接OA、OB,先根据圆周角定理求出∠AOB,根据切线的性质得到∠OAP=∠OBP=90°,然后根据四边形内角和可计算出∠P的度数.【解答】解:连接OA、OB,如图,∵∠ACB=70°,∴∠AOB=2∠ACB=140°,∵P A,PB是⊙O的切线,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠P=360°﹣90°﹣90°﹣140°=40°,故答案为:40°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.14.如图,△ABC中,AC=3,BC=4,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为1.【分析】根据=得∠ACB=∠CDP.再由∠ACB=45°可得到∠BDC=135°,于是点D在以BC为弦,∠BDC=135°的圆弧上运动,再由∠BMC=90°可证明∠ACM=90°,从而算出AM=5,再由当A、D、M三点共线时,AD最小,求出此时AD的长即可.【解答】解:∵=,∴∠ACB=∠CDP.∵∠ACB=45°,∴∠CDP=45°,∴∠BDC=180°﹣45°=135°,∴点D在以BC为弦,∠BDC=135°的圆弧上运动,如图,设D点运动的圆弧圆心为M,取优弧BC上一点N,连接MB,MC,NB,NC,AM,MD,则∠BNC=180°﹣∠BDC=45°,∴∠BMC=90°,∵BM=CM,∴△BMC为等腰直角三角形,∴∠MCB=45°,MC=BC=4,∵∠ACB=45°,∴∠ACM=90°,∴AM===5,∴当A、D、M三点共线时,AD最小,此时,AD=AM﹣MD=5﹣4=1.故答案为:1.【点评】此题主要考查了三角形的外接圆,圆周角定理、等腰直角三角形的性质、勾股定理、三角形三边关系,解决此题的关键是证明出∠BDC=135°,分析出D在以BC为弦,∠BDC=135°的圆弧上运动.15.如图,△ABC中,AC=BC=6,∠ACB=90°,若D是与点C在直线AB异侧的一个动点,且∠ADB=45°,则CD的最大值为6+6.【分析】以AB为底边,在AB的下方作等腰直角三角形AOB,则OA=AC=6,根据点与圆的位置关系可知,当CD过圆心时,CD最大,利用勾股定理求出CO的长即可.【解答】解:以AB为底边,在AB的下方作等腰直角三角形AOB,则OA=AC=6,∵∠ADB=45°,∴点D在以O为圆心,6为半径的圆上运动,当CD过圆心时,CD最大,∵AC=AO=6,∠CAO=90°,∴CO=6,∴CD的最大值为6+6,故答案为:6+6.【点评】本题主要考查了等腰直角三角形的性质,圆周角定理,利用定边定角确定点D的运动路径是解题的关键.三.解答题(共6小题)16.如图,AB为⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E,若∠C=23°,试求∠EOB的度数.【分析】利用半径相等和等腰三角形的性质求得∠EDO,从而利用三角形的外角的性质求解.【解答】解:∵CD=OA=OD,∠C=23°,∴∠ODE=2∠C=46°,∵OD=OE,∴∠E=∠EDO=46°,∴∠EOB=∠C+∠E=46°+23°=69°.【点评】本题考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.17.[概念引入]在一个圆中,圆心到该圆的任意一条弦的距离,叫做这条弦的弦心距.[概念理解](1)如图1,在⊙O中,半径是5,弦AB=8,则这条弦的弦心距OC长为3.(2)通过大量的做题探究;小明发现:在同一个圆中,如果两条弦相等,那么这两条弦的弦心距也相等.但是小明想证明时却遇到了麻烦.请结合图2帮助小明完成证明过程如图2,在⊙O中,AB=CD,OM⊥AB,ON⊥CD,求证:OM=ON.[概念应用]如图3,在⊙O中AB=CD=16,⊙O的直径为20,且弦AB垂直于弦CD于E,请应用上面得出的结论求OE的长.【分析】[概念理解](1)连接OB,在Rt△BOC中,应用勾股定理求解即可;(2)连接BO、OC,证明Rt△BOM≌Rt△CON(HL)即可;[概念应用]过点O作OG⊥CD交于G,过点O作OH⊥AB交于H,连接DO,根据(2)的结论,得到四边形GEHO是正方形,在Rt△GOD中,用勾股定理求出GO=6,在等腰Rt△GOE中,求出EO=6.【解答】[概念理解](1)解:连接OB,∵CO⊥AB,∴BC=AC,∠BCO=90°,∵AB=8,∴BC=4,∵BO=5,∴CO==3,故答案为:3;(2)证明:连接BO、OC,∵OM⊥AB,∴BM=AM,∠BMO=90°,∵ON⊥CD,∴CN=DN,∠CNO=90°,∵AB=CD,∴BM=CN,∵BO=CO,∴Rt△BOM≌Rt△CON(HL),∴OM=ON;[概念应用]解:过点O作OG⊥CD交于G,过点O作OH⊥AB交于H,连接DO,∵AB=CD=16,∴GO=OH,∵AB⊥CD,∴∠GEH=90°,∴四边形GEHO是正方形,∴GE=GO,∵CD=16,∴DG=8,∵⊙O的直径为20,∴DO=10,∴GO==6,∴GE=GO=6,∴EO=6.【点评】本题考查圆的综合应用,熟练掌握垂径定理,勾股定理,三角形全等的判定及性质,正方形的性质是解题的关键.18.如图,△ABC的三个顶点在⊙O上,⊙O的半径为5,∠A=60°,求弦BC的长.【分析】连接CO并延长交⊙O于D,根据圆周角定理得到∠D=∠A=60°,∠CBD=90°,根据勾股定理即可得到结论.【解答】解:连接CO并延长交⊙O于D,连接BD,则∠D=∠A=60°,∠CBD=90°,∵⊙O的半径为5,∴CD=10,∴BD=CD=5,∴BC===5,故弦BC的长为5.【点评】本题考查了三角形外接圆与外心,圆周角定理,直角三角形的性质,勾股定理,正确地作出辅助线是解题的关键.19.如图,已知等边△ABC中,AB=12.以AB为直径的半⊙O与边AC相交于点D.过点D作DE⊥BC,垂足为E;过点E作EF⊥AB,垂足为F,连接DF.(1)求证:DE是⊙O的切线;(2)求EF的长.【分析】(1)连接OD,证明OD∥BC,根据平行线的性质得到DE⊥OD,根据切线的判定定理证明结论;(2)求出CD=6,进而求出CE,即可求出BE,根据正弦的定义求出EF.【解答】(1)证明:连接OD,∵△ABC为等边三角形,∴∠A=∠C,∵OA=OD,∴∠A=∠ODA,∴∠ODA=∠C,∴OD∥BC,∵DE⊥BC,∴DE⊥OD,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:由(1)知,OD∥BC,∵OA=OB,∴AD=CD,∵AC=12,∴CD=6,在Rt△CDE中,∠C=60°,∴∠CDE=30°,∴CE=CD=3,∴BE=BC﹣CE=9,在Rt△BEF中,∠B=60°,∴EF=BE•sin B=9×=.【点评】本题考查了等边三角形的性质和判定、切线的判定、勾股定理、含30度角的直角三角形的性质、锐角三角函数,正确作出辅助线是解本题的关键.20.如图,△ABC内接于⊙O,高AD经过圆心O.(1)求证:AB=AC;(2)若BC=16,⊙O的半径为10.求△ABC的面积.【分析】(1)根据垂径定理可得,根据等弧所对的弦相等,即可证明;(2)连接OB,勾股定理求得OD,继而得出AD,根据三角形面积公式进行计算即可求解.【解答】(1)证明:∵AD⊥BC,∴,∴AB=AC;(2)解:连接OB,∵AD⊥BC,∴BD=BC=8,在Rt△OBD中,BO=10,BD=8,∴OD==6,∴AD=AO+OD=10+6=16,∴S△ABC=BC•AD=×16×16=128.【点评】本题考查了垂径定理,弧与弦的关系,勾股定理,掌握以上知识是解题的关键.21.如图,四边形ABCD是⊙O内正方形,P是圆上一点(点P与点A,B,C,D不重合),连接P A,PB,PC.(1)若点P是上一点,①∠BPC度数为45°;②求证:P A+PC=PB;小明的思路为:这是线段和差倍半问题,可采用截长补短法,请按小明思路完成下列证明过程(也可按自己的想法给出证明).证明:在PC的延长线上截取点E.使CE=P A,连接BE.(2)探究当点P分别在,,上,求P A,PB,PC的数量关系,直接写出答案,不需要证明.【分析】(1)①理由正方形的性质和圆周角的度数等于它所对弧的度数的一半解答即可;②在PC的延长线上截取点E.使CE=P A,连接BE,利用全等三角形的判定与性质和等腰直角三角形的判定与性质解答即可;(2)利用截长补短法,依题意画出相应图形,按小明思路完成解答即可.【解答】(1)①解:∠BPC=45°,理由:∵四边形ABCD是正方形,∴,∴的度数为90°,∴∠BPC=90°=45°,故答案为:45°;②证明:在PC的延长线上截取点E,使CE=P A.连接BE,如图,∵四边形ABCD是⊙O内接正方形,∴AB=BC,又∵点P在上,∴四边形ABCP为⊙O内接四边形∴∠P AB=∠BCE.在△P AB和△ECB中,,∴△P AB≌△ECB(SAS),∴PB=PE,∠ABP=∠CBE,∵∠ABP+∠PBC=90°,∴∠PBC+∠CBE=90°∴∠PBE=90°,∴△PBE为等腰直角三角形,∴PE=PB,∴P A+PC=CE+PC=PE=PB;(2)当点P在上时,PC﹣P A=PB;在PC上取点E,使CE=P A,连接BE,如图,∵四边形ABCD是⊙O内接正方形,∴AB=BC,在△P AB和△ECB中,,∴△P AB≌△ECB(SAS),∴PB=PE,∠ABP=∠CBE,∵∠ABE+∠EBC=90°,∴∠PBA+∠ABE=90°,∴∠PBE=90°,∴△PBE为等腰直角三角形,∴PE=PB,∴PC﹣P A=PC﹣EC=PE=PB;当点P在上时,P A﹣PC=PB,在P A上取点E,使AE=PC,连接BE,如图,∵四边形ABCD是⊙O内接正方形,∴AB=BC,在△ABE和△BCP中,,∴△ABE≌△BCP(SAS),∴BE=BP,∠ABE=∠CBP,∵∠ABE+∠CBE=90°,∴∠CBE+∠CBP=90°,∴∠EBP=90°,∴△EBP为等腰直角三角形,∴PE=PB,∴P A﹣PC=P A﹣AE=PE=PB;当点P在上时,P A+PC=PB,理由:在P A的延长线上截取点E,使AE=PC,连接BE,如图,∵四边形ABCD是⊙O内接正方形,∴AB=BC,又∵点P在上,∴四边形ABCP为⊙O内接四边形∴∠EAB=∠BCP.在△EAB和△PCB中,,∴△EAB△PCB(SAS),∴BE=BP,∠ABE=∠PBC.∵∠ABP+∠PBC=90°,∴∠ABP+∠ABE=90°,∴∠EBP=90°.∴△EBP为等腰直角三角形,∴PE=PB,∴P A+PC=P A+AE=PE=PB.【点评】本题主要考查了圆的有关性质,圆周角定理,圆的内接四边形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,本题是阅读型题目,理解并熟练应用截长补短法,构造恰当的辅助线解答是解题的关键.。

人教版数学九年级上册第24章圆同步训练题(含答案)

人教版数学九年级上册第24章圆同步训练题(含答案)

人教版九年级数学上册第24章圆训练题(精练)一、单选题(本大题10题,每小题3分,共30分)1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2B.4C.8D.162.(本题3分)如图,AB是⊙O的直径,BC是⊙O的弦,已知∠AOC=80°,则∠ABC的度数为()A.20°B.30°C.40°D.50°3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC⊙30°⊙AC⊙4,则⊙O的半径为()A.4B.8C.D.4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm 为半径作圆.则图中阴影部分面积为( )A .(π)cm 2B .(π)cm 2C .(2π)cm 2D .(2π-)cm 26.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2BC .32 D7如图,在一个圆内有AB 、CD 、EF ,若AB +CD =EF ,则AB +CD 与EF 的大小关系是( )A .AB +CD =EFB .AB +CD <EFC .AB +CD ≤EF D .AB +CD >EF8.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B .C .6D .9.如图,在ABC 的外接圆上,,,AB BC CA 所对的圆心角的度数比为12:13:11.在BC 上取一点D ,过D 分别作直线,AC AB 的平行线,交BC 于,EF 两点,则EDF ∠的度数为( )A .55°B .60°C .65°D .70°10.如图,在Rt ABC 中,90,30∠=︒∠=︒C A ,在AC 边上取点O 为圆心画圆,使O 经过,A B 两点,下列结论:①2AO CO =;②AO BC =;③以O 圆心,OC 为半径的圆与AB 相切;④延长BC 交O 于点D ,则,,A B D 是O 的三等分点.其中正确结论的序号是( )A .①②③④B .①②③C .②③④D .①③④二、填空题(本大题7题,每小题4分,共28分)11.(本题4分)若四边形ABCD 是⊙O 的内接四边形,∠A=120°,则∠C 的度数是___.12.(本题4分)如图,四边形ABCD 内接于⊙O ,∠C =130°,则∠BOD 的度数是______.13.(本题4分)如图,四边形ABCD 是菱形,∠B =60°,AB =1,扇形AEF 的半径为1,圆心角为60°,则图中阴影部分的面积是______.14.(本题4分)如图,扇形AOB 中,10,36OA AOB =∠=︒.若将此扇形绕点B 顺时针旋转,得一新扇形A OB '',其中A 点在O B '上,则点O 的运动路径长为_______cm .(结果保留π)15.(本题4分)如图,在Rt⊙ABC 中,⊙ACB=90°⊙AC=6⊙BC=8,点D 是AB 的中点,以CD 为直径作⊙O⊙⊙O分别与AC⊙BC交于点E⊙F,过点F作⊙O的切线FG,交AB于点G,则FG的长为_____⊙16.(本题4分)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC 平分AB)可以求解.现已知弦8AB=米,半径等于5米的弧田,按照上述公式计算出弧田的面积为_____平方米.17.(本题4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边 BC 相交于点E,过点E作EF⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF 的长为_____.三、解答题(本大题7题,18-23每小题7分,24题20分,共62分)18.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD⊥CE 于点D,AC 平分∠DAB.(1)求证:直线CE 是⊙O 的切线;(2)若AB=10,CD=4,求BC 的长.19.如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D⊙连接AD,BD⊙求四边形ABCD的面积.20.如图,在△ABC中,AB⊙AC⊙∠BAC⊙54°,以AB为直径的⊙O分别交AC⊙BC于点D⊙E,过点B作直线BF,交AC的延长线于点F⊙⊙1)求证:BE⊙CE⊙⊙2)若AB⊙6,求弧DE的长;⊙3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.21.如图,在圆O 中,弦AB =8,点C 在圆O 上(C 与A ,B 不重合),连接CA 、CB ,过点O 分别作OD ⊥AC ,OE ⊥BC ,垂足分别是点D 、E(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.22.如图1,AB 为半圆的直径,点O 为圆心,AF 为半圆的切线,过半圆上的点C 作//CD AB 交AF 于点D ,连接BC .(1)连接DO ,若//BC OD ,求证:CD 是半圆的切线;(2)如图2,当线段CD 与半圆交于点E 时,连接AE ,AC ,判断AED ∠和ACD ∠的数量关系,并证明你的结论.23.如图,已知AB是⊙P的直径,点C在⊙P上,D为⊙P外一点,且∠ADC=90°,直线CD为⊙P的切线.⑴试说明:2∠B+∠DAB=180°⑵若∠B=30°,AD=2,求⊙P的半径.24.若一个四边形的两条对角线互相垂直且相等,则称这个四边形为奇妙四边形.如图1,四边形ABCD 中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据奇妙四边形对角线互相垂直的特征可得奇妙四边形的一个重要性质:奇妙四边形的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形奇妙四边形(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是奇妙四边形,若⊙O的半径为6,∠ BCD=60°.求奇妙四边形ABCD的面积;(3)如图3,已知⊙O的内接四边形ABCD是奇妙四边形作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论参考答案1.B【详解】⊙⊙O中最长的弦为8cm,即直径为8cm⊙⊙⊙O的半径为4cm⊙故选B.2.C【详解】∵AC AC,∴∠ABC=12∠AOC=12×80°=40°,故选C.3.A【详解】∵AB是直径,∴∠C=90°,∵∠ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选A.4.B【详解】连接OC ,如图,∵CD 为⊙O 的切线,∴OC ⊥CD ,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°,故选B .5.C【详解】连接AD ,∵△ABC 是正三角形,∴AB=BC=AC=4,∠BAC=∠B=∠C=60°, ∵BD=CD ,∴AD ⊥BC ,∴=∴S 阴影=S △ABC -3S 扇形AEF =12×4×﹣26023360π⨯⨯﹣2π)cm 2, 故选C .6.D【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,×1.故选D.7.D【详解】如图,在弧EF上取一点M,使EM CD=,则FM AB=,所以AB=FM,CD=EM,在⊙MEF中,FM+EM>EF,所以AB+CD>EF,故选:D.8.D【详解】如图,设光盘圆心为O,连接OC⊙OA⊙OB⊙∵AC⊙AB都与圆O相切,∴AO平分∠BAC⊙OC⊥AC⊙OB⊥AB⊙∴∠CAO=∠BAO=60°⊙∴∠AOB=30°⊙在Rt△AOB中,AB=3cm⊙∠AOB=30°⊙∴OA=6cm⊙根据勾股定理得:=⊙则光盘的直径为⊙故选D.9.C【详解】解:,,AB BC CA 所对的圆心角的度数比为12:13:11,BC ∴所对的圆心角的度数为13360130,121311⨯︒=︒++ 65BAC ︒∴∠=//,//,AC ED AB DF,FED ACB EFD ABC ∴∠=∠∠=∠18018065EDF FED EFD ACB ABC BAC ∴∠=︒-∠-∠=︒-∠-∠=∠=︒.故选C .10.D【详解】①如图,连接OB ,则OA OB =.90,30C OAB ︒︒∠=∠=,30,60ABO OAB ABC ︒︒∴∠=∠=∠=,30,2CBO OB OC ︒∴∠=∴=.2AO CO ∴=,故①正确;②在Rt OCB △中,90,,C OB BC AO OB ︒∠=>=,AO BC ∴>,故②错误;③如图,过点O 作OE AB ⊥于点E ,90,30ACB ABO CBO ︒︒∠=∠=∠=,OC OE ∴=,∴以O 圆心,OC 为半径的圆与AB 相切,故③正确;④如图,延长BC ,交O 于点D ,连接AD .90,ACB DC BC ︒∠=∴=.AD AB ∴=,60ABC ︒∠=,ADB ∴是等边三角形.,AD AB BD AD AB BD ∴==∴==,,,A B D ∴是O 的三等分点,故④正确;故正确的有①③④.11.60°⊙【详解】∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣∠A=60°,故答案为60°.12.100°⊙【详解】∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠C=180°,∵∠C=130°,∴∠A=50°,∴∠BOD=2∠A=100°,故答案为100°.13.6π- 【详解】连接AC ,∵四边形ABCD 是菱形,∴∠B=∠D=60°,AB=AD=DC=BC=1,∴∠BCD=∠DAB=120°,∴∠1=∠2=60°,∴△ABC 、△ADC 都是等边三角形,∴AC=AD=1,∵AB=1,∴△ADC的高为2,AC=1, ∵扇形BEF 的半径为1,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AF 、DC 相交于HG ,设BC 、AE 相交于点G ,在△ADH 和△ACG 中,34160AD ACD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADH ≌△ACG(ASA),∴四边形AGCH 的面积等于△ADC 的面积,∴图中阴影部分的面积是:S 扇形AEF ﹣S △ACD =2601113602π⨯⨯-⨯6π,故答案为64π-. 14.4π.【详解】解:根据题意,知OA=OB .又∠AOB=36°,∴∠OBA=72°.∴点O 旋转至O′点所经过的轨迹长度=7210180π︒⨯⨯︒=4πcm . 故答案是:4π.【点睛】本题考查了弧长的计算、旋转的性质.解答该题的关键是弄清楚点O 的运动轨迹是弧形,然后根据弧长的计算公式求解.15.125⊙ 【详解】如图,在Rt △ABC 中,根据勾股定理得,AB=10⊙∴点D是AB中点,∴CD=BD=12AB=5⊙连接DF⊙∵CD是⊙O的直径,∴∠CFD=90°⊙∴BF=CF=12BC=4⊙∴连接OF⊙∵OC=OD⊙CF=BF⊙∴OF∥AB⊙∴∠OFC=∠B⊙∵FG是⊙O的切线,∴∠OFG=90°⊙∴∠OFC+∠BFG=90°⊙∴∠BFG+∠B=90°⊙∴FG⊥AB⊙∴S△BDF=12DF×BF=12BD×FG⊙∴FG=3412==55 DF BFBD⨯⨯⊙故答案为125. 16.10 【详解】解:∵弦8AB =米,半径OC ⊥弦AB ,∴4=AD , ∴3OD ==,∴2OA OD -=,∴弧田面积12=(弦×矢+矢2)()21822102=⨯⨯+=, 故答案为1017.2【详解】连接AE,作CM⊥FD, ∵AB=AC,AE⊥BC, ∴BE=EC,AB∥CM, ∴CM=BF, ∴666sin ,sin 446410CM CM AF D D CD AD AC CM CM ∠==∠====++++ , ∴6410CM CM=+ , ∴CM=2或CM=-12(舍去),∴BF=2.18.【详解】(1)如图,连接OC∵AC平分∠DAB,∴∠DAC=∠CAB,∵OA=OC,∴∠OCA=∠CAB,∴∠OCA=∠DAC,∴AD∥CO,∵CD⊥AD,∴OC⊥CD,∵OC是⊙O直径且C在半径外端,∴CD为⊙O的切线;(2)∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴DC AC BC AB,∴BC•AC=DC•AB=4×10=40,∵BC 2+AC 2=100,∴(BC+AC)2=BC 2+AC 2+2BC •AC=180,(BC -AC)2= BC 2+AC 2-2BC •AC=20,∴AC ﹣BC ﹣∴19.S 四边形ADBC ⊙49⊙cm 2⊙⊙【详解】∵AB 为直径,∴∠ADB=90°,又∵CD 平分∠ACB ,即∠ACD=∠BCD ,∴AD BD =,∴AD=BD ,∵直角△ABD 中,AD=BD ,AD 2+BD 2=AB 2=102,则,则S △ABD =12AD•BD=12=25(cm 2),在直角△ABC 中,=6(cm),则S △ABC =12AC•BC=12×6×8=24(cm 2), 则S 四边形ADBC =S △ABD +S △ABC =25+24=49(cm 2).20.【详解】(1)连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=12∠BAC=12×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长=5439 18010ππ⨯⨯=;(3)当∠F的度数是36°时,BF与⊙O相切,理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.21.⊙1⊙【详解】(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=12 AB,∵AB=8,∴DE=4;(2)过点O作OH⊥AB,垂足为点H,则OH=3,连接OA,∵OH经过圆心O,∴AH=BH=12 AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.22.【详解】(1)证明:连接OC ,AF 为半圆的切线,AB 为半圆的直径,AB AD ∴⊥,//CD AB ,//BC OD ,∴四边形BODC 是平行四边形,OB CD ∴=,OA OB =,CD OA ∴=,∴四边形ADCO 是平行四边形,//OC AD ∴,//CD BA ,CD AD ∴⊥,//OC AD ,OC CD ∴⊥,CD ∴是半圆的切线;(2)解:90AED ACD ∠+∠=︒,理由:如图2,连接BE ,AB 为半圆的直径,90AEB ∴∠=︒,90EBA BAE ∴∠+∠=︒,90DAE BAE ∠+∠=︒,ABE DAE ∴∠=∠,ACE ABE ∠=∠,ACE DAE ∴∠=∠,90ADE ∠=︒,90DAE AED AED ACD ∴∠+∠=∠+∠=︒. 23.【详解】解:⊙ 连接CP⊙PC =PB ,⊙⊙B =⊙PCB ,⊙⊙APC=⊙PCB+⊙B=2⊙B⊙CD是⊙OP的切线,⊙⊙DCP=90°⊙⊙ADC=90°,⊙⊙DAB+⊙APC=180°⊙2⊙B+⊙DAB=180°⊙ 连接AC⊙⊙B=30°,⊙⊙APC=60°,⊙PC=P A,⊙⊙ACP是等边三角形,⊙AC=P A,⊙ACP=60° ⊙⊙ACD=30°,⊙AC=2AD=4,⊙P A=4答:⊙P的半径为4.24.【详解】解:(1)矩形的对角线相等但不垂直,所以矩形不是奇妙四边形;故答案为不是;(2)连结OB、OD,作OH⊥BD于H,如图2,则BH=DH,∵∠BOD=2∠BCD=2×60°=120°,∴在等腰△OBD中,∠OBD=30°,在Rt △OBH 中,∵∠OBH=30°, ∴132126OH OB ==⨯=,∴BH ==∴2BD BH ==∵四边形ABCD 是奇妙四边形,∴AC BD ==AC BD ⊥∴112542ABCD BD A S C =⨯==四边形; (3)12OM AD =. 理由如下:连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图3, ∵OE ⊥AD ,∴在等腰△AOD 中,12AE DE AD ==, 又∵22BOC BAC BOM ∠=∠=∠,∴∠BOM=∠BAC ,同理可得∠AOE=∠ABD ,∵BD ⊥AC ,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°, ∵∠BOM+∠OBM=90°, ∴∠OBM=∠AOE , 在△BOM 和△OAE 中 90BMO OEA OBM AOEOB AO ⎧∠∠=⎪∠∠⎨⎪⎩=== ∴()BOM OAE AAS ≌, ∴OM=AE , ∴12OM AD =.1。

人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案

人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案

人教版九年级数学上册《第二十四章圆》测试卷-附参考答案一、单选题1.已知AB是⊙O的直径,的度数为60°,⊙O的半径为2cm,则弦AC的长为()A.2cm B.cm C.1cm D.cm2.已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定3.如图,是的直径,若,则圆周角的度数是()A.B.C.D.4.如图,已知半圆O与四边形的边相切,切点分别为D,E,C,设半圆的半径为2,则四边形的周长为()A.7 B.9 C.12 D.145.如图,是的内接三角形,作,并与相交于点D,连接BD,则的大小为()A.B.C.D.6.如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A.B.C.D.7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.8.如图,半径为的扇形中,是上一点,垂足分别为,若,则图中阴影部分面积为( )A.B.C.D.二、填空题9.如图,是的弦,C是的中点,交于点D.若,则的半径为 .10.如图,是的直径,交于点,且,则的度数= .11.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.12.如图,为的外接圆,其中点在上,且,已知和则.13.如图,以正方形的顶点为圆心,以对角线为半径画弧,交的延长线于点,连结,若,则图中阴影部分的面积为.(结果用表示)三、解答题14.如图,CD是⊙O的直径,弦AB⊥CD于E,是的中点,连接BC,AO,BD.求的大小.15.如图,是的外接圆,且,点M是的中点,作交的延长线于点N,连接交于点D.(1)求证:是的切线;(2)若,求的半径.16.如图,等腰内接于,AC的垂直平分线交边BC于点E,交于F,垂足为D,连接AF并延长交BC的延长线于点P.(1)求证:;(2)若,求的度数.17.如图,在中,是边上一点,以为圆心,为半径的圆与相交于点,连接,且.(1)求证:是的切线;(2)若,求的长.18.如图,⊙O的半径OC垂直于弦AB于点D,点P在OC的延长线上,AC平分∠PAB.(1)判断AP与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,弦AB平分OC,求与弦AB、AC围成的阴影部分的面积.参考答案:1.A2.A3.B4.D5.A6.C7.D8.B9.510.24°11.12.13.14.解:又是中点在和中≌∴BD=OA是直径,OA是半径90°且30°. 15.(1)证明:∵∴∵点M是的中点∴∴∴∴是的直径∴∵∴∴是的切线;(2)解:如图所示,连接,设交于D∵∴设的半径为r,则∵∴在中,由勾股定理的∴∴∴的半径为.16.(1)证明:如图,连接BF.∵AC的垂直平分线交边BC于点E,交于F,且圆是轴对称图形,∴O,E,F三点共线,∴∴∴,∵,∴(2)解:如图,连接CF,设,则∵∴∵∴∴∴.∵∴,即易证(SAS),∴∵,∴,∴,∴,解得∴∴的度数为108°.17.(1)证明:连接OD.∵AC=CD∴∠A=∠ADC.∵OB=OD∴∠B=∠BDO.∵∠ACB=90°∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径∴CD是⊙O的切线.(2)解:∵AC=CD,∠A=60°∴△ACD是等边三角形.∴∠ACD=60°.∴∠DCO=∠ACB﹣∠ACD=30°.在Rt△OCD中,OD=CDtan∠DCO tan30°=2.∵∠B=90°﹣∠A=30°,OB=OD∴∠ODB=∠B=30°.∴∠BOD=180°﹣(∠B+∠BDO)=120°.∴的长18.(1)解:AP与⊙O的位置关系是相切,理由如下:连接平分垂直于弦,且是半径是的切线;(2)解:连接OB,如图所示:∵弦AB垂直平分OC∴∴∴∵OA=OC∴△OAC是等边三角形∴∴△OBD≌△CAD(ASA)∴。

2022-2023学年人教版九年级数学上册《第24章圆的有关性质》选择专题训练(附答案)

2022-2023学年人教版九年级数学上册《第24章圆的有关性质》选择专题训练(附答案)

2022-2023学年人教版九年级数学上册《第24章圆的有关性质》选择专题训练(附答案)1.如图,点A、B、D都在⊙O上,若∠ABD=40°,则∠AOD的度数为()A.40°B.80°C.100°D.140°2.如图,已知OB,OD是⊙O的半径,BC、CD、DA是⊙O的弦,连接AB,若∠BOD=100°,则∠BCD度数为()A.100°B.120°C.130°D.140°3.在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为()A.140°B.100°C.80°D.40°4.如图,ABCD是⊙O的内接四边形,且∠ABC=125°,那么∠AOC等于()A.125°B.120°C.110°D.130°5.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=108°,则∠α=()A.72°B.108°C.120°D.144°6.在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或77.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B.C.D.68.小王不慎把一面圆形镜子打碎了,其中三块如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.都不能9.如图,点A、B、C、D在⊙O上,OA⊥BC于点E,若BC=OB,则∠D的度数为()A.15°B.30°C.45°D.60°10.如图,AB是⊙O的直径,CD是⊙O的弦.∠CAB=50°,则∠D=()度.A.30B.40C.50D.6011.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若CD=6,BE=1,则AE=()A.5B.8C.9D.1012.如图,⊙O的半径为2,弦AB=2,则圆心O到弦AB的距离为()A.1B.C.D.213.如图,以CD为直径的⊙O中,弦AB⊥CD于点M,若AB=24,CD=26.则MD的长为()A.5B.7C.8D.1014.如图,点A、B、C在⊙O上,∠ACB=54°,则∠AOB的度数是()A.90°B.100°C.108°D.110°15.如图,AB是半圆O的直径,AB=4,点C,D在半圆上,OC⊥AB,D是(靠近C)弧CB的三等分点,点P是OC上的一个动点,则BP+DP的最小值为()A.B.2C.3D.216.如图,点A、B、C是⊙O上的三点,若∠A=40°,则∠BOC是()A.100°B.80°C.60°D.40°17.如图,四边形ABCD内接于⊙O,若∠AOB=40°,BC∥OA,则∠ADC的度数为()A.60°B.65°C.70°D.75°18.如图,AB是⊙O的直径,CD是弦,∠CAB=50°,则∠D的度数是()A.50°B.45°C.40°D.35°19.如图,点A,B,C在⊙O上,∠A=40°,则∠OBC的度数是()A.30°B.50°C.60°D.80°20.⊙O中∠AOC=80°,B为弧AC中点,AD∥BC,则∠COD度数为()A.20°B.30°C.40°D.45°参考答案1.解:∵∠ABD=40°,∴∠AOD=2∠ABD=2×40°=80°,故选:B.2.解:∵∠BOD和∠BAD都对,∴∠BAD=∠BOD=×100°=50°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣50°=130°.故选:C.3.解:设∠A的度数为2x,则∠B、∠C的度数分别为4x、7x,由题意得:2x+7x=180°,解得:x=20°,则∠B=4x=80°,故选:C.4.解:∵四边形ABCD为圆内接四边形,∴∠D+∠ABC=180°,∴∠D=180°﹣125°=55°,∴∠AOC=2∠D=110°.故选:C.5.解:作所对的圆周角∠ADB,如图,∵∠ADB+∠ACB=180°,∴∠ADB=180°﹣108°=72°,∵∠ADB=∠AOB,∴∠α=2×72°=144°.故选:D.6.解:当油面没超过圆心O,油面宽CD为8cm时,过O作OG⊥AB于G,交CD于H,连接OA,OC,则OH⊥CD,∴AG=AB=3(cm),CG=CD=4(cm),∵截面⊙O半径为5cm,∴OA=5cm,∴OG===4(cm),OH===3(cm),即弦AB的弦心距是4cm,弦CD的弦心距是3cm,则OG﹣OH=4﹣3=1(cm),即当油面没超过圆心O时,油上升了1cm;当油面超过圆心O时,同理得OH'=3cm,则OG+OH'=4+3=7(cm),即油面AB上升了7cm;故选:D.7.解:连接OC,∵AB是⊙O的直径,弦CD⊥AB,BE=5,AE=1,∴CD=2CE,∠OEC=90°,AB=AE+BE=6,∴OC=OA=3,∴OE=OA﹣AE=3﹣1=2,在Rt△COE中,由勾股定理得:CE===,∴CD=2CE=2,故选:C.8.解:第②块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:B.9.解:∵OA⊥BC,∴BE=EC=BC,=,∵BC=OB,∴=,∴∠BOE=60°,∴∠D=∠BOE=30°,故选:B.10.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=50°,∴∠B=90°﹣∠CAB=40°,∴∠D=∠B=40°,故选:B.11.解:连接OC,设⊙O的半径为R,则AO=OB=OC=R,∵AB⊥CD,AB过圆心O,CD=6,∴CE=DE=3,∠CEO=90°,由勾股定理得:OC2=CE2+OE2,即R2=32+(R﹣1)2,解得:R=5,即OB=OA=5,∵BE=1,∴AE=AO+OB﹣BE=5+5﹣1=9,故选:C.12.解:过O作OC⊥AB于C,连接OA,∵OC⊥AB,OC过圆心O,AB=2,∴AC=BC=,∠OCA=90°,由勾股定理得:OC===1,即圆心O到弦AB的距离为1,故选:A.13.解:连接OA,如图所示:∵CD是直径,AB是弦,AB⊥CD于M,AB=24,∴AM=BM=AB=12,OA=OD=CD=13,在Rt△OAM中,由勾股定理得:OM===5,∴DM=OD﹣OM=13﹣5=8,故选:C.14.解:∵∠ACB和∠AOB都对,∴∠AOB=2∠ACB=2×54°=108°.故选:C.15.解:如图,连接AD,P A,OD,DB.∵OC⊥AB,OA=OB,∴P A=PB,∠COB=90°,∵=2,∴∠DOB=×90°=60°,∵OD=OB,∴△OBD是等边三角形,∴∠ABD=60°∵AB是直径,∴∠ADB=90°,∴AD=AB•sin∠ABD=2,∵PB+PD=P A+PD≥AD,∴PD+PB≥2,∴PD+PB的最小值为2,故选:B.16.解:∵∠A和∠BOC都对,∴∠BOC=2∠A=2×40°=80°.故选:B.17.解:∵BC∥OA,∠AOB=40°,∴∠OBC=∠AOB=40°,∵OA=OB,∠AOB=40°,∴∠OBA=×(180°﹣40°)=70°,∴∠ABC=∠OBA+∠OBC=40°+70°=110°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣∠ABC=180°﹣110°=70°,故选:C.18.解:∵AB是直径,∴∠ACB=90°,∵∠CAB=50°,∴∠ABC=90°﹣50°=40°,∴∠D=∠ABC=40°,故选:C.19.解:∵∠A=40°,∴∠BOC=2∠A=80°,∵OB=OC,∴∠OBC=∠OCB==50°.故选:B.20.解:∵AD∥BC,∴∠DAC=∠BCA,∴,∵B为弧AC中点,∴=,∴∠COD=∠AOC=40°.故选:C.。

第24章 圆 人教版数学九年级上册单元测试卷(含答案)

第24章 圆 人教版数学九年级上册单元测试卷(含答案)

第二十四章 圆一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·北京通州区期末)如图,若OA⊥OB,则∠C=( )A.22.5°B.67.5°C.90°D.45°(第1题) (第2题)2.(2022·江苏镇江润州区段考改编)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是( )A.3B.4C.5D.63.(2021·江苏常熟期中)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-3,0),B(-1,2),C(3,2),则△ABC的外心的坐标是( )A.(1,-2)B.(0,0)C.(1,-1)D.(0,-1)(第3题) (第4题)4.(2021·山东寿光期中)如图,若正方形ABCD的边长为6,则其外接圆半径OA与内切圆半径OE的比值为( )A.3B.2C.2D.35.(2022·湖北十堰期末)如图,点A,B,C,D都在☉O上,OA⊥BC,∠OBC=40°,则∠ADC 的度数为( ) A.40° B.30° C.25° D.50°6.(2022·浙江金华期中改编)如图,☉O 与正六边形OABCDE 的边OA ,OE 分别交于点F ,G ,点M 为劣弧FG 的中点.连接FM ,GM ,若FM=22,则☉O 的半径为( )A.2B.6C.22D.26(第6题) (第7题)7.(2022·浙江宁波江北区期末)如图,AB 是半圆O 的直径,C ,D 是半圆上两点,连接CA ,CD ,AD.若∠ADC=120°,BC=1,则BC 的长为( )A.π3B.π4C.π6D.2π38.(2022·江苏镇江期中)简易直尺、含60°角的直角三角板和量角器如图摆放(无重叠部分),A 为三角板与直尺的交点,B 为量角器与直尺的接触点,C 为量角器与三角板的接触点.若点A 处刻度为4,点B 处刻度为6,则该量角器的直径长为( )A.2B.23C.4D.439.如图,四边形ABCD 内接于☉O ,AD ∥BC ,直线EF 是☉O 的切线,B 是切点.若∠C=80°,∠ADB=54°,则∠CBF=( )A.45°B.46°C.54°D.60°10.如图(1),AB是半圆O的直径,点C是半圆O上异于A,B的一点,连接AC,BC.点P从点A出发,沿A→C→B以1 cm/s的速度运动到点B.图(2)是点P运动时,△PAB 的面积y(cm2)随时间x(s)变化的图象,则点D的横坐标为( )A.a+2B.2C.a+3D.3二、填空题(共5小题,每小题3分,共15分)11.(2022·山东济南天桥区期末)如图,☉A,☉B,☉C两两相离,且半径都为2,则图中阴影部分的面积之和为 .(结果保留π)(第11题) (第12题)12.(2022·江苏苏州姑苏区期中)如图,A,B,C,D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为 .13.(2022·河北唐山期末改编)如图,△ABC内接于☉O,过点A作直线EF,已知∠B=∠EAC,根据弦AB的位置变化,试探究直线EF与☉O的位置关系.甲:如图(1),当弦AB过点O时,EF与☉O相切;乙:如图(2),当弦AB不过点O时,EF也与☉O相切.你认为 的判断正确.14.新风向关注数学文化在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现代语言表述为:如图,AB为☉O的直径,弦CD⊥AB于点E,AE=1寸,CD=10寸,则直径AB的长为 寸.(第14题) (第15题)15.如图,已知四边形ABCD是边长为4的正方形,以AB为直径向正方形内作半圆,P为半圆上一动点(不与点A,B重合),当PA= 时,△PAD为等腰三角形.三、解答题(共6小题,共55分)16.(7分)(2022·北京四中期中改编)某游乐园的摩天轮采用了国内首创的横梁结构,如图,摩天轮半径为44 m,中心O距离地面56 m,匀速运行一圈的时间为18 min.由于受到周边建筑物的影响,乘客与地面之间超过一定距离时,可视为最佳观赏位置.已知在运行的一圈里最佳观赏时长为12 min,求最佳观赏位置与地面的最小距离(即BD的长).17.(8分)(2021·浙江温州模拟)如图,已知AB是☉O的直径,弦CD⊥AB于点E,点M 是☉O上一动点,∠M=∠D,连接BC.(1)判断BC与MD的位置关系,并说明理由;(2)若MD恰好经过圆心O,求∠D的度数.18.(8分)(2022·山东临沂期末)如图,AB为☉O的直径,AC,DC为弦,∠ACD=60°,P 为AB延长线上的点,连接PD,∠APD=30°.(1)求证:DP是☉O的切线.(2)若☉O的半径为2,求图中阴影部分的面积.19.(10分)[与特殊平行四边形综合](2021·河南驻马店二模)如图,已知☉O的直径AB=2,C是AB上一个动点(不与点A,B重合),切线DC交AB的延长线于点D,连接AC,BC,OC.(1)请添加一个条件使△BAC≌△ODC,并说明理由.(2)若点C关于直线AB的对称点为E.①当AD= 时,四边形OCDE为正方形.②当∠CDB= °时,四边形ACDE为菱形.20.(10分)新风向探究性试题如图,已知AB是☉O的直径,BC与☉O相切于点B,CD 与☉O相切于点D,连接AD,OC.(1)求证:AD∥OC.(2)小聪与小明在做这个题目的时候,对∠CDA+∠AOC的值进行了探究:小聪说,∠CDA+∠AOC的值是一个固定值;小明说,∠CDA+∠AOC的值随∠A的度数的变化而变化.若∠CDA+∠AOC的值为y,∠A的度数为x,你认为他们之中谁的说法正确?若小聪的说法正确,请求出y;若小明的说法正确,请求出y与x之间的关系.21.(12分)新风向探究性试题【问题呈现】阿基米德折弦定理:如图(1),AB和BC是☉O的两条弦(即折线ABC是☉O的一条折弦),BC>AB,M是ABC的中点,则从点M 向BC作垂线,垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的过程. 图(1) 图(2) 图(3) 图(4)证明:如图(2),在CD上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC.①∵∠A=∠C,②∴△MAB≌△MCG,∴MB=MG.又MD⊥BC,∴BD=DG,∴CD=CG+DG=AB+BD,即CD=AB+BD.根据证明过程,分别写出步骤①,②的理由:① .② .【理解运用】在图(1)中,若AB=4,BC=6,则BD= .【变式探究】如图(3),AB,BC是☉O的两条弦,点M是AC的中点,MD⊥BC于点D,请写出CD,DB,BA之间存在的数量关系: .【实践应用】如图(4),△ABC内接于☉O,BC是☉O的直径,点D为圆周上一动点,满足∠DAC=45°.若AB=6,☉O的半径为5,求AD的长.第二十四章 圆·B卷1.D ∵OA⊥OB,∴∠AOB=90°,∴∠C=12∠AOB=【技巧】同圆中,同弧所对的圆周角等于圆心角的一半45°.2.B 连接BD,由勾股定理可得BD=AB2+AD2=42+32=5,由题意可知,3<r<5,因此只有B选项符合.3.A 如图,∵三角形的外心到三角形三个顶点的距离相等,∴线段BC,AB的垂直平分线的交点即为外心P,由图可知,点P的坐标为(1,-2).4.B 由题意结合题图可知,内切圆直径等于正方形边长,则OE=3.由正方形的性质可得OA=32,则OAOE =323=2.5.C ∵OA ⊥BC ,∴AC =AB .∵∠OBC=40°,∴∠AOB=50°,∴∠ADC=12∠AOB=12×50°=25°.6.C 连接OM ,由题意知∠FOG=120°.∵点M 为劣弧FG 的中点,∴∠FOM=60°.∵OM=OF ,∴△OFM 是等边三角形,∴OM=OF=FM=22,则☉O 的半径为22,故选C .7.A 如图,连接OC.∵∠ADC=120°,∴∠ABC=60°.∵OB=OC ,∴△OBC 为等边三角形,∴∠COB=60°,OB=OC=BC=1,∴BC 的长=60π·1180=π3.8.D 如图,添加点D ,连接OA ,OB ,由题意得AB=6-4=2,∵∠CAD=60°,∴∠BAC=120°.∵AB 与半圆O 相切于点B ,AC 与半圆O 相切于C ,∴∠BAO=60°,∠AOB=30°,∴OA=2AB=4,∴OB=OA 2-AB 2=42-22=23,∴量角器的直径长为43.9.B 如图,连接OD ,OB ,则∠BOD=2∠C=160°.∵OB=OD ,∴∠OBD=180°―160°2=10°.∵四边形ABCD 内接于☉O ,∴∠A=180°-∠C=100°.∵AD ∥BC ,∴∠A+∠ABC=180°,∴∠ABC=80°.在△ABD 中,∠ADB=54°,∴∠ABD=180°-54°-100°=26°,∴∠OBC=80°-26°-10°=44°.∵EF 是☉O 的切线,∴∠OBF=90°,∴∠CBF=90°-∠OBC=90°-44°=46°.故选B .∵AD ∥BC ,∴∠ADB+∠BDC+∠C=180°.∵∠C=80°,∠ADB=54°,∴∠BDC=46°.∵∠CBF 是弦切角,∴∠CBF=∠BDC=46°.(弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数)10.A 从题图(2)看,当x=a 时,y 取得最大值a ,此时点P 运动到点C 处,即AC=a.∵∠ACB=90°,∴y=12×AC×BC=12BC×a=a ,解得BC=2.当点P 运动到点B 处时,y=0,即AC+BC=OD ,∵AC+BC=a+2,∴点D 的横坐标为a+2.11.2π 因为∠A+∠B+∠C=180°,所以阴影部分的面积之和等于半径为2的半圆的面积,为2π.12.10 如图,连接OA ,OB ,由题意知点A ,B ,C ,D 在以点O 为圆心,OA 的长为半径的同一个圆上.∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数=360°÷36°=10.13.甲、乙 题图(1)中,∵AB 是☉O 的直径,∴∠C=90°,∴∠B+∠CAB=90°.∵∠EAC=∠B ,∴∠EAC+∠CAB=90°,∴EF ⊥AB.∵OA 是半径,∴EF 是☉O 的切线,故甲的判断正确.如图,作直径AM ,连接CM ,则∠ACM=90°,∠B=∠M.∵∠EAC=∠B ,∴∠EAC=∠M.∵∠CAM+∠M=90°,∴∠CAM+∠EAC=90°,∴EF 是☉O 的切线,故乙的判断正确.14.26 连接OC.∵CD ⊥AB ,AB 为☉O 的直径,CD=10,∴CE=12CD=5. 设OC=OA=x ,则OE=x-1.由勾股定理得OE 2+CE 2=OC 2,即(x-1)2+52=x 2,解得x=13,∴AB=26寸.15.22或85516.【参考答案】由题意得AB⊥OM,BO=44,×360°=120°,∠AOB=18―1218∴∠BOC=60°,∠OBC=30°,∴OC=1OB=22.2∵中心O距离地面56 m,∴OM=56,∴CM=OM-OC=34,∴BD=34 m,故最佳观赏位置与地面的最小距离为34 m.(7分) 17.【参考答案】(1)BC∥MD.(1分)理由:∵∠MBC=∠D,∠M=∠D,∴∠M=∠MBC,∴BC∥MD.(4分) (2)∵AB是☉O的直径,CD⊥AB于点E,∴∠D+∠EOD=90°.(6分)∵MD过圆心O,∴∠BOD=2∠M=2∠D,∴∠D+2∠D=90°,∴∠D=30°.(8分) 18.【参考答案】(1)证明:如图,连接OD.∵∠ACD=60°,∴∠AOD=120°,∴∠BOD=60°.∵∠APD=30°,∴∠ODP=90°,即PD⊥OD.∵OD是半径,∴PD是☉O的切线.(4分)(2)∵在Rt △POD 中,OD=2,∠OPD=30°,∴OP=4.由勾股定理得PD=23.∴S 阴影部分=S △POD -S扇形ODB =12×2×23-60π·22360=23-2π3.(8分)19.【参考答案】(1)添加条件∠A=30°.(1分)理由:∵AB 是☉O 的直径,∴∠ACB=90°.∵DC 是☉O 的切线,∴∠DCO=90°,∴∠ACB=∠DCO.(3分)∵OA=OC ,∴∠A=∠OCA=30°,∴∠BOC=60°.∵OC=OB ,∴△BOC 是等边三角形,∴BC=OC ,∠ABC=∠DOC=60°,∴△BAC ≌△ODC (ASA).(6分)或添加条件BC=1.(1分)∵AB 是☉O 的直径,∴∠ACB=90°.∵DC 是☉O 的切线,∴∠DCO=90°,∴∠ACB=∠DCO.(3分)∵OC=OB=12AB=1=BC ,∴△BOC 是等边三角形,∴∠ABC=∠DOC=60°,∴△BAC ≌△ODC (ASA).(6分)(答案不唯一,正确即可给分)(2)①2+1(8分)解法提示:∵AB=2,∴OA=OC=1.连接OE ,DE ,若四边形OCDE 是正方形,则△OCD 是等腰直角三角形,易得OD=2,∴AD=OD+OA=2+1.②30(10分)解法提示:∵DC 是☉O 的切线,∴∠DCO=90°,∴∠COD=90°-∠CDB.∵OC=OA ,∴∠CAB=12∠COD=90°―∠CDB2.连接AE ,若四边形ACDE 是菱形,则CA=CD ,∴∠CAB=∠CDB ,即90°―∠CDB2=∠CDB ,解得∠CDB=30°,∴当∠CDB=30°时,四边形ACDE 是菱形.20.【思路导图】(1)连接ODRt △ODC ≌Rt △OBC →∠DOC=∠BOC →∠DAO=∠BOC →AD ∥CO【参考答案】(1)如图,连接OD.(1分)∵BC 与☉O 相切于点B ,CD 与☉O 相切于点D ,∴∠ODC=∠OBC=90°.(2分)在Rt △ODC 和Rt △OBC 中,OD =OB ,OC =OC ,∴Rt △ODC ≌Rt △OBC ,∴∠DOC=∠BOC.(4分)∵∠DAO=12∠DOB ,∴∠DAO=∠BOC ,∴AD ∥CO.(5分)(2)小聪的说法正确.(6分)∵∠CDA+∠AOC=y ,∠A=x ,∴∠ODC+∠ODA+∠AOC=y ,∠ODA=∠OAD=x.∵∠ODC=90°,∴90°+x+∠AOC=y.由(1)得AD ∥CO ,∴∠OAD+∠AOC=180°,即x+∠AOC=180°,∴y=90°+x+∠AOC=90°+180°=270°.(10分)21.【参考答案】【问题呈现】①在同圆中,如果两条弧相等,那么它们所对的弦相等②同弧所对的圆周角相等(4分)【理解运用】1(6分)解法提示:∵CD=AB+BD ,∴CD=12(AB+BC )=12×(4+6)=5,∴BD=BC-CD=6-5=1.【变式探究】DB=AB+CD(8分)解法提示:如图,在DB 上截取BG=BA ,连接MA ,MB ,MC ,MG.∵M 是AC 的中点,∴AM=MC ,∠MBA=∠MBG.又MB=MB ,∴△MAB ≌△MGB ,∴MA=MG ,∴MC=MG.又DM ⊥BC ,∴DC=DG ,∴AB+DC=BG+DG ,即DB=AB+CD.【实践应用】∵BC是☉O的直径,∴∠BAC=90°.∵AB=6,☉O的半径为5,∴易得AC=8.(分类讨论思想)如图,连接AD,当∠DAC=45°时,有两种情况.①∠D1AC=45°,则D1是BC的中点.过点D1作D1G1⊥AC于点G1,则CG1+AB=AG1.∴AG1=1(6+8)=7,∴AD1=72.2②∠D2AC=45°,过点D2作D2G2⊥AC于点G2,同理易得CG2=AB+AG2,∴CG2=7,AG2=1,∴AD2=2.综上,AD的长为72或2.(12分)。

人教版九年级数学上册第24章《圆》测试卷1(附答案)

人教版九年级数学上册第24章《圆》测试卷1(附答案)

人教版九年级数学上册第24章《圆》测试卷1(附答案)时间:100分钟总分:120分一、选择题(每小题3分,共30分)1.已知⊙O与点P在同一平面内,如果⊙O的半径为5,线段OP的长为4,则点P( )A.在⊙O上B.在⊙O内C.在⊙O外D.以上答案都不正确2.若半径为5c m的一段弧长等于半径为2c m的圆的周长,则这段弧所对的圆心角为( )A.144°B.132°C.126°D.108°3.如图,一个直角三角尺的30°角的顶点P落在⊙O上,两边分别交⊙O于A,B两点,若⊙O的直径为4,则弦AB长为( )A.2B.3C.√2D.√3第3题图第4题图第5题图第6题图4.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BGB.AD//BCC.AB//EFD. ∠ABC= ∠ADC5.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8m,底面半径OB=6m,则圆锥的侧面积是( )A.60πm²B.50π m²C.47.5π m²D.45.5π m²6. 如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45°B.50°C.60°D.75°7. 已知⊙A与⊙B外切,⊙C与⊙A,⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是( )A.11B.10C.9D.88.如图,⊙P与x轴交于点A(-5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点P的坐标为( )A.(-3, √3)B.(-2, √3,)C.(-3, 3√3)D.(-2, 3√3)第8题图第9题图第10题图9.如图,用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M,P,H三点的圆弧与AH交于点R,则图中阴影部分的面积为( )A.3π-2B.2π-5C.5π2--5 D. 5π4-5210. 如图,⊙O的半径为5,点A是⊙O上一定点,点B在⊙O上运动,且∠ABM =30°,AC⊥BM于点C,连接OC,则OC的最小值是( )A. 3−√32B.√32C. √33D.5√32−52二、填空题(每小题3分,共15分)11.已知某个正六边形的周长为6,则这个正六边形的边心距是__________.12.如图所示,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到点A时,同伴乙已经成功冲到点B,现在有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度大小考虑,应选择第______种射门方式.第12题图第13题图第14题图第15题图13.用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA = 2,则四叶幸运草的周长是________.14. 如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,C是弧AB的中点,且CD=10m,则这段弯路所在圆的半径为_________ m.15. 如图,在扇形OAB中,∠AOB=60°,OA = 4,射线AM⊥OA,E为弧AB上的一个动点,过点E作EF⊥AM于点F,连接AE,当AE-EF的值最大时,图中阴影部分的面积为______.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且CO=CD,求∠PCA的度数.17.(9分)如图,矩形ABCD中,AB=2BC,以AB为直径作⊙O.(1)求证CD是OO的切线.(2)若BC=3,连接BD,求阴影部分的面积.(结果保留π)18.(9分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程..已知:⊙O及⊙O外一点P.求作:直线P A和直线PB,使P A切⊙O于点A,PB切⊙O于点B.作法:如图.OP的长为半径作弧,两弧分别交于点M,N;①连接OP.分别以点O和点P为圆心,大于12②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线P A和直线PB.所以直线P A和PB就是所求作的直线.根据小东设计的尺规作图过程解答下列问题:(1)使用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面的证明.证明:连接OA,OB . ∵OP是⊙Q的直径,∴∠OAP=∠OBP =______°( ) (填推理的依据).∴P A⊥OA , PB⊥OB .∵OA,OB为⊙O的半径,∴P A,PB是⊙O的切线.̂上,连19.(9分)如图,在⊙O的内接四边形ABCD中,AB=AD,∠BCD=120°,点E在AD接AE,DE.(1)求∠AED的度数;(2)连接OA,OD,OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值.̂=BĈ= AĈ,点E是BC上的一点,20.(9分)如图,已知△ABC是⊙O的内接三角形,AB连接AE,过点B作BD//AE交⊙O于点D,连接CD交AB于点F.(1)求证:AF=BE.(2)若∠CAE=15°,请仅用无刻度的直尺在图中作出一个⊙O的内接等腰直角三角形(保留作图痕迹,不写作法).̂的中点,N是AĈ的中点,弦MN分别交21.(10分)如图,AB,AC是⊙O的两条弦,M是ABAB,AC于点P,D.(1)求证AP=AD.(2)连接PO,若AP=3,OP=√10,⊙O的半径为5,求MP的长.22.(10分)如图,AB是⊙O的直径,点C是⊙O上一点(点C不与A,B重合),连接CA,CB,∠ACB的平分线CD与⊙O交于点D.(1)求∠ACD的度数;(2)探究CA,CB,CD三者之间的等量关系,并证明;(3)E为⊙O外一点,满足ED=BD,AB=5,AE =3,若P为AE中点,求PO的长.23.(11分)如图,AB是⊙O的直径,PC切⊙O于点P,过点A作直线AC⊥PC交⊙O于另一点D,连接P A,PB,PO.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点。

人教版 九年级上册 第24章 《圆》检测题(含答案)

人教版 九年级上册  第24章 《圆》检测题(含答案)

《圆》检测题一.选择题1.如图,AB是⊙O的直径,BC是⊙O的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°2.如图,AB是⊙O的直径,点C在⊙O上,半径OD∥AC,如果∠BOD=130°,那么∠B的度数为()A.30°B.40°C.50°D.60°3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为()A.10 B.8 C.5 D.34.如图示,⊙O内切于△ABC,切点分别为点D,点E,点F已知AB=BC,∠B=40°,连结DE,EF,则∠DEF的度数为()A.40°B.55°C.65°D.70°5.如图所示,已知AB为⊙O的弦,且AB⊥OP于D,PA为⊙O的切线,A为切点,AP=6cm,OP=4cm,则BD的长为()A. cm B.3cm C. cm D.2cm6.已知圆锥的母线长为5cm,高为4cm,则该圆锥侧面展开图的圆心角是()A.216°B.270°C.288°D.300°7.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点.若∠BOC=50°,则∠D的度数()A.105°B.115°C.125°D.85°8.如图,△ABC中,∠C=90°,AC与圆O相切于点D,AB经过圆心O,且与圆交于点E,连接BD,若AC=3CD=3,则BD的长为()A.3 B.2C.D.29.已知⊙O1与⊙O2交于A、B两点,且⊙O2经过⊙O1的圆心O1点,点C在⊙O1上.如图所示,∠AO2B=80°,则∠ACB=()A.100°B.40°C.80°D.70°10.如图,点A,B,C,D都在半径为3的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.B.3C.3 D.211.有一个正五边形和一个正方形边长相等,如图放置,则∠1的值是()A.15°B.18°C.20 D.9°12.如图,将一块直角三角板△ABC(其中∠ACB=90°,∠CAB=30°)绕点B顺时针旋转120°后得Rt△MBN,已知这块三角板的最短边长为3,则图中阴影部分的面积()A.B.9πC.9π﹣D.二.填空题13.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.14.如图,△ABC内接于⊙O,AB是⊙O直径,∠ACB的平分线交⊙O于D,若AC=m,BC=n,则CD的长为(用含m、n的代数式表示).15.如图,点A,B,C,D都在⊙O上,C是的中点,AB=CD.若∠ODC=50°,则∠ABC 的度数为°.16.如图,⊙O的直径AB垂直于弦CD,垂足是E,OE=CE,则∠CAD=°.17.如图,在⊙O中,直径AB⊥GH于点M,N为直径上一点,且OM=ON,过N作弦CD,EF.则弦AB,CD,EF,GH中最短的是.18.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=1.将边BA绕点B顺时针旋转90°得线段BD,再将边CA绕点C顺时针旋转90°得线段CE,连接DE,则图中阴影部分的面积是.19.如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E 在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.三.解答题20.已知:如图,∠ACB=90°,∠CAD=∠CDA,∠CBD=∠CDB,求∠ADB.21.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)证明:DF是⊙O的切线;(2)若AC=3AE,FC=6,求AF的长.22.如图,AC是⊙O的直径,点B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB =BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE(1)求证:BE是⊙O的切线;(2)若BE=3,求图中阴影部分的面积.23.如图,AB、CD是⊙O的两条直径,过点C的⊙O的切线交AB的延长线于点E,连接AC、BD.(1)求证;∠ABD=∠CAB;(2)若B是OE的中点,AC=12,求⊙O的半径.24.如图,AB是⊙O的直径,点C、D是⊙O上的点,且OD∥BC,AC分别与BD、OD相交于点E、F.(1)求证:点D为的中点;(2)若CB=6,AB=10,求DF的长;(3)若⊙O的半径为5,∠DOA=80°,点P是线段AB上任意一点,试求出PC+PD的最小值.25.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E 是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,DH=,求⊙O的半径.26.如图,在Rt△ABC中,∠ACB=90°,D是AC上一点,过B,C,D三点的⊙O交AB于点E,连接ED,EC,点F是线段AE上的一点,连接FD,其中∠FDE=∠DCE.(1)求证:DF是⊙O的切线.(2)若D是AC的中点,∠A=30°,BC=4,求DF的长.参考答案一.选择题1.解:∵BC是⊙O的切线,∴∠OBC=90°,∵OC=AB,OA=OB,∴OB=OC,∴∠C=30°.故选:B.2.解:∵∠BOD=130°,∴∠AOD=50°,又∵AC∥OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°﹣50°=40°.故选:B.3.解:连接OC,∵CD⊥AB,CD=8,∴PC=CD=×8=4,在Rt△OCP中,设OC=x,则OA=x,∵PC=4,OP=AP﹣OA=8﹣x,∴OC2=PC2+OP2,即x2=42+(8﹣x)2,解得x=5,∴⊙O的直径为10.故选:A.4.解:∵BA=BC,∴∠A=∠C,∴∠A=(180°﹣∠B)=(180°﹣40°)=70°,连接OD、OF,∵O内切于△ABC,切点分别为点D,点E,∴OD⊥AB,OF⊥AC,∴∠ADO=∠AFO=90°,∴∠DOF=180°﹣∠A=180°﹣70°=110°,∴∠DEF=DOF=55°.故选:B.5.解:∵PA为⊙O的切线,A为切点,∴∠PAO=90°,在直角△APO中,OA==2,∵AB⊥OP,∴AD=BD,∠ADO=90°,∴∠ADO=∠PAO=90°,∵∠AOP=∠DOA,∴△APO∽△DAO,∴=,即=,解得:AD=3(cm),∴BD=3cm.故选:B.6.解:设该圆锥侧面展开图的圆心角为n°,圆锥的底面圆的半径==3,根据题意得2π×3=,解得n=216.即该圆锥侧面展开图的圆心角为216°.故选:A.7.解:连接BD,如图,∵AB是半圆的直径,∴∠ADB=90°,∵∠BDC=∠BOC=×50°=25°,∴∠ADC=90°+25°=115°.故选:B.8.解:连接OD,如图,∵AC与圆O相切于点D,∴OD⊥AC,∴∠ODA=90°,∵∠C=90°,∴OD∥BC,∵==3,∴A O=2OB,∴AO=2OD,∴sin A==,∴∠A=30°,在Rt△ABC中,BC=AC=×3=3,在Rt△BCD中,BD===2.故选:B.9.解:在优弧AB上取一点E,连接AE,BE,AO1,BO1.∵∠AEB=∠AO2B,∠AO2B=80°,∴∠AEB=40°,∵∠AEB+∠AO1B=180°,∴∠AO1B=180°﹣∠AEB=140°,∴∠ACB=∠AO1B=70°,故选:D.10.解:OA交BC于E,如图,∵OA⊥BC,∴=,CE=BE,∴∠AOB=2∠CDA=2×30°=60°,在Rt△OBE中,OE=OB=,∴BE=OE=,∴BC=2BE=3.故选:B.11.解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠1=108°﹣90°=18°.故选:B .12.解:∵∠ACB =90°,∠CAB =30°,BC =3,∴AB =2BC =6,∴AC ===3,∵O 、H 分别为AB 、AC 的中点,∴OB =AB =3,CH =AC =,在Rt △BCH 中,BH ==,∵旋转角度为120°,∴阴影部分的面积=﹣=π. 故选:A .二.填空题(共7小题)13.解:如图,作OC ⊥AB 于C ,则AC =BC ,∵AB =8cm ,∴AC =,在Rt △OAC 中,∵OC =3cm ,AC =4cm ,∴==5cm .故答案为:5cm.14.解:如图,作DE⊥CA与E,DF⊥BC于F.∵AB是直径,∴∠ECF=∠CED=∠CFD=90°,∴四边形DECF是矩形,∵DC平分∠ACB,DE⊥CA,DF⊥CB,∴DE=DF,∴四边形DECF是正方形,∵∠DCA=∠DCB,∴=,∴AD=BD,∴Rt△ADE≌Rt△FDB(HL),∴AE=BF,∴CE+CF=AC+AE+CB﹣BF=AC+BC=m+n,∴CE=CF=DE=DF=(m+n),∴CD=(m+n),故答案为:(m+n).15.解:∵C是的中点,AB=CD.∴==,∵∠ODC=50°,∴∠A=∠ACB=∠COD=×(180°﹣2∠ODC)=×(180°﹣50°×2)=40°,∴∠ABC=180°﹣∠A﹣∠ACB=180°﹣40°×2=100°.故答案为:100.16.解:∵⊙O的直径AB垂直于弦CD,∴∠CEO=90°,=,∵OE=CE,∴∠COB=45°,∴∠CAD=45°,故答案为:45.17.解:如图连接OG,OE,过点O作OH⊥EF于H,显然,ON>OH∵OM=ON,∴OM>OH,EH=,∴EF=2EH=2,GM=,∴GH=2GM=2,∵OG=OE,OM>OH,∴GH<EF,同理,GH<CD,∵AB为直径,∴CD<AB,∴弦AB,CD,EF,GH中最短的是GH,故答案为GH.18.解:作EF⊥CD于F,由旋转变换的性质可知,EF=BC=1,CD=CB+BD=4,由勾股定理得,CA===,则图中阴影部分的面积=△ABC的面积+扇形ABD的面积+△ECD的面积﹣扇形ACE的面积=×1×3++﹣=﹣,故答案为:﹣.19.解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.三.解答题(共7小题)20.解:∵∠CAD=∠CDA,∠CBD=∠CDB,∴CA=CB,CB=CD,∴CA=CB=CD,∴△ABD的外接圆的圆心是点C,∴∠ADB=∠ACB=45°.21.(1)证明:如图1,连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:如图2,连接BE,AD,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴=2,∴,∵∠DFC=∠AEB=90°,∴DF∥BE,∴△DFC∽△BEC,∴,∵CF=6,∴DF=3,∵AB是直径,∴AD⊥BC,∵DF⊥AC,∴∠DFC=∠ADC=90°,∠DAF=∠FDC,∴△ADF∽△DCF,∴,∴DF2=AF•FC,∴,∴AF=3.22.解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=×3=,∴AC=2AB=2,OB=AO=,∵∠OBC=∠OCB=30°,∴∠AOB=60°,∴阴影部分的面积=Rt△OBE的面积﹣扇形AOB的面积=OB•BE﹣=﹣=.23.解:(1)证明:∵AB、CD是⊙O的两条直径,∴OA=OC=OB=OD,∴∠OAC=∠OCA,∠ODB=∠OBD,∵∠AOC=∠BOD,∴∠OAC=∠OCA=∠ODB=∠OBD,即∠ABD=∠CAB;(2)连接BC.∵AB是⊙O的两条直径,∴∠ACB=90°,∵CE为⊙O的切线,∴∠OCE=90°,∵B是OE的中点,∴BC=OB,∵OB=OC,∴△OBC为等边三角形,∴∠ABC=60°,∴∠A=30°,∴BC=AC=4,∴OB=4,即⊙O的半径为4.24.(1)∵AB是⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠OFA=90°,∴OF⊥AC,∴=,即点D为的中点;(2)解:∵OF⊥AC,∴AF=CF,而OA=OB,∴OF为△ACB的中位线,∴OF=BC=3,∴DF=OD﹣OF=5﹣3=2;(3)解:作C点关于AB的对称点C′,C′D交AB于P,连接OC,如图,∵PC=PC′,∴PD+PC=PD+PC′=DC′,∴此时PC+PD的值最小,∵=,∴∠COD=∠AOD=80°,∴∠BOC=20°,∵点C和点C′关于AB对称,∴∠C′OB=20°,∴∠DOC′=120°,作OH⊥DC′于H,如图,则C′H=DH,在Rt△OHD中,OH=OD=,∴DH=OH=,∴DC′=2DH=5,∴PC+PD的最小值为5.25.(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DFA=∠DEC,∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,连接AH,∵AD是⊙O的直径,∴∠AHD=∠DFA=90°,∴∠DFB=90°,∵AD=AB,DH=,∴DB=2DH=2,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴,∴AD=5.∴⊙O的半径为.26.解:(1)∵∠ACB=90°,点B,D在⊙O上,∴BD是⊙O的直径,∠BCE=∠BDE,∵∠FDE=∠DCE,∠BCE+∠DCE=∠ACB=90°,∴∠BDE+∠FDE=90°,即∠BDF=90°,∴DF⊥BD,又∵BD是⊙O的直径,∴DF是⊙O的切线.(2)如图,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=2×4=8,∴=4,∵点D是AC的中点,∴,∵BD是⊙O的直径,∴∠DEB=90°,∴∠DEA=180°﹣∠DEB=90°,∴,在Rt△BCD中,==2,在Rt△BED中,BE===5,∵∠FDE=∠DCE,∠DCE=∠DBE,∴∠FDE=∠DBE,∵∠DE F=∠BED=90°,∴△FDE∽△DBE,∴,即,∴.。

人教版 九年级数学 上册 第24章 圆 综合训练(含答案)

人教版 九年级数学 上册 第24章 圆 综合训练(含答案)

人教版九年级数学上册第24章圆综合训练一、选择题1. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点2. 2019·赤峰如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°3. 如图0,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2 3,则图中阴影部分的面积为()A.4π B.2πC.π D.2π34. 2019·梧州如图,在半径为13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2 6 B.2 10 C.2 11 D.4 35. 2019·滨州如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°6. 小明用图中的扇形纸片作一个圆锥的侧面.已知该扇形的半径是5 cm,弧长是6π cm,那么这个圆锥的高是()A.4 cm B.6 cm C.8 cm D.12 cm7. 在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以点C为圆心,以2.5 cm为半径画圆,则⊙C与直线AB的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定8. 改编如图①所示物体由两个圆锥组成,在从正面看到的形状图中(如图②),∠A=90°,∠ABC=105°.若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B. 3 C.32 D. 29. 下列用尺规等分圆周的作法正确的有()①在圆上依次截取等于半径的弦,就可以六等分圆;②作相互垂直的两条直径,就可以四等分圆;③按①的方法将圆六等分,六个等分点中三个不相邻的点三等分圆;④按②的方法将圆四等分,再平分四条弧,就可以八等分圆.A.4个B.3个C.2个D.1个10. 如图,⊙C的半径为1,圆心的坐标为(3,4),P(m,n)是⊙C内或⊙C上的一个动点,则m2+n2的最小值是()A.9 B.16 C.25 D.36二、填空题11. 如图1,已知△ABC的外心为O,BC=10,∠BAC=60°,分别以AB,AC 为腰向三角形外作等腰直角三角形ABD与ACE,连接BE,CD交于点P,则OP长的最小值是________.12. (2019•娄底)如图,C、D两点在以AB为直径的圆上,,,则__________.13. 已知⊙O 1与⊙O 2的半径分别是r 1,r 2,且r 1和r 2是方程x 2-ax +14=0的两个根.若⊙O 1与⊙O 2是等圆,则a 2021的值为________.14. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.15. 如图,点A ,B ,C 都在⊙O 上,OC ⊥OB ,点A 在BC ︵上,且OA =AB ,则∠ABC =________°.16. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.17. 2019·兴化期中已知等边三角形ABC 的边长为2,D 为BC 的中点,连接AD .点O 在线段AD 上运动(不与端点A ,D 重合),以点O 为圆心,33为半径作圆,当⊙O 与△ABC 的边有且只有两个公共点时,DO 的取值范围为________.18. 如图,在Rt △ABC 中,∠C =90°,BC =3,点O 在AB 上,OB =2,以OB长为半径的⊙O 与AC 相切于点D ,交BC 于点F ,OE ⊥BC 于点E ,则弦BF 的长为________.三、解答题19. 如图,AB 是⊙O的直径,C 为BD ︵的中点,CF 为⊙O 的弦,且CF ⊥AB ,垂足为E ,连接BD 交CF 于点G ,连接CD ,AD ,BF. (1)求证:△BFG ≌△CDG ; (2)若AD =BE =2,求BF 的长.20. 如图,以△ABC 的边BC 为直径作⊙O ,点A 在⊙O 上,点D 在线段BC 的延长线上,AD =AB ,∠D =30°, (1)求证:直线AD 是⊙O 的切线;(2)若直径BC =4,求图中阴影部分的面积.21. 2018·牡丹江如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .22. 已知:如图4所示,∠PAC =30°,在射线AC 上顺次截取AD =3 cm ,DB =10 cm ,以DB 为直径作⊙O 交射线AP 于E ,F 两点,求圆心O 到AP 的距离及EF 的长.23. 如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与⊙O 交于点F ,连接DF ,DC.已知OA =OB ,CA =CB. (1)求证:直线AB 是⊙O 的切线; (2)求证:∠CDF =∠EDC ;(3)若DE =10,DF =8,求CD 的长.人教版 九年级数学 上册 第24章 圆 综合训练-答案一、选择题1. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B.2. 【答案】D3. 【答案】D[解析] 如图,连接OD.∵CD⊥AB,∴CE=DE=3,∠CEO=∠DEO=90°.又∵OE=OE,∴△COE≌△DOE,故S△COE=S△DOE,即可得阴影部分的面积等于扇形OBD的面积.∵∠CDB=30°,∴∠COB=60°,∴∠OCD=30°,∴OE=12OC.在Rt△COE中,CE=3,由勾股定理可得OC=2,∴OD=2.∵△COE≌△DOE,∴∠DOE=∠COE=60°,∴S扇形OBD=60π·22360=23π,即阴影部分的面积为2π3.故选D.4. 【答案】C5. 【答案】B[解析] 如图,连接AD.∵AB为⊙O的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.6. 【答案】A[解析] 设圆锥的底面圆的半径是r cm ,则2πr =6π,解得r =3,则圆锥的高是52-32=4(cm).7.【答案】A 【解析】如解图,在Rt △ABC 中,AC =4,BC =3,由勾股定理得AB =5.过C 作CD ⊥AB 于D ,则S △ABC =12AC ·BC =12AB ·CD ,解得CD =2.4<2.5,∴直线AB 与⊙C 相交.解图8. 【答案】D[解析] ∵∠A =90°,∠ABC =105°,∴∠ABD =45°,∠CBD =60°,∴△ABD 是等腰直角三角形,△CBD 是等边三角形.设AB 的长为R ,则BD 的长为2R.∵上面圆锥的侧面积为1,即1=12lR ,∴l =2R ,∴下面圆锥的侧面积为12·2R ·2R = 2.故选D.9. 【答案】A10. 【答案】B[解析] 如图,连接OC 交⊙C 于点P ′.∵圆心C 的坐标为(3,4),点P 的坐标为(m ,n ), ∴OC =5,OP =m2+n2,∴m 2+n 2是点P 到原点的距离的平方,∴当点P 运动到线段OC 上,即点P ′处时,点P 离原点最近,即m 2+n 2取得最小值,此时OP =OC -PC =5-1=4,即m 2+n 2=16.二、填空题11. 【答案】5-533 [解析] ∵∠BAD =∠CAE =90°,∴∠DAC =∠BAE .在△DAC 和△BAE 中,⎩⎨⎧AD =AB ,∠DAC =∠BAE ,AC =AE ,∴△DAC ≌△BAE (SAS), ∴∠ADC =∠ABE ,从而∠PDB +∠PBD =90°, 即∠DPB =90°,从而∠BPC =90°, ∴点P 在以BC 为直径的圆上.如图,过点O 作OH ⊥BC 于点H ,连接OB ,OC . ∵△ABC 的外心为O ,∠BAC =60°, ∴∠BOC =120°.又∵BC =10, ∴OH =53 3,∴OP 长的最小值是5-53 3.12. 【答案】1【解析】∵AB 为直径,∴,∵,∴.故答案为:1.13. 【答案】1[解析] ∵⊙O 1与⊙O 2是等圆,∴r 1=r 2.∵r 1和r 2是方程x 2-ax +14=0的两个根,∴r 1r 2=14,r 1+r 2=a ,∴r 1=r 2=12,从而a =1,∴a 2021=12021=1.14. 【答案】8[解析] 由题意可得A ,P ,B ,C 在同一个圆上,所以当BP 为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.15. 【答案】15[解析] ∵OC ⊥OB ,∴∠COB =90°.又∵OC =OB ,∴△COB 是等腰直角三角形, ∴∠OBC =45°.∵OA =AB ,OA =OB ,∴OA =AB =OB , ∴△AOB 是等边三角形,∴∠OBA =60°, ∴∠ABC =∠OBA -∠OBC =15°.16. 【答案】t =2或-1≤t <1 [解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C 或从直线过点A 开始到直线过点B 结束(不包括直线过点A ).直线y =x +t 与x 轴所形成的锐角是45°.当点O 到直线l 的距离OC =1时,直线l 与半圆O 相切,设直线l 与y 轴交于点D ,则OD =2,即t = 2.当直线过点A 时,把A (-1,0)代入直线l 的解析式,得t =y -x =1. 当直线过点B 时,把B (1,0)代入直线l 的解析式,得t =y -x =-1. 即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.17. 【答案】0<DO <33或2 33<DO <3 [解析] ∵等边三角形ABC 的边长为2,D为BC 的中点,∴AD ⊥BC ,BD =1,AD = 3. 分四种情况讨论:(1)如图①所示,当0<DO<33时,⊙O与△ABC的BC边有且只有两个公共点,(2)如图②所示,当DO=33时,⊙O与△ABC的边有三个公共点;(3)如图③所示,当⊙O经过△ABC的顶点A时,⊙O与△ABC的边有三个公共点,则当33<DO≤2 33时,⊙O与△ABC的边有四个或三个公共点.(4)如图④所示,当2 33<DO<3时,⊙O与△ABC的边有两个公共点.综上,当0<DO<33或2 33<DO<3时,⊙O与△ABC的边只有两个公共点.故答案为0<DO<33或2 33<DO< 3.18. 【答案】2 [解析] 如图,连接OD.∵OE ⊥BF 于点E ,∴BE =12BF.∵AC 是⊙O 的切线,∴OD ⊥AC ,∴∠ODC =∠C =∠OEC =90°, ∴四边形ODCE 是矩形,∴EC =OD =OB =2.又∵BC =3,∴BE =BC -EC =3-2=1,∴BF =2BE =2.三、解答题19. 【答案】解:(1)证明:∵C 为BD ︵的中点,∴CD ︵=BC ︵.∵AB 是⊙O 的直径,且CF ⊥AB ,∴BC ︵=BF ︵,∴CD ︵=BF ︵,∴CD =BF.在△BFG 和△CDG 中,⎩⎨⎧∠F =∠CDG ,∠FGB =∠DGC ,BF =CD ,∴△BFG ≌△CDG(AAS).(2)解法一:如图①,连接OF.设⊙O 的半径为r.∵AB 是⊙O 的直径,∴∠ADB =90°.在Rt △ADB 中,BD2=AB2-AD2,即BD2=(2r)2-22.在Rt △OEF 中,OF2=OE2+EF2,即EF2=r2-(r -2)2.由(1)知CD ︵=BC ︵=BF ︵,∴BD ︵=CF ︵,∴BD =CF ,∴BD2=CF2=(2EF)2=4EF2,即(2r)2-22=4[r2-(r -2)2],解得r =1(不合题意,舍去)或r =3,∴BF2=EF2+BE2=32-(3-2)2+22=12,∴BF =2 3.解法二:如图②,连接OC ,交BD 于点H.∵C 是BD ︵的中点,∴OC ⊥BD ,∴DH =BH.∵OA =OB ,∴OH =12AD =1.∵∠COE =∠BOH ,∠OEC =∠OHB =90°,OC =OB ,∴△COE ≌△BOH(AAS),∴OE=OH=1,∴OC=OB=OE+BE=3.∵CF⊥AB,∴CE=EF=OC2-OE2=32-12=2 2,∴BF=BE2+EF2=22+(2 2)2=2 3.20. 【答案】解:(1)证明:如图,连接OA.∵AD=AB,∠D=30°,∴∠B=∠D=30°,∴∠DAB=120°.∵BC是⊙O的直径,∴∠BAC=90°,∴∠DAC=30°,∴∠BCA=60°.∵AO=CO,∴△ACO是等边三角形,∴∠CAO=60°,∴∠DAO=∠CAO+∠DAC=90°,即AD⊥AO.又∵AO是⊙O的半径,∴直线AD是⊙O的切线.(2)由(1)知Rt△ADO中,AO=2,∠D=30°,∴OD=2AO=4,∴AD=2 3,∴SRt△ADO=12×2 3×2=2 3.∵△ACO 是等边三角形,∴∠AOD =60°,∴S 扇形OAC =60π×22360=2π3,∴S 阴影=SRt △ADO -S 扇形OAC =2 3-2π3.21. 【答案】证明:如图,延长AD 交⊙O 于点E ,∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD .∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD .22. 【答案】解: 如图,过点O 作OG ⊥AP 于点G ,连接OF.∵DB =10 cm ,∴OD =OF =5 cm ,∴AO =AD +OD =3+5=8(cm).∵∠PAC =30°,∴OG =12AO =12×8=4(cm).∵OG ⊥EF ,∴EG =GF =12EF.∵GF =OF2-OG2=52-42=3(cm),∴EF =2GF =6 cm ,∴圆心O 到AP 的距离为4 cm ,EF 的长为6 cm.23. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.。

人教版九年级数学上册第24章《圆》选择专项练习题(含答案)

人教版九年级数学上册第24章《圆》选择专项练习题(含答案)

人教版九年级数学上册第24章《圆》选择专项练习题1.在下列命题中,正确的是()A.长度相等的弧是等弧B.直径所对的圆周角是直角C.三点确定一个圆D.三角形的外心到三角形各边的距离相等2.如图,点A、B、C是⊙O上的三个点,若∠AOB=82°,则∠C的度数为()A.82°B.38°C.24°D.41°3.已知某直线到圆心的距离2cm,圆的周长为4πcm,请问这条直线与这个圆的公共点的个数为()A.0 B.1 C.2 D.无法确定4.若⊙A的半径为5,圆心A与点P的距离是25,则点P与⊙A的位置关系是()A.P在⊙A上B.P在⊙A外C.P在⊙A内D.不确定5.若⊙O的半径为4cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系()A.点A在圆内B.点A在圆上C.点A在圆外D.不能确定6.如图,点A、B、C是⊙O上的三点,若∠A=40°,则∠BOC的度数是()A.50°B.40°C.80°D.100°7.如图,已知AB是⊙O的直径,CD是弦,若∠BCD=24°,则∠ABD=()A.54°B.56°C.64°D.66°8.下列说法:①三点确定一个圆;②等弧所对的圆周角相等;③过弦的中点的直径垂直于弦;④三角形的内心到三角形三边的距离相等;⑤等腰三角形的外心一定在这个三角形内,其中正确的个数有()A.1 B.2 C.3 D.49.下列语句中,正确的有()①相等的圆心角所对的弧相等;②等弦对等弧;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个10.一个适当大的正六边形,它的一个顶点与一个边长为定值的小正六边形ABCDEF的中心O重合,且与边AB、CD相交于G、H(如图).图中阴影部分的面积记为S,三条线段GB、BC、CH的长度之和记为l,大正六边形在绕点O旋转过程中,下列说法正确的是()A.S变化,l不变B.S不变,l变化C.S变化,l变化D.S与l均不变11.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F12.有下列四个命题:(1)三点确定一个圆;(2)相等的弧所对的圆周角相等;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.其中正确的有( )A .4个B .3个C .2个D .1个13.如图,点A 、B 、C 是⊙O 上的三个点,若∠AOB =66°,则∠C 的度数为( )A .33°B .34°C .44°D .46°14.已知圆锥的底面圆半径为3cm ,母线长为5cm ,则这个圆锥的侧面积是( ) A .15π cm 2 B .15 cm 2 C .30π cm 2 D .30 cm 215.已知圆心角为120°的扇形的面积为12π,则扇形的半径为( )A .4B .6C .43D .6216.如图,已知O 的半径为2,AC 与O 相切,连接AO 并延长,交O 于点B ,过点C 作CD AB ⊥,交O 于点D ,连接BD ,若30A ∠=︒,则弦BD 的长为( )A .3B .5C .23D .3217.如图,PA 、PB 切⊙O 于点A 、B ,PA =10,CD 切⊙O 于点E ,交PA 、PB 于C 、D 两点,则△PCD 的周长是( )A .10B .18C .20D .2218.已知⊙O 半径为6,圆心O 在坐标原点上,点P 的坐标为(3,4),则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .不能确定 19.如图,已知四边形ABCD 内接于⊙O ,∠A =100°,则∠BOD =( )A .80°B .50°C .160°D .100°20.如图,AB 是O 的直径,点C ,D 在O 上,且36BDC ∠=︒,则ABC ∠的度数是( )A .36°B .72°C .54°D .28°21.如图,⊙O 内切于ABC ,切点分别为D ,E ,F .已知50B ∠=︒,60C ∠=°,连接OE ,OF ,DE ,DF ,那么EDF ∠等于( )A .40︒B .55︒C .65︒D .70︒22.如图,在⊙O 中,半径r =5,弦AB =8,P 是弦AB 上的动点(不含端点A ,B ),若线段OP 长为正整数,则点P 的个数有( )A .2个B .5个C .4个D .3个23.如图,若5OB =,8AB =,则AC 的长为( )A .45B .8C .10D .624.如图,AB 是O 的直径,点C 、D 在O 上,25BDC ∠=,则AOC ∠的大小为( )A .40°B .130°C .155°D .170°25.下列关于正多边形的叙述,正确的是( )A .正九边形既是轴对称图形又是中心对称图形B .存在一个正多边形,它的外角和为720°C .任何正多边形都有一个外接圆D .不存在每个外角都是对应每个内角两倍的正多边形26.已知⊙O 的直径为12,直线l 上有一点P ,OP =6,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .相切或相交 27.如图,矩形ABCD 中,AB =12,BC =18.将矩形沿EF 折叠,使点A 落在CD 边中点M 处,点B 落在N 处.连接EM ,以矩形对称中心O 为圆心的圆与EM 相切于点P ,则圆的半径为( )A.2.7B.5.4C.4.5D.3.628.如图,F为正方形ABCD的边CD上一动点,AB=2.连接BF,过A作AH⊥BF交BC于H,交BF于G,连接CG,当CG为最小值时,CH的长为()A.2B.225C.3﹣5D.3+529.如图,在Rt△ABC中,∠ACB=90°,AC=3,以点C为圆心、CA为半径的圆与AB交于点D,若点D巧好为线段AB的中点,则AB的长度为()A.32B.3 C.6 D.930.“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”用现在的几何语言表达即:如图,CD为⊙O的直径,弦AB⊥CD,垂足为点E,CE=1寸,AB=10寸,则直径CD的长度是()A.12寸B.24寸C.13寸D.26寸31.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=40°,B为弧AN的中点,P 是直径MN上一动点,则PA+PB的最小值为()A.5B.3C.5D.332.如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对33.如图,Rt△ABC的直角顶点C在⊙O上滑动,且各边与⊙O分别交于点D,E,F,G,若EF ,DG ,DE 的度数比为2:3:5,BE =BF ,则∠A 的度数为( )A .30°B .32°C .34°D .36°34.如图,已知直线334y x =-与x 轴、y 轴分别交于A 、B 两点,P 在以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB ,则△PAB 面积的最小值为( )A .5.5B .10.5C .8D .1235.已知⊙O 的半径为1,点P 在⊙O 外,则OP 的长( )A .大于1B .小于1C .大于2D .小于2 36.已知⊙O 的半径为3,OP =5,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .不能确定 37.如图,点A ,B ,C 都在⊙O 上,若∠BAC =38°,则∠BOC 的度数为( )A .80°B .76°C .62°D .52°38.如图,AB 为⊙O 直径,点D 是AB 上方圆上一点,若110AOC ∠=︒,则∠D 度数是( )A.70°B.35°C.40°D.45°39.⊙O的直径为8cm,点A到圆心O的距离OA=6cm,则点A与⊙O的位置关系为()A.点A在圆外B.点A在圆内C.点A在圆上D.无法确定40.如图,△ABC内接于⊙O,MN切⊙O于点A,若∠BAN=50°,则∠ACB的度数为()A.40°B.100°C.50°D.25°41.下列关于圆的说法,正确的是()A.在同圆或等圆中,相等的弦所对的圆周角相等B.平分弦的直径垂直于弦C.圆的每一条直径所在的直线都是它的对称轴D.过三点可以作一个圆42.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是( )A.54︒B.126︒C.136︒D.144︒43.下列说法正确的是()A.三角形三条中线的交点是三角形重心B.等弦所对的圆周角相等C.长度相等的两条弧是等弧D.三角形的外心到三边的距离相等44.平面直角坐标系中,在以(2,1)为圆心,5为半径的圆上的点的坐标是()A.(4,7)B.(-1,-2)C.(5,4)D.(2,-4)45.如图,OA为⊙O的半径,弦BC⊥OA于点P.若BC=8,AP=2,则⊙O的半径长为()A .5B .6C .10D .1746.AB =12cm ,过A 、B 两点画半径为6cm 的圆,能画的圆的个数为( ) A .0个 B .1个 C .2个 D .无数个 47.有四个命题:①直径相等的两个圆是等圆 ②长度相等的两条弧是等弧;③圆中最大的弦是过圆心的弦;④圆周角是圆心角的一半.其中真命题是( )A .①③B .①③④C .①④D .④48.如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C .58.5︒D .63︒49.⊙O 的半径为5,点P 到圆心O 的距离为5,点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 外 C .点P 在⊙O 上 D .无法确定 50.如图,两个同心圆的半径分别是3cm 和5cm ,大圆的一条弦AB 与小圆相切,则弦AB 的长为( )A .3cmB .4cmC .6cmD .8cm51.如图,点A ,B ,C ,D ,E 都是⊙O 上的点,弧AC =弧AE ,∠D =128°,则∠B 的度数为( )A .128°B .126°C .118°D .116°52.如图,四边形ABCD 内接于⊙O ,若∠C =100°,则∠A 的度数是( )A .80°B .100°C .110°D .120°53.△ABC 的顶点都在⊙O 上,若∠BOC =120°,则∠BAC 等于( )A .60°B .90°C .120°D .60°或120° 54.如图O 的直径AB 垂直于弦CD ,垂足是E ,225A ∠=︒.,4OC =,CD 的长为()A .22B .4C .42D .855.下列说法中一定正确的是( )A .相等的圆心角所对的弧相等B .圆上任意两点间的部分叫做圆弧C .平分弦的直径垂直于弦D .圆周角等于圆心角的一半56.如图,点A 、B 、C 是⊙O 上的三个点,若∠AOB =66°,则∠C 的度数为( )A.76°B.38°C.24°D.33°57.如图,ABC内接与O,50∠=,E是边BC的重点,连接OE并延长,交O于点A∠的大小为()D,连接BD,则DBCA.55°B.6 C.25°D.75°58.如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个59.下列四个命题:①直径所对的圆周角是直角;②三角形的外心到三角形各顶点的距离都相等;③相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1 B.2 C.3 D.460.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°参考答案1.B2.D3.B4.C5.A6.C7.D8.B9.A10.D11.A12.C13.A14.A15.B16.C 17.C18.A19.C20.C21.B22.D23.A24.B25.C26.D27.B28.C29.C30.D 31.B32.D33.D34.A35.A36.C37.B38.B39.A40.C41.C42.D43.A44.D 45.A46.B47.A48.B49.C50.D51.D52.A53.D54.C55.B56.D57.C58.D 59.B60.D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册第24章《圆》选择专项练习题 1.若⊙A 的半径为5,圆心A 与点P 的距离是25,则点P 与⊙A 的位置关系是( ) A .P 在⊙A 上 B .P 在⊙A 外 C .P 在⊙A 内 D .不确定 2.扇形的半径为20cm ,扇形的面积2100cm π,则该扇形的圆心角为( ) A .120︒ B .100︒ C .90︒ D .60︒ 3.在下列命题中,正确的是( )A .长度相等的弧是等弧B .直径所对的圆周角是直角C .三点确定一个圆D .三角形的外心到三角形各边的距离相等 4.如图,点A 、B 、C 是⊙O 上的三个点,若∠AOB =82°,则∠C 的度数为( )A .82°B .38°C .24°D .41° 5.如图,AB 是O 的直径,点E ,C 在O 上,点A 是EC 的中点,过点A 画O 的切线,交BC 的延长线于点D ,连接EC .若58.5ADB ∠=︒,则ACE ∠的度数为( )A .29.5︒B .31.5︒C . 58.5︒D .63︒ 6.如图,在⊙O 中,半径r =5,弦AB =8,P 是弦AB 上的动点(不含端点A ,B ),若线段OP 长为正整数,则点P 的个数有( )A .2个B .5个C .4个D .3个 7.已知⊙O 的直径为12,直线l 上有一点P ,OP =6,则直线l 与⊙O 的位置关系是( )A.相交B.相切C.相离D.相切或相交8.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16cm,则球的半径为()A.103cm B.10cm C.102cm D.83cm9.一个圆锥体底面半径为3cm,高为4cm,则这个圆锥体的侧面积为()A.12πcm²B.28πcm²C.15πcm²D.20πcm²10.如图,A,B,C是⊙O上的三个点,若∠B=32°,则∠AOC=()A.64°B.58°C.68°D.55°11.如图,BD是⊙O的直径,点A、C在圆上,且CD=OB,则∠BAC=()A.120°B.90°C.60°D.30°12.下列命题:①平⾏四边形是中⾏对称图形,也是轴对称图形;②直径是最长的弦,半径是最短的弦;③过切点的直线是圆的切线;④三角形的外⾏是三条边垂直平分线的交点;⑤三角形的内⾏是三条内角平分线的交点;其中正确的有()A.1个B.2个C.3个D.4个13.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.2214.下列关于圆的说法,正确的是()A.在同圆或等圆中,相等的弦所对的圆周角相等B.平分弦的直径垂直于弦C.圆的每一条直径所在的直线都是它的对称轴D.过三点可以作一个圆15.一个适当大的正六边形,它的一个顶点与一个边长为定值的小正六边形ABCDEF的中心O重合,且与边AB、CD相交于G、H(如图).图中阴影部分的面积记为S,三条线段GB、BC、CH的长度之和记为l,大正六边形在绕点O旋转过程中,下列说法正确的是()A.S变化,l不变B.S不变,l变化C.S变化,l变化D.S与l均不变16.下列四个命题:①直角三角形斜边上的中线等于斜边的一半;②对角线相等的平行四边形是菱形;③一组邻边相等的矩形是正方形;④三角形三条角平分线的交点是三角形的外心.其中真命题共有()A.1个B.2个C.3个D.4个17.下列说法正确的是()A.三角形三条中线的交点是三角形重心B.等弦所对的圆周角相等C.长度相等的两条弧是等弧D.三角形的外心到三边的距离相等18.如图,四边形ABCD内接于⊙O,若∠C=100°,则∠A的度数是()A .80°B .100°C .110°D .120°19.下列说法正确的是( )A .等弧所对的圆心角相等B .同弦所对的圆周角相等C .经过三点可以作一个圆D .相等的圆心角所对的弧相等20.如图,P 是O 外一点,PA 、PB 切O 于点A 、B ,点C 在优弧AB 上,若68P ∠=︒,则ACB ∠等于( )A .22︒B .34︒C .56︒D .68︒21.有四个命题:①直径相等的两个圆是等圆 ②长度相等的两条弧是等弧;③圆中最大的弦是过圆心的弦;④圆周角是圆心角的一半.其中真命题是( )A .①③B .①③④C .①④D .④22.⊙O 的直径是10,两平行弦的长度分别是6和8,那么这两弦的距离是( ) A .1 B .7 C .8 D .1或723.△ABC 的顶点都在⊙O 上,若∠BOC =120°,则∠BAC 等于( )A .60°B .90°C .120°D .60°或120° 24.如图,OA 为⊙O 的半径,弦BC ⊥OA 于点P .若BC =8,AP =2,则⊙O 的半径长为( )A .5B .6C .10D 1725.如图,两个同心圆的半径分别是3cm 和5cm ,大圆的一条弦AB 与小圆相切,则弦ABA .3cmB .4cmC .6cmD .8cm26.如图,已知O 的半径为2,AC 与O 相切,连接AO 并延长,交O 于点B ,过点C 作CD AB ⊥,交O 于点D ,连接BD ,若30A ∠=︒,则弦BD 的长为( )A .3B .5C .23D .3227.下列说法正确的是( )A .在同一平面内,三点确定一个圆B .等弧所对的圆心角相等C .旋转会改变图形的形状和大小D .平分弦的直径垂直于弦28.如图,⊙O 内切于ABC ,切点分别为D ,E ,F .已知50B ∠=︒,60C ∠=°,连接OE ,OF ,DE ,DF ,那么EDF ∠等于( )A .40︒B .55︒C .65︒D .70︒29.下列语句中:①平分弦的直径垂直于弦;②相等的圆心角所对的弧相等;③长度相等的两条弧是等弧;④圆是轴对称图形,任何一条直径都是它的对称轴;⑤圆内接四边形的对角互补;⑥在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等,不正确的有( )A .5个B .4个C .3个D .2个30.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角A .有一个内角小于60°B .每一个内角都小于60°C .有一个内角大于60°D .每一个内角都大于60°31.AB =12cm ,过A 、B 两点画半径为6cm 的圆,能画的圆的个数为( ) A .0个 B .1个 C .2个 D .无数个 32.“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”用现在的几何语言表达即:如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为点E ,CE =1寸,AB =10寸,则直径CD 的长度是( )A .12寸B .24寸C .13寸D .26寸33.如图,将边长为a 的正六边形123456A A A A A A 在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当正六边形旋转一周滚动到图2位置时,顶点1A 所经过的路径( )A 843a +B 423a +C 43a +D 423a + 34.已知⊙O 的半径为1,点P 在⊙O 外,则OP 的长( )A .大于1B .小于1C .大于2D .小于235.如图,在Rt △ABC 中,∠ACB =90°, AC =3,以点C 为圆心、CA 为半径的圆与AB 交于点D ,若点D 巧好为线段AB 的中点,则AB 的长度为( )A.32B.3 C.6 D.936.如图所示,在⊙O中,AB AC=,∠A=30°,则∠B=()A.150°B.75°C.60°D.15°37.如图,F为正方形ABCD的边CD上一动点,AB=2.连接BF,过A作AH⊥BF交BC于H,交BF于G,连接CG,当CG为最小值时,CH的长为()A.2B.225C.3﹣5D.3+538.如图,ABC内接与O,50A∠=,E是边BC的重点,连接OE并延长,交O于点D,连接BD,则DBC∠的大小为()A.55°B.6 C.25°D.75°39.已知圆心角为120°的扇形的面积为12π,则扇形的半径为( )A .4B .6C .43D .6240.如图O 的直径AB 垂直于弦CD ,垂足是E ,225A ∠=︒.,4OC =,CD 的长为( )A .22B .4C .42D .841.如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC =30°,AC =1,则⊙O 的半径为( )A .1B .2C .3D .2342.如图,点A 、B 、C 是⊙O 上的三个点,若∠AOB =66°,则∠C 的度数为( )A .33°B .34°C .44°D .46°43.已知⊙O 的直径是10,圆心O 到直线l 的距离是5,则直线l 和⊙O 的位置关系是( ) A .相离 B .相交 C .相切 D .无法确定 44.下列说法中一定正确的是( )A .相等的圆心角所对的弧相等B .圆上任意两点间的部分叫做圆弧C .平分弦的直径垂直于弦D .圆周角等于圆心角的一半45.已知O 的半径为2,点P 为O 内一定点,且1PO =,过点P 作O 的弦,其中最短的弦的长度是()A.4 B.3C.23D.246.如图,AB是☉O的直径,∠CAB=40°,则∠D=()A.60°B.30°C.40°D.50°47.下列说法:①优弧比劣弧长;②三点可以确定一个圆;③长度相等的弧是等弧;④经过圆内的一个定点可以作无数条弦;其中不正确的个数是()A.1个B.2个C.3个D.4个48.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是( )A.54︒B.126︒C.136︒D.144︒49.如图,⊙O的直径CD垂直弦AB于点E,且CE=4,OB=8,则AB的长为()A.3B.4 C.6 D.350.已知⊙O半径为6,圆心O在坐标原点上,点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定51.⊙O的半径为5,点P到圆心O的距离为5,点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定52.如图.在⊙O中,直径AB⊥CD,下列说法不正确的是()A.AB是最长的弦B.∠ADB=90°C.PC=PD D.∠ABD=2∠ADC53.如图,在Rt ABC中,∠ACB=90°,∠A=54°,以BC为直径的⊙O交AB于点D.E是⊙O上一点,且CE=CD,连接OE.过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()A.92°B.108°C.112°D.124°54.如图,Rt△ABC的直角顶点C在⊙O上滑动,且各边与⊙O分别交于点D,E,F,G,若EF,DG,DE的度数比为2:3:5,BE=BF,则∠A的度数为()A.30°B.32°C.34°D.36°55.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=40°,B为弧AN的中点,P 是直径MN上一动点,则PA+PB的最小值为()A.5B.3C.5D.356.如图,正方形ABCD的四个顶点分别在⊙O上,点P是弧CD上不同于点C的任意一点,则∠BPC=()A.45°B.60°C.75°D.90°57.如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个58.O的半径为6cm,圆心O到直线l的距离为7cm,则直线l与O的位置关系是()A.相交B.相切C.相离D.不能确定59.如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P在以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB,则△PAB面积的最小值为()A.5.5 B.10.5 C.8 D.1260.如图,⊙O的半径为2,定点P在⊙O上,动点A,B也在⊙O上,且满足∠APB=30°,C为PB的中点,则点A,B在圆上运动的过程中,线段AC的最大值为()A.3B3C.3 2 D.3参考答案1.C2.C3.B4.D5.B6.D7.D8.B9.C10.A11.C12.B13.C14.C15.D16.B 17.A18.A19.A20.C21.A22.D23.D24.A25.D26.C27.B28.B29.A30.D 31.B32.D33.B34.A35.C36.B37.C38.C39.B40.C41.A42.A43.C44.B 45.C46.D47.C48.D49.D50.A51.C52.D53.B54.D55.B56.A57.D58.C 59.A60.A。

相关文档
最新文档