数据结构课程设计_表达式求值【完整版】
数据结构课程设计- 算术表达式求值
课程设计报告课程名称数据结构课程设计题目算术表达式求值指导教师设计起始日期 4.18~4.25学院计算机学院系别计算机科学与工程学生姓名班级/学号成绩一、需求分析设计一个算术表达式四则运算的程序,要求完成包括加、减、乘、除运算,包含括号的基本整数表达式的运算。
在这里运算数可以1位长度,也可以多位长度。
在运算之后输出的正确运算结果,输入表达式后演示在求值中运算数栈内的栈顶数据变化过程,最后得到运算结果。
(1)输入:3*(7-2)(2)输出:数据栈栈顶元素:3,7,2,7,5,3,15结果:15(3)自选数据二、概要设计1、使用栈的数据结构表示数据的存储。
2、设计算法将中缀表达式转换成后缀表达式,用栈的数据结构实现表达式的运算。
3、把中缀表达式转换为后缀表达式算法的基本思路是从头到尾地扫描中缀表达式中的每个字符,对于不同类型的字符按不情况进行处理。
三、详细设计数据结构:字符类型栈/* 定义字符类型栈*/typedef struct{char stackname[20];char *base;char *top;} Stack;算法:将中缀表达式转换为后缀表达式void Change(char* s1, char* s2)// 将字符串s1中的中缀表达式转换为存于字符串s2中的后缀表达式{Stack R; // 定义用于暂存运算符的栈InitStack(R); // 初始化栈Push(R,'#'); // 给栈底放入’#’字符,它具有最低优先级0int i,j;i=0; // 用于指示扫描s1串中字符的位置,初值为0j=0; // 用于指示s2串中待存字符的位置,初值为0char ch=s1[i]; // ch保存s1串中扫描到的字符,初值为第一个字符while( ch!='#'){ // 顺序处理中缀表达式中的每个字符if(ch==' ')// 对于空格字符不做任何处理,顺序读取下一个字符ch=s1[++i];else if(ch=='('){ // 对于左括号,直接进栈Push(R,ch);ch=s1[++i];}else if(ch==')'){ // 对于右括号,使括号内的仍停留在栈中的运算符依次// 出栈并写入到s2中while(Peek(R)!='(')s2[j++]=Pop(R);Pop(R); // 删除栈顶的左括号ch=s1[++i];}else if(ch=='+'||ch=='-'||ch=='*'||ch=='/'){ // 对于四则运算符,使暂存在栈中的不低于ch优先级// 的运算符依次出栈并写入到s2中char w=Peek(R);while(Precedence(w)>=Precedence(ch)){ // Precedence(w)函数返回运算符形参的优先级s2[j++]=w;Pop(R); w=Peek(R); }}四、调试分析调试:在设计过程中出现程序不能运行,发现不能找到结束标识符,因此在设计的时候需要人为动态添加结束标识符‘#’,顺利运行算法时间和空间分析:算法的运行时间主要花在while循环上,它从头到尾扫描后缀表达式中的每一个数据(每个操作数或运算符均为一个数据),若后缀表达式由n个数据组成,则此算法的时间复杂度为O(n)。
数据结构课程设计-表达式求值【
数据结构课程设计-表达式求值【完整版】.数据结构课程设计——表达式求值大学XXXXXX 《数据结构》课程设计报告班级:学号:姓名:指导老师:页 18 共页 2 第数据结构课程设计——表达式求值目录一算术表达式求值一、需求分析二、程序的主要功能三、程序运行平台四、数据结构五、算法及时间复杂度六、测试用例七、程序源代码二感想体会与总结页 18 共页 3 第数据结构课程设计——表达式求值算术表达式求值一、需求分析一个算术表达式是由操作数(operand)、运算符(operator)和界限符(delimiter)组成的。
假设操作数是正整数,运算符只含加减乘除等四种运算符,界限符有左右括号和表达式起始、结束符“#”,如:#(7+15)*(23-28/4)#。
引入表达式起始、结束符是为了方便。
编程利用“算符优先法”求算术表达式的值。
程序的主要功能二、(1)从键盘读入一个合法的算术表达式,输出正确的结果。
(2)显示输入序列和栈的变化过程。
三、程序运行平台Visual C++ 6.0版本数据结构四、本程序的数据结构为栈。
(1)运算符栈部分:struct SqStack //定义栈{char *base; //栈底指针char *top; //栈顶指针int stacksize; //栈的长度};int InitStack (SqStack &s) //建立一个空栈S{if (!(s.base = (char *)malloc(50 * sizeof(char))))exit(0);s.top=s.base;s.stacksize=50;return OK;}char GetTop(SqStack s,char &e) //运算符取栈顶元素{if (s.top==s.base) //栈为空的时候返回ERROR{牰湩晴尨运算符栈为空!\n);return ERROR;}elsee=*(s.top-1); //栈不为空的时候用e做返回值,返回S的栈顶元素,并返回OK页 18 共页 4 第数据结构课程设计——表达式求值return OK;}int Push(SqStack &s,char e) //运算符入栈{if (s.top-s.base >= s.stacksize){牰湩晴尨运算符栈满!\n);s.base=(char*)realloc (s.base,(s.stacksize+5)*sizeof(char) ); //栈满的时候,追加5个存储空间if(!s.base) exit (OVERFLOW);s.top=s.base+s.stacksize;s.stacksize+=5;}*(s.top)++=e; //把e入栈return OK;}int Pop(SqStack &s,char &e) //运算符出栈{if (s.top==s.base) //栈为空栈的时候,返回ERROR{牰湩晴尨运算符栈为空!\n);return ERROR;}else{e=*--s.top; //栈不为空的时候用e做返回值,删除S的栈顶元素,并返回OKreturn OK;}}int StackTraverse(SqStack &s) //运算符栈的遍历{char *t;t=s.base ;if (s.top==s.base){牰湩晴尨运算符栈为空!\n); //栈为空栈的时候返回ERRORreturn ERROR;while(t!=s.top){printf( %c,*t); //栈不为空的时候依次取出栈内元素t++;}页 18 共页 5 第数据结构课程设计——表达式求值return ERROR;}(2)数字栈部分:struct SqStackn //定义数栈{int *base; //栈底指针int *top; //栈顶指针int stacksize; //栈的长度};int InitStackn (SqStackn &s) //建立一个空栈S{s.base=(int*)malloc(50*sizeof(int));if(!s.base)exit(OVERFLOW); //存储分配失败s.top=s.base;s.stacksize=50;return OK;}int GetTopn(SqStackn s,int &e) //数栈取栈顶元素{if (s.top==s.base){牰湩晴尨运算数栈为空!\n); //栈为空的时候返回ERRORreturn ERROR;}elsee=*(s.top-1); //栈不为空的时候,用e作返回值,返回S的栈顶元素,并返回OK return OK;int Pushn(SqStackn &s,int e) //数栈入栈{if (s.top-s.base >=s.stacksize){牰湩晴尨运算数栈满!\n); //栈满的时候,追加5个存储空间s.base=(int*)realloc (s.base,(s.stacksize+5)*sizeof(int) );if(!s.base) exit (OVERFLOW);s.top=s.base+s.stacksize; //插入元素e为新的栈顶元素s.stacksize+=5;}*(s.top)++=e; //栈顶指针变化return OK;页 18 共页 6 第数据结构课程设计——表达式求值}int Popn(SqStackn &s,int &e) //数栈出栈{if (s.top==s.base){printf( 运算符栈为空!\n); //栈为空栈的视时候,返回ERRORreturn ERROR;}else{e=*--s.top; //栈不空的时候,则删除S的栈顶元素,用e返回其值,并返回OK return OK;}}int StackTraversen(SqStackn &s) //数栈遍历{int *t;t=s.base ;if (s.top==s.base){printf( 运算数栈为空!\n); //栈为空栈的时候返回ERRORreturn ERROR;}while(t!=s.top){printf( %d,*t); //栈不为空的时候依次输出t++;}return ERROR;}五、算法及时间复杂度1、算法:建立两个不同类型的空栈,先把一个‘# '压入运算符栈。
数据结构课程设计-算术表达式求值的实现
课程设计报告课程设计名称:数据结构课程设计课程设计题目:算术表达式求值的实现院(系):*****专业:*****班级:*****学号:*****姓名:*****指导教师:*****目录1 课程设计介绍 (1)1.1课程设计内容 (1)1.2课程设计要求 (1)2 课程设计原理 (2)2.1课设题目粗略分析 (2)2.2原理图介绍 (2)2.2.1 功能模块图 (2)2.2.2 流程图分析 (3)3 数据结构分析 (5)3.1存储结构 (5)3.2算法描述 (5)4 调试与分析 (7)4.1调试过程 (7)4.2程序执行过程 (7)参考文献 (8)附录(关键部分程序清单) (9)1 课程设计介绍1.1 课程设计内容编写算法能够进行整型和实型数的表达式求值,能够根据运算的数据选择正确的运算结果的数据类型,表达式的运算符为:+,—,*,/,(,),且括号可以嵌套。
1.2 课程设计要求1.给出必要的输入、输出信息和提示信息。
2.参考相应的资料,独立完成课程设计任务。
3.交规范课程设计报告和软件代码。
2 课程设计原理2.1 课设题目粗略分析根据课设题目要求,拟将整体程序分为三大模块。
此三个模块相互独立,没有嵌套调用的情况,以下是三个模块的大体分析:1.首先依次定义字符类型栈、整型栈、运算符栈和操作数栈,构造运算符栈和操作数栈,然后运算符、操作数依次入栈。
2. 依次读入表达式,若是操作符即进OPND栈,若是运算符即进OPTR栈。
顺序栈的存储结构是利用一组连续的存储单元依次存放自栈底到栈顶的数据元素,同时附设指针top指示栈顶元素在顺序栈中的位置,base为栈底指针,在顺序栈中,它始终指向栈底,即top=base可作为栈空的标记,每当插入新的栈顶元素时,指针top增1,删除栈顶元素时,指针top减1。
3. 按照运算符的优先级别对表达式进行求值运算。
2.2 原理图介绍该功能模块图介绍了这个程序的主要功能。
2.2.1 功能模块图图2.1功能模块图如图2.1所示,要实现表达式的求值,即必须要实现存储、读取和计算三项功能。
数据结构(C语言版)课程设计报告表达式求值说明书
数据结构(C语言版)课程设计报告表达式求值说明书XX大学数据结构课程设计说明书题目:表达式求值院系:计算机科学与工程学院专业班级:计算机班学号:学生姓名:指导教师:2021年X月X日XX大学课程设计(论文)任务书计算机科学与工程学院学号学生姓名专业(班级)设计题目表达式求值设计技术参数系统平台:Windows7/WindowsXP开发工具:VC++6.0设计要求(1)能够计算的运算符包括:加、减、乘、除、圆括号。
(2)能够计算的数要求在实数范围内。
(3)能执行多重括号嵌套运算。
(4)对于异常表达式给出错误提示。
工作量课程设计报告要求不少于3000字。
源程序要求不少于300行工作计划2021.11.21-12.01根据课程设计大纲的要求,查找相关资料,完成需求分析;2021.12.02-12.16进行系统的概要设计;2021.12.17-12.31进行系统的详细设计和源代码的书写;2021.01.01-01.17对系统进行调试分析,写出课程设计报告。
参考资料[1]何钦铭主编.C语言程序设计.北京:高等教育出版社,2021.[2]谭浩强编著.C程序设计(第四版).北京:清华大学出版社,2021.[3]严蔚敏,吴伟民编著.数据结构(C语言版)北京:清华大学出版社,2021.[4]严蔚敏,吴伟民编著.数据结构题集北京:清华大学出版社,2021.指导教师签字教研室主任签字2021年X月X日学生姓名:学号:专业班级:课程设计题目:表达式求值指导教师评语:成绩:指导教师:年月日XX大学课程设计(论文)成绩评定表目录1需求分析12概要设计12.1设计思路12.2存储结构设计12.3功能模块设计13详细设计14运行与测试15总结1参考文献2(要求:给出一级目录和二级目录,宋体,四号字,1.5倍行距,页码使用罗马数字,居中)(报告正文部分):(要求:正文部分一律用小四号字,宋体,行距20磅。
一级标题靠左,加粗。
二级大标题靠左,不加粗。
数据结构课程设计算术表达式求值-计算器(Word)
高级语言程序设计《算术表达式求值》课程设计报告算术表达式求值系统可以实现实现对算术四则混合运算表达式求值,并打印求值过程中运算符栈、操作数栈的变化过程。
第二章系统分析开始运行时界面如下:你可以输入一个表达式,按E对其进行求值。
#include <stdio.h>#include <conio.h>#include <stdlib.h>#include <string.h>#define N 100double numStack[N]={0};//操作数栈int numTop;char opStack[N];//运算符栈int opTop;void print_num(double str1[],int n) {int i;printf("\n操作数栈:\n");for(i=0;i<n;i++)printf("%g ",str1[i]);}void print_op(char str2[],int m) {int j;printf("\n运算符栈:\n");for(j=0;j<m;j++)printf("%c ",str2[j]);}int op(char ch)//判断运算符优先级{if(ch=='+'||ch=='-') return 2;if(ch=='*'||ch=='/') return 3;if(ch=='(') return -1;return 0;}double result(double num1,char op,double num2)//计算{if(op=='+') return num1+num2;if(op=='-') return num1-num2;if(op=='*') return num1*num2;if(op=='/') return num1/num2;return 0;}int compute(char str[]){double num=0;int i=0,j=1,k=1;numTop=opTop=0;while(str[i]!='\0'||opTop>0){if(str[i]>='0'&&str[i]<='9')num=num*10+str[i]-'0';else if( k==1&&str[i]=='-'&&(i==0||op(str[i-1])) )k=-1;else{if(i>0&&!op(str[i-1])&&str[i]!='('&&str[i-1]!=')') {numStack[numTop++]=num*k;if(opTop!=0&&numTop!=0)print_num(numStack,numTop);num=0; j=1; k=1;}if(opTop==0||str[i]=='('){opStack[opTop++]=str[i];print_op(opStack,opTop);}else if(str[i]==')'){while(opTop>0&&opStack[--opTop]!='('){numStack[numTop-2]=result(numStack[numTop-2],opStack[opTop],numStack[numTop-1]);if(opTop!=0&&numTop!=0){print_num(numStack,numTop);print_op(opStack,opTop);}numTop--;}if(opStack[opTop]!='(') return 0;}else{if(str[i]=='\0'&&numTop==0) return 0;while(opTop>0&&op(str[i])<=op(opStack[opTop-1])){numStack[numTop-2]=result(numStack[numTop-2],opStack[--opTop],numStack[numTop-1]);if(opTop!=0&&numTop!=0){print_num(numStack,numTop-1); print_op(opStack,opTop);}numTop--;}if(str[i]!='\0')opStack[opTop++]=str[i];if(opTop!=0&&numTop!=0)print_op(opStack,opTop);}}if(str[i]!='\0')i++;}if(numTop!=1||opTop!=0)return 0;return 1;}void menu(){system("cls");printf("_______________________________\n");printf(" Clear(C) | Equal(E) | Quit(Q) \n");printf("-------------------------------\n");}int main(void){int i=0,j=0,k;char str[N]="\0";char num[N]="\0";char save[N]="\0";char ch;double temp;unsigned long temp2;menu();printf("input an expression,press key 'E' to compute\n");ch=getch();while( 1 ){if(ch==')'||op(ch)||ch>='0'&&ch<='9'){str[i++]=ch;str[i]='\0';menu();printf("input an expression,press key 'E' to compute\n"); printf("%s",str);if( ch=='-'&&(i==1||op(str[i-2]))||ch>='0'&&ch<='9' ){num[j++]=ch;num[j]='\0';}elsej=0;}if(ch=='C'||ch=='c'){if(strlen(str))str[--i]='\0';menu();printf("input an expression,press key 'E' to compute\n");printf("%s",str);}if(ch=='E'||ch=='e'){if(compute(str)){printf("\n=%g\n",numStack[0]); j=0; temp=numStack[0];if(temp<0){temp=-temp;num[j++]='-';num[j]='\0';}temp2=(unsigned long)temp;k=1;while(temp2/k>=10) k*=10;while(k){num[j++]=temp2/k+'0';num[j]='\0';temp2=temp2%k;k/=10;}temp=temp-(int)temp;if(temp!=0){num[j++]='.';num[j]='\0';temp+=0.0000005;}for(k=6;k>0;k--){if(temp==0) break;temp*=10;num[j++]=(int)temp+'0';num[j]='\0';temp=temp-(int)temp;}}i=0; j=0; str[0]='\0';}if(ch=='Q'||ch=='q'){printf("\nare you sure to quit?(Y/N)\n");ch=getch();if(ch=='Y'||ch=='y') break;else{menu();printf("input an expression,press key 'E' to compute\n");printf("%s",str);}}ch=getch();}return 0;}第五章系统测试1.先输入: 3+2*5 后按E求值2.再输入:12/4-5 后按E求值3.再输入Q4.输入Y,退出系统。
数据结构课程设计报告-表达式求值
《数据结构》课程设计利用栈求表达式的值班级: 2学号: 100171021330姓名:吴迪指导老师:王方利用栈求表达式的值1、设计思路这个程序的关键是对数字与运算符的判断和运算符优先级的判断,以及出栈的运算。
建立两个栈,分别存储数字与运算符,栈1存运算符,栈2存数字。
依次读取表达式的字符串,先判断是数字还是运算符,如果是数字不能马上压入栈2,因为可能是大于10的数字,应该继续循环,如果还是数字,则利用计算保存数值,直到指到运算符时停止,将计算后的数字压入栈2。
压入运算符之前先将要压入的与栈顶的运算符优先级相比较,如果栈顶是‘(’而当前不是‘)’,则不需比较优先级,直接压入;如果栈顶是‘(’,当前是‘)’,则抵消(弹出‘(’,指向表达式下一个字符);若当前的运算符优先级大于栈顶的,则压入;若当前的运算符优先级小于栈內时,弹出栈顶的运算符,同时弹出两组数字,经过运算符的运算后再重新压到栈内。
为了方便判断运算结束,在存储运算符之前先将‘#’压入栈1中,在输入表达式时以‚#‛结束,所以可以以运算符==‘#’并且栈1顶==‘#’来结束运算,弹出栈2的数值,即为表达式求值的最终结果。
上述操作的算法步骤:(1)初始化算符S1,数字栈S2;,将‘#’压入算符栈S1中。
(2)读表达式字符=>w。
(3)当栈顶为‘#’并且w也是‘#’时结束;否则循环做下列步骤:(3-1)如果w是数字,存储到m,再经过计算存储到num中。
m=w-‘0’;num=num*pow(10,n)+m;n++;读下一个字符=>w,如果是运算符,则跳出循环;转3-2。
(3-2)w若是运算符,则:(3-2-1)如果栈顶为‘(’并且w为‘)’则‘(’出栈,读下一个字符=>w;转(3)。
(3-2-2)如果栈顶为‘(’或者栈顶优先级小于w优先级,则w入栈,读下一个字符=>w;转(3)。
否则:从算符栈中出栈,并从数字栈中弹出两组数字进行运算,将结果重新压入数字栈,转(3)。
数据结构课程设计--表达式求值问题
课程设计(论文)题目名称表达式求值问题课程名称数据结构课程设计学生姓名 XXX学号xxxxxxxxx系、专业信息工程系、信息工程类指导教师 xxxxxx2010年 1 月 3 日目录1 问题描述 (2)2 需求分析 (2)3 概要设计 (2)3.1抽象数据类型定义 (2)3.2模块划分 (3)4 详细设计 (4)4.1数据类型的定义 (4)4.2主要模块的算法描述 (4)5 测试分析 (7)5.1程序运行结果 (7)5.2程序调试与体会 (8)6 课程设计总结 (8)参考文献 (8)附录(源程序清单) (9)1 问题描述编写一个表达式求值程序,使输入一个四则运算表达式后,能够返回正确的结果。
该表达式由数字0~9、+、-、*、/、括号组成,且表达式必须正确无误。
程序的编写可用到栈或队列的基本算法,求出该表达式的值,并分析算法的时间复杂度和运算的结果。
2 需求分析(1)为实现算符优先算法,可以使用两个工作栈。
一个称做OPTR,用以寄存运算符;另一个称做OPND;用以寄存操作数或运算结果。
算法的基本思想是:①首先置操作数栈为空栈,表达式起始符“#”为运算符栈的栈底元素;②依次读入表达式中每个字符,若是操作数则OPND栈,若是运算符,则和OPTR栈的栈顶运算符比较优先权后做相应操作,直至整个表达式求值完毕(即OPTR栈的栈顶元素和当前读入的字符均为"#")。
(2)该程序实现表达式的求值问题:从键盘读入一个合法的算术表达式,利用算符优先关系,实现对算术四则混合运算的求值,输出正确的结果。
3 概要设计3.1抽象数据类型定义设定栈抽象数据类型的定义采用两个栈的入栈与出栈的操作来进行“运算符和操作数的配对”。
程序中主要用到以下抽象数据类型:1)ADT Stack {数据对象:D={ ai | ai∈ElemSet, i=2,...,n,n≥0 }数据关系:R1={ <ai-1, ai >| ai-1, ai∈D, i=2,...,n }约定an端为栈顶,a1端为栈底。
数据结构表达式求值完整篇(含实验报告)
的是p*low),继续输入ch
总结:
我觉得写的好的地方在于定义了flag,low分别作为小数入栈和负号与减号区别的条
件。第一次写这么长的代码,还有就是将输入的字符再转到小数这段代码可以留着很有 用。开始考虑的大整数想麻烦了,直接用double难度降低了很多
4
【列岀你的测试结果,包括输入和岀。测试数据应该完整和严格,最好多于需求分析中所列。】
if(!s.base)
printf("\n运算符栈存储分配失败!\n");
s.top=s.base;
s.stacksize=MAXSIZE;
}
//
void OPND」n itStack(Sqstack_OPND &s)
{
s.base=new SElemType_OPND[MAXSIZE];
if(!s.base)
操作数和运算符分别入不同的栈charint进操作数栈先考虑了小于10的整数直接进栈重点是运算符的优先级这块函数的编写前面的都听简单的就是小数编写这块想了很久定义了low做判定符号的标志
数据结构表达式求值完整篇(含 实验报告)
1
(1)深入理解栈的特点及其描述方法
(2)能够在两种存储结构上实现栈抽象数据类型实现
&s,SElemType_OPND&e); //出栈
/*
#i nclude "common .h"
#include "Sqstack.h"
#in clude "other.h"
//
void OPTR_I ni tStack(Sqstack_OPTR &s)
{
数据结构课程设计四则运算表达式求值(C语言版)
数据结构课程设计四则运算表达式求值(C语⾔版) 明⼈不说暗话,直接上,输⼊提取码z3fy即可下载。
⽂件中包含程序,程序运⾏⽂件,设计报告和测试样例,应有尽有,欢迎⼩伙伴们在中下载使⽤。
本课程设计为四则运算表达式求值,⽤于带⼩括号的⼀定范围内正负数的四则运算标准(中缀)表达式的求值。
注意事项:1、请保证输⼊的四则表达式的合法性。
输⼊的中缀表达式中只能含有英⽂符号“+”、“-”、“*”、“/”、“(”、“)”、“=”、数字“0”到“9”以及⼩数点“.”,输⼊“=”表⽰输⼊结束。
例如9+(3-1)*3.567+10/2=,特别是请勿输⼊多余空格和中⽂左右括号。
2、输⼊的中缀表达式默认限定长度是1001,可根据具体情况调整字符串数组的长度。
3、请保证输⼊的操作数在double数据类型范围内,单个数字有效数字长度不可超过15位。
本课程设计中操作数是C语⾔中的双精度浮点数类型。
4、本课程设计中的运算数可以是负数,另外如果是正数可直接省略“+”号(也可带“+”号)。
下⾯的程序正常运⾏需要在上⾯的百度⽹盘中下载相应⽂件,否则⽆法正常使⽤哦。
1/*本程序为四则运算表达式求值系统,⽤于计算带⼩括号的四则运算表达式求值。
2具体算法:3先将字符串处理成操作单元(操作数或操作符),再利⽤栈根据四则运算4的运算法则进⾏计算,最后得出结果。
*/56 #include<stdio.h>7 #include<ctype.h>8 #include<stdlib.h>9 #include<string.h>10 #include<stdlib.h>11 #include<ctype.h>1213const int Expmax_length = 1001;//表达式最⼤长度,可根据适当情况调整14struct Ope_unit15 {//定义操作单元16int flag;//=1表⽰是操作数 =0表⽰是操作符 -1表⽰符号单元17char oper;//操作符18double real;//操作数,为双精度浮点数19 };2021void Display();//菜单22void Instru(); //使⽤说明23int Check(char Exp_arry[]);24void Evalua(); //先调⽤Conver操作单元化,再调⽤Calculate函数计算结果并输出25int Conver(struct Ope_unit Opeunit_arry[],char Exp_arry[]);//将字符串处理成操作单元26int Isoper(char ch);//判断合法字符(+ - * / ( ) =)27int Ope_Compar(char ope1,char ope2);//操作符运算优先级⽐较28double Calculate(struct Ope_unit Opeunit_arry[],int Opeunit_count,int &flag);//⽤栈计算表达式结果29double Four_arithm(double x,double y,char oper);//四则运算3031int main()32 {33int select;34while(1)35 {36 Display();37 printf("请输⼊欲执⾏功能对应的数字:");38 scanf("%d",&select);39 printf("\n");40switch(select)41 {42case1: Evalua(); break;43case2: Instru(); break;44case0: return0;45default : printf("⽆该数字对应的功能,请重新输⼊\n");46 system("pause");47 }48 }49return0;50 }5152int Check(char Exp_arry[])53 {//检查是否有⾮法字符,返回1表⽰不合法,0表⽰合法54int Explength=strlen(Exp_arry),i;55for(i=0;i<Explength;i++)56 {57if(!Isoper(Exp_arry[i]) && Exp_arry[i] != '.' && !isdigit(Exp_arry[i]))58return1;59if(isdigit(Exp_arry[i]))60 {61int Dig_number=0,Cur_positoin=i+1;62while(isdigit(Exp_arry[Cur_positoin]) || Exp_arry[Cur_positoin]=='.')63 {64 Dig_number++;65 Cur_positoin++;66 }67if(Dig_number >= 16)//最多能够计算15位有效数字68return1;69 }70 }71return0;72 }7374void Evalua()75 {//先调⽤Conver函数将字符串操作单元化,再调⽤Calculate函数计算结果并输出76char Exp_arry[Expmax_length];77int flag=0;//假设刚开始不合法,1表达式合法,0不合法78struct Ope_unit Opeunit_arry[Expmax_length];7980 getchar();//吃掉⼀个换⾏符81 printf("请输⼊四则运算表达式,以=结尾:\n");82 gets(Exp_arry);83 flag=Check(Exp_arry);84if(flag)85 printf("该表达式不合法!\n");86else87 {88int Opeunit_count = Conver(Opeunit_arry,Exp_arry);89double ans = Calculate(Opeunit_arry,Opeunit_count,flag);90if(flag)91 {92 printf("计算结果为:\n");93 printf("%s%lf\n",Exp_arry,ans);94 }95else96 printf("该表达式不合法!\n");97 }98 system("pause");99 }100101int Conver(struct Ope_unit Opeunit_arry[],char Exp_arry[])102 {//将字符串操作单元化103int Explength=strlen(Exp_arry);104int i,Opeunit_count=0;105for(i=0;i<Explength;i++)106 {107if(Isoper(Exp_arry[i]))//是操作符108 {109 Opeunit_arry[Opeunit_count].flag=0;110 Opeunit_arry[Opeunit_count++].oper=Exp_arry[i];111 }112else//是操作数113 {114 Opeunit_arry[Opeunit_count].flag=1;115char temp[Expmax_length];116int k=0;117for(; isdigit(Exp_arry[i]) || Exp_arry[i]=='.' ;i++)118 {119 temp[k++]=Exp_arry[i];120 }121 i--;122 temp[k]='\0';123 Opeunit_arry[Opeunit_count].real=atof(temp);//将字符转化为浮点数124125//负数126if(Opeunit_count == 1 && Opeunit_arry[Opeunit_count-1].flag==0127 && Opeunit_arry[Opeunit_count-1].oper=='-')128 {129 Opeunit_arry[Opeunit_count-1].flag = -1;130 Opeunit_arry[Opeunit_count].real *= -1;131 }// -9132if(Opeunit_count >= 2 && Opeunit_arry[Opeunit_count-1].flag==0133 && Opeunit_arry[Opeunit_count-1].oper=='-' && Opeunit_arry[Opeunit_count-2].flag==0 134 && Opeunit_arry[Opeunit_count-2].oper !=')')135 {136 Opeunit_arry[Opeunit_count-1].flag = -1;137 Opeunit_arry[Opeunit_count].real *= -1;138 }// )-9139140//正数141if(Opeunit_count == 1 && Opeunit_arry[Opeunit_count-1].flag==0142 && Opeunit_arry[Opeunit_count-1].oper=='+')143 {144 Opeunit_arry[Opeunit_count-1].flag = -1;145 }// +9146if(Opeunit_count >= 2 && Opeunit_arry[Opeunit_count-1].flag==0147 && Opeunit_arry[Opeunit_count-1].oper=='+' && Opeunit_arry[Opeunit_count-2].flag==0148 && Opeunit_arry[Opeunit_count-2].oper !=')')149 {150 Opeunit_arry[Opeunit_count-1].flag = -1;151 }// )+9152 Opeunit_count++;153 }154 }155/*for(i=0;i<Opeunit_count;i++)156 {//查看各操作单元是否正确,1是操作数,0是操作符157 if(Opeunit_arry[i].flag == 1)158 printf("该单元是操作数为:%lf\n",Opeunit_arry[i].real);159 else if(Opeunit_arry[i].flag == 0)160 printf("该单元是操作符为:%c\n",Opeunit_arry[i].oper);161 else162 printf("该单元是负号符为:%c\n",Opeunit_arry[i].oper);163 }*/164return Opeunit_count;165 }166167double Calculate(struct Ope_unit Opeunit_arry[],int Opeunit_count,int &flag)168 {//根据运算规则,利⽤栈进⾏计算169int i,dS_pointer=0,oS_pointer=0;//dS_pointer为操作数栈顶指⽰器,oS_pointer为操作符栈顶指⽰器170double Dig_stack[Expmax_length];//操作数栈(顺序存储结构)171char Ope_stack[Expmax_length];//操作符栈172173for(i=0;i<Opeunit_count-1;i++)174 {175if( Opeunit_arry[i].flag != -1 )176 {177if(Opeunit_arry[i].flag)//是操作数178 {179 Dig_stack[dS_pointer++]=Opeunit_arry[i].real;//⼊操作数栈180//printf("%lf\n",Digit[dS_pointer-1]);181 }182else//是操作符 + - * / ( )183 {184//操作符栈为空或者左括号⼊栈185if(oS_pointer==0 || Opeunit_arry[i].oper=='(')186 {187 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;188//printf("%oS_pointer\Ope_u_count",Operator[oS_pointer-1]);189 }190else191 {192if(Opeunit_arry[i].oper==')')//是右括号将运算符⼀直出栈,直到遇见左括号193 {194 oS_pointer--;//指向栈顶195 dS_pointer--;//指向栈顶196while(Ope_stack[oS_pointer] != '(' && oS_pointer != 0)197 {198 Dig_stack[dS_pointer-1] = Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 199 Ope_stack[oS_pointer--]);//oS_pointer--为操作符出栈200201 dS_pointer--;//前⼀个操作数出栈202//printf("操作数栈顶元素等于%lf\n",Digit[dS_pointer]);203 }204 oS_pointer--;//左括号出栈205206 oS_pointer++;//恢复指向栈顶之上207 dS_pointer++;208 }209else if(Ope_Compar(Opeunit_arry[i].oper,Ope_stack[oS_pointer-1]))//和栈顶元素⽐较210 {211 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;212//printf("%oS_pointer\Ope_u_count",Operator[oS_pointer-1]);213 }214else//运算符出栈,再将该操作符⼊栈215 {216 oS_pointer--;//指向栈顶217 dS_pointer--;//指向栈顶218while(Ope_Compar(Opeunit_arry[i].oper,Ope_stack[oS_pointer])==0 && oS_pointer != -1) 219 {//当前操作符⽐栈顶操作符优先级⾼220 Dig_stack[dS_pointer-1]=Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 221 Ope_stack[oS_pointer--]);222 dS_pointer--;223//printf("操作数栈顶元素等于%lf\n",Digit[dS_pointer]);224 }225 oS_pointer++;//恢复指向栈顶之上226 dS_pointer++;227 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;228 }229 }230 }231 }232 }233/*for(i=0;i<oS_pointer;i++)234 printf("操作符栈%oS_pointer\Ope_u_count",Operator[i]);235 for(i=0;i<dS_pointer;i++)236 printf("操作数栈%lf\n",Digit[i]);*/237 oS_pointer--;//指向栈顶元素238 dS_pointer--;//指向栈顶元素239while(oS_pointer != -1)240 {241 Dig_stack[dS_pointer-1]=Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 242 Ope_stack[oS_pointer--]);//oS_pointer--为操作符出栈243 dS_pointer--;//前⼀个操作数出栈244//printf("操作数栈顶元素为%lf\Ope_u_count",Digit[dS_pointer]);245 }246//printf("%dS_pointer,%dS_pointer\n",oS_pointer,dS_pointer);247if(oS_pointer==-1 && dS_pointer==0)248 flag=1;//为1表⽰表达式合法249return Dig_stack[0];250 }251252int Ope_Compar(char ope1,char ope2)253 {//操作符运算优先级⽐较254char list[]={"(+-*/"};255int map[5][5]={//先⾏后列,⾏⽐列的运算级优先级低为0,⾼为1256// ( + - * /257/* ( */1,0,0,0,0,258/* + */1,0,0,0,0,259/* - */1,0,0,0,0,260/* * */1,1,1,0,0,261/* / */1,1,1,0,0 };262int i,j;263for(i=0;i<5;i++)264if(ope1==list[i]) break;265for(j=0;j<5;j++)266if(ope2==list[j]) break;267return map[i][j];268 }269270double Four_arithm(double x,double y,char oper)271 {//四则运算272switch(oper)//保证不含其它运算符273 {274case'+': return x+y;275case'-': return x-y;276case'*': return x*y;277case'/': return x/y;//y不能为0278default : return0;279 }280 }281282int Isoper(char ch)283 {//判断合法字符 + - * / ( ) =284if(ch=='+' || ch=='-' || ch=='*' || ch=='/' || ch=='(' || ch==')' || ch=='=')285return1;286return0;287 }288289void Display()290 {//打印菜单291 system("cls");292 printf("/******************************************************************************/\n");293 printf("\t\t 欢迎使⽤本四则运算表达式求值系统\n");294 printf("\n\t说明:建议请您先阅读使⽤说明,再输⼊相应的数字进⾏操作,谢谢配合!\n"); 295 printf("\n\t\t1 四则运算表达式求值\n");296 printf("\n\t\t2 使⽤说明\n");297 printf("\n\t\t0 退出\n");298 printf("/******************************************************************************/\n");299 }300301void Instru()302 {//打印使⽤说明303 FILE *fp;304char ch;305if( ( fp=fopen("使⽤说明.txt","r") ) == NULL)306 {307 printf("⽂件打开失败!\n");308 exit(0);309 }310for(; (ch = fgetc(fp)) != EOF; )311 putchar(ch);312 fclose(fp);313 printf("\n");314 system("pause");315 }。
表达式求值(数据结构)(2023版)
表达式求值(数据结构) 表达式求值(数据结构)1.引言1.1 目的1.2 背景1.3 范围2.表达式类型2.1 算术表达式2.1.1 运算符2.1.2 运算数2.2 逻辑表达式2.2.1 逻辑运算符2.2.2 逻辑运算数2.3 字符串表达式2.3.1 字符串连接运算符2.3.2 字符串操作函数3.表达式求值算法3.1 递归下降分析法3.2 栈表达式求值法3.2.1 中缀表达式转后缀表达式3.2.2 后缀表达式求值4.数据结构4.1 操作数栈4.2 运算符栈4.3 后缀表达式栈5.算法实现步骤5.1 输入表达式5.2 初始化栈5.3 处理表达式字符串5.4 根据算法选择相应的方法求值5.5 输出结果6.实例演示6.1 算术表达式求值示例6.2 逻辑表达式求值示例6.3 字符串表达式求值示例7.测试与验证7.1 正常表达式测试7.2 异常表达式测试7.3 性能测试8.总结与展望8.1 本文主要工作8.2 结果评估8.3 存在问题8.4 后续工作附件:附件1、算术表达式求值示例代码附件2、逻辑表达式求值示例代码附件3、字符串表达式求值示例代码法律名词及注释:1.递归下降分析法: 一种基于上下文无关文法进行递归分析的方法,用于处理表达式求值等问题。
2.栈表达式求值法: 使用栈数据结构进行表达式求值的方法。
3.中缀表达式: 常见的数学表达式写法,运算符位于运算数之间。
4.后缀表达式: 也称为逆波兰表达式,运算符位于运算数之后。
5.操作数栈: 用于存储表达式中的操作数的栈。
6.运算符栈: 用于存储表达式中的运算符的栈。
7.后缀表达式栈: 用于存储后缀表达式的栈。
《数据结构课程设计》表达式求值实验报告
实验课程名称专业班级学生姓名学号指导教师20 至 20 学年第学期第至周算术表达式求值演示一、概述数据结构课程设计.要求学生在数据结构的逻辑特性和物理表示、数据结构的选择和应用、算法的设计及其实现等方面.加深对课程基本内容的理解。
同时.在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。
在这次的课程设计中我选择的题目是算术表达式求值演示。
表达式计算是实现程序设计语言的基本问题之一.也是栈的应用的一个典型例子。
设计一个程序.演示用算符优先法对算术表达式求值的过程。
深入了解栈和队列的特性.以便在解决实际问题中灵活运用它们.同时加深对这种结构的理解和认识。
二、系统分析1.以字符列的形式从终端输入语法正确的、不含变量的整数表达式。
利用已知的算符优先关系.实现对算术四则混合运算表达式的求值.并仿照教科书的例子在求值中运算符栈、运算数栈、输入字符和主要操作的变化过程。
2.一般来说.计算机解决一个具体问题时.需要经过几个步骤:首先要从具体问题抽象出一个适当的数学模型.然后设计一个解决此数学模型的算法.最后编出程序.进行测试.调试直至得到想要的答案。
对于算术表达式这个程序.主要利用栈.把运算的先后步骤进行分析并实现简单的运算!为实现算符优先算法.可以使用两个栈.一个用以寄存运算符.另一个用以寄存操作数和运算结果。
3.演示程序是以用户于计算机的对话方式执行.这需要一个模块来完成使用者与计算机语言的转化。
4.程序执行时的命令:本程序为了使用具体.采用菜单式的方式来完成程序的演示.几乎不用输入什么特殊的命令.只需按提示输入表达式即可。
(要注意输入时格式.否者可能会引起一些错误)5. 测试数据。
三、概要设计一个算术表达式中除了括号、界限符外.还包括运算数据和运算符。
由于运算符有优先级别之差.所以一个表达式的运算不可能总是从左至右的循序执行。
每次操作的数据或运算符都是最近输入的.这与栈的特性相吻合.故本课程设计借助栈来实现按运算符的优先级完成表达式的求值计算。
数据结构课程设计之算术表达式求值
1【实验题目及要求】[问题描述]一个算术表达式是由操作数(operand)、运算符(operator)和界限符(delimiter)组成的。
假设操作数是正实数,运算符只含加减乘除等四种运算符,界限符有左右括号和表达式起始、结束符“#”,如:#(7+15)*(23-28/4)#。
引入表达式起始、结束符是为了方便。
编程利用“算符优先法”求算术表达式的值。
[基本要求](1)从键盘或文件读入一个合法的算术表达式,输出正确的结果。
(2)显示输入序列和栈的变化过程。
(3)考虑算法的健壮性,当表达式错误时,要给出错误原因的提示。
(4) 实现非整数的处理(可选功能)。
2【源代码(C语言)】#include<stdio.h>#include<stdlib.h>#include<string.h>#define MAXSIZE 20#define OK 1#define ERROR 0#define OVERLOW 0#define YES 1#define NO 0typedefstruct{char * base;char * top;int stacksize; //最大存储量}OPTR; //字符存储栈typedefstruct{float *base;float *top;int stacksize; //最大存储量}OPND; //数值存储栈int InitOptrStack(OPTR *); //字符栈初始化函数int OptrPush(OPTR *, char); //进字符栈操作int OptrPop(OPTR*, char *); //出字符栈操作int OptrEmpty(OPTR ); //判断字符栈是否为空char GetOptrTop(OPTR); //返回字符栈顶元素int InitOpndStack(OPND *); //数值栈初始化函数int OpndPush(OPND *, float); //进数值栈操作int OpndPop(OPND*, float*); //出数值栈操作int OpndEmpty(OPND ); //判断数值栈是否为空int JudgeChar(char); //判断是否为字符float GetFloat(char *); //接收一个数字char Precede(char, char); //判断优先级操作float Caculate(float,float,char);//计算数值{char ch, noMean, ci;float num, number1, number2;OPTR optr;OPND opnd;//system("color 30");InitOptrStack(&optr);InitOpndStack(&opnd);while(1){printf(" 请输入表达式以“#”开始,以“#”结束\n ");do{ch = getchar();}while(ch !='#'); //忽略前面非‘#’字符OptrPush(&optr, ch);ch = getchar();while(ch != '#' || GetOptrTop(optr) != '#'){if(!JudgeChar(ch)){ //如果输入的是数字num = GetFloat( &ch );OpndPush(&opnd, num);else{ //输入的是字符switch(Precede(GetOptrTop(optr),ch)){case'<':OptrPush(&optr,ch); //栈顶优先级低ch = getchar();break;case'=':OptrPop(&optr,&noMean); //左右括号,把左括号出栈ch = getchar ();break;case'>': //栈顶优先级高if(OpndPop(&opnd, &number2) && OpndPop(&opnd,&number1)){OptrPop(&optr, &ci);num = Caculate(number1, number2, ci ); //出栈计算OpndPush(&opnd, num);}else{printf(" 输入过多运算符!\n");system ("PAUSE");exit(0);}break;}//witch}//else}if(opnd.top -opnd.base >= 2){printf(" 俩个括号之间缺少运算符!\n ");system ("PAUSE");exit( 0 );}OpndPop(&opnd,&num); //直接把OPND的栈元素赋值给numprintf(" 运算结果为%.3f\n", num);}system ("PAUSE");}int InitOptrStack(OPTR * OP){OP->base = (char*)malloc((MAXSIZE+1)*sizeof(char));OP->top = OP->base;OP->stacksize = MAXSIZE;return OK;}int OptrPush(OPTR *OP, char ch){*(OP->top) = ch;OP->top++;return OK;}int OptrPop(OPTR *OP, char *ch){if(OP->base == OP->top)return ERROR;else{OP->top--;*ch = *(OP->top);return OK;}}int OptrEmpty(OPTR OP){if(OP.top == OP.base )return YES;elsereturn NO;}char GetOptrTop(OPTR OP){return *(OP.top -1);}int InitOpndStack(OPND * OP){if(!(OP->base = (float*)malloc((MAXSIZE+1)*sizeof(float)))) exit(OVERLOW);OP->top = OP->base;OP->stacksize = MAXSIZE;return OK;}int OpndPush(OPND *OP, float number) {*(OP->top) = number;OP->top++;return OK;}int OpndPop(OPND *OP, float* number) {if(OP->top == OP->base)return ERROR;else{OP->top--;*number = *(OP->top);return OK;}}int OpndEmpty(OPND OP){if(OP.top == OP.base )return YES;elsereturn NO;}int JudgeChar(char ch){if(ch>='0'&&ch<= '9')return NO;elsereturn YES;}float GetFloat(char* ch){int i;float num = 0;for( i = 0; *ch>= '0'&& *ch<= '9'; i++){ num = num*10 + *ch - '0';*ch = getchar();}return num;}char Precede(char a, char b){char ch;switch(a){case'+':case'-': if(b == '*' || b == '/' || b == '(')ch = '<';elsech = '>';break;case'*':case'/': if( b == '(')ch = '<';elsech = '>';break;case'(': if(b == ')')ch = '=';elseif(b == '#'){printf(" 缺少反括号\n");system ("PAUSE");exit(0);}elsech = '<';break;case')': if(b == '('){printf(" 两个括号之间没有符号相连!\n");system("PAUSE");exit(0);}ch = '>';break;case'#': if(b == '#')ch = '=';elseif(b == ')'){printf(" 没有左括号!\n ");system("PAUSE");exit(0);}elsech = '<';break;default: printf(" 输入运算符超出范围! \n ");system ("PAUSE");exit(0);break;}return ch;}float Caculate(float number1, float number2, char ci){float num;switch( ci){case'+': num = number1 + number2; break;case'-': num = number1 - number2; break;case'*': num = number1 * number2; break;case'/': num = number1 / number2; break;}return num;}3【算法思想】根据栈的原理,建立数字栈OPND和运算符号栈OPTR,对读入的字符进行判断,存入不同的栈内,每次读入一个字符就把该字符和运算符栈顶的优先级进行比较,然后选择相应的操作,这是这个程序的核心代码,如下:switch(Precede(GetOptrTop(optr),ch)){case '<':OptrPush(&optr,ch); //栈顶优先级低ch = getchar();break;case '=':OptrPop(&optr,&noMean); //左右括号,把左括号出栈ch = getchar ();break;case '>': //栈顶优先级高if(OpndPop(&opnd, &number2) && OpndPop(&opnd, &number1)){OptrPop(&optr, &ci);num = Caculate(number1, number2, ci ); //出栈计算OpndPush(&opnd, num);}else{printf(" 输入过多运算符!\n");system ("PAUSE");exit(0);}break;}//witch4【实现效果】完全可以实现题目的要求,除了下图的错误提示,本程序还可以提示的错误有:输入过多运算符,缺少反括号,两个括号之间缺少运算符相连,缺少左括号,输入的运算符超出范围等提示。
数据结构课程设计 表达式的值
目录1 题目的内容及要求 (2)2 需求分析 (2)3 概要设计 (2)4 详细设计 (4)5 源代码 (6)6 运行结果及分析 (13)7 收获及体会 (14)1 题目的内容及要求从文件读取表达式,判断表达式是否合理,将表达式转换成后缀形式,按后缀表达式求值;题目涉及加减乘除,带括弧的混合运算;随时可以退出。
2 需求分析利用栈设计一个程序,该程序能够用于表达式求值,程序将读入的中缀表达式转换为后缀表达式,然后读取后缀表达式,输出结果。
本程序具有检测表达式语法是否正确的功能,如果表达式出现错误的时候,程序会提示操作人员执行的表达式不合理,语法是不能执行的。
语法正常的情况下,程序可以实现了加、减、乘、除以及带括号的基本运算。
程序在执行表达式的时候,先检查表达式是否合理,不合理则输出表达式不符合要求,合理则将中缀表达式转化为后缀表达式,然后则对表达式求值,输出结果。
3 概要设计本程序选用的是线性表数据结构。
它按照后进先出的原则存储数据,先进的数据被压入栈底,最后的数据在栈顶,需要度数据的时候才栈顶开式探出数据。
程序采用的是顺序存储结构,可以将逻辑上相邻的数据元素在物力上相邻的存储单元里,节电之间的关系由存储单元相邻的关系来决定。
选择线性表结构是因为程序是用栈来设计的,可以将优先运算的送至栈顶,低级别的运算则最后根据先后进栈的顺序来执行。
选择顺序存储结构是因为顺序存储结构存取数据数度快,占用的存储空间小。
系统的功能模块划分:Translate()的功能是将中缀表达式转换为后缀表达式DispPostfix()的功能是输出后缀表达式ProcessExpress()的功能是将原表达式进行预处理,检查符号是否匹配,转化为中缀式。
endright的功能是先对表示式的运算符进行处理,考虑其计算的优先级。
FindSymbol()的功能是对表达式的括号进行优先处理。
FindWord()的功能是检查表达式是否有语法错误。
数据结构课程设计-表达式求值问题
实验表达式求值问题1. 问题描述表达式是数据运算的基本形式。
人们的书写习惯是中缀式,如:11+22* (7-4 )/3. 中缀式的计算按运算符的优先级及括号优先的原则,相同级别从左到右进行计算。
表达式还有后缀表达式(如:11 22 7 4 - * 3 / + )和前缀表达式(+ 11 / * 22 - 7 4 3 )。
后缀表达式和前缀表达式中没有括号,给计算带来方便。
如后缀表达式计算时按运算符出现的先后进行计算。
本设计的主要任务是进行表达式形式的转换及不同形式的表达式计算。
2. 数据结构设计1)顺序栈类定义:首先应在类中定义成员函数,以此来完成顺序栈的相关操作,如下:class SqStackprivate:T *base; // 栈底指针int top; // 栈顶int stacksize; // 栈容量public:SqStack(int m); // 构建函数~SqStack(){delete [] base;top=0;stacksize=0;} // 析构函数void Push(T x); // 入栈T Pop(); // 出栈T GetTop(); // 获取栈顶元素int StackEmpty(); // 测栈空void ClearStack(); // 清空栈void StackTop(); // 返回栈顶指针void StackTranverse(); // 显示栈中元素};2)顺序栈类实现:对顺序栈进行初始化,初始化的首要操作就是创建一个空顺序栈。
Step1 :申请一组连续的内存空间为顺序栈使用:base=new T[m];i f(base==NULL)cout<<" 栈创建失败,退出!"<<endl; exit(1);}{Step2 :给栈顶、栈容量赋相应的值:stacksize=m;t op=-1;(2)顺序栈入栈:入栈需要在栈顶插入一个新元素并相应的调整栈顶。
数据结构课程设计报告(二)表达式求值(计算器)
课程设计报告课程名称:数据结构课程设计设计题目:表达式求值(计算器)学院:信息科学与工程学院专业:计算机科学与技术(软件外包)姓名:指导教师:二零一五年十二月二十九日一、设计容与要求1、问题描述设计一个算术计算器,能运算包括四则运算、括号的表达式的运算。
2、设计要求实现()、+、-、*、/、^ 等运算,实现小数和整数混合运算,优先级的处理,能判断算术表达式是否正确等。
二、算法设计1、输入并建立表达式,运用数组结构体构建将整型数字与操作符结合定义运算符的优先级。
typedef struct yxj{char operat;int rank;}yxj;2、分别建立一个操作数栈和操作符栈存放数字和操作符,定义操作符栈第一个元素优先级最低。
3、自左向右扫描字符串遇到字符串中的数字时一律提取转换成double型存入操作数栈。
遇到操作符时,则将当前运算符的优先级数与运算符栈顶元素的优先级数相比较。
若当前运算符的优先级数大,则进栈;反之,则取出栈顶的运算符,并在数栈中连续取出两个栈顶元素作为运算对象进行运算,并将运算结果存入数栈,然后继续比较当前运算符与栈顶元素的优先级。
直到当前运算符进栈。
4、对比运算符进行+ - * /()^ 运算。
三、程序代码#include<stdio.h>#include<stdlib.h>#include<string.h>#include<math.h>#define N 100typedef struct yxj{char operat;int rank;}yxj;typedef struct str{char data[N];}zs;void szys(yxj mark[]){yxj os[N];char ch;double ns[N];zs zhan[20];int numb[N];int Len,p=0,q=1,i,o=1,n=0;char data[N];os[0]=mark[0];printf("请输入算术(+ - * / ^)表达式(以 = 结束):\n");scanf("%s",data);Len=strlen(data);numb[0]=0;for(i=0;i<20;i++)zhan[i].data[0]='\0';for(i=0;i<Len;i++){int t=0;if(data[i]=='^'||data[i]=='+'||data[i]=='-'||data[i]=='*'||data[i]=='/'||data[ i]=='('||data[i]==')'||data[i]=='='){int j,k=0;if((data[i]=='='||data[i]=='^'||data[i]=='+'||data[i]=='-'||data[i]=='*'||data [i]=='/')&&(data[i-1]=='^'||data[i-1]=='+'||data[i-1]=='-'||data[i-1]=='*'||data[i -1]=='/')){printf("格式错误\n");return;}numb[q++]=i;while(zhan[(p+k)/2].data[0]!='\0'){k++;}for(j=numb[q-2];j<numb[q-1];j++)if(data[j]>='0'&&data[j]<='9'||data[j]=='.')zhan[(p+k)/2].data[t++]=data[j];zhan[(p+k)/2].data[t]='\0';if(zhan[(p+k)/2].data[0]!='\0')ns[n++]=atof(zhan[(p+k)/2].data);p++;for(j=0;j<8;j++)if(mark[j].operat==data[i])break;while(1){if(mark[j].operat=='('){os[o++]=mark[j];break;}else if(mark[j].rank>os[o-1].rank&&mark[j].operat!='(') {os[o++]=mark[j];break;}else{double numb1,numb2,numb;ch=os[--o].operat;if(ch=='+'){numb1=ns[--n];numb2=ns[--n];numb=numb1+numb2;ns[n++]=numb;}if(ch=='-'){numb1=ns[--n];numb2=ns[--n];numb=numb2-numb1;ns[n++]=numb;}if(ch=='*'){numb1=ns[--n];numb2=ns[--n];numb=numb2*numb1;ns[n++]=numb;}if(ch=='/'){numb1=ns[--n];numb2=ns[--n];if(numb1==0){printf("无效操作\n");return;}else{numb=numb2/numb1;ns[n++]=numb;}}if(ch=='^'){numb1=ns[--n];numb2=ns[--n];numb=pow(numb2,numb1);ns[n++]=numb;}}}}else if(data[i]>='0'&&data[i]<='9');else if(data[i]=='.');else{printf("格式错误,请重新输入:\n");szys(mark);break;}}printf("%lf\n",ns[0]);}int main (){yxj mark[9];mark[0].operat='#';mark[0].rank=-1;mark[1].operat='+';mark[1].rank=1;mark[2].operat='-';mark[2].rank=1;mark[3].operat='*';mark[3].rank=2;mark[4].operat='/';mark[4].rank=2;mark[5].operat='(';mark[5].rank=-1;mark[6].operat=')';mark[6].rank=-1;mark[7].operat='=';mark[7].rank=0;mark[8].operat='^';mark[8].rank=3;while(1){char i[N];printf("*****1、计算器*****\n");printf("*****0、退出 *****\n");scanf("%s",&i);if(strcmp(i,"0")==0)break;else if(strcmp(i,"1")==0)szys(mark);elseprintf("没有该选项\n");}}四、运行测试1.正常四则运算2.乘方运算3.除数为零时4.格式出现错误5.小数运算五、结论这次课程设计让我们更加了解大一学到的C和这个学期学到的数据结构。
数据结构课程设计报告-表达式求值
}
double Calculate(double a,double b,char c){ //进行二元运算
double result;
switch(c){
case '+':result=a+b;break;
case '-':result=a-b;break;
case '*':result=a*b;break;
void PushNum(OPND *OPND,double num){ //操作数进栈
OPND->top++;
OPND->array[OPND->top-1]=num;
}
void PopNum(OPND *OPND,double *num){ //操作数出栈
*num=OPND->array[OPND->top-1];
default:priority='E';
}
return priority;
}
void Process(OPND *OPND,OPTR *OPTR,char x){ //计算表达式
double a,b;char c;
static double tempnum=0.00000000;
static int len=10; //用于各数位上的值的转换
double array[N];
int top;//栈顶指针
}OPND;
typedef struct{ //定义运算符栈
char array[N];
int top;//栈顶指针
}OPTR;
int Cint(char mychar){ //将字符0-9转换成数值
数据结构课设 表达式求值
《计算表达式》课程设计报告标题:计算表达式单位:报告人:指导教师:编程环境:VC6时间:2011年12月20日一、设计要求对于输入的一个中缀表达式,判断表达式是否合法。
如果合法,把中缀表达式转换成一棵二叉树,然后通过后根遍历计算表达式的值,输出运算结果。
合法表达式不能为空,可以出现在表达式中的字符有:*运算符“+”、“-”、“*”、“/”;*左右括号“(”、“)”;*整数(可以是多位的);*空格符和制表符。
例如:表达式为“20+(3*(4+46)-6)/2-134”将得到结果-42。
数据结构采用二叉树的链接表示。
二、题目分析由设计要求可以确定程序的几大模块,读入源程序(1)读入中缀表达式(2)从中缀表达式ex(长度为n)创建二叉树(3)后根遍历计算表达式的值(4)输出运算结果进一步确定几个子程序及其相互之间的调用关系为:三.流程图四.全局变量与子程序功能说明(1)int extoBinTree(PBinTree pbtree,const char *ex,int n)从中缀表达式ex(长度为n)创建二叉树。
若是一个合法的表达式,则返回TRUE,且算法结束时*pbtree存放二叉树的根节点的地址;否则返回FALSE(2)int cal(BinTree btree,int*presult)计算二叉树btree所代表的表达式的值。
若是一个合法的表达式,则返回TRUE,且算法结束时*presult中存放计算结果;否则,返回FALSE.(3)void delete_BTree(PBinTree ptree){BinTree temp=(*ptree);if(temp==NULL) return;delete_BTree(&(temp->llink));delete_BTree(&(temp->rlink));free(temp);}作用为,当输入的程序有误时,或者一段表达式已经运算结束时清除储存空间,为下一段表达式的计算作准备。
数据结构算术表达式求值课程设计
目录1.前言 (2)2.问题描述 (3)3.总体设计··········································································错误!未定义书签。
3.1 概要设计 ······································································错误!未定义书签。
数据结构课程设计算术表达式求值
计算机科学系《数据结构课程设计》报告课题名称:算术表达式求值目录1.问题描述-----------------------------------------------------------32.基本要求-----------------------------------------------------------33.工具/准备工作----------------------------------------------------34.分析与实现--------------------------------------------------------45. 课程设计体会与感悟------------------------------------------161.问题描述从键盘上输入中缀算术表达式,包括括号,计算出表达式的值。
2.基本要求(1)程序能对所输入的表达式做简单的判断,如表达式有错,能给适当提示。
(2)能处理单目运算符:+,-。
3.工具/准备工作在开始项目之前,应回顾复习相关内容。
需要一台计算机装有visual C++。
4.分析与实现对于中缀表达式,一般运算规则如下:(1)先乘方,再乘除,最后加减;(2)同级运算从左算到右;(3)先括号内再括号外;(4)用到的头文件”utility.h”,”lk_stack.h”,”node.h”,”calculator.h”.根据实践经验,可以对运算符设置统一的优先级,从而方便比较。
表中给出了包括加、上面讨论的的+、—为双目运算符,如为单目运算符,编程实现时,可在前面加上0而转化为双目运算符。
如在+、—的前一个字符(如当前字符不是运算符时,规定用0表示)为‘=’或‘(’,则为单目运算符。
具体实现算法时,可设置两个工作栈,一个为操作栈,一个为操作符栈optr,另外一个为操作数栈opnd,算法基本思路如下:(1)将optr栈和opnd栈清空,在optr栈中加入一个‘=‘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXXXX大学《数据结构》课程设计报告班级:学号:姓名:指导老师:目录一算术表达式求值一、需求分析二、程序的主要功能三、程序运行平台四、数据结构五、算法及时间复杂度六、测试用例七、程序源代码二感想体会与总结算术表达式求值一、需求分析一个算术表达式是由操作数(operand)、运算符(operator)和界限符(delimiter)组成的。
假设操作数是正整数,运算符只含加减乘除等四种运算符,界限符有左右括号和表达式起始、结束符“#”,如:#(7+15)*(23-28/4)#。
引入表达式起始、结束符是为了方便。
编程利用“算符优先法”求算术表达式的值。
二、程序的主要功能(1)从键盘读入一个合法的算术表达式,输出正确的结果。
(2)显示输入序列和栈的变化过程。
三、程序运行平台Visual C++ 6.0版本四、数据结构本程序的数据结构为栈。
(1)运算符栈部分:struct SqStack //定义栈{char *base; //栈底指针char *top; //栈顶指针int stacksize; //栈的长度};int InitStack (SqStack &s) //建立一个空栈S{if (!(s.base = (char *)malloc(50 * sizeof(char))))exit(0);s.top=s.base;s.stacksize=50;return OK;}char GetTop(SqStack s,char &e) //运算符取栈顶元素{if (s.top==s.base) //栈为空的时候返回ERROR{printf("运算符栈为空!\n");return ERROR;}elsee=*(s.top-1); //栈不为空的时候用e做返回值,返回S的栈顶元素,并返回OK}int Push(SqStack &s,char e) //运算符入栈{if (s.top-s.base >= s.stacksize){printf("运算符栈满!\n");s.base=(char*)realloc (s.base,(s.stacksize+5)*sizeof(char) ); //栈满的时候,追加5个存储空间if(!s.base) exit (OVERFLOW);s.top=s.base+s.stacksize;s.stacksize+=5;}*(s.top)++=e; //把e入栈return OK;}int Pop(SqStack &s,char &e) //运算符出栈{if (s.top==s.base) //栈为空栈的时候,返回ERROR{printf("运算符栈为空!\n");return ERROR;}else{e=*--s.top; //栈不为空的时候用e做返回值,删除S的栈顶元素,并返回OKreturn OK;}}int StackTraverse(SqStack &s) //运算符栈的遍历{char *t;t=s.base ;if (s.top==s.base){printf("运算符栈为空!\n"); //栈为空栈的时候返回ERRORreturn ERROR;}while(t!=s.top){printf(" %c",*t); //栈不为空的时候依次取出栈内元素t++;}}(2)数字栈部分:struct SqStackn //定义数栈{int *base; //栈底指针int *top; //栈顶指针int stacksize; //栈的长度};int InitStackn (SqStackn &s) //建立一个空栈S{s.base=(int*)malloc(50*sizeof(int));if(!s.base)exit(OVERFLOW); //存储分配失败s.top=s.base;s.stacksize=50;return OK;}int GetTopn(SqStackn s,int &e) //数栈取栈顶元素{if (s.top==s.base){printf("运算数栈为空!\n"); //栈为空的时候返回ERRORreturn ERROR;}elsee=*(s.top-1); //栈不为空的时候,用e作返回值,返回S的栈顶元素,并返回OKreturn OK;}int Pushn(SqStackn &s,int e) //数栈入栈{if (s.top-s.base >=s.stacksize){printf("运算数栈满!\n"); //栈满的时候,追加5个存储空间s.base=(int*)realloc (s.base,(s.stacksize+5)*sizeof(int) );if(!s.base) exit (OVERFLOW);s.top=s.base+s.stacksize; //插入元素e为新的栈顶元素s.stacksize+=5;}*(s.top)++=e; //栈顶指针变化return OK;}int Popn(SqStackn &s,int &e) //数栈出栈{if (s.top==s.base){printf(" 运算符栈为空!\n"); //栈为空栈的视时候,返回ERRORreturn ERROR;}else{e=*--s.top; //栈不空的时候,则删除S的栈顶元素,用e返回其值,并返回OKreturn OK;}}int StackTraversen(SqStackn &s) //数栈遍历{int *t;t=s.base ;if (s.top==s.base){printf(" 运算数栈为空!\n"); //栈为空栈的时候返回ERRORreturn ERROR;}while(t!=s.top){printf(" %d",*t); //栈不为空的时候依次输出t++;}return ERROR;}五、算法及时间复杂度1、算法:建立两个不同类型的空栈,先把一个‘# ’压入运算符栈。
输入一个算术表达式的字符串(以‘#’结束),从第一个字符依次向后读,把读取的数字放入数字栈,运算符放入运算符栈。
判断新读取的运算符和运算符栈顶得运算符号的优先级,以便确定是运算还是把运算符压入运算符栈。
最后两个‘#’遇到一起则运算结束。
数字栈顶的数字就是要求的结果。
2、时间复杂度:O(n)数据压缩存储栈,其操作主要有:建立栈int Push(SeqStack *S, char x)入栈int Pop(SeqStack *S, char x)出栈。
以上各操作运算的平均时间复杂度为O(n),其主要时间是耗费在输入操作。
六、测试用例如图所示。
最终结果如图所示:七、源代码/*********************************************************************************************** ***第七题算术表达式求值[问题描述]一个算术表达式是由操作数(operand)、运算符(operator)和界限符(delimiter)组成的。
假设操作数是正整数,运算符只含加减乘除等四种运算符,界限符有左右括号和表达式起始、结束符“#”,如:#(7+15)*(23-28/4)#。
引入表达式起始、结束符是为了方便。
编程利用“算符优先法”求算术表达式的值。
[基本要求](1)从键盘读入一个合法的算术表达式,输出正确的结果。
(2)显示输入序列和栈的变化过程。
************************************************************************************************ ***/#include <stdio.h>#include <string.h>#include <stdlib.h>#include <math.h>#include <conio.h>#include <ctype.h>#define OK 1#define ERROR 0#define STACK_INIT_SIZE 100//#define STACKINCREMENT 10//========================================================// 以下定义两种栈,分别存放运算符和数字//========================================================//*******************运算符栈部分*************************struct SqStack //定义栈{char *base; //栈底指针char *top; //栈顶指针int stacksize; //栈的长度};int InitStack (SqStack &s) //建立一个空栈S{if (!(s.base = (char *)malloc(50 * sizeof(char))))exit(0);s.top=s.base;s.stacksize=50;return OK;}char GetTop(SqStack s,char &e) //运算符取栈顶元素{if (s.top==s.base) //栈为空的时候返回ERROR{printf("运算符栈为空!\n");return ERROR;}elsee=*(s.top-1); //栈不为空的时候用e做返回值,返回S的栈顶元素,并返回OKreturn OK;}int Push(SqStack &s,char e) //运算符入栈{if (s.top-s.base >= s.stacksize){printf("运算符栈满!\n");s.base=(char*)realloc (s.base,(s.stacksize+5)*sizeof(char) ); //栈满的时候,追加5个存储空间if(!s.base) exit (OVERFLOW);s.top=s.base+s.stacksize;s.stacksize+=5;}*(s.top)++=e; //把e入栈return OK;}int Pop(SqStack &s,char &e) //运算符出栈{if (s.top==s.base) //栈为空栈的时候,返回ERROR{printf("运算符栈为空!\n");return ERROR;}else{e=*--s.top; //栈不为空的时候用e做返回值,删除S的栈顶元素,并返回OKreturn OK;}}int StackTraverse(SqStack &s) //运算符栈的遍历{char *t;t=s.base ;if (s.top==s.base){printf("运算符栈为空!\n"); //栈为空栈的时候返回ERRORreturn ERROR;}while(t!=s.top){printf(" %c",*t); //栈不为空的时候依次取出栈内元素t++;}return ERROR;}//**********************数字栈部分***************************struct SqStackn //定义数栈{int *base; //栈底指针int *top; //栈顶指针int stacksize; //栈的长度};int InitStackn (SqStackn &s) //建立一个空栈S{s.base=(int*)malloc(50*sizeof(int));if(!s.base)exit(OVERFLOW); //存储分配失败s.top=s.base;s.stacksize=50;return OK;}int GetTopn(SqStackn s,int &e) //数栈取栈顶元素{if (s.top==s.base){printf("运算数栈为空!\n"); //栈为空的时候返回ERRORreturn ERROR;}elsee=*(s.top-1); //栈不为空的时候,用e作返回值,返回S的栈顶元素,并返回OKreturn OK;}int Pushn(SqStackn &s,int e) //数栈入栈{if (s.top-s.base >=s.stacksize){printf("运算数栈满!\n"); //栈满的时候,追加5个存储空间s.base=(int*)realloc (s.base,(s.stacksize+5)*sizeof(int) );if(!s.base) exit (OVERFLOW);s.top=s.base+s.stacksize; //插入元素e为新的栈顶元素s.stacksize+=5;}*(s.top)++=e; //栈顶指针变化return OK;}int Popn(SqStackn &s,int &e) //数栈出栈{if (s.top==s.base){printf(" 运算符栈为空!\n"); //栈为空栈的视时候,返回ERRORreturn ERROR;}else{e=*--s.top; //栈不空的时候,则删除S的栈顶元素,用e返回其值,并返回OKreturn OK;}}int StackTraversen(SqStackn &s) //数栈遍历{int *t;t=s.base ;if (s.top==s.base){printf(" 运算数栈为空!\n"); //栈为空栈的时候返回ERRORreturn ERROR;}while(t!=s.top){printf(" %d",*t); //栈不为空的时候依次输出t++;}return ERROR;}//======================================================== // 以下定义函数//======================================================== int Isoperator(char ch) //判断是否为运算符,分别将运算符和数字进入不同的栈{switch (ch){case '+':case '-':case '*':case '/':case '(':case ')':case '#':return 1;default:return 0;}}int Operate(int a, char op, int b) //运算操作{int result;switch(op){case '+':result=a+b;break;case '-':result=a-b;break;case '*':result=a*b;break;case '/':result=a/b;break;}return result;}char Precede(char ch1, char ch2) //运算符优先级的比较{char p;switch(ch1){case '+':case '-':if (ch2=='+'||ch2=='-'||ch2==')'||ch2=='#')p = '>'; //ch1运算符的优先级小于ch2运算符elsep = '<';break;case '*':case '/':if (ch2 == '(')p = '<';elsep = '>';break;case '(':if (ch2 == ')')p = '=';else if (ch2 == '#'){printf(" 表达式错误!运算符不匹配!\n") ;exit(0);}elsep = '<';break ;case ')':if (ch2 == '('){printf(" 表达式错误!运算符不匹配!\n") ;exit(0);}elsep = '>';break ;case '#':if (ch2 == ')'){printf(" 表达式错误!运算符不匹配!\n") ;exit(0);}else if (ch2 == '#')p = '=';elsep='<';break;}return p;}//======================================================== // 以下是求值过程//======================================================== int EvaluateExpression() //参考书p53算法3.4{int a, b, temp, answer;char ch,op,e;char *str;int j = 0;SqStackn OPND; //OPND为运算数字栈SqStack OPTR; //OPTR为运算符栈InitStack(OPTR);Push(OPTR,'#'); //,所以此栈底是'#',因为运算符栈以'#'作为结束标志InitStackn(OPND);// printf("\n\n按任意键开始求解:\n\n");// ch=getch();printf("\n请输入表达式并以'#'结束:\n");str =(char*)malloc(50*sizeof(char));gets(str);ch=str[j]; //ch是字符型的,而e是整型的整数j++;GetTop(OPTR,e); //e为栈顶元素返回值while (ch!='#' || e!='#'){if (!Isoperator(ch)) //遇到数字,转换成十进制并计算{temp=ch-'0'; //将字符转换为十进制数ch=str[j];j++;while(!Isoperator(ch)){temp=temp*10 + ch-'0'; //将逐个读入运算数的各位转化为十进制数ch=str[j];j++;}Pushn(OPND,temp);}else if (Isoperator(ch)) //判断是否是运算符,不是运算符则进栈switch (Precede(e,ch)){case '<' : Push(OPTR,ch); // 栈顶元素优先权低ch = str[j++];printf("\n\n 运算符栈为:\n"); //输出栈,显示栈的变化StackTraverse(OPTR);printf("\n 运算数栈为:\n");StackTraversen(OPND);break;case '=' : Pop(OPTR,op); // 脱括号并接收下一字符ch = str[j++] ;printf("\n\n 运算符栈为:\n");StackTraverse(OPTR);printf("\n 数栈为:\n");StackTraversen(OPND);break;case '>' : Pop(OPTR,op); //弹出最上面两个,并运算,把结果进栈Popn(OPND,b);Popn(OPND,a);Pushn(OPND,Operate(a,op,b));printf("\n\n 运算符栈为:\n");StackTraverse(OPTR);printf("\n 数栈为:\n");StackTraversen(OPND);}else{printf("您的输入有问题,请检查重新输入!");exit(0);}GetTop(OPTR,e); //取出运算符栈最上面元素是否是'#' } //whileGetTopn(OPND,answer); //已输出。