热动力学格子Boltzmann模型
格子boltzmann方法
![格子boltzmann方法](https://img.taocdn.com/s3/m/480bb72f59fafab069dc5022aaea998fcc224007.png)
格子boltzmann方法
格子Boltzmann方法是一种基于格子模型的统计力学方法,用于计算和模拟多体系统的平衡态和非平衡态性质。
它以物质由大量的微观粒子组成的假设为基础,通过在一个分割成小格子的空间中定义离散的状态,并考虑这些粒子之间的相互作用来描述系统的行为。
在格子Boltzmann方法中,将系统中的宏观性质与微观粒子的状态之间建立联系。
通过定义一个格子上的离散状态,如在每个格子上确定粒子是否存在或具有某些属性,并通过考虑粒子之间的相互作用以及它们在不同的状态之间转移的过程,可以模拟出系统的动力学行为。
这种方法常用于模拟气体动力学、流体力学、固体力学等领域。
格子Boltzmann方法的优点在于它能够处理复杂多体系统,并在很大程度上简化了真实系统的描述。
它可以考虑系统中的不均匀性,如存在的物理场的作用,并可以模拟非平衡态及各种传输过程,如热传导、质量传输等。
格子Boltzmann 方法还可以通过调节格子模型的分辨率以及模型参数的选择来适应不同尺度和
条件下的模拟需求。
然而,格子Boltzmann方法也有一些局限性,如对于高密度和高速度流体的模拟需要更细致的离散化格子,会增加计算复杂度。
此外,由于需要离散化描述系统,格子Boltzmann方法在处理连续和非连续性质之间的界面时可能存在困难。
因此,在具体应用时需要综合考虑这些因素,并结合其他技术和方法进行分析和模拟。
格子波兹曼方法
![格子波兹曼方法](https://img.taocdn.com/s3/m/87d78246e97101f69e3143323968011ca300f782.png)
格子波兹曼方法
格子波兹曼方法(Lattice Boltzmann Method, LBM)是一种广泛应用于计算流
体力学领域的数值方法。
它基于分子动力学模型,通过离散化空间网格和时间步长来模拟复杂的流体流动问题。
格子波兹曼方法通过将流体宏观物理量离散化到网格上的节点,使用分布函数
描述流体粒子的运动。
流体粒子在相邻节点之间以一种特定的方式进行碰撞和传播,模拟流体的宏观行为。
格子波兹曼方法相对于传统的Navier-Stokes方程求解方法具有多个优势。
首先,它因其并行化的能力而广泛应用于高性能计算中。
其次,LBM的离散化框架使得
它在处理具有复杂边界条件和多相流问题时更加灵活。
此外,LBM对于非连续和
非均匀流体介质的模拟效果也相对较好。
格子波兹曼方法在各个领域都有广泛的应用。
在流体力学领域,LBM被用于
模拟自由表面流动、湍流现象和多孔介质中的流动行为。
在微观领域,LBM也被
用于模拟微观流体力学现象,例如微管流动和纳米颗粒悬浮体的输运行为。
除了流体力学领域,格子波兹曼方法还被应用于其他科学领域。
例如,它被用
于模拟热传导、传质过程、相变以及复杂物质的输运现象。
此外,LBM还被用于
模拟生物流体力学、地下水流动、大气动力学和地震波传播等问题。
综上所述,格子波兹曼方法是一个高效且灵活的数值方法,用于模拟复杂的流
体流动问题。
它在计算流体力学领域以及其他科学领域都有广泛的应用前景。
这种方法的进一步发展和应用将有助于我们更好地理解和预测流体行为,并解决相关领域的实际问题。
格子玻尔兹曼方法
![格子玻尔兹曼方法](https://img.taocdn.com/s3/m/705aee39a517866fb84ae45c3b3567ec102ddc95.png)
格子玻尔兹曼方法格子玻尔兹曼方法(Lattice Boltzmann Method,简称LBM)是一种基于微观粒子动力学的计算流体力学方法,它通过模拟流体微观粒子在格子空间上的运动来描述流体的宏观行为。
相比传统的有限元方法和有限差分方法,格子玻尔兹曼方法具有较好的并行性能和适应性,特别适用于多孔介质流动、复杂边界条件下的流动以及多相流等问题的模拟。
格子玻尔兹曼方法的基本思想是将流体系统离散化为一个个小的流体微团,这些微团在空间网格上运动,并通过碰撞和迁移过程来模拟流体宏观行为。
在每个时间步长内,微团在空间网格上按照一定的规则进行迁移,并在碰撞过程中遵循玻尔兹曼方程,通过碰撞和迁移过程来模拟流体的宏观行为。
通过在空间网格上迁移和碰撞的过程,可以模拟出流体的宏观运动规律,从而实现对流体流动的模拟和计算。
格子玻尔兹曼方法的优势之一是其较好的并行性能。
由于其基于网格的离散化特性,格子玻尔兹曼方法在并行计算上具有天然的优势,能够有效地利用多核、多节点的计算资源,实现对大规模流体问题的高效模拟。
这使得格子玻尔兹曼方法在计算流体力学领域得到了广泛的应用,特别是在大规模流体模拟和高性能计算方面具有很大的优势。
另外,格子玻尔兹曼方法在处理复杂边界条件和多相流问题上也具有一定的优势。
由于其基于微观粒子动力学的特性,格子玻尔兹曼方法能够比较灵活地处理复杂的边界条件,如固体边界、移动边界等,同时也能够较为方便地模拟多相流体的运动,包括气液两相流、多组分流体等,这使得格子玻尔兹曼方法在工程领域的应用具有广阔的前景。
总的来说,格子玻尔兹曼方法作为一种基于微观粒子动力学的计算流体力学方法,具有较好的并行性能和适应性,特别适用于多孔介质流动、复杂边界条件下的流动以及多相流等问题的模拟。
它在大规模流体模拟和高性能计算方面具有很大的优势,同时也能够比较灵活地处理复杂的边界条件和多相流问题,因此在工程领域具有广泛的应用前景。
格子玻尔兹曼方法的发展将为流体力学领域的研究和工程应用带来新的机遇和挑战。
关于多分布格子boltzmann模型的书
![关于多分布格子boltzmann模型的书](https://img.taocdn.com/s3/m/fd6a400de55c3b3567ec102de2bd960590c6d91c.png)
一、概述在统计物理学中,格子Boltzmann模型是一种用于研究粒子在晶格上动力学行为的模型。
在正常的Boltzmann统计力学中,粒子的分布是随机的,而多分布格子Boltzmann模型则引入了多个分布函数,用于描述粒子在不同的晶格上的分布情况。
本文将着重介绍多分布格子Boltzmann模型的相关理论和应用。
二、多分布格子Boltzmann模型的基本概念1. 格子Boltzmann模型的基本原理格子Boltzmann模型最早由硅谷大学的研究者提出,其基本原理是将晶格看作是一个离散的空间,粒子在晶格上的位置和动量也是离散的。
而多分布格子Boltzmann模型则是在每一个晶格上引入一个分布函数,用于描述该格子上粒子的分布情况。
2. 多分布格子Boltzmann模型的表达式多分布格子Boltzmann模型的表达式可以写成如下形式:\[ f_i(\mathbf{r},t) =\sum_{j=1}^{n}\alpha_{ijk}\phi_{ik}(\mathbf{r},t)\]其中,\( f_i(\mathbf{r},t) \)表示晶格i上粒子的分布函数,\( \alpha_{ijk}\)为一个系数,\( \phi_{ik}(\mathbf{r},t) \)为关于晶格i 上粒子的分布函数。
通过引入多个分布函数,我们可以更准确地描述粒子在不同晶格上的动力学行为。
3. 多分布格子Boltzmann模型的演化方程多分布格子Boltzmann模型的演化方程可以写成如下形式:\[ \frac{\partial f_i}{\partial t} + \mathbf{v}_i \cdot \nabla f_i = \frac{1}{\tau_i}(f_{i, eq} - f_i) \]其中,\( f_{i, eq} \)为平衡态分布函数,\( \tau_i \)为弛豫时间。
这个方程描述了不同晶格上粒子的分布函数随时间的演化情况,是多分布格子Boltzmann模型的关键之一。
格子玻尔兹曼方法
![格子玻尔兹曼方法](https://img.taocdn.com/s3/m/ca14c44d03020740be1e650e52ea551810a6c9d2.png)
格子玻尔兹曼方法格子玻尔兹曼方法(Lattice Boltzmann Method,简称LBM)是一种基于微观粒子动力学的计算流体力学方法,它是由Lattice Gas Automata(LGA)经过演化和发展而来的。
LBM是一种离散的方法,它通过在空间网格上模拟分子碰撞和传输过程来描述流体的宏观运动。
与传统的有限差分法、有限体积法相比,LBM具有计算效率高、并行性好、适应复杂边界条件等优点,因此在流体力学领域得到了广泛的应用。
LBM的基本思想是将流体系统离散化,将连续的流体宏观运动转化为离散的微观碰撞和传输过程。
在LBM中,流体被看作是由大量微观粒子组成的,这些微观粒子在空间网格上按照一定的规则进行碰撞和传输。
通过对微观粒子的运动状态进行统计,可以得到流体的宏观性质,如密度、速度等。
LBM的核心是格子玻尔兹曼方程(Lattice Boltzmann Equation,简称LBE),它描述了微观粒子在空间网格上的运动规律。
在LBM中,流体的宏观性质由分布函数来描述,分布函数是表示在某一时刻某一空间点上流体微观粒子的分布情况。
在每个时间步内,分布函数按照一定的规则进行碰撞和传输,通过迭代计算可以得到流体在空间网格上的演化过程。
LBM的计算过程可以并行化,因此在计算效率上具有明显的优势。
LBM的另一个优点是它对复杂边界条件的处理能力强。
由于LBM是基于离散网格的方法,因此可以比较容易地处理复杂的边界条件,如曲面边界、移动边界等。
这使得LBM在模拟复杂流体系统时具有一定的优势。
除此之外,LBM还有一些其他的优点,如对多相流、多孔介质流动等复杂流体现象的模拟能力强,对于非稳态流动和湍流流动的模拟也有一定的优势。
总之,格子玻尔兹曼方法作为一种新兴的计算流体力学方法,具有诸多优点,逐渐得到了流体力学领域的广泛关注和应用。
随着计算机硬件性能的不断提升,LBM的应用前景将更加广阔,相信它会在流体力学领域发挥越来越重要的作用。
封闭方腔自然对流的格子-Boltzmann方法动态模拟
![封闭方腔自然对流的格子-Boltzmann方法动态模拟](https://img.taocdn.com/s3/m/4e4049e9172ded630b1cb68f.png)
4.504 4.519 4.510 4.510 0.199%
8.767 8.800 8.806 8.805 0.056%
从表 1 中可以发现,采用本文所介绍的不可压缩双分布函数 TLBM 模型进行数值计算,得 到了比较精确的结果。相对误差
5. 方腔内自然对流的动态模拟
封闭方腔自然对流是热流耦合的经典问题,通过对其进行数值模拟而获得不同 Ra 情况
2. 物理模型
本文所计算的封闭方腔自然对流的物理模型如图 1 所示。封闭方腔高为 H ,上、下壁
1
本课题得到国家杰出青年科学基金资助项目(50425620)及高等学校博士学科点专项科研基金资助项目 -1(20050698036)资助。
Th + Tc ⎞ 面绝热,腔内充满 ρ = 3 , Pr = 0.71 ,温度 T = ⎛ ⎜ ⎟ 的均质 ⎝ 2 ⎠
p i x + ei dt , t + dt − p x, t = −
(
) ( )
dtτ p Fi dt p i − pieq + τ p + 0.5dt τ p + 0.5dt
(
)
(6)
g i x + ei dt , t + dt − g x, t = −
(
) ( )
p dt dt g i − gieq − Z i 2i τ g + 0.5dt τ g + 0.5dt cs
(
)
(7)
图 2. D2Q9 模型
。 其中 τ p ,τ g 分别为运动和热方程的松弛时间; cs 为声速( cs = 1/ 3 ) 流体的宏观参量(包括压力,速度,温度及热流等)可按下列各式计算:
格子boltzmann方法的原理与应用
![格子boltzmann方法的原理与应用](https://img.taocdn.com/s3/m/62c6436559fb770bf78a6529647d27284b73379b.png)
格子Boltzmann方法的原理与应用1. 原理介绍格子Boltzmann方法(Lattice Boltzmann Method)是一种基于格子空间的流体模拟方法。
它是通过离散化输运方程,以微分方程的形式描述气体或流体的宏观运动行为,通过在格子点上的分布函数进行更新来模拟流体的动态行为。
格子Boltzmann方法的基本原理可以总结为以下几点:1.分布函数:格子Boltzmann方法中,将流场看作是由离散的分布函数表示的,分布函数描述了在各个速度方向上的分布情况。
通过更新分布函数,模拟流体的宏观行为。
2.离散化模型:为了将连续的流场问题转化为离散的问题,格子Boltzmann方法将流场划分为一个个的格子点,每个格子点上都有一个对应的分布函数。
通过对分布函数进行离散化,实现流场的模拟。
3.背离平衡态:格子Boltzmann方法假设流体运动迅速趋于平衡态,即分布函数以指定的速度在各个方向上收敛到平衡分布。
通过在更新分布函数时引入碰撞过程,模拟流体的运动过程。
4.离散速度模型:分布函数描述了流体在各个速度方向上的分布情况,而格子Boltzmann方法中使用的离散速度模型决定了分布函数的更新方式。
常见的离散速度模型有D2Q9、D3Q15等。
2. 应用领域格子Boltzmann方法作为一种计算流体力学方法,已经在各个领域得到了广泛的应用。
以下是一些常见的应用领域:2.1 流体力学模拟格子Boltzmann方法具有良好的可并行性和模拟精度,适用于复杂流体流动的模拟。
它可以用于模拟包括自由表面流动、多相流动、多物理场耦合等在内的各种复杂流体力学问题。
2.2 细胞生物力学研究格子Boltzmann方法在细胞力学研究中也有广泛应用。
通过模拟流体在细胞表面的流动,可以研究细胞运动、变形和介观流的形成机制。
格子Boltzmann方法在细胞生物力学领域的应用已成为一个重要的研究方向。
2.3 多相流模拟格子Boltzmann方法在多相流动模拟中的应用也非常广泛。
传热学格子玻尔兹曼方法计算方法的特点
![传热学格子玻尔兹曼方法计算方法的特点](https://img.taocdn.com/s3/m/bfcafa41e97101f69e3143323968011ca300f784.png)
传热学格子玻尔兹曼方法计算方法的特点摘要本文讨论了传热学中的格子玻尔兹曼方法,并分析了这一计算方法的特点。
首先,我们介绍了传热学的基本概念和研究背景。
然后,我们详细解释了格子玻尔兹曼方法的原理和模拟过程。
接着,我们探讨了该方法的特点,包括计算效率、模拟精度和适用范围等。
最后,我们总结了格子玻尔兹曼方法在传热学中的应用前景,并提出了进一步研究的方向。
1.引言传热学是研究能量从一个物体传递到另一个物体的学科。
在工程领域中,传热问题经常出现在热流体系统的设计和优化中。
传热过程涉及热传导、对流和辐射等多种传热机制,准确模拟传热过程对于工程实践和科学研究具有重要意义。
格子玻尔兹曼方法(L a tt ic eB ol tz ma nnM e th od,L BM)是一种基于微观颗粒模拟传输过程的计算方法,近年来在传热学领域得到了广泛应用。
与传统的求解传热方程的数值方法相比,格子玻尔兹曼方法通过模拟颗粒在格子上的运动来描述流体的宏观行为,具有更高的计算效率和更灵活的模拟能力。
2.格子玻尔兹曼方法原理格子玻尔兹曼方法基于玻尔兹曼方程和格子自动机理论,通过在一个规则的网格上模拟微观颗粒的运动来模拟流体的运动。
格子玻尔兹曼方法的基本原理是将流体分割成一系列小的正方体,每个正方体称为格子。
在每个格子中,通过对流、碰撞和反弹等过程来模拟颗粒之间的相互作用。
格子玻尔兹曼方法的模拟过程可以分为以下几个步骤:1.确定模拟区域的网格分布和流体的边界条件。
2.初始化流体的宏观和微观状态,在格子中随机分布将流体颗粒的速度和密度初始化为一定状态。
3.对于每个时间步长,根据碰撞和对流过程更新格子中流体颗粒的状态。
4.根据流体颗粒的状态计算宏观流体变量,如流速和压力等。
5.重复步骤3和4,直到达到设定的模拟时间。
3.格子玻尔兹曼方法特点格子玻尔兹曼方法具有以下几个特点:3.1计算效率高格子玻尔兹曼方法在模拟复杂流体系统时具有较高的计算效率。
格子boltzmann方法的理论及应用
![格子boltzmann方法的理论及应用](https://img.taocdn.com/s3/m/25cda7acbdeb19e8b8f67c1cfad6195f312be817.png)
格子boltzmann方法的理论及应用
格子波尔兹曼方法(Grid Boltzmann Method, GBM)是一种非离散化处理方法,其基本
思想是在空间上采用格点,并建立格点微分方程组来解决复杂流体或者其他相关物理问题. GBM以较少的计算量就可达到快速、精确求解流体动力学问题,而且将空间和时间分离,
大大减少计算量和存储量,可以说是比传统有限元技术和有限差分技术更加有效的一种方法.
格子波尔兹曼方法的具体原理是:格子波尔兹曼方法是将空间上的解释解划分成一系
列的蒙特卡洛格子点,这样可以以非离散化处理。
针对与流体物理仿真相关的变量,以格
点位置为基底,可以使用波尔兹曼分布Y(v)来描述,将原本复杂的多体相互作用模型转化为简单的蒙特卡洛定值模型,由此通过空间离散的方式可以求解波尔兹曼方程;具体的应
用也很广泛,可以应用在流体动力学中,可用来模拟很多液体问题,比如湍流传播和燃烧
等方面;在地形风化中可以用来模拟流域洪水演变和地形演化、土壤流失问题;在水质污
染领域,可以用来模拟河流污染物质运行规律;在非牛顿流体中,可用来模拟非牛顿流体
动力学问题;在金属粒子、微粒或者多组分液体中,可用来模拟粒子间相互作用,甚至可
以应用在非弹性波中进行数值模拟.
格子波尔兹曼方法因其独特的优越性深受广泛重视,在国内外都有大量的研究,结合
其他的数值方法,用于模拟复杂的流体物理系统,改善计算效率,提高建模的准确性。
GBM具有更快的计算速度和精度优势,在现代的科学技术领域有着广泛的应用,如流体动
力学,地形风化,水质污染等问题。
该方法不仅可用作模拟计算复杂流体运动,而且可以
用于半定常及强力学分析中。
格子玻尔兹曼 尺度
![格子玻尔兹曼 尺度](https://img.taocdn.com/s3/m/0a2125ba0342a8956bec0975f46527d3240ca601.png)
格子玻尔兹曼尺度格子玻尔兹曼方法(Lattice Boltzmann Method,简称LBM)是一种数值模拟流体动力学问题的方法,它在描述宏观流体行为的同时,通过微观粒子运动的模拟,融合了统计力学和流体动力学的理论。
在LBM中,液体或气体的宏观行为是通过模拟在离散格点上的微观粒子分布函数的演化来实现的。
在这个方法中,尺度是一个关键概念,它涉及到离散化的空间、时间和速度。
一、空间尺度在格子玻尔兹曼方法中,空间被离散化为一个个的格点。
每个格点上都有一个分布函数,描述了在该位置上不同速度的粒子的密度。
格子的大小通常表示为Δx,这是模拟空间的离散尺度。
通过空间上的格点,可以对流体的宏观行为进行描述,例如速度场、密度场等。
二、时间尺度时间也被离散化为小的时间步长Δt。
在每个时间步长内,通过更新分布函数,模拟流体的演化。
时间尺度的选择对于数值模拟的稳定性和精度有着重要的影响。
通常,Δt 的选择需要满足稳定性条件,以确保模拟结果的准确性。
三、速度尺度速度空间被分割为一组离散的速度,通常表示为DnQm,其中D是维度,n是速度方向的数量,m是每个速度方向上的粒子速度数。
例如,在二维空间中,D=2,可能有9个速度方向,称为D2Q9。
这些速度通常是在规范化的格子上的离散速度,例如,D2Q9 中的速度可以是(-1,0), (0,-1), (0,0), (0,1), (1,0) 等。
速度尺度的选择影响了模拟的准确性和收敛性。
四、微观尺度和宏观尺度的关联LBM的独特之处在于它能够从微观尺度上模拟粒子的行为,并通过统计的方式获得宏观流体的行为。
微观尺度上,粒子的碰撞和迁移通过分布函数的演化进行模拟;而宏观尺度上,通过宏观物理量的统计平均值,如密度和速度,来描述流体的整体行为。
这种微观和宏观之间的关联是LBM的独特之处,使其在模拟复杂流体问题时具有一定的优势。
五、应用领域复杂流体行为模拟:LBM广泛应用于模拟多孔介质中的流体行为、多相流体的相分离、微尺度流动等复杂流体问题。
格子boltzmann法
![格子boltzmann法](https://img.taocdn.com/s3/m/595f07e2db38376baf1ffc4ffe4733687e21fc3f.png)
格子boltzmann法
格子波尔兹曼法(Grid-Based Boltzmann Method)是用于计算复杂系统的一种数值模拟方法,该方法基于玻尔兹曼方程,采用格子划分的非总熵方案计算分布函数所描述的传播动力学系统的平衡性质。
格子波尔兹曼方法由三个部分组成,分别是分子动力学基础、格子化方案以及格点迭代方案。
在空间上,格子波尔兹曼方法采用密度聚类格子,由于每个格子内节点之间的影响,允许改变每个节点状态。
在时间上,格子波尔兹曼方法通过欧拉法和龙格-库塔法,将弹性系统的猝灭问题转换为一个接近平衡态的迭代问题。
最终,根据初始条件和格子化方案计算本征周期、如粒子操纵力学系统中的陷阱模式等。
应用d2q9格子玻尔兹曼模型
![应用d2q9格子玻尔兹曼模型](https://img.taocdn.com/s3/m/50ef5944eef9aef8941ea76e58fafab068dc444b.png)
对高雷诺数流动的模拟
该模型在模拟高雷诺数流动时可能存 在局限性,需要采用更精细的离散方 法。
05
模型优化与改进建议
算法优化
采用快速格子玻尔兹曼方法
通过采用快速格子玻尔兹曼方法,可以降低算法的时间复杂度, 提高模型的计算效率。
优化边界条件处理
针对边界条件的处理进行优化,例如采用周期性边界条件或者采用 更加高效的边界处理方法,可以减少计算量和内存占用。
意义
通过研究d2q9格子玻尔兹曼模型,可以更好地理解流体流动和传热过程的微观 机制,为实际工程应用提供理论支持和指导。
研究现状与发展
现状
目前,d2q9格子玻尔兹曼模型已经在多个领域得到广泛应用,如航空航天、能 源、材料科学等。然而,该模型在某些复杂流动和传热环境下仍存在一定的局限 性。
发展
随着计算机技术的进步和数值模拟方法的不断完善,d2q9格子玻尔兹曼模型将 有望在更多领域发挥其优势,同时其应用范围也将不断扩大。
误差,提高模型的精度。
并行计算实现
01
02
03
分布式内存并行化
通过分布式内存并行化, 可以利用多台计算机的内 存资源,提高模型的计算 速度和效率。
并行化碰撞处理
通过并行化碰撞处理,可 以利用多核CPU的计算资 源,提高模型的计算速度 和效率。
并行化边界处理
通过并行化边界处理,可 以利用多核CPU的计算资 源,提高模型的计算速度 和效率。
D2Q9模型的数值实现
D2Q9模型的数值实现主要包括以下几个步骤
碰撞过程:根据分子速度和位置进行碰撞,更新速度分 布函数。
时间步进:根据设定的时间步长重复进行碰撞和迁移过 程,直到达到稳定状态或达到预设的计算时间。
格子boltzmann方法模拟磁场作用下的融化传热过程
![格子boltzmann方法模拟磁场作用下的融化传热过程](https://img.taocdn.com/s3/m/a20cb10a86c24028915f804d2b160b4e767f81eb.png)
格子boltzmann方法模拟磁场作用下的融化传热过程格子Boltzmann方法模拟磁场作用下的融化传热过程在磁场作用下的融化传热过程中,格子Boltzmann方法是一种有效的模拟方法。
本篇文章将介绍格子Boltzmann方法的基本原理,以及如何将其应用于磁场作用下的融化传热过程的模拟。
一、格子Boltzmann方法的基本原理格子Boltzmann方法是一种将Boltzmann方程离散处理的方法,其基本思想是将连续的时间、空间和速度分别离散化为有限的格子、节点和速度。
格子Boltzmann方法的核心是通过在节点上求解宏观量来间接地求解微观分布函数。
在格子Boltzmann方法中,宏观量的演化由Boltzmann方程确定,微观分布函数的演化由碰撞规则确定。
二、磁场作用下的融化传热过程的模拟1.建立模型在磁场作用下的融化传热过程中,我们需要先建立一个三维的模型。
该模型应包括固体、液体和磁场三个部分。
我们需要将模型离散化为有限的节点、格子和速度。
2.设置初始条件在模拟之前,我们需要设置初始条件,包括初始温度、磁场强度和方向等。
这些参数将决定模拟的精度和效果。
3.计算流场和热传递在模拟过程中,我们需要通过求解Navier-Stokes方程和能量方程来计算流场和热传递。
这些方程可以通过格子Boltzmann方法来解决。
4.模拟磁场作用在模拟过程中,我们还需要考虑磁场的作用。
磁场可以通过求解Maxwell方程组来模拟。
这些方程组也可以通过格子Boltzmann方法来解决。
5.反馈效应在模拟过程中,我们需要考虑反馈效应。
反馈效应是指液体的运动将会影响磁场的分布,而磁场的分布又会影响液体的运动。
这种反馈效应可以通过将磁场和流场相互耦合来解决。
三、总结在磁场作用下的融化传热过程中,格子Boltzmann方法是一种有效的模拟方法。
通过建立模型、设置初始条件、计算流场和热传递、模拟磁场作用和考虑反馈效应,我们可以成功地模拟出这一过程。
热格子Boltzmann法分析及应用
![热格子Boltzmann法分析及应用](https://img.taocdn.com/s3/m/78da8106a66e58fafab069dc5022aaea998f416b.png)
热格子Boltzmann法分析及应用陈杰;钱跃竑【摘要】格子Boltzmann方法(lattice Boltzmann method,LBM)是一种基于气体动理论的介观计算方法,其物理背景清晰、边界处理简单,已成功应用于等温(或无热)流动中.简要介绍现有的几种热格子Boltzmann模型,并运用几种热格子模型求解热Couette流、方腔自然对流等典型算例,对比不同热格子模型的数值稳定性、准确性、模型的计算效率等.将两种热格子模型用于多孔介质内的流动与传热问题中,对比热格子模型在处理复杂结构时的数值特性.%Lattice Boltzmann method (LBM) is a mesoscale computational method based on the gas kinetic theory. For solving Fourier-Navier-Stokes equations, the thermal lattice model has attracted much research attention. This paper compares several thermal lattice models in terms of accuracy, stability and computational efficiency. The thermal flow in pore-scale porous is also studied using different thermal lattice models.【期刊名称】《上海大学学报(自然科学版)》【年(卷),期】2012(018)005【总页数】7页(P489-495)【关键词】格子Boltzmann方法;热格子Boltzmann方法;多孔介质【作者】陈杰;钱跃竑【作者单位】上海大学上海市应用数学和力学研究所,上海200072;上海大学上海市应用数学和力学研究所,上海200072【正文语种】中文【中图分类】O351格子Boltzmann方法(lattice Boltzmann method,LBM)是近20年发展成熟起来的一种数值计算方法.LBM基于气体动理论,通过分布函数的演化获得宏观信息.作为一种简单且能处理复杂流动问题的有效数值方法[1-2],LBM具有良好的数值稳定性、天然的并行性、简单的边界处理等优点,自出现之日起就被广泛用于多孔介质流[3]、多相流[4]、反应扩散系统[5]等诸多领域.早期的LBM只应用于等温流动(或无热流动)的模拟,但是基于这种方法具备处理复杂问题的能力以及解决传热问题的需要,研究者一直在不断地探索研究热格子Boltzmann模型,已形成了一些经过数值验证具有模拟热流动能力的热LBM[6-10],并应用于多孔介质流动与传热、燃烧及化学反应流、湍流等问题.本研究简述了不同热格子Boltzmann模型的基本理论,并通过数值分析对比了不同热格子Boltzmann模型的计算结果及数值特性,进而用于多孔介质流动传热问题中.1 等温LBM基本原理LBM中除时间、空间被离散之外,无限维的粒子速度空间也都被离散成有限的速度序列.在标准LBM模型中,物理空间被离散成正方形(体)格子,流体粒子在格点x上碰撞并按离散速度E=[e0,e1,…,eq-1]迁移到x+eiδt格点.fi(x,t)定义为t时刻在格点x上速度为ei的粒子密度,满足如下的格子Boltzmann方程:式中为平衡态函数,ω为松弛因子.通过简单地向平衡态不断趋近的过程代替真实的复杂碰撞,即BGK(Bhatnagar-Gross-Krook)近似,所以此模型也称为LBGK 模型.平衡态分布函数的选取是LBM的关键.DnQm系列[1]中均采用式中,cs为格子声速,Wi为不同速度粒子的权重.本研究在数值模拟中均采用D2Q9模型.宏观密度和速度分别定义为2 热格子Boltzmann模型现有的热格子Boltzmann模型通常可以分为两大类:第一类是流场温度场耦合统一求解的模型,如多速格子Boltzmann模型(multi-speed LBM,MSLBM)、熵格子Boltzmann方法(entropic LBM,ELBM);另一类则是对流场与温度场分别求解,如被动标量格子Boltzmann模型(passive scalar LBM,PSLBM)、双分布函数(double-distribution-function,DDF)模型,以及其他与传统计算流体动力学(computational fluid dynamics,CFD)结合的混合方法,如混合热格子Boltzmann方法(hybrid-thermal LBM,HTLBM).2.1 多速格子Boltzmann模型(MSLBM)多速格子Boltzmann模型是等温LBM模型的直接推广,其密度、速度、内能等均由速度分布函数的各阶速度矩得到.Qian[6]基于等温LBGK模型,提出了D1Q5,D2Q13,D3Q21,D3Q25热力学LBGK模型.在这些模型中,除了要满足等温模型的守恒条件外,还应满足能量守恒和平衡态热通量为0的条件:平衡态分布函数是Maxwell分布的截断形式:式中,Ap,Bp,Dp为待定参数,由满足的守恒条件确定.平衡态包含了速度的三阶项,离散速度也在D2Q9的基础上在主坐标轴上增加了4个速度.Qian[6]采用此模型对一维激波管、二维 Rayleigh-Benard对流进行了模拟,证明了该模型的有效性.MSLBM具有良好的物理基础,宏观方程绝对耦合,已成功模拟了一些传热现象,但只能模拟狭窄的温度范围和较小的Ma数,存在稳定性问题,限制了该模型的广泛应用.2.2 熵格子Boltzmann方法(ELBM)熵格子Boltzmann方法考虑了H定理,通过在守恒约束下最小化波尔兹曼H函数求解平衡态分布函数,由此得出的正定的分布函数保证了模型的稳定性和准确性[11].Prasianakis等[10]将ELBM拓展到热流动问题的求解中,证实了该方法的有效性,本研究参照此方法.H函数定义为平衡态分布函数则是在满足守恒约束条件:的情况下,求H函数最小值得到的,具体形式详见文献[10].Prasianakis等[12]采用在ELBM中加入高阶量的补偿算法,较大地提高了基于D2Q9标准格子的ELBM可模拟的温差和Ma数,但是模型实施较为复杂.2.3 双分布函数模型双分布函数模型,即存在两个分布函数:密度分布函数和内能(温度或总能)分布函数,其中密度分布函数用于模拟速度场,而内能(温度或总能)分布函数则用来模拟温度场.温度、内能或总能分布函数均通过不同的方式构造,但其演化都独立于密度分布函数.2.3.1 被动标量格子Boltzmann模型(PSLBM)被动标量格子Boltzmann模型基于如下原理:在忽略压力做的功和粘性热耗散的情况下,温度可以看作是随流体运动的一个标量,遵循对流扩散方程.由于此方程与组分浓度场的控制方程一样,于是Shan[7]提出使用两组分模型模拟单组分热流动问题:组分1模拟流体的运动;组分2模拟被动的温度场.平衡态密度函数为式中,σ表示组分,两组分共享速度,2.3.2 内能双分布函数模型内能双分布函数模型最早由He等[8]提出,其速度场仍用密度分布函数演化模拟,温度场则由内能分布函数模拟.该模型的基本思想是通过对连续Boltzmann方程进行特殊的离散得到等温LBM,如果进行同样的操作,则热LBM可以由离散内能的演化方程得到.根据内能的定义ρε=∫(ξ-u)2/2f dξ,引入内能分布函数g(r,ξ,t)=(ξ-u)2f/2,并引入新的碰撞模型,得到内能分布函数满足的演化方程:式中,q=(ξ-u)·[∂tu+(ξ·)u].然后对演化方程离散,得到可用于数值计算的离散的分布演化方程,具体的离散过程详见文献[8].相比于PSLBM,内能DDF的构造更具有物理基础,并包含了粘性热耗散和可压缩功.相比于MSLBM,DDF模型具有更好的数值稳定性,Pr数不受限制,因此被广泛用于各种近似不可压流体流动与传热问题.2.4 混合热格子Boltzmann模型(HTLBM)HTLBM是指使用 LBM解速度场,使用传统CFD解温度场,并通过一定的方式相互影响.这种方法利用了LBM能简单处理复杂流动问题的优势以及传统CFD在传热问题上的成熟技术,可以处理一些仅仅使用传统CFD较难解决的复杂流动传热问题.最初,Lallemand等[13]将多速多松弛模型和有限差分法(finite difference method,FDM)相结合,提出了混合模型,速度场用多松弛LBM求解,温度场采用FDM求解.本研究采用有限容积法(finite volume method,FVM)与LBM相结合的混合方法,即采用如下的FVM求解能量守恒方程:式中,S为广义源项,包括压力做的功和粘性热耗散.速度场与温度场的耦合通过在LBM中添加温度相关的外力项以及在FVM中添加广义源项S来实现.此外,普朗特数、比热容等热物性以及随温度变化的输运系数可以实现相应的调节.本研究中FVM与LBM采用同一套网格系统,FVM采用绝对稳定且具有与LBM相同精度的二阶迎风格式(second-order upwind scheme,SUS).PSLBM,DDF以及HTLBM这类模型的一个关键之处在于流场与温度场之间的耦合,其模型往往不满足气体完全状态方程,温度场对速度场的影响只是通过施加一个外力来实现.如Guo等[9]针对Boussinesq方程组,通过在密度分布函数演化方程中增加一个外力项以实现温度对流场的影响.Filippova等[14]基于HTLBM研究了小Ma数下高温燃烧,用温度场修正密度场以满足状态方程.3 计算结果及分析为了进一步对比各类模型,本研究采用ELBM,PSLBM,内能DDF模型以及HTLBM,对热Couette流、封闭方腔自然对流和多孔介质内非等温流动等问题进行了模拟对比.3.1 热Couette流模拟考虑两平板间热Couette流,上平板以速度U向右运动,下板静止,且上下平板分别保持恒温Th,Tc,且Th>Tc.横截面温度廓线的解析形式为式中,H为平板间距离,Pr=ν/χ为普朗特数,χ为热扩散系数,Ec=U2/[Cp(Th -Tc)]为埃克特数.热Couette流中不考虑流体可压缩性的影响,而粘性耗散效应明显,因而分别运用ELBM,内能DDF模型和HTLBM对该问题进行了模拟,网格数均为64×64.模拟中Re=UH/ν=20,计算结果如图1所示.固定Pr=4,Ec分别为1,10和20的无量纲温度廓线,散点为不同方法的计算值,曲线为解析解公式(10).由图可见,三种模型都成功模拟了粘性耗散效应,且与解析解吻合得很好.本工作进一步研究了三种模型的计算效率问题.图2给出了温度残差随CPU时间的变化曲线,可见ELBM和HTLBM明显优于内能DDF模型.3.2 封闭方腔自然对流模拟封闭方腔尺寸为H(正方形边长),左右壁面分别保持恒温Th,Tc,且Th>Tc,上下壁面绝热,四壁面速度均为无滑移边界.方腔内充满均质空气,考虑向下的重力.描述自然对流的无量纲参数Ra数定义为图1 热Couette流温度廓线Fig.1 Temperature variation of the thermal Couette flow图2 热Couette流温度残差变化曲线Fig.2 Temperature residuals variation of the thermal Couette flow式中,β为热膨胀系数.物性满足Boussinesq假设,这里通过施加外力G=-β(T-T0)g实现温度场对速度场的影响.在方腔自然对流中,可压缩效应以及粘性耗散效应可忽略不计.从模型分析可以看出,PSLBM在这种情况下与DDF模型类似,而ELBM边界实施较为复杂.因此,本研究分别采用不包含粘性耗散效应的PSLBM和HTLBM对该问题进行了模拟,模拟中Pr=0.71,Ra数分别为104,105和106.图3和图4分别为HTLBM在不同Ra数下流动稳定后得到的流线、等温线,与以往的数值及实验结果一致.由图3可见,随着Ra数的增大,方腔中心的近似圆形的涡逐渐变成椭圆形,进而分裂成两个涡.当Ra= 106时,两个涡分别向左右壁面移动,在中心出现了第三个涡.由图4可见,随着Ra数的增大,竖直的等温线逐渐变得水平,主导的传热机理由导热变为对流.为了进一步定量考核,本研究计算了努塞尔数Nu和平均努塞尔数 Numean.表1给出了热壁面的Numean、最大Nu数Numax及相应位置的yNumax、水平中心线上最大速度vmax及相应的位置x、垂直中心线上最大速度umax以及相应的位置y.HTLBM和PSLBM求解的结果与Barakos等[15]的基准解一致.同样,本研究对HTLBM和PSLBM的计算效率进行了对比,图5所示为两种方法模拟自然方腔对流Ra=105时,速度残差随CPU时间的变化曲线.可以明显看出,两种方法中残差均呈现震荡下降趋势,且HTLBM收敛快于PSLBM,HTLBM残差收敛到10-7以下时的耗时为PSLBM的57%.图3 方腔自然对流不同Ra数的流线Fig.3 Predicted streamlines of natural convection图4 方腔自然对流不同Ra数的等温线Fig.4 Predicted temperature profiles of natural convection表1 数值解与基准解对比Table 1 Comparison of numerical results between thermal models and benchmarksRa数模型 Numean Numax(y/H) umax(y/H) vmax(x/H) PSLBM 2.247 3.538(0.141) 0.194(0.824) 0.234(0.121) Ra=104 HTLBM 2.242 3.553(0.145) 0.194(0.824) 0.234(0.121) Barakos等[16]2.2453.539(0.143) 0.193(0.818) 0.234(0.119) PSLBM4.512 7.827(0.075)0.128(0.854) 0.256(0.065) Ra=105 HTLBM 4.507 7.723(0.085) 0.134(0.854) 0.260(0.065) Barakos等[16] 4.510 7.636(0.085) 0.132(0.859) 0.258(0.066) PSLBM 8.809 17.454(0.033) 0.079(0.852) 0.261(0.037) Ra=106 HTLBM 8.792 17.435(0.040) 0.081(0.854) 0.263(0.040) Barakos等[16] 8.80617.442(0.037) 0.077(0.859) 0.262(0.039)图5 方腔自然对流速度残差变化曲线Fig.5 Velocity residuals variation of thenatural convection3.3 多孔介质非等温流动模拟多孔介质内部结构十分复杂,其流动传热现象也相当复杂.格子Boltzmann方法在模拟孔隙内的流体运动时可以方便地使用反弹格式处理复杂流场,因此,该方法在孔隙尺度模拟多孔介质内部复杂流动上有明显的优势及较高的计算率.对于多孔介质内流动与传热的问题,以往使用比较广泛的是PSLBM和内能DDF模型.本研究将HTLBM用于多孔介质流动与传热分析中,并与PSLBM进行了对比.本研究分析了分形多孔介质中的自然对流,分形结构采用Sierpinski地毯,依次对分形等级N=2和3的Sierpinski情况进行了模拟.无量纲控制参数Pr=0.71,Ra数分别为104,105和106,固体区域温度保持线性温度分布.图6为采用HTLBM计算N= 2分形结构内自然对流得到的流线图,图7为相应的等温线.由图可见,模拟结果与PSLBM一致,随Ra数的逐步增大,传热机理由导热主导变化为对流主导.图8为N=3,Ra=106时的流线图及等温线.由图可见,固体的增多明显地抑制了对流作用.同样对HTLBM在计算效率的问题上和PSLBM进行了对比.图9为Ra=106时两种方法模拟N=2分形结构时的速度残差曲线,此时HTLBM耗时为PSLBM的76%,仍具有优势.图6 多孔介质方腔自然对流流线(N=2)Fig.6 Predicted streamlines of porous cavity(N=2)图7 多孔介质方腔自然对流等温线(N=2)Fig.7 Predicted temperature profiles of porous cavity(N=2)图8 多孔介质方腔自然对流流线及等温线(N=3)Fig.8 Predicted streamlines and temperature profiles of porous cavity(N=3)4 结论本研究简要介绍了几种热格子Boltzmann模型(MSLBM,ELBM,PSLBM,内能DDF模型及HTLBM),并运用不同热格子模型求解了两个典型算例以及多孔介质流动传热问题,得到如下结论.图9 多孔方腔自然速度残差变化曲线Fig.9 Velocity residuals variation of porous cavity(1)速度场温度场耦合求解的模型还需要进一步发展才能被广泛应用.(2)相比于PSLBM和DDF模型,HTLBM在保证计算精度的前提下,具有较高的计算效率.(3)数值模拟验证了HTLBM在处理多孔介质复杂结构时可行、有效,且比PSLBM 的效率高.参考文献:[1] QIANY H,D’HUMIERESD,ttice BGK models for Navier-Stokes equation [J].Europhysics Letters,1992,17(6):479-484. [2] QIANY H,SUCCIS,ORSZAGS A.Recent advances in lattice Boltzmann computing[M]∥ DIETRICH S.Annual reviews of computational physicsⅢ.New J ersey:World Scientific Publishing Company,1995:195-224.[3] ZHAOC Y,DAIL N,TANGG H,et al.Numerical study of natural convection in porous media(metals) using lattice Boltzmann method (LBM) [J].International Journal of Heat and Fluid Flow,2010,31 (5):925-934. [4]严永华,石自媛,杨帆.液滴撞击液膜喷溅过程的LBM模拟[J].上海大学学报:自然科学版,2008,14(4):399-404.[5]李青,徐旭峰,周美莲.三维斑图形成的格子Boltzmann方法模拟[J].上海大学学报:自然科学版,2007,13(5):516-518.[6] QIANY H.Simulating thermohydrodynamics with lattice BGK models [J].Journal of Scientific Computing,1993,8(3):231-242.[7] SHANX.Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method[J].Physical Review E,1997,55(3):2780-2788. [8] HEX,CHENS,DOOLENG D.A novel thermal model for the latticeBoltzmann method in incompressible limit[J].Journal of Computational Physics,1998,146 (1):282-300.[9] GUOZ,ZHENGC,SHIB,et al.Thermal lattice Boltzmann equationfor low Mach number flows:Decoupling model[J].Physical Review E,2007,75 (3):036704.[10] PRASIANAKISN I,CHIKATAMALAS S,KARLINI V,et al.Entropic lattice Boltzmann method for simulation of thermal flows[J].Mathematics and Computers in Simulation,2006,72(2):179-183. [11] ANSUMALIS,KARLINI V,OTTINGERH C.Minimal entropic kinetic models for hydrodynamics [J].Europhysics Letters,2003,63(6):798-804.[12] PRASIANAKISN I,KARLINI ttice Boltzmann method for simulation of compressible flows on standard lattices[J].Physical Review E,2008,78(1):016704.[13] LALLEMANDP,LUO L S.Theoryofthelattice Boltzmann method:Acoustic and thermal properties in two and three dimensions[J].Physical Review E,2003,68(3):036706.[14] FILLIPPOVAO,HANELlD.A novellatticeBGK approach for low Mach number combustion[J].Journal of Computational Physics,2000,158(2):139-160.[15] BARAKOSG,MITSOULISE,ASSIMACOPOULOSD.Natural convection flow in a square cavity revisited:Laminar and turbulent models with wall functions[J].International Journal for Numerical Methods in Fluids,1994,18(7):695-719.。
格子玻尔兹曼方程
![格子玻尔兹曼方程](https://img.taocdn.com/s3/m/024c3eaeb8d528ea81c758f5f61fb7360b4c2b63.png)
格子玻尔兹曼方程格子玻尔兹曼方程(Grid-Boltzmannequation, GBE)是一种用于模拟流体及其相关运动的模型,它把流体运动简化为一组微分方程。
它通常由物理学家和工程师用来求解流体力学问题,如流体的压强,速度,温度和扩散等。
格子玻尔兹曼方程的出现,使我们能够进行更详尽的模拟,并能以系统化的方法解决类似问题。
格子玻尔兹曼方程在20世纪80年代中期出现,它是由荷兰物理学家赫尔斯特罗士顿(Hans Rolsdston)首先提出的。
他提出了一个对玻尔兹曼方程的一般化,其中的参数在每个空间点上也受到变化。
格子玻尔兹曼方程实际上是一个概率密度函数(probability density function,PDF)方程,可以用来描述一个系统的时间和空间变化。
它的三个基本组成部分都是十分重要的,第一个是玻尔兹曼函数,它用于定义一个分子的速度分布,第二个是扰动项,其作用是把碰撞模拟到模型中,第三个是流体动力学方程,它能够激发流体在空间和时间上的变化。
有了格子玻尔兹曼方程,我们可以使用它来研究流场的时间和空间变化,比如气流场中的复杂问题。
它可以运用来模拟流体的运动状态,例如紊流,还可以用来模拟混合作用,如输运现象和温度的变化。
另外,格子玻尔兹曼方程还可以用于研究电流场中的现象,比如电池的作用和电场的影响;同样也可以用来研究磁流场中的现象,如磁化作用,磁场的影响等。
格子玻尔兹曼方程为流体力学提供了一种全新的解决方案,它使得我们可以更加精确地模拟出这些现象,同时也为其它基于数学方法的计算提供了可能性。
其优点是其精度非常高,一般情况下它可以提供更为准确的结果,使得我们的计算可以更加低廉,同时我们也可以将它运用于其它领域,如生物学、计算机科学等。
格子玻尔兹曼方程已经广泛应用于研究各类物理系统,其成果也得到了广泛的应用,是当今很多研究的重要部分。
此外,格子玻尔兹曼方程也在计算机模拟技术中发挥着重要作用,因为它能够更好地描述流体系统中复杂的运动状态,从而使我们更加准确地模拟出结果,同时也能够提高计算效率。
流体动力学的格子boltzmann方法及其具体实现
![流体动力学的格子boltzmann方法及其具体实现](https://img.taocdn.com/s3/m/a1daf660302b3169a45177232f60ddccda38e61d.png)
流体动力学的格子boltzmann方法及其具体实现格子Boltzmann方法是以Boltzmann方程为基础的,该方程描述了流体中粒子的运动。
格子Boltzmann方法将模拟的流体区域划分为一个个离散的格子,并在每个格子中表示流体的宏观属性,如密度、速度等。
在每个格子中,通过计算碰撞和分布函数来模拟粒子的运动。
具体实现格子Boltzmann方法的步骤如下:1.离散化:首先,将流体区域离散化为一个个格子。
格子的大小可以根据需要进行调整。
2.分布函数:在每个格子中,引入分布函数来描述粒子的密度和速度。
分布函数是一个概率密度函数,表示在给定位置和速度的条件下,粒子在该位置具有该速度的概率。
3.碰撞模拟:在每个格子中,模拟粒子之间的碰撞。
根据碰撞模型,计算粒子之间的相互作用,并更新分布函数。
4.传输:根据速度和分布函数,计算粒子的传输过程。
传输过程描述了粒子从一个格子到另一个格子的流动。
5.边界条件:在模拟流体区域的边界上,需要设置适当的边界条件。
边界条件可以影响流体的流动模式。
6.时间步进:通过迭代计算,不断更新格子中的分布函数。
每个时间步长都对应着碰撞和传输的过程。
格子Boltzmann方法与其他常用的计算流体力学方法相比具有一些优势:1. 高效性:格子Boltzmann方法使用离散化格子的方式来模拟流体运动,计算量相对较小,能够高效地处理大规模流体问题。
2. 并行性:由于格子Boltzmann方法的计算是在各个格子之间进行的,因此可以方便地实现并行计算,利用多核处理器或分布式计算系统,加速计算速度。
3. 多尺度:格子Boltzmann方法可以在不同的尺度上进行模拟,从宏观的流体行为到微观的分子动力学。
4. 可分析性:格子Boltzmann方法建立在Boltzmann方程的基础上,可以通过对方程的分析来推导流体的宏观行为。
总结而言,格子Boltzmann方法是一种基于离散化格子的流体动力学模拟方法,通过计算碰撞和传输过程来模拟流体的运动。
二阶精确格子Boltzmann非牛顿流体模型
![二阶精确格子Boltzmann非牛顿流体模型](https://img.taocdn.com/s3/m/8f31b468a98271fe910ef939.png)
二阶精确格子Boltzmann 非牛顿流体模型J Boyd 1,2, J Buick 1,2 and S Green 2 1 Physics and Electronics, University of New England, Armidale, NSW, 2351, Australia 2 Cardiovascular Research Group, University of New England, Armidale, NSW, 2351, Australia摘要: 二阶精确的格子Boltzmann 模型,提出了非牛顿流体。
非牛顿流动性是使用幂法则模型实现的。
它可以估算出模型的精确程度,同时不会限制这个模型。
二阶精度由剪切变稀和剪切增稠液体的幂法则模型参数范围给出。
这些结果与Gabbanelli 等人的结果相比,精确度更高,并且得到了更快的计算效率。
结果表明了格子Boltzmann 方法适用于非牛顿流体模拟。
1. 导言对非牛顿流体及其性质的研究在很多领域都有应用,包括地球物理(Ashby 和Verrall 1977),水文学(Federico 1998),材料科学(Bird 和West 1995)以及生理学建模(Nichols 和O ’Rourke 2005)等等。
在很多情况下,由于流体复杂的几何性质以及非牛顿性,分析方法并不适用。
因此,数值模拟成为一种有效的方法。
本文我们将考虑用格子Boltzmann 方法对非牛顿流体进行模拟。
格子Boltzmann 方法使用了一个简化的动力学方程,是一个有二阶精度的流体模拟方法。
它已经应用于很多一般性的问题上,包括湍流(Cosgrove 等 2003),磁流体力学(Chen 等 1991),多孔介质流量(Manz 等 1999),多相流(Swift 等 1996)和血流量(Fang 等 2002,Tamagawa 和matsuo 2004,Artoli 等2004,Boyd 等2005,Yi 等2005),非牛顿流动(Gabbanelli 等 2006)等问题。
格子玻尔兹曼方法
![格子玻尔兹曼方法](https://img.taocdn.com/s3/m/03c98a0fc950ad02de80d4d8d15abe23482f03fc.png)
格子玻尔兹曼方法格子玻尔兹曼方法(Lattice Boltzmann Method,简称LBM)是一种基于微观粒子动力学的计算流体力学方法,它是由美国物理学家Hardy-Pomeau-Zaleski和Frisch-Hasslacher-Pomeau两组独立研究小组在20世纪80年代末提出的。
LBM模拟流体的基本思想是将流体看作由大量微观粒子(或分子)组成的,这些微观粒子遵循玻尔兹曼方程描述的碰撞-漫射过程,从而实现对流体宏观宏观流动行为的模拟。
LBM的基本思想是在一个规则的空间网格上,通过碰撞和漫射过程来模拟流体的宏观运动。
在每个网格节点上,通过分布函数来描述流体粒子的密度和速度。
通过在每个时间步内,首先对流体粒子进行碰撞,然后进行漫射,来模拟流体的宏观运动。
这种方法不需要求解流体的宏观宏观运动方程,而是通过模拟微观粒子的运动来得到流体的宏观运动行为。
LBM的优势之一是其并行计算能力强,适合于在大规模并行计算机上进行流体动力学模拟。
另外,LBM还可以很容易地处理复杂的边界条件和多相流等问题,这使得它在工程领域得到了广泛的应用。
LBM的发展历程可以追溯到20世纪80年代末,当时,美国物理学家Hardy-Pomeau-Zaleski和Frisch-Hasslacher-Pomeau两组独立研究小组提出了这一方法。
随着计算机技术的不断进步,LBM在流体动力学领域得到了快速的发展。
目前,LBM已经成为了流体动力学研究领域的一个重要分支,得到了广泛的应用。
总的来说,LBM是一种基于微观粒子动力学的计算流体力学方法,它通过模拟流体微观粒子的碰撞和漫射过程来模拟流体的宏观运动行为。
LBM具有并行计算能力强、适合处理复杂边界条件和多相流等问题的优势,因此在工程领域得到了广泛的应用。
希望随着计算机技术的不断进步,LBM能够在工程实践中发挥更大的作用,为工程问题的解决提供更加有效的方法。
应用于非线性热传导方程的格子玻尔兹曼方法
![应用于非线性热传导方程的格子玻尔兹曼方法](https://img.taocdn.com/s3/m/76a7d108182e453610661ed9ad51f01dc28157fb.png)
应用于非线性热传导方程的格子玻
尔兹曼方法
格子玻尔兹曼(Lattice Boltzmann)方法是一种近似求解非线性热传导方程的数值方法,它将微分方程表示为一系列的离散的布朗运动方程。
该方法利用物理量的随机变化来描述流体在多维空间中的运动,并模拟传统的热力学方法。
格子玻尔兹曼方法首先将空间划分为一系列的网格单元,并将每个网格单元内的传热和流动过程用离散的布朗运动方程来描述。
然后,基于离散布朗运动方程,根据热传导的物理原理,利用粒子的碰撞和扩散,从而得到空间上的温度场。
最后,由于温度场的不断改变,引起的流动也会改变,从而模拟出热传导的实际情况。
因此,格子玻尔兹曼方法通过将非线性热传导方程表示为离散布朗运动方程,并利用粒子的碰撞和扩散来模拟热传导,可以较好地模拟非线性热传导方程的实际情况。
完全气体格子Boltzmann热模型
![完全气体格子Boltzmann热模型](https://img.taocdn.com/s3/m/2972771e79563c1ec5da71db.png)
15 /34 51 54
完全气体格子 Boltzmann热模型*
( a) t= 60
( b) t = 100 图 2 热扩散率随 τ的变化 图 4 e 的等值线
3 总 结
eq
∑ mbd
κ κ
κ
,
( 7) ( 8)
∑ mbd
κ
1 c2 + d ep , 2κ
52
清 华 大 学 学 报 (自 然 科 学 版 )
2000, 40( 4)
0 jκ
另外 , 比热比为 V 的完全气体满足状态方程 p = (V 1 - 1)d u , 这里 u= e - v 2是比热力学能 。 而压力表 2 示如下 1 2 1 2 p= mbdκcκ d v . ( 9) D∑ D κ 在低 Mach 数条件下可忽略 v , 得到 1 2 (V- 1)d e = ∑mbdκ c κ. ( 10) D κ 当粒子有二级速度 (κ = 1, 2)时 , 由式 ( 7, 8, 10) 解得: d1 = d2 = ep = d c - D (V- 1)d e 2 2 , bm ( c2 - c1 ) D (V- 1)d e- d c1 2 2 , bm ( c2 - c1 ) 12 2 2 2
孙成海 , 王保国 , 沈孟育
(清华大学 工程 力学系 , 北京 100084)
文 摘 : 为 建立一 种具有 任意比热 比的完 全气体 多速度 格 子 Boltzmann 热模型 ,引入粒子的势 能来调整压能与热 力学 能 的 关 系 ; 利 用 Chapman -Ensko g 方法 从 BG K 型 的 格 子 Bo ltzma nn 方 程推 导出 了 Nav ie r-Sto kes 方程 和能 量 方程 。 对一维正弦波形式的能量衰减过程进行 了模拟 ,测得的 热扩 散率与理论预测值相吻合 。还模拟了绕加热平 板的二维强制 热对流问题 , 结果合理 。 关键词 : 格子 Bo ltzma nn; 完全气体 ; 热模型 中图分类号 : O 354 文献标识码 : A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热动力学格子Boltzmann模型
熊盛武;李元香;康立山;陈炬桦;阮剑
【期刊名称】《计算物理》
【年(卷),期】1998(0)4
【摘要】提出了一类热动力学格子Boltzmann模型,其分布函数中含有内能项与高阶速度项。
以三个HPP模型为基础,建立了一个三迭加HPP格子Boltzmann模型,并给出其局部平衡分布函数。
设计了热动力学现象模拟中的外力处理方法和温度边界条件处理方法,用该模型成功地模拟了Benard热对流现象。
【总页数】6页(P57-62)
【关键词】格子Boltzmann模型;并行计算;BGK模型;Benard对流
【作者】熊盛武;李元香;康立山;陈炬桦;阮剑
【作者单位】武汉大学软件工程国家重点实验室;华中理工大学煤燃烧国家重点实验室
【正文语种】中文
【中图分类】O357
【相关文献】
1.浅水动力学方程的两种格子Boltzmann模型的统一 [J], 程冰;张好治;陈秀荣;赵静
2.热波方程的格子Boltzmann模型 [J], 史秀波;闫广武
3.不同精度格式的格子Boltzmann热模型的传热分析 [J], 董志强;李维仲
4.热格子-Boltzmann模型非均匀网格算法及应用 [J], 周陆军;宣益民;李强
5.基于格子Boltzmann方法非饱和土体水热耦合模型研究 [J], 李腾风;王志良;申林方;徐则民
因版权原因,仅展示原文概要,查看原文内容请购买。