一元函数微分学
一元函数微分学总结
一元函数微分学总结
一元函数微分学是微积分中的一个重要分支,研究的是一元函数的变化率以及相关的性质。
在这篇总结中,我们将介绍一元函数微分学的基本概念和公式,并拓展一些应用和实际问题。
一元函数微分学的基本概念包括导数、微分和微分方程。
导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率。
计算导数的方法有几何法和代数法,其中代数法包括极限、求导法则和链式法则等。
微分是导数的微小变化,表示函数的增量与自变量的增量之间的关系。
微分方程是含有未知函数及其导数的方程,研究的是函数与其导数之间的关系。
在一元函数微分学中,有许多重要的公式和定理。
其中,导数的四则运算规则包括常数法则、幂法则、指数函数法则、对数函数法则等。
另外,还有著名的中值定理,如拉格朗日中值定理、柯西中值定理和罗尔中值定理等,用于分析函数在某一区间内的变化情况。
一元函数微分学的应用十分广泛。
在物理学中,微分学的应用包括速度、加速度、力等的计算,以及运动学和动力学问题的解决。
在经济学和金融学中,微分学的应用包括边际效应、收益曲线和成本曲线的分析,以及最优化问题的求解。
在工程学中,微分学的应用包括电路分析、控制论和信号处理等。
此外,一元函数微分学还可以用于解决
最优化问题、曲线拟合、数据分析和预测等实际问题。
总之,一元函数微分学是微积分的重要组成部分,研究的是一元函数的变化率和相关性质。
通过导数、微分和微分方程等概念和公式的运用,可以解决各种实际问题,并在许多学科领域中发挥重要作用。
10第三章一元函数微分学(中值定理及罗必塔法则)
lim f ( x) lim f ( x) lim f ( x) A (或) xa() g( x) xa() g( x) xa() g( x)
5o
若函数是Βιβλιοθήκη 0,型可采用代数变形,化成
0 0
或
型;若是 1
,00
,0
型可采用对数或指数变形,化成
0 0
或
型.
例 3 求lim x 1 . x1 x 1 ln x
f (0) (x3 x2 ) x0 0
∴ f (x) 满足罗尔定理的条件。由定理可得:
f ( ) 3 2 2 0
解得: 1
2 3
,
2 0
∵2 0 不在(-1,0)内,舍去;
∴
2 3
2.拉格朗日(Lagrange)中值定理: 如果函数 f(x)满足:
在(a, b)内至少存
10 在[a, b]上连续, 20 在(a, b)内可导;
解 这是 未定型,通过“通分”将其化为
0 未定型.
0
lim x1
x
x
1
1 ln x
lim
x1
x
ln (x
x (x 1) 1) ln x
lim
x1
x1 x ln
ln x 1 x x 1
1
x
lim x1 1
ln x 1 ln x
x
lim
x 1
1 x2
x
1 x
1 2
.
例4.求下列极限
定理: f (x) 和 g (x) 满足条件:
lim f (x) 0 (或)
xa
1o lim g(x) 0 (或); xa
2o 在点 a 的某个邻域内可导,且 g(x) 0 ;
第2章 一元函数微分学
第二章一元函数微分学110拐点判断定理:若曲线)(x f y =,0连续在点x 0)(0=′′x f 或不存在,但)(x f ′′在两侧异号,0x 则点))(,(00x f x 是曲线)(x f y =的一个拐点.曲线的渐近线(1)水平渐近线.)(),()(lim )(lim 的一条水平渐近线就是那么为常数或如果x f y b y b b x f b x f x x ====−∞→+∞→考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒(Taylor)定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.136.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.1419设||3)(23x x x x f +=,则)(x f 在0=x 处可求导的最高阶数为( ). (A) 0 (B) 1 (C) 2 (D) 3 只要考虑||2x x 的可导性,)(x g ′′在0=x 处的左、右导数分别为6和6−,故不可导,故)(x f 在0=x 处可求导的最高阶数为2阶,本题应选C.例5解⎪⎩⎪⎨⎧<−=>=,0,,0,0,0,)(33x x x x x x g ⎪⎩⎪⎨⎧<−=>=′,0,3,0,0,0,3)(22x x x x x x g ⎪⎩⎪⎨⎧<−=>=′′.0,6,0,0,0,6)(x x x x x x g21设)(x y y =是由方程y x xy+=e 所确定的隐函数,求:)0(),0(y y ′′′.方程两边关于x 求导,得)1(,1)( y y x y xye ′+=′+,11)0(0式带入及将)(==y x .0)0(=′∴y (1)式两边再关于x 求导,得,)2()(2y y x y y x y xyxy ′′=′′+′+′+e e ,代入及将0)0(1)0(,0=′==y y x .1)0(=′′y 得例7解33。
(完整版)一元函数微分学课件
(一)求曲线的切线方程与法线方程
当
≠0时,法线方程为
-1/
(二)函数的单调性与极值
1 函数单调性
定理
2 函数的极值
定理(极值的必要条件) 设f(x)在点x0处可导,且x0为f(x)的极值点,则f'(x0)=0.
(三)函数的最大值与最小值
设函数y=f(x)在闭区间[a,b]上有定义,x0∈[a,b],若对于任意x∈[a,b], 恒有f(x)≤f(x0)(或f(x)≥f(x0)),则f(x0)为函数y=f(x)在闭区间[a,b]上 的最大值(或最小值),称点x0为f(x)在[a,b]上的最大值点(或最 小值点)。 注 极值与最值的区别
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
★ 函数 f ( x)在点 x0处可导 左导数 f( x0 )和右导数 f( x0 )都存在且相等.
★ 如果 f ( x)在开区间a, b内可导,且 f(a)及
f(b)都存在,就说 f ( x) 在闭区间a, b上可导.
f
(x)在点 x0处的导数
记为y
,dy xx0 dx
或 df (x)
x x0
dx
x x0
即
y
x x0
lim
x0
y x
lim
x0
f ( x0 x) x
f ( x0 )
其它形式
f
( x0 )
lim
h0
f (x0
h) h
f (x0 ) .
f ( x0 )
lim
一元函数微分学的基本原理与应用
一元函数微分学的基本原理与应用微分学是数学中的一个分支,主要研究函数的变化率、极值和曲线的切线等问题。
在微分学中,一元函数是指只有一个自变量的函数。
本文将介绍一元函数微分学的基本原理和其应用。
一、微分的定义和基本原理微分学的基本概念之一是微分的定义。
对于一元函数 f(x),在某一点 x0 处的微分表示为 df(x0) 或简写为 dy,可以定义为 dx 的一个无穷小变化量,即:dy = f'(x0)dx其中,f'(x0) 表示在 x0 处的导数,表示函数在该点的斜率或变化率,dx 表示自变量 x 的无穷小变化量。
微分学的基本原理包括导数和微分的性质。
导数的定义如下:f'(x) = lim [f(x+Δx) - f(x)] / Δx (当Δx 趋近于 0 时)导数可以用来描述函数的斜率,即切线的倾斜程度。
在微分学中,常用的导数表示方式有函数的导函数、差商和极限等形式。
微分的基本性质包括线性性质、乘积法则、商法则和链式法则等。
根据这些性质,可以对各种类型的函数进行微分运算,进而得到函数的导数和微分。
二、应用举例:极值问题和曲线的切线微分学的应用非常广泛,以下是两个常见的应用例子:极值问题和曲线的切线。
1. 极值问题:求解一个函数的最大值和最小值。
通过对函数的微分,可以得到导数为零的点或导数不存在的点,并进行求解。
对于一元函数 f(x),当导数 f'(x) 的值为零或不存在时,函数在该点可能取得极值。
举例来说,若给定函数 f(x) = x^2 - 4x + 3,我们可以求解 f'(x) = 2x - 4,令导数等于零得到 2x - 4 = 0,解得 x = 2。
然后,通过二阶导数的符号判断该点是否是极值点。
若 f''(x) > 0,则 x = 2 是函数的极小值点;若 f''(x) < 0,则 x = 2 是函数的极大值点。
一元函数微分学内容概要总结
一元函数微分学内容概要总结
一元函数微分学是微积分的重要内容之一,主要研究函数的变化率、斜率、极值、凹凸性等性质。
以下是一元函数微分学的内容概要总结:
1. 导数与微分,导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率,常用符号表示为f'(x)或者dy/dx。
微分是函数在某一点附近的线性近似,常用符号表示为dy。
2. 函数的求导,通过求导可以得到函数在某一点的导数,可以通过极限的定义或者导数的运算法则进行求导。
3. 导数的应用,导数可以用来求函数的极值,判断函数的增减性和凹凸性,求曲线的渐近线,解决最优化问题等。
4. 微分方程,微分方程是关于未知函数及其导数的方程,是自然科学和工程技术中描述变化规律的重要数学工具。
5. 泰勒公式,泰勒公式是函数在某点附近的多项式逼近公式,可以用来近似计算函数的值。
6. 函数的高阶导数,除了一阶导数外,函数还可以有二阶导数、三阶导数等高阶导数,可以描述函数的曲率、加速度等性质。
7. 微分学与积分学的关系,微分学和积分学是微积分的两大分支,它们之间通过微积分基本定理建立了联系,即导数与原函数的
关系。
以上是一元函数微分学的内容概要总结,涵盖了导数与微分、
函数的求导、导数的应用、微分方程、泰勒公式、高阶导数以及微
分学与积分学的关系等内容。
希望能对你有所帮助。
一元函数的导数公式和微分
一、一元函数微分学一元函数微分学由导数和微分组成。
导数:样本量随自变量的变化而变化的快慢程度;微分:曲线的切线上的纵坐标的增量。
二、常数和基本初等函数求导公式 (1) 0)(='C(2) 1)(-='μμμx x(3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -=' (9) a a a x x ln )(='(10) (e )e x x '=(11) a x x a ln 1)(log ='(12) x x 1)(ln =',(13) 211)(arcsin x x -='(14) 211)(arccos x x --='(15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+三、函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)((2) u C Cu '=')((C 是常数)(3)v u v u uv '+'=')((4)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛四、反函数求导法则若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间x I 内也可导,且)(1)(y x f ϕ'='或dydxdx dy 1=五、复合函数求导法则 设)(u f y =,而)(x u ϕ=且)(u f 及)(x ϕ都可导,则复合函数)]([x f y ϕ=的导数为dy dy du dx du dx =或()()y f u x ϕ'''=六、高阶导数的莱布尼兹公式七、隐函数的导数一般地,如果变量x ,y 之间的函数关系是由某一个方程()0,=y x F 所确定,那么这种函数就叫做由方程所确定的隐函数.对数求导法根据隐函数的求导法,我们还可以得到一个简化求导运算的方法.它适合由几个因子通过乘、除、乘方、开方所构成的比较复杂的函数(包括幂指函数)的求导.这个方法是先取对数,化乘、除为加、减,化乘方、开方为乘积,然后利用隐函数求导法求导,22234241433339tt t t t e d dt e e e dx dt dx e dt--⎛⎫=-⋅=-== ⎪-⎝⎭22223t d y d dy d e dx dx dx dx ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭因此称为对数求导法.幂指函数的一般形式为()0v y u u =>,其中,u v 是x 的函数.八、由参数方程所确定的函数的导数一般地,如果参数方程()()x t y t ϕψ=⎧⎪⎨=⎪⎩,(t 为参数) 确定y 与x 之间的函数关系,则称此函数关系所表示的函数为由参数方程所确定的函数.如果函数()t x ϕ=,()t y ψ=都可导,且()0≠'t ϕ,又()t x ϕ=具有单调连续的反函数()x t 1-=ϕ,则由参数方程所确定的函数可以看成()t y ψ=与()x t 1-=ϕ复合而成的函数()[]x y 1-=ϕψ,根据复合函数与反函数的求导法则,有()()t t dtdx dt dy dx dt dt dy dx dy ϕψ''=⋅=⋅=1,即()()t t dx dy ϕψ''= , 也可写成 dtdxdtdy dx dy=.求方程32ttx ey e-⎧=⎪⎨=⎪⎩所确定的函数的二阶导数22d ydx.解 ()()tt t t t e ee e e dx dy 2323232-=-=''=--,注意二阶导的求法。
一元函数微分学
第二章一元函数微分学一.先回顾导数的定义:设函数在内有定义,如果极限存在,则称在处可导,称为函数的可导点,且称上述极限值为函数在处的导数,记为:或;或简记为.注意导数的本质是瞬时变化率,它还有另外两种常见的等价定义:1.=;2.;要特别关注处的导数有特殊形式:(更特别地,要知道两个重要的结论:1.可导必连续;2。
函数在处可导的充要条件是对于分段函数在分段点处的可导性,一定从要考察其左、右导出发.例1.已知=A,试求下列极限的值(1)(2)。
例2.研究函数在处的可导性.解:因为同理,可求得.由于,所以在处不可导。
(记住这个结论)练习:设在处可导,求的值.解:(一)因为在处可导,从而在处也连续.所以,即(二)由得.例3.已知,试求在处的导数.解:因为,所以,由此例可见,在导数存在的情况下,求导问题就归结为求一个型的极限.故求导就是求极限,不必多举例,今后很少针对具体函数计算在一点处的导数值.如把函数在一点处可导的概念推广到一个区间,则可得到导函数的概念.大家要牢记基本导数表(共十五、六条)。
这里的每一条都是根据导数的定义推出来的,请大家在下面自己试着也推推.如:,求.二.导数的几何意义关于导数的几何意义,主要考察的题型有两种。
一种题型是选择题或判断题。
比如:若函数在处可导,则曲线在处必有切线;(√);反之,若曲线在处有切线,则在处必可导,则(×).另一种题型是根据几何意义找切线.例4.求曲线与直线垂直的切线.解:设切点.切线斜率由题意,即故切线方程为下面举一个复杂点的,把前面的知识点窜起来.例5.设为连续函数,且求曲线在点处的切线方程。
(08年研究生考试题)解:由于,且故(前面已讲过理由)而,所以,切线方程为三.导数的四则运算四则求导法则非常简单,但不注意的话,容易犯错误。
下面举几个小例子.例6.求的导数.注意:部分同学可能会犯下面的错误:.例7.设求此题应先化简再求导:注意:个别同学容易把幂函数求导与指数函数求导的公式搞混.例8.求的导数.解:.四.反函数求导法则若函数,其反函数为.若在的某邻域内连续、严格单调且,则在点可导,且.例9.求的导数.解:设原函数,则其反函数为.根据反函数求导法则.有.五.复合求导法则大家可能还有印象,复合函数的导数是.(与直接套用基本导数表相比,这个2从何而来?)如果记,则,故此题恰好满足等式:(*)这是否是巧合的?我们说不是.事实上,(*)式正揭示出了复合函数的求导法则.定理:若函数在可导,而函数在对应的处也可导,则复合函数在处也可导,且或(或.注意:复合函数的链式求导法则可推广至复合两次以上的情形,如:对函数,如记,则各变量间的关系是:有上式可通过连续使用两次链式法则得到。
《数学分析》第三章 一元函数微分学
第三章一元函数微分学一、本章知识脉络框图二、本章重点及难点微分学是数学分析的核心内容之一,导数是微分学的重要概念,用导数研究函数的性质是数学分析研究函数的一个特征.数学分析中的积分学、级数理论等也与导数有密切的联系.本章首先引入了函数导数与微分的概念;分析了可导性与连续性的联系;进而又讲述了导数的计算与高阶导数;最后介绍了几个比较重要的微分中值定理与导数的应用. 在学习过程中我们要注意导数与微分的概念及其实际意义;微分中值定理及其应用.本章的重点与难点主要有以下几个方面:● 函数导数的概念、可导性与连续性的关系;费马定理、导函数的介值定理;导数的运算(复合函数、反函数的求导法则);掌握参变量方程所确定的函数的导数;高阶导数的概念及其求法.● 微分(含高阶微分)概念的理解及其运算法则;函数连续性、可导性、可微性之间的关系.● 拉格朗日定理、柯西中值定理、泰勒定理及它们定理的应用推广;极值的三个充分条件及其证明过程;对函数凸性概念的理解及相关命题的证明;函数图象性态的列表表示法.三、本章的基本知识要点(一)导数与微分1. 设函数)(x f y =在点0x 的某邻域内有定义,若极限)()(lim00x x x f x f x x --→存在,则称函数f 在点0x 处可导,并称该极限为函数f 在点0x 处的导数,记作)(0x f ' 类似的,定义函数f 在点0x 处的左导数与右导数:x x f x x f x f x ∆-∆+='-→∆-)()(lim )(0000,)(0x f +'xx f x x f x ∆-∆+=+→∆)()(lim 000右导数和左导数统称为单侧导数.2. 设函数()x f y =定义在点0x 的某邻域()0x U 内.当给0x 一个增量x ∆,()00x U x x ∈∆+时,相应地得到函数的增量为()()00x f x x f y -∆+=∆.如果存在常数A ,使得y ∆能表示成()x x A y ∆+∆=∆则称函数f 在点0x 可微,并称()1式中的第一项x A ∆为f 在点0x 的微分,记作x A dy x x ∆==0或 ()x A x df x x ∆==0.由定义可见,函数的微分与增量仅相差一个关于x ∆的高阶无穷小量,由于dy 是x ∆的线性函数,所以当0≠A 时,也说微分dy 是增量y ∆的线性主部.容易看出,函数f 在点0x 可导和可微是等价的. 3. 导数与微分的基本性质.(1)(有限增量公式)若f 在点0x 可导,则()()x x x f y ∆+∆'=∆ 0(0→∆x );(2)(可导的充要条件)若函数)(x f y =在点0x 的某邻域内有定义,则)(0x f '存在⇔)(0x f +'与)(0x f -'都存在,且)(0x f +'=)(0x f -'; (3)(可导与可微的关系)函数f 在点0x 可导和可微是等价的;(4)(可微与连续性的关系)若f 在点0x 可微,则f 在点0x 必连续(反之不真);(5)(导数的几何意义)导数的几何意义解释是曲线的斜率,即函数f 在点0x 的导数)(0x f '是曲线)(x f y =在点)(0,0y x 的切线斜率若α表示这条切线与x 轴正向的夹角,则)(0x f '.tan α=从而0)(0>'x f 意味着切线与x 轴正向的夹角为锐角;0)(0<'x f 意味着切线与x 轴正向的夹角为钝角;0)(0='x f 示切线与x 轴平行;(6)(费马定理)设函数f 在点0x 的某邻域内有定义,且在点0x 可导.若点0x 为f 的极值点,则必有.0)(0='x f我们称满足方程)(x f '的点为稳定点.(7)(达布定理)若函数f 在],[b a 上可导,且)()(b f a f -+'≠',k 为介于)(a f +',)(b f -'之间任一实数,则至少存在一点),(b a ∈ξ,使得k f =')(ξ.4.求导(微分)法则.(1)(线性法则)'')'(g f g f βαβα±=±(其中βα,为常数); (2)(乘积法则)'')'(g f g f g f +=; (3)(商法则)22')'1(,'')'(g g g g fg g f g f -=-=(其中0≠g ); (4)(复合函数求导法则))())(()))(((x g x g f x g f ''='(也称链式法则);(5)(反函数求导法则)dxdydx dy 1=; (6)(莱布尼茨法则)()(),)(0)(k k n kn nk n g f C g f -=∑= 其中)!(!!k n k n C k n -=是组合系数.5. 若函数f 的导函数'f ,在点0x 可导,则称'f ,在点0x 的导数为f 在点0x 的二阶导数,记作()0''x f,即()()()0''00''0limx f x x x f x f x x =--→同时称f 在点0x 为二阶可导.利用数学归纳法可由f 的1-n 阶导函数定义f 的n 阶导函数(或简称n 阶导数),二阶以及二阶以上的导数都称为高阶导数,函数f 在点0x 处的n 阶导数记作 ()()()00||,0x x n n x x n n dxyd yx f==或 相应地,n 阶导函数记作: ()()n n n n dx y d y f或,.这里n n dx y d 亦写作为y dxd n n.6. 一阶微分形式不变性:不管u 是自变量还是中间量,f 的一阶微分始终具有()du u f u df '=)(的形式.7.基本初等函数的求导公式 (1)0)'(=c (c 为常数); (2)1)'(-=αααxx (α为任意实数);(3)x x x x sin )'(cos ,cos )'(sin -==; (4)x x x x 22csc )'(cot ,sec )'(tan -== x x x x x x c o t c s c )'(csc ,tan sec )'(sec -== (5)xxxxe e a a a ==)'(,ln )'(;(6)).1(ln ,ln 1)'(log xx a x x a == (二)微分中值定理1.罗尔中值定理 若函数f 满足如下条件:(i)f 在闭区间[]b a ,上连续;(ii)f 在开区间()b a ,内可导;(iii)()()b f a f =,则在()b a ,内至少存在一点ξ,使得()0='ξf .罗尔定理的几何意义是说:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线.注 定理中的三个条件缺少任何一个,结论将不一定成立.2. 拉格朗日(Lagrange )中值定理 若函数满足如下条件:()fi 在闭区间[]b a ,上连续;()f ii 在开区间()b a ,内可导, 则在()b a ,内至少存在一点ξ,使得()()()ab a f b f f --='ξ. 显然,特别当()()b f a f =时,本定理的结论即为罗尔定理的结论,这表明罗尔定理是拉格朗日定理的一个特殊情形.拉格郎日中值定理的几何意义是:在满足定理条件的曲线)(x f y =上至少存在一点))(,(ξξf P ,该曲线在该点出的切线平行于曲线俩短点的连线,我们在证明中引入的辅助线函数)(x F ,正是曲线=y )(x f 与直线ab a f b f a f y AB --+=)()()(()(a x -)之差.定理的结论称为拉格朗日公式。
一元函数微分学知识点
一元函数微分学知识点一元函数微分学是微积分中的重要内容,它主要研究函数的变化率和极值问题。
微分学中的主要概念包括导数、微分以及一些常见函数的微分法则。
下面将依次介绍这些知识点。
一、导数导数是描述函数变化率的重要工具。
给定一个函数f(x),在某一点x 处的导数表示函数在该点的变化速率。
导数可以用极限来定义,即导数等于函数在该点处的极限值。
导数的记号常用f'(x)或者dy/dx 表示。
导数有几个重要的性质,包括线性性、乘积法则、商法则和链式法则。
线性性表示导数运算具有线性性质,即对于任意常数a和b,有(a*f(x) + b*g(x))' = a*f'(x) + b*g'(x)。
乘积法则描述了两个函数相乘的导数计算方法,即(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)。
商法则是用来计算两个函数相除的导数,即(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/g(x)^2。
链式法则适用于复合函数,即若有一个函数h(x) = f(g(x)),则h'(x) = f'(g(x))*g'(x)。
二、微分微分是导数的一种应用,它可以用来近似计算函数在某一点的值。
微分的记号常用dx表示,它表示函数在某一点的微小变化。
微分的计算公式是dy = f'(x)*dx,其中dy表示函数在x处的微小变化,dx表示自变量的微小变化。
微分和导数之间有一个重要的关系,即导数是微分的极限形式。
当自变量的微小变化趋于0时,微分就变成了导数。
因此,导数可以用微分来近似计算。
三、常见函数的微分法则在微分学中,有一些常见函数的微分法则被广泛应用。
这些函数包括常数函数、幂函数、指数函数、对数函数和三角函数。
对于常数函数f(x) = C,其中C为常数,它的导数为f'(x) = 0。
一元函数微分学公式
一元函数微分学公式微分学是数学中的一个重要分支,研究函数的微小变化。
在微分学中,一元函数的微分公式是非常基础且重要的知识点。
本文将介绍一元函数微分学公式的相关内容,帮助读者更好地理解和应用微分学知识。
一元函数微分学公式主要包括导数的定义、常见函数的导数公式、导数运算法则以及高阶导数等内容。
下面我们逐一介绍这些内容。
1. 导数的定义导数是一元函数微分学的核心概念,它描述了函数在某一点上的变化率。
设函数f(x)在点x=a处可导,则导数f'(a)的定义为:f'(a) = lim┬(x→a)〖(f(x)-f(a))/(x-a)〗其中lim表示极限,x→a表示x趋近于a的过程,(f(x)-f(a))/(x-a)表示函数的增量与自变量增量的比值。
导数可以理解为函数在该点上的瞬时变化率。
2. 常见函数的导数公式对于一些常见的函数,我们可以通过求导公式来快速计算它们的导数。
以下是一些常见函数的导数公式:- 幂函数:(x^n)' = nx^(n-1),其中n为常数;- 指数函数:(a^x)' = a^x * ln(a),其中a为常数;- 对数函数:(logₐx)' = 1/(x * ln(a)),其中a为底数;- 三角函数:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2(x),其中x为弧度;- 反三角函数:(arcsinx)' = 1/√(1-x^2),(arccosx)' = -1/√(1-x^2),(arctanx)' = 1/(1+x^2),其中x在定义域内。
通过这些导数公式,我们可以快速求解常见函数的导数,为后续的微分计算提供便利。
3. 导数运算法则在微分学中,导数具有一些基本的运算法则,可以帮助我们简化复杂函数的导数计算。
- 常数倍法则:(cu)' = cu',其中c为常数;- 和差法则:(f(x)±g(x))' = f'(x)±g'(x);- 积法则:(f(x)g(x))' = f'(x)g(x)+f(x)g'(x);- 商法则:(f(x)/g(x))' = (f'(x)g(x)-f(x)g'(x))/[g(x)]^2,其中g(x)≠0。
一元函数微分学
一元函数微分学微分学的发展历史表明,它是一门具有重要实际应用价值的理论学科。
它可以在力学、热学、电磁学、光学和生物学等各种学科中被广泛地应用,因此研究如何将微分法应用于这些问题是十分必要的。
根据解决问题的不同目的和要求,我们可以对微分法进行分类。
为了叙述方便,我们可以按照求解区间上的函数值来分类,即按导数所处的区间来分类。
一元函数导数的主要应用包括: 1.求函数极值及其区间; 2.求导数的最大值及其区间; 3.求导数的最小值及其区间; 4.求导数的零点; 5.求函数曲线的切线; 6.求函数图形的拐点等。
5.1分类讨论一:定义微分法5.4分类讨论一:分类定义微分法(续)一类变量的导数是另一类变量的函数,从而得到新变量在原变量的增量与自变量之间的另一函数关系。
一元函数微分法的基本思想:假设两个变量之间存在某种函数关系,通过对变量取极限或微分,就可以定义出一个新的变量( x,h),从而揭示出这种函数关系。
求导公式: y>x( a,b)或y<x ( a,b)。
求导法则:①初等函数的导数②高阶导数。
其中,可微的求导公式: y>x( a,b)或y<x( a,b)。
把x看作“常数”,而y当作“变量”,导数仍然是原变量y对自变量x的偏导数。
如: f(x) =1/x+1/x^2+4/x^4+…+f(x)^+=0;又如:f'(x) =f(x)-2x+4;又如: g'(x) =-2x-8。
2.对比(求导)性质一个变量x对另一个变量y求导,对这两个变量来说,都有相同的微分和积分,且等于原变量对新变量的导数,故称为对比(求导)性质。
3.比较法与无穷小量的关系如果用微分的观点去认识,那么微分法则成为整个数学的一个完整体系,而对比法则成为微分法的一个特殊的分支。
4.边界条件把x看作“常数”,而y当作“变量”,导数仍然是原变量y对自变量x的偏导数。
如: f(x) =1/x+1/x^2+4/x^4+…+f(x)^+=0;又如:f'(x) =f(x)-2x+4;又如: g'(x) =2*x-8。
一元函数微分学总结
一元函数微分学总结一元函数微分学是微积分学中的一个重要分支,用于研究一元函数的变化率和极值问题。
它是微分学的基础,对于理解和应用微积分具有重要的意义。
一元函数的微分学主要涉及函数的导数、极值和曲线的图像等内容。
其中,函数的导数是函数在某一点的变化率,它可以表示为函数的斜率或者切线的斜率。
函数的导数可以帮助我们研究函数在不同点的变化规律,了解函数的增减性、凹凸性、极值等特征。
在一元函数微分学中,求导是一个重要的操作。
通过求导,我们可以得到函数的导数表达式,从而可以计算函数在任意一点的导数值。
求导的基本规则包括常数导数规则、幂函数导数规则、指数函数导数规则、对数函数导数规则等,这些规则可以帮助我们快速计算导数。
另外,函数的导数还可以用于研究函数的极值。
通过求导,我们可以找到函数的极值点,即导数为零或者不存在的点。
极大值点对应函数的局部最大值,极小值点对应函数的局部最小值。
通过求导,我们可以判断一个函数在某一点的极值类型,并且可以进一步确定函数的增减区间和凹凸区间。
函数的导数还可以用于研究函数的图像。
通过求导,我们可以得到函数在不同点的斜率,进而可以画出函数的切线和曲线的大致形状。
通过分析切线和曲线的关系,我们可以了解函数的增减性和凹凸性,从而更加深入地理解函数的性质。
总而言之,一元函数微分学是微积分学中的重要分支,它研究一元函数的变化率和极值问题。
通过求导和分析导数,我们可以了解函数的增减性、凹凸性和极值等特征,从而更好地理解和应用微积分。
在实际应用中,一元函数微分学广泛应用于物理、经济、工程等领域,为实际问题的建模和求解提供了有力的工具和方法。
第2章一元函数微分学教材
第二章 一元函数微分学 一、一元函数的导数与微分 (一)导数的定义与几何意义 1.导数的定义设函数)(x f y =在点0x 的某领域有定义,若极限x x f x x f x ∆-∆+=∆∆→∆→∆)()(limylim000x 0x 存在,即在0x 可导0x x -)()(lim)('0x x x f x f x f -=→导数存在,左右导数存在相同; 2.几何意义 导数为切线斜率(二)单侧可导与双侧可到的关系)(x f 在点0x 处可导⇔)(x f 在点0x 左右导数均存在且相等(三)微分的定义、几何意义以及可微、可导与连续之间的关系 1.微分的定义 )()(y 0x x x A ∆+∆=∆ο)(x ∆ο是0→∆x 是比x ∆高阶的无穷小,可微函数y=)(x f 在点0x 处的微分是该函数在点0x 处函数增量的线性主要部分 2.微分的几何意义y ∆是曲线y=)(x f 在点0x 处相应于自变增量x ∆的纵坐标的增量微分dyx x =是曲线y=)(x f 在点0x 处切线相应于自变增量x ∆的纵坐标的增量3.可微、可导及连续之间的关系)(x f 在点0x 处可导⇔)(x f 在点0x 处可微⇒ )(x f 在点0x 处连续但连续不一定可导、可微y=)(x f 在点0x 处可微时dy=dx x f x x f )(')('00=∆(四)函数的区间上的可导性,导函数及高阶导数 1.函数在区间上的可导性若)(x f 在开区间每一点都可到,则在开区间可导,又在端点可导,则在闭区间可导2.若)(x f 在区间可导,对于任意x 在区间内,都有对应)(x f 的一个确定的导数值)('x f ,构成一个新的函数,称为导函数,记作dxx df dx dy x f )(;;y )(''; 3.二阶导数及高阶导数二阶导数⎪⎭⎫ ⎝⎛dx dy dx d dx y d x f ;;y )(''22''; n 阶导数n nn)(n)(;y )(dxy d x f ; N 阶导数定义xx f x x f x f∆-∆+=→∆)()(lim )(01-n 01-n 0x 0n)()()(若)(x f 在0x 处n 阶可导,则)(x f 在0x 的某领域比具有一切比低于n 阶的导数 (五)奇偶函数与周期函数的导数性质)(x f 为奇函数⇒)('x f 为偶函数;)(x f 为偶函数⇒)('x f 为奇函数;不能反推 )(x f 以T 为周期⇒)('x f 也以T 为周期二、按定义求导数及其适用的情形 (一)按定义求导数x x f x x f x ∆-∆+=∆∆→∆→∆)()(limylim000x 0x(二)按定义求导数适用的情形情形1,除了常数及某些初等函数的导数公式外,均可按定义导出 情形2,求导法则不能用的情形,不知道是否可导 情形3,求某类分段函数在分界点处的导数(三)利用导数定义求极限xx f x x f ∆-∆+→∆)()(lim000x n n x x f x x f )()(lim 0n -++∞→ 其中0lim n =+∞→n x三、基本初等函数导数表,导数的四则运算法则与复合函数微分法则 (一)基本初等函数导数表与求导法则 1.基本初等函数导数表a x x aa a xx x xx x x x x x t a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )an (22='='⋅-='⋅='-='=' 222211)ot (11)an (11)(arccos 11)(arcsin x x arcc x x arct x x x x +-='+='--='-=' x xx x x xx e e x x 22'''''sec cos 1)(tan cos )(sin 1)(ln )(0c ======)()()()())()(sin )(cos ''''x f x f x f x f xx x x x ==-= xx 1)(ln '=2.求导法则复合函数求导法则幂指数函数求导 反函数求导 隐函数求导 变限积分求导 分段函数的求导(二)导数与微分的四则运算法则[])(')(')()('x g x f x g x f ±=±[])(')()()(')()('x g x f x g x f x g x f +=)()(')(-)()(')()(2'x g x g x f x g x f x g x f =⎥⎦⎤⎢⎣⎡(三)复合函数的微分法则dxdudu dy dx y •=d(四)初等函数求导法 利用上述三种方法综合运用四、复合函数求导法的应用—由复合函数求导法则导出的微分法则 (一)幂指数函数)()(x g x f 的求导法 1.将)()(x g x f 表成)(ln )(ex f x g 后求导2.对数求导法,对)()(x g x f y =两边取对数得)(ln )(ln x f x g y =,两边对x 求导用对数求导法求乘积的导数或微分很方便)()()(21x f x f x f y n •⋅⋅⋅••= 先取绝对值,再取对数幂指数函数导数公式也可用二元复合函数求导法推出的复合函数与是)(),()()(x g v x f u u y x f y v x g ====dxdv u v dx du u u dx y v v •∂∂+•∂∂=)()(d(二)反函数求导法'1d y dy x = 3'''22-d y y dy x =(三)变限积分的求导法设)(x f 在闭区间连续,)(),(x x ψϕ在闭区间可导⎰=)()(;)(x x dt t f y ϕψ[][])()()()()()('')()(x x f x x f dt t f dx d dt t f dx d dx dy x ax a ψψϕϕψϕ-=-=⎰⎰(四)隐函数微分法设有二元方程F (x ,y )=0,若存在函数y=y (x )使得F (x ,y (x ))=0,对区间上任何x 成立,则称y=y (x )为方程F (x ,y )=0在区间上确定的隐函数运用复合函数求导法则五、分段函数求导法1.按求导法则分别求分界点处的左右导数2.按定义求分界点的导数或左右导数3.分界点为连续点时,求导函数在分界点处的极限值(一)按求导法则分别求分段函数在分界点处的左右导数A x f A x h x g x h x g ====+)(,)()(),()(0'0'0'-00则且若(二)按定义求分界点的导数或左右导数无定义在、000)()(x x h x gx x x h x x f x x f x f x x ∆-∆+=∆-∆+=+→∆+→∆+A)(lim)()(lim)('000000xx x g x x f x x f x f x x ∆-∆+=∆-∆+=→∆→∆A)(lim)()(lim)('0-000-00- 上述极限存在且相当,则存在)(0'x f(三)分界点为连续点时,求导函数在分界点处的极限值 可导且连续,A x f x x =→)(lim '六、高阶导数及n 阶导数的求法(一)归纳法 逐一求出前几阶导数,观察规律性写出)(n y 的公式(二)利用简单得初等函数的n 阶导数公式(1)b ax n n b ax e a e ++=)()( x n x e e =)()((2)[])2sin()sin()(πn b ax a b ax n n ++=+ [])2sin(sin )(πn x x n += (3)[])2(cos )(cos )(πn b ax a b ax n n ++=+ ())2cos(cos )(πn x x n +=(4)[]n n n b ax n a b ax -++-⋅⋅⋅-=+βββββ))(1()1()()([]n n x n x -+-⋅⋅⋅-=βββββ)1()1()( (5)1)()(!)1(1++-=⎪⎭⎫⎝⎛+n n n n b ax n a b ax (6) []n n n n b ax n a b ax )(!1-)1()ln(1-)(+-=+)( []nn n xn x !1-)1(ln 1-)()(-= (三)分解法1.有理函数与无理函数的分解)1)(1(1,21+-⋅⋅⋅+-+=+--x x x x x n x n n n n 为奇数时,当 )1-)(1(1-,21x x x x x n x n n n n +⋅⋅⋅+-+=--为偶数时,当2.三角函数的分解(利用三角函数恒等式及有关公式)(四)由f (x )在x=0x 处的泰勒公式的系数或幂级数展开式的系数求)(0)(x f n七、微分中值定理(一)极值的定义 极小值、极大值 与左右两边的比较,还没涉及导数(二)微分中值定理及其几何意义 1.费马定理及其几何意义)(x f 在x=0x 处可导且取得极值,则导数为0,0x 为驻点,驻点切线与x 轴平行2.罗尔定理及其几何意义[]0)('),(),()(),(,)(=∈=ξξf b a b f a f b a b a x f 使得则存在上可导,又上连续,在在设)(x f 在点ξ切线平行于x 轴3.拉格朗日中值定理及其几何意义(微分中值定理)[])(')()(),(,),(,)(ξξf ab a f b f b a b a b a x f =--∈使得则存在上可导,上连续,在在设)(x f 在点ξ切线平行于割线)10(,)(')()( θθx x x f y x f x x f ∆•∆+=∆=-∆+4.柯西中值定理[])(')(')()()()(),(,0)('),(,)(),(ξξξg f a g b g a f b f b a x g b a b a x g x f =--∈≠使得则存在上可导,且上连续,在在设 (三)几个微分中值定理之间的关系拉格朗日中值定理是柯西中值定理的特殊情况,,)(x x g =罗尔定理是拉格朗日中值定理的特殊情况八、利用导数研究函数的性态(一)函数为常数的条件与函数恒等式的证明 1.函数为常数的条件 导数恒为02.两个函数差为常数的条件 导数相等3.两个函数恒等的条件,导数导数,存在一点使得两值相等(二)函数单调性充要判别法1.函数单调性的定义 单调增加、单调减少、单调不增、单调不减2.函数单调性判别定理及其几何意义单调不减 导数大于等于0;单调增加,导数大于等于0,区间内,不存在导数等于0的情况 3.几何意义单调增加与x 轴锐角;单调减少与x 轴钝角(三)极值点充分判别法1.极值第一充分判别定理及其几何意义 左导数小于0,右导数大于0,极小值主要考察函数的不可导点,因为不可导点有可能是函数的极值点2.极值第二充分判别定理及其几个意义,具体再讨论极小值,极大值,当当二阶可导,且在点设0)('',0)('',0)('',0)(')(00000==x f x f x f x f x x f几何意义结合第一充分判别定理分析 二阶导数小于0,一阶导数由大于0到小于0,极大值(四)凹凸性的定义与充要判别法 1.凹凸的定义[]凹上可导,若恒有上连续,在在设),())((')(),(,)(000x f x x x f x f b a b a x f -+[]凸上可导,若恒有上连续,在在设),())((')(),(,)(000x f x x x f x f b a b a x f -+2.凹凸性充要判别定理及其几何意义[][]()是单调增函数在是凹的充要条件是在上可导,则上连续,在在设b a x f b a x f b a b a x f ,)(',)(),(,)([][]()是单调减函数在是凸的充要条件是在上可导,则上连续,在在设b a x f b a x f b a b a x f ,)(',)(),(,)([][]0)(''),(,0)('',)(),(,)(恒不等于的任意子区间内是凹的充要条件是在则内二阶可导,上连续,在在设x f b a x x f b a x f b a b a x f ∈∀≥[][]0)(''),(,0)('',)(),(,)(恒不等于的任意子区间内是凸的充要条件是在则内二阶可导,上连续,在在设x f b a x x f b a x f b a b a x f ∈∀≤(五)观点的定义与充分判别法1.拐点的定义,)(x f 在0x 的左右侧凹凸性相反,在为拐点2.拐点的充分判别定理)(x f 连续,二阶可导,且二阶导数在0x 反号 或二阶导数等于0,三阶导数不等于0(六)利用导数做函数的图形1、定义域,奇偶性、周期性、剪短点2、一阶导数、二阶导数等于3、渐近线 b kx y y x +=∞→∞→;;[]b kx x f k xx f b kx y x x =-≠=⇔+=+∞→+∞→)(lim ,0)(lim且九、微分学的几何应用与经济应用 (一)平面曲线的切线1.用显式方程表示的平面曲线))(('00o x x x f y y -+=2.用隐式方程表示的平面曲线0)(),()(),(),(,0),(000000=-∂∂+-∂∂=y y yy x f x x x y x f y x f y x f 切线方程有连续的一阶偏导数,其中(二)边际与弹性1.边际及其先关概念 边际成本 边际收益 边际利润2.弹性及其相关概念xdx y dydxdyy x Ex y Ex y x y ==E ,E 的弹性记为对 需求函数)(P Q Q =dpdQQ p Ep Q =E收益对价格的弹性dpdRR p Ep R =E 因为pQ R =+=+==1)(1)(1E dp dQp Q Q dp pQ d Q Ep R EpQ E 注意弹性的绝对值问题,区别正负性十、一元函数的最大值与最小值问题(一)闭区间[]的求法和最小值的最大值上连续函数的m M )(,x f b a 1.求出驻点,即一阶导数为0 2.算出驻点的函数值3.有不可导点,算出不可导点的函数值4.求出端点的函数值5.比较(二) )(x f 在区间可导且仅有唯一驻点的最大值和最小值的求法 1.通过一阶导数左右两端符号判断 2.通过二阶导数的正负性判定十一、一元函数的泰勒公式(一)带皮亚诺余项的n 阶泰勒公式,皮亚诺余项)(即))((其中阶导数,则处有在点设0)(lim ),()(),()(!)()(!2)())((')()()(00000)(20000000=-→-=+-++-''+-+=→n n x x nn n n n x x x R x x x x x R x R x x n x f x x x f x x x f x f x f n x x f ο (二)带拉格朗日余项的n 阶泰勒公式[][]10),()()!1()(),()(!)()(!2)())((')()(,,1),()(0010)1(00)(2000000 θθξξξ且之间,也可表示为与在而,拉格朗日余项其中有阶连续导数,对于任何上有阶导数,在区间内有的区间在包含点设x x x x x x x n f R x R x x n x f x x x f x x x f x f x f b a x n b a n b a x x f n n n n n n -+=-+=+-++-''+-+=∈+++n n x n f x f x f f x f x !)0(!2)0()0()0()(0)(20++''+'+== 时即为麦克劳林公式:十二、带皮亚诺余项的泰勒公式的求法 (一)泰勒公式的唯一性!)(,),('),(,)()()()()(0)(01000020201000n x f A x f A x f A x x x x A x x A x x A A x f x x n x x f n n nn n =⋅⋅⋅==-+-++-+-+=→则))((时,有阶导数,则处有在点设ο这个定理称为泰勒公式的唯一性定理(二)泰勒公式的求法 1.直接求法))(1,0(,)!1(1)(),()()(!)(!1!211102+∞<<-∞∈+==+=++⋅⋅⋅+++=+=∑x x e n x R x x R x R k x x R x n x x e n x n n n n nk kn n xθοθ其中)()1,0()!12(cos )1()(),()()()!12()1()()!12()1(!5!3sin 1222221121212153+∞<<-∞∈+-==+--=+--+-+-=+=----∑x x k x x R x x R x R k x x R n x x x x x n n n n n n nk k k n n n ,,其中 θθο)()1,0()!22(cos )1()(),()()()!2()1()()!2()1(!4!21cos 221121212120212242+∞<<-∞∈+-==+-=+-+-+-=++++++=+∑x x k x x R x x R x R k x x R n x x x x n n n n n n nk k k n n n ,,其中 θθο)1,0(),1,1()1()!1()()1()(),()()(!)1()1(1)(!)1()1(!2)1(1)1(1112∈-∈++--==++--+=++--++-++=++--=∑θθαααοαααααααααααx x x n n x R x x R x R x k k x R x n n x x x n n n n n n nk kn n ,其中(])1,0(,1,1)1()1(1)1()(),()()()1()(1)1(3121)1ln(111111132∈-∈+++-==+-=+-+-+-=++--++=--∑θθθοαx x x x x n x R x x R x R k x x R x n x x x x n n n n nn n n n nk k k n nn ,)(其中2.间接求法 ①四则运算()()()))(()()(m n a x a x a x n m n ≤-=-+-οοο()()())()()(m n m n a x a x a x +-=-•-οοο()()())()(m n m n a x a x a x +-=-•-οο()()有界在其中δοο a x x f a x a x x f mm--=-•0)(),()()(②复合运算 替代变量法③逐项求导或逐项积分))(())(())((时,有阶导数,则处有在点设10102010010100210020201000)(1)(2)()()()(2)(')()()()()(0++---+-+++-+-=-+-++-+=-+-++-+-+=→⎰n n n xx n n n nn n x x x x n A x x A x x A dt t f x x x x nA x x A A x f x x x x A x x A x x A A x f x x n x x f οοο十三、一元函数泰勒公式的应用 (一)利用泰勒公式求未定式的极限)();(0);()()(lim )()(lim 0,0,)()()()()(),(m n m n n m BA a x a xB a x a x A x g x f B A a x a x B x g a x a x A x f a x x g x f m m nn a x a x m m nn ∞==-+--+-=≠≠-+-=-+-==→→))(())(())(())((时,有在点设οοοο(二)用泰勒公式确定无穷小的阶阶数数是导数不为零的最小阶无穷小,无穷小的阶的是因此,))((,则,若))((时,有阶导数,则处有在点设n a x x f x x x x n x f x f x f x f x f x f x x x x n x f x x x f x f x f x x n x x f nn n n n n n n )()()(!)()(0)(0)()(')(,)(!)())((')()()(000)(0)(0)1-(00000)(00000--+-=≠====-+-++-+=→οο(三)利用泰勒公式证明不等式方法1,通过估计泰勒公式余项的大小来证明不等式方法2,通过函数与二阶导数的界估计一阶导数的界来证明不等式(四)由泰勒公式的系数求)(0)(x f nn n n n n n n A n x f A x f A x f n x f A x f A x f A x x x x A x x A x x A A x f x x n x x f !)()(')(!)(,),('),(,)()()()()(0)(10000)(01000020201000====⋅⋅⋅==-+-++-+-+=→,,因此则))((时,有阶导数,则处有在点设ο(五)用泰勒公式证明函数或高阶导数存在满足某种要求的特征点当要求证明存在某点使得函数或高阶导数在该点取值满足某等式或不等式或具有某种其他要求的特征时,常常需要用泰勒公式,所求的点还常常是公式余项中出现的中间值十四、常考题型及其解题方法与技巧题型一、有关一元函数的导数与微分概念的命题题型二、用导数定义求函数的极限题型三、求各类一元函数的导数与微分题型四、求变限积分的导数1. 求仅积分限含参变量x 的变限积分的导数2. 求被积函数也含有参变量x 的变限积分的导数题型五、求一元函数的n 阶导数题型六、用微分学的方法证明不等式方法1,利用拉格朗日中值定理或柯西中值定理证明不等式方法2,利用函数的单调性证明不等式方法3,利用函数的最大值或最小值证明不等式方法4,利用函数图形的凹凸性证明不等式题型七、利用导数研究函数的性态1. 函数等于常数的证明2. 单调性与凹凸性的证明3. 讨论函数的极值与拐点4. 求函数的单调区间与极值点及其图形的凹凸区间与拐点5. 用微分学知识作函数的图形6. 利用函数的性态研究函数零点的个数题型八、导数与微分在经济学中的简单应用题型九、微分中值定理命题及相关问题1. 费马定理型的中值命题2. 罗尔定理型的中值问题3. 与区间端点函数值有关的微分中值命题题型十、一元函数的最值问题1. 函数型的最值问题2. 应用型的最值问题题型十一、求泰勒公式1. 求带皮亚诺余项的泰勒公式2. 求带拉格朗日余项的n 阶泰勒公式题型十二、用泰勒公式求极限或确定无穷小的阶1. 用泰勒公式求极限2. 用泰勒公式确定无穷小的阶题型十三、用泰勒公式证明不等式或高阶导数存在某种特征点。
《高等数学》一元函数微分学.ppt
恒有 f (x) A .
A的邻域,
A
A
x0的空心 邻域A,
该邻域内所有点 x 的纵坐标 f(x)落在
A的 邻域 内,
即相应的点(x,f(x)) 落在绿色区域内.
的几何解释
0
x0 x0 xx00 x 0 x0 x0 x0 x0
f (x)
x
.
1. 函数的极限 lim f ( x) A x x
0, 0, 当 0 | x x0 | δ 时 ,
恒有 f (x) A .
lim f ( x) A 的几何解释
x x
y
A的邻域,
A A
A
x0的空心 邻域,
该邻域内所有点 x
的纵坐标 f(x)落在
A的 邻域 内,
即相应的点(x,f(x))
落在绿色区域内.
0
x0 x0 x0
§1 一元函数微分学
主 目 录(1 – 18)
1 函数极限的几何解释
3 x 时的极限
5 数列的极限 7 函数的连续性 9 微分的几何意义
2 函数的左极限
4 x+ 时的极限
6 无穷大 8 导数的几何意义
对函数进行全面讨论并画图:
10 y xex
11 y x
x
13
y
arccos
x x
16 y cos2x
落在绿色区域内.
y
f (x)
A+
A
A–
–N
0
N
x
3. x 趋于无穷大时的极限 lim f (x) A 的几何解释 x A的邻域, N > 0, 对满足 |x| > N 的一切点 x, 其相应的曲线上的点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元函数微分学
微积分是数学中一个非常重要的分支,它研究连续与变化。
微
分学是微积分中的一部分,它研究一元函数的变化率和切线问题。
在工科、理工科及金融等领域,微分学都是必修的一门学科。
一、导数
一个函数的导函数即为该函数的导数。
导数表示函数在某点处
的变化率,也可以理解为以该点处斜率为切线的直线方程。
导数
的定义如下:
$f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$
其中,f(x)表示函数在x点处的取值,h表示x的变化量。
导数
是对变化量和量的一个测量,它也可以被解释为函数的瞬时变化率。
在求导数时,我们需要注意函数是否连续,导数是否存在,同
时还需考虑到函数在自变量为非自然数时的导数。
二、微分
微分是在导数的基础上增加了一些附加的概念,它是由函数在一个点处的导数以及该点处的自变量与函数值所组成的。
微分的定义不是很直接,但是我们可以从定义出发进行理解:设函数y=f(x),在x点的微分dy=dx*f'(x)。
其中,dx表示x的增量,dy表示y的增量,f'(x)表示在x处的导数。
可以看出,微分有一个重要的作用,就是可以得到函数在某个点处的极小增量。
即在当前的点位置,函数的变化量以及对应的变量量。
微分还可以解决一些求和问题和变量替换问题的计算。
三、函数图像的切线
函数图像的切线是函数图像在某个点的斜率。
在此前提下,我们可以通过导数求出函数图像在任意一个点上的斜率。
通过直线方程就可以求出函数图像在该点的切线。
求解函数图像的切线需要确定该点的横坐标和纵坐标,然后求出导数,最后代入方程即可。
四、一元函数微分学应用
微分学的应用非常广泛。
在物理学中,微分学可以用于描述物体的运动,地球的形变和能源泄露等问题。
在金融学中,微分学可以用于计算股市的波动和证券价格的变化等问题。
在自然科学中,微分学可以用于解决生物学的遗传学和数学物理学中的加速和速度问题等。
总之,一元函数微分学是微积分中最基础的内容。
通过对微分学的研究,我们可以更好地理解函数变化率和图像切线问题。
此外,微分学还有着广泛的应用,涉及到股市、金融、自然科学等各方面。