人教版七年级上册数学期末试卷与答案

合集下载

人教版数学七年级上学期《期末检测试卷》附答案解析

人教版数学七年级上学期《期末检测试卷》附答案解析
(2)若OA=2OB,求a的值;
(3)点C为数轴上一点,对应的数为c,若A点在原点的左侧,O为AC的中点,OB=3BC,请画出图形并求出满足条件的c的值.
24.如图1,已知 , 在 内, 在 内, .
(1) 从图1中的位置绕点 逆时针旋转到 与 重合时,如图2, ;
(2)若图1中的 平分 ,则 从图1中的位置绕点 逆时针旋转到 与 重合时,旋转了多少度?
A. B.
C. D.
10.一列火车长 米,以每秒 米的速度通过一个长为 米的隧道,用式子表示它刚好从开始进隧道口到全部通过隧道所需的时间为()秒
A. B. C. D.
二、填空题
11.某市2020年元旦 最低气温为 ,最高气温为 ,这一天的最高温度比最低温度高________
12.单项式 的系数是__________,次数是__________.
35
(1)规定用量内 收费标准是元/吨,超过部分的收费标准是元/吨;
(2)问该市每户每月用水规定量是多少吨?
(3)若小明家六月份应缴水费50元,则六月份他们家的用水量是多少吨?
23.已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a-b|=15.
(1)若b=-6,则a的值为;
∴选项A正确,选项B、C、D错误,
故选A.
6.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中 , , , 中的()位置接正方形.
A. B. C. D.[答Biblioteka ]B[解析][分析]
结合正方体的平面展开图的特征,只要折叠后不能围成正方体即可.
详解]∵ ,

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题 1.12022的相反数是( ) A .2022 B .-2022 C .12022D .12022-2.单项式325x y π-的系数与次数分别是( )A .15-,5B .5π-,4C .15-,6D .5π-,5 3.据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×1010 4.若A 和B 都是4次多项式,则A+B 一定是( ) A .8次多项式 B .4次多项式C .次数不高于4次的整式D .次数不低于4次的整式 5.下列说法正确的是( )A .互为相反数的两个数的绝对值相等B .有理数的绝对值一定比0大C .若两个数的绝对值相等,则这两个数相等D .有理数的相反数一定比0小 6.下列式子计算正确的个数有( )①224a a a +=;①22321xy xy -=;①32ab ab ab -=;①322()17(3)---=-. A .1个B .2个C .3个D .0个7.实数a ,b ,c 在数轴上的对应点的位置如图所示,若a 与c 互为相反数,则a ,b ,c 中绝对值最大的数是( )A .aB .bC .cD .无法确定8.若2x 9=,y 2=,且x y <,则x y -的值为( ) A .5±B .±1C .5-或1-D . 5或19.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x 元,则可列方程为( ) A .8374x x +=- B .8374x x -=+ C .3487x x -+= D .3487x x +-= 10.有一列数123,,,,na a a a ⋅⋅⋅⋅⋅⋅满足1211113,1132a a a ====---,之后每一个数都是前一个数的差倒数,即111n na a +=-,20202018a a -=( )A .72-B .73C .76- D .72二、填空题11.小薇的体重是45.85kg ,用四舍五入法将45.85精确到0.1的近似值为______. 12.如图,把一张长方形纸片沿AB 折叠后,若①1=50°,则①2的度数为______.13.一个角的余角比它的补角的13还少20°,则这个角是_____________.14.若a 是最大的负整数, 2000200120022003a a a a +++的值=______.15.若多项式()28158(xm xy y xy m ++-+-是常数)中不含xy 项,则m 的值为_______.16.若1312m a b -与312na b -是同类项,则mn=________. 17.比较大小:-47_________-57 (选填“<”“=”或“>”).18.已知一组数为:92-,166,2512-,3620...按此规律则第7个数为__________.三、解答题 19.计算题:(1)1532132114742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭;(2)()201825(1)5|0.81|3⎛⎫-÷-⨯-+- ⎪⎝⎭;20.解方程: (1)4x +1=3x ﹣5 (2)x +12x -=2﹣213x +21.先化简,再求值:,xy xy y x xy xy y x -+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛---2222323223其中.313-==y x ,22.已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求2+-+--b amn x m n的值.23.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,-3,+14,-11,+10,-12. (1)将最后一名乘客送达目的地时,小石距下午出发地点的距离是多少千米? (2)若汽车耗油量为a 升/千米,这天下午汽车耗油共多少升?24.现用190张铁皮做盒子,每张铁皮能做8个盒身或做22个盒底,而一个盒身和两个盒底配成一个盒子,那么需要多少张铁皮做盒身,多少张铁皮做盒底才能使加工出的盒身与盒底配套?25.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:①按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用; (2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算?26.已知点C 是线段AB 上一点,13AC AB =.(1)若60AB =,求BC 的长;(2)若AB a ,D 是AC 的中点,E 是BC 的中点,请用含a 的代数式表示DE 的长,并说明理由.27.在某次作业中有这样的一道题:“如果代数式53a b +的值为4-,那么代数式2()4(2)a b a b +++的值是多少?”小明是这样来解的:原式2284106a b a b a b =+++=+,把式子534a b +=-两边同乘以2,得1068a b +=-,仿照小明的解题方法,完成下面的问题:(1)如果20a a +=,则22018a a ++= ; (2)已知2a b -=-,求3()556a b a b --++的值;(3)已知223a ab +=,24ab b -=-,求223122a ab b ++的值.28.如图所示.(1)已知①AOB=90°,①BOC=30°,OM 平分①AOC ,ON 平分①BOC ,求①MON 的度数; (2)①AOB=α,①BOC=β,OM 平分①AOC ,ON 平分①BOC ,求①MON 的大小.参考答案1.D【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:12022的相反数是12022-故选D【点睛】本题考查了相反数,掌握相反数的定义是解题的关键.2.D【分析】根据系数与次数的定义解答即可.【详解】单项式325x yπ-的系数与次数分别是5π-,5.故选D.【点睛】本题考查了单项式的概念,不含有加减运算的整式叫做单项式,单独的一个数或一个字母也是单项式;单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.3.D【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解:将499.5亿用科学记数法表示为:4.995×1010.故选:D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【分析】两个式子均为四次多项式,两个四次多项式相加,最高次项必不超过4,据此可解此题.【详解】A,B分别代表四次多项式,则A+B是次数不高于四次的整式.故选:C.5.A【分析】根据绝对值和相反数的定义逐项判断即可.【详解】解:A、互为相反数的两个数的绝对值相等,正确,符合题意;B 、因为有理数0的绝对值等于0,所以有理数的绝对值一定比0大错误,不符合题意;C 、若两个数的绝对值相等,则这两个数相等或互为相反数,所以此选项说法错误,不符合题意;D 、因为小于0的有理数的相反数大于0,所以此选项说法错误,不符合题意, 故选:A .【点睛】本题考查相反数和绝对值,属于基础题型,注意对基础概念的理解是解此类题的关键. 6.B【分析】根据合并同类项的法则和有理数的混合运算进行计算即可. 【详解】解:①2222a a a +=,故①错误; ①22232xy xy xy -=,故①错误; ①32ab ab ab -=,故①正确; ①322()17(3)---=-,故①正确, 计算正确的有2个, 故选:B .【点睛】本题考查了合并同类项的法则和有理数的混合运算,掌握运算法则是解题的关键. 7.B【分析】直接利用相反数的定义得出原点位置,进而结合绝对值的几何意义得出答案. 【详解】解:①a 与c 互为相反数, ①原点在a ,c 的中间, ①b 距离原点最远,①a ,b ,c 三个数中绝对值最大的数是b . 故选:B .【点睛】此题主要考查了数轴,绝对值,相反数,正确得出原点位置是解题关键. 8.C【分析】首先根据绝对值和乘方的定义确定出x 、y 的值,再找出x <y 的情况,然后代入计算即可.【详解】解:①x 2=9,|y|=2, ①x=±3,y=±2,①x <y , ①x=-3,y=±2, ①x -y=-5或-1, 故选C .【点睛】此题主要考查了乘方、绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x 、y 的值. 9.D【分析】设这个物品的价格是x 元,根据人数不变列方程即可. 【详解】解:设这个物品的价格是x 元,由题意得 3487x x +-=, 故选D .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程. 10.D【详解】解:①a 1=3,①211111132a a ===---,a 3=111()2--=23,a 4=1213-=3,a 5=113-=−12, …,所以这列数每3个为一个循环组依次循环,①2020÷3=673…1,2018÷3=672…2, ①a 2020=3,a 2018=−12, ①a 2020−a 2018=3−(−12)=72.故选:D .【点睛】本题考查了数字的变化规律,理解差倒数的定义并求出每3个数为一个循环组依次循环是解题的关键. 11.45.9【分析】把百分位上的数字5进行四舍五入即可. 【详解】解:45.85精确到0.1的近似值为45.9. 故答案为45.9.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字. 12.65︒【分析】如图,由题意得①1+2①2=180°,根据①1=50°,即可解决问题. 【详解】解:由题意知: ①1+2①2=180°,而①1=50°, 180502652︒-︒∴∠==︒ 故答案为:65︒.【点睛】该题考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,准确找出图形中隐含的等量关系,灵活运用有关定理来解答. 13.75°【详解】设这个角为x,则这个角的余角是90x ︒-,这个角的补角是180,x ︒-根据题意可得:9020x ︒+︒-=()11803x ︒-,解得x=75°,故答案为: 75°. 14.0【分析】先判断出a 的值,再根据有理数的乘方的定义代入求值. 【详解】解:①a 是最大的负整数, ①a=-1把a=-1代入2000200120022003a a a a +++得,原式()()()()()()2000200120022003111111110=-+-+-+-=+-++-=故答案为:0.【点睛】此题考查了正数和负数,有理数的概念及正负数的相关计算. 15.-2【分析】先合并同类项,再使含xy 项的系数为0求解即可.【详解】解:()28158x m xy y xy ++-+-()28258x m xy y =++--,①该多项式中不含xy 项, ①m+2=0, 解得:m=-2, 故答案为:-2.【点睛】本题考查整式加减中的无关型问题、解一元一次方程,能正确得出关于m 的方程是解答的关键. 16.12【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得m 和n 的值,再求mn 的值. 【详解】解:由1312m a b -与312na b -是同类项可知: 133m n -=⎧⎨=⎩ 解之得:43m n =⎧⎨=⎩, 故12mn =, 故答案为:12【点睛】同类项定义中的两个“相同”: (1)所含字母相同; (2)相同字母的指数相同. 17.>【分析】根据两个负数比较大小的方法:绝对值大的反而小解答即可. 【详解】解:4577< 4577∴->-,故答案为:>.【点睛】本题考查了有理数的大小比较,属于基本题目,熟练掌握比较两个负数大小的方法是解本题的关键.18.8156-【分析】观察数据,根据分母分别为:212623=⨯=⨯,,1234=⨯,2045=⨯...得出第n个数的分母为()1n n +,分子是从3开始的连续自然数的平方,而各数的符号为奇负偶正,结合以上信息进一步求解即可.【详解】观察可得,各数分母分别为:212623=⨯=⨯,,1234=⨯,2045=⨯...①第n 个数的分母为()1n n +,而其分子是由从3开始的连续自然数的平方, ①第n 个数的分子为()22n +, 而各数的符号为奇负偶正,①第7个数为:()()2728177156+-=-⨯+,故答案为:8156-. 【点睛】本题主要考查了数字的规律探索,准确找出相关的规律是解题关键. 19.(1)-1;(2)415. 【分析】(1)先把除法转化为乘法,然后根据乘法分配律即可解答本题; (2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题. 【详解】解:(1)1532132114742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭=1532321147⎛⎫-+- ⎪⎝⎭×(﹣42) =﹣14+10+(﹣9)+12 =﹣1;(2)()201825(1)5|0.81|3⎛⎫-÷-⨯-+- ⎪⎝⎭=1÷(﹣25)×(﹣53)+15=1×125×53+15=115+15=115+315 =415. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(1)x =﹣6(2)x =1【分析】(1)直接移项、合并同类项,即可求出答案;.(2)先去分母,然后移项合并,系数化为1,即可求出答案(1)解:4x +1=3x ﹣5,移项合并得:x =﹣6;(2)解:x +12x -=2﹣213x +, 去分母得:6x+3x ﹣3=12﹣4x ﹣2,移项合并得:13x =13,解得:x =1.【点睛】本题考查了解一元一次方程,解题的关键是掌握解方程的步骤进行解题.21.2xy +xy ;23-. 【分析】根据整式的加减,先去小括号、再去中括号,再合并同类项进行化简.【详解】原式=222232233x y xy xy x y xy xy ⎡⎤--++-⎣⎦=222232233x y xy xy x y xy xy -+-+-=2xy +xy 把133x y ==-,代入,原式=313⨯-()2+133⨯-()=12133-=-. 【点睛】此题主要考察整式的加减运算.22.原式的值为0或-4.【分析】根据相反数的性质、互为倒数的性质、绝对值的性质可知a+b=0,mn=1,x=±2,分两种情形代入计算即可.【详解】解:根据题意知a+b=0、mn=1,x=2或x=-2,当x=2时,原式=-2+0-2=-4;当x=-2时,原式=-2+0+2=0.综上,原式的值为0或-4.【点睛】本题考查了求代数式的值,相反数的性质、绝对值的性质、互为倒数的性质等知识,属于基础题.23.(1)13千米;(2)65a升【分析】(1)将小石这天下午所有行车里程相加,再根据正负数的实际意义解答;(2)将小石这天下午所有行车里程的绝对值相加,所得结果再乘以a即可.【详解】解:(1)+15+(﹣3)+14+(﹣11)+10+(﹣12)=13(千米);答:将最后一名乘客送达目的地时,小石距下午出发地点的距离是13千米.(2)(15+3+14+11+10+12)×a=65a(升).答:这天下午汽车耗油共65a升.【点睛】本题考查了有理数加法和正负数在实际中的应用以及列出实际问题中的代数式,属于常考题型,正确理解题意、熟练掌握基本知识是解题的关键.24.需要110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.【详解】分析:设用x张铁皮做盒身,则用(190﹣x)张铁皮做盒底,根据每张铁皮做8个盒身或做22个盒底且一个盒身与两个盒底配成一个盒子即可得出关于x的一元一次方程,解方程即可.详解:设需要x张铁皮做盒身,(190-x)张铁皮做盒底.根据题意,得8x×2=22(190-x).解这个方程,得x=110.所以190-x=80.答:需要110张铁皮做盒身,80张铁皮做盒底才能使加工出的盒身与盒底配套.点睛:本题考查了一元一次方程的应用,解题的关键是根据数量关系列出关于x的一元一次方程.25.(1)第①种方案应付的费用为640元,第①种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案①比较合算.【分析】(1)根据商场实行两种优惠方案分别计算即可;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解方程即可得出结果;(3)由(1)、(2)可得当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案①比较合算.【详解】解:(1)第①种方案应付的费用为:1040(4010)8640⨯+-⨯=(元),第①种方案应付的费用为:(1040408)90%648⨯+⨯⨯=(元);答:第①种方案应付的费用为640元,第①种方案应付的费用648元;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得:1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解得:50x =;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算; 当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择; 当购买文具盒个数大于50个时,选择方案①比较合算.【点睛】本题考查了列一元一次方程解应用题,设出未知数,列出一元一次方程是解题的关键.26.(1)40;(2)12a ,见解析 【分析】(1)根据题目中的已知求出AC 的长,再求BC 的长即可.(2)根据中点的定义可得CD=12AC ,CE= 12BC ,利用线段的加减可得DE 与AB 的关系,即可求解.【详解】(1)①60AB =,13AC AB =, ①1203AC AB == ①602040BC AB AC =-=-=(2)①D 是AC 的中点,E 是BC 的中点,①12DC AC =,12CE BC =, ①()1111122222DE DC CE AC BC AC BC AB a =+=+=+== 【点睛】本题考查的是线段的加减,掌握线段中点的定义并能根据图形找到数量关系是关键.27.(1)2018;(2)10;(3)5.【分析】(1)将a 2+a =0整体代入原式即可求出答案.(2)将(a ﹣b )作为一个整体进行化简即可求出答案(3)将原式进行适当的变形后将a 2+2ab =3,ab ﹣b 2=﹣4分别代入即可求出答案【详解】解:(1)①a 2+a =0,①原式=0+2018=2018(2)①a ﹣b =﹣2,①原式=3(a ﹣b )﹣5(a ﹣b )+6=﹣2(a ﹣b )+6=4+6=10(3)①a 2+2ab =3,ab ﹣b 2=﹣4,①原式=(a 2+2ab )﹣12(ab ﹣b 2) =3+2=5【点睛】本题考查学生的阅读能力,解题的关键是熟练运用整体思想,本题属于中等题型. 28.(1)45°;(2)12α【详解】试题分析:(1)先求得①AOC 的度数,然后再依据角平分线的定义求得①COM 和①NOC 的度数,最后,再依据①MON=①MOC ﹣①CON 求解即可;(2)按照(1)中的方法和思路求解即可.试题解析:解:(1)①①AOB=90°,①BOC=30°,①①AOC=①AOB+①BOC=90°+30°=120°. ①OM 平分①AOC ,ON 平分①BOC ,①①MOC=12①AOC=60°,①CON=12①BOC=15°,①①MON=①MOC ﹣①CON=60°﹣15°=45°.(2)同理可得,①MOC=12(α+β),①CON=12β.则①MON=①MOC﹣①CON=12(α+β)﹣12β=12α.点睛:本题主要考查的是角平分线的定义、角的和差,熟练掌握相关知识是解题的关键.。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.-2的倒数是( )A .-2B .12- C .12 D .22.数据6950000用科学记数法表示为( ) A .469510⨯B .66.9510⨯C .669.510⨯D .70.69510⨯3.如图,点A 位于点O 的( )A .北偏西 65°方向上B .南偏西 65°方向上C .北偏西 35°方向上D .南偏西 35°方向上4.如果向北走50m ,记作+50m ,那么-10m 表示( ) A .向东走10mB .向西走10mC .向南走10mD .向北走10m5.下列运用等式性质进行的变形,其中不正确的为( ) A .如果a b =,那么a c b c +=+ B .如果a b =,那么1122a b -=- C .如果a b =,那么ac bc =D .如果a b =,那么a b c c= 6.如图所示的是三通管的立体图,则这个几何体的俯视图是( )A .B .C .D .7.下午2时30分,钟表中时针与分针的夹角为( ) A .90︒B .105︒C .120︒D .135︒8.已知方程()130mm x ++=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或169.某志愿者团队承担整理校园图书馆一批图书的任务,由一个人做要40h 完成,现计划由一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作.假设志愿者的工作效率相同,具体应先安排多少人工作?如果设安排x 人先做4h ,下列四个方程中正确的是( ). A .4(2)814040x x++= B .48(2)14040x x ++= C .48(2)14040x x -+= D .4814040x x += 10.如图是一个正方体的平面展开图,若将展开图折叠成正方体后,相对面上所标的两个数相等,则a 的值为( )A .2B .5-C .1D .1-二、填空题11.一只蚂蚁由数轴上表示2-的点先向右爬3个单位长度,再向左爬5个单位长度,则此蚂蚁所在的位置表示的数是________. 12.7--=__________. 13.单项式2335π-x y 的系数是__________. 14.已知∠A=67°,则∠A 的余角等于______度.15.用四舍五入法将3.1416精确到0.01后,得到的近似数是____________ 16.已知2|1|(2)0a b -++=,则2011)a b (+的值是___________. 17.若关于x 的方程2x+a=6的解是x=1,则a 的值等于__________. 18.13.26°=_____°_____′_______″19.若2x 3yn 与﹣5xmy 2的和是单项式,则m+n=________.20.一组按规律排列的式子:25811234,,,,(0)b b b b ab a a a a--≠,其中第7个式子是_______,第n 个式子是_______(n 为正整数). 三、解答题 21.计算(1)713620-+-+(2)22323(2)-⨯+⨯-(3)232(21)x x x ---+(4)180483940︒︒'''-22.解方程 (1)5x+12=2x ﹣9 (2)211236x x +--=23.化简求值:22223y x (2x y)(x 3y )-+--+,其中1,2x y ==.24.如图,已知点 A ,B ,C 不在同一条直线上,根据要求画图.(1)作直线 AB . (2)作射线 CA .(3)作线段 BC ,并延长 BC 到 D ,使 CD =CB .25.一个角的补角比它的余角的5倍少10︒,求这个角的度数.26.如图.OE 平分BOC ∠,OD 平分AOC ∠,20,40BOE AOD ∠=︒∠=︒,求DOE ∠的度数.27.如图,点C 在线段AB 上,AC =8cm ,CB =6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长.(2)若C 为线段AB 上任一点,如果AB=14cm ,求MN 的长.28.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?29.从数轴上看:|a|表示数 a 的点到原点之间的距离,类似地|3|a -表示数 a 的点到表示数3的点之间的距离,|7||(7)|a a +=--表示数 a 的点到表示数–7的点之间的距离.一般地||-a b 表示数 a 的点到表示数 b 的点之间的距离.(1)在数轴上,若表示数x 的点与表示数–2 的点之间的距离为 3 个单位长度,则 x =_______. (2)利用数轴,求方程|5||4|9x x ++-=的所有整数解.参考答案1.B【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12, 故选:B . 2.B【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:6950000=6.95×106, 故选:B .【点睛】题目主要考查科学记数法的变换方法,熟练掌握科学记数法的变换方法是解题关键. 3.A【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断. 【详解】解:点A 位于点O 的北偏西65°的方向上. 故选:A .【点睛】本题考查了方位角的定义,正确确定基准点是关键. 4.C【分析】根据正负数的意义判断即可. 【详解】解:∠向北走50m, 记作+50m , ∠向北走为正,则向南走为负, ∠-10m 表示向南走10m , 故选C .【点睛】此题考查的是正负数的意义,掌握正负数表示具有相反意义的量是解决此题的关键. 5.D【分析】由等式的基本性质直接判断各选项的正误,进而可得到答案.【详解】解:由等式的基本性质1:等式左右两边同时加上同一个数或式子,等式不变; 可得选项A 、B 正确,不符合题意.由等式的基本性质2:等式左右两边同时乘以或除以一个不为零的数或式子; 可知选项C 正确,不符合题意,选项D 错误,符合题意. 故选:D .【点睛】本题考查等式的基本性质,熟练掌握等式的基本性质是解题的关键. 6.A【详解】解:俯视图是从上往下看得到的视图,从上往下看是一个矩形,中间有一个与长边相切的圆. 故选A . 7.B【分析】根据钟表上12个数字,每相邻两个数字之间的夹角为30°,数出时针与分针之间的空格进行求解即可得.【详解】解:∠钟表上12个数字,每相邻两个数字之间的夹角为30°,下午2时30分时,时针的分针与时针之间有3.5个空格, ∠所成夹角为30°×3.5=105°, 故选:B .【点睛】题目主要考查钟面角的计算,熟练掌握钟面角的基础知识点是解题关键. 8.B【分析】直接利用一元一次方程的定义进而分析得出答案. 【详解】解:∠方程(+1)30+=mm x 是关于x 的一元一次方程,∠1m =,+10≠m , 解得:1m =. 故选:B .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 9.B【分析】由一个人做要40h 完成,即一个人一小时能完成全部工作的140,就是已知工作的速度.本题中存在的相等关系是:先安排的一部分人4h 的工作+增加2人后8h 的工作=全部工作.设安排x 人先做4h ,就可以列出方程. 【详解】解:设安排x 人先做4h ,根据题意可得:48(2)14040x x ++=故选:B.【点睛】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的140,这一个关系是解题的关键.10.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字相等,求出a.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“1-”是相对面,相对面上的两个数相等,1a∴=-,故选:D.【点睛】本题考查了正方体的表面展开图,熟知正方体的表面展开图中相对的面之间一定相隔一个正方形式解决问题的关键.11.-4【分析】数轴上点的移动规律是“左减右加”,所以此蚂蚁所在的位置表示的数是-2+3-5=-4.【详解】解:蚂蚁所在的位置为:-2+3-5=-4.故答案为:-4.【点睛】主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12.-7【分析】根据题干信息,利用负数的绝对值等于它的相反数进行分析解答.【详解】解:负数的绝对值等于它的相反数,-l-7|=-7.故答案为:-7.【点睛】本题考查绝对值的性质以及相反数的定义,熟练掌握绝对值的性质以及相反数的定义是解题的关键.13.3 5π-【分析】根据单项式中的数字因数叫做单项式的系数,即可得出答案.【详解】解:单项式2335π-x y 的系数是35π-,故答案为35π-. 【点睛】本题是对单项式系数的考查,熟练掌握单项式的系数知识是解决本题的关键,难度较小. 14.23【详解】∠∠A=67°, ∠∠A 的余角=90°﹣67°=23°, 故答案为23. 15.3.14【分析】近似数精确到哪一位,应当看末位数字实际在哪一位. 【详解】3.1416精确到0.01为3.14. 故答案为3.14.【点睛】本题考查了近似数和有效数字,解题的关键是熟练掌握近似数与有效数字的知识点. 16.1-【详解】试题解析:根据题意得,a -1=0,b+2=0, 解得a=1,b=-2,所以,(a+b )2011=(1-2)2011=-1. 17.4【分析】把x=1代入方程计算即可求出a 的值. 【详解】解:把x =1代入方程得: 2+a ﹣6=0, 解得:a =4, 故答案为:4. 18. 13 15 36【分析】根据角度制的转换规律,乘以60即可解题. 【详解】解:0.26︒⨯60=15.6′, 0.6′⨯60=36″, ∠13.26°= 13°15′36″. 故答案为:13、15、3619.5【详解】解:根据题意:和是单项式,可知它们是同类项,因此根据同类项的概念,可得m=3,n=2,代入m+n=5. 故答案为5.20. 207b a - 31(1)n n n b a-- 【分析】根据分子的变化得出分子变化的规律,根据分母的变化得出分母变化的规律,根据分数符号的变化规律得出分数符号的变化规律,即可得到该组式子的变化规律. 【详解】分子为b ,指数为2,5,8,11,..., ∴分子指数的规律为3n – 1,分母为a ,指数为1,2,3,4,..., ∴分母指数的规律为n ,分数符号为-,+,-,+,…., ∴其规律为()1n-,于是,第7个式子为207b a-,第n 个式子为31(1)n nnb a--, 故答案为:207b a-,31(1)n n nb a --. 21.(1)20 (2)6-(3)253x x -+- (4)1312020'''︒【分析】(1)按照有理数的混合运算法则计算即可; (2)按照有理数的混合运算法则计算即可; (3)按照整式的加减运算法则计算即可; (4)按照角度的运算法则计算即可. (1)解:原式=6620-+ =20, (2)解:原式=9234-⨯+⨯ =1812-+ =6-, (3)解:原式=23221x x x --+- =253x x -+-, (4)解:原式=1795960483940''''''︒-︒ =1312020'''︒. 22.(1)x=-7 (2)x=3【分析】(1)根据移项合并同类项,系数化为1,求出方程的解;(2)根据去分母,去括号,移项合并同类项,系数化为1,求出方程的解. (1)解:5x+12=2x -9, 移项得5x -2x=-9-12, 合并同类项,得3x=-21, 系数化为1,得x=-7; (2) 解:211236x x +--= 去分母,得2(2x+1)-(x -1)=12, 去括号,得4x+2-x+1=12, 移项合并同类项,得3x=9, 系数化为1,得x=3. 23.222x x y -+-;-2【分析】根据整式的加减混合运算法则计算将原式化简,再代值计算即可.【详解】解:原式2222323y x x y x y =-+---222x x y =-+-.当1x =,2y =时,原式221212=-⨯+⨯-2=-.24.(1)见解析(2)见解析(3)见解析【分析】(1)连接AB 并双向延长即可;(2)连接CA 并延长即可得;(3)连接BC 并延长,使用刻度尺测得CD=CB ,即可确定点D 的位置.(1)如图所示:直线AB 即为所作;(2)如图所示:射线CA 即为所作;(3)如图所示:线段BC=CD 即为所作.【点睛】题目主要考查了作直线、射线和线段,熟练掌握这三个基本图形的性质及作法是解题关键.25.这个角的度数为65︒【分析】设这个角为x ︒,根据题意列方程求解即可.【详解】解:设这个角为x ︒,则余角为(90)x -︒,补角为(180)x -︒,由题意得:()18059010-=--x x ,解得:65x =.答:这个角的度数是65︒.【点睛】本题考查了一元一次方程的应用,以及余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角,根据题意列出方程是解题关键.26.60度【分析】根据角平分线定义求出∠COD和∠COE,代入∠DOE=∠COD+∠COE求出即可.【详解】解:∠OE平分∠BOC,∠BOE=20°,∠∠BOE=∠COE=20°,∠OD平分∠AOC,∠AOD=40°,∠∠COD=∠AOD=40°,∠∠DOE=∠COD+∠COE=40°+20°=60°.【点睛】本题考查角平分线的定义,解题关键是角平分线的定义的运用.27.(1)7cm(2)7cm【分析】(1)根据线段中点的性质,可得CM、CN的长,根据线段的和差,可得答案;(2)根据线段中点的性质及线段的和差,可得答案.(1)解:∠点M,N分别是AC,BC的中点,AC=8,CB=6,∠CM=12AC=12×8=4,CN=12BC=12×6=3,∠MN=CM+CN=4+3=7cm;(2)解:∠点M,N分别是AC,BC的中点,AC+CB=AB=14cm,∠CM=12AC,CN=12BC,∠MN=CM+CN=12AC +12BC =12(AC+BC)=7cm.【点睛】本题考查了两点间的距离及线段中点的性质,熟练掌握运用线段中点的性质进行计算是解题关键.28.生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.【分析】设生产螺栓的工人有x名,则生产螺母的工人有(28﹣x)名,根据题意等量关系:“螺栓数量×2=螺母数量”列出方程,求出方程的解即可得到结果.【详解】设生产螺栓的工人有x 名,则生产螺母的工人有(28﹣x )名,根据题意得: 12x×2=18(28﹣x )解得:x=12.当x=12时,28﹣x=16.答:生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.【点睛】本题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解答本题的关键.29.(1)1或-5(2)x=-5,-4,-3,-2,-1,0,1,2,3,4.【分析】(1)根据数轴表示数的方法分两种情况进行求解即可;(2)根据54x x ++-所表示的意义,结合数轴表示数的意义求解即可.(1)解:根据题意可得:()23x --=,∠x -(-2)=±3,x=(-2) ±3,解得:x 1=1,x 2=-5,故答案为:1或-5;(2)解:如图所示,设点C 在数轴上所表示的数为x ,当C 在线段AB (含端点A 、B )上时,()55x x CA +=--=,4x CB -=,∠CA+CB=AB=9,即x 是549x x ++-=的解,∠x是整数,∠x=-5,-4,-3,-2,-1,0,1,2,3,4.。

人教版数学七年级上册期末考试试卷含答案

人教版数学七年级上册期末考试试卷含答案

人教版数学七年级上册期末考试试题一、选择题(每小题 3 分,共 30 分)1. a 、b ,在数轴上表示如图 1,下列判断正确的是()A. a + b > 0B .b + 1 > 0 C .- b - 1 < 0 D .a + 1 > 0 2. 如图 2,在下列说法中错误的是( )A. 射线OA 的方向是正西方向B. 射线OB 的方向是东北方向C. 射线OC 的方向是南偏东 60°D. 射线OD 的方向是南偏西 55°3. 下列运算正确的是( )A. 5x - 3x = 2B. 2a + 3b = 5abC. 2ab - ba = abD. - (a - b ) = b + a4. 如果有理数a , b 满足ab > 0 , a + b < 0 ,则下列说法正确的是()A. a > 0, b > 0B. a < 0, b > 0C. a < 0, b < 0D. a > 0, b < 05.若(1 - m ) 2+ | n + 2 |= 0 ,如m + n 的值为()A. -1B. - 3C.3D.不确定6.7. 平面内有三个点,过任意两点画一条直线,则可以画直线的条数是()A.2 条B.3 条C.4 条D.1 条或 3 条8.将长方形的纸ABCD 沿 AE 折叠,得到如图 3 所示的图形,已知∠CED ′=60.则∠AED 的是( ) A.60º B.50º C.75ºD.55º9.在正方体的表面上画有如图4 a 所示的粗线,图4 b 是其展开图的示意图,但只在A 面上有粗线,那么将图 4 a 中剩余两个面中的粗线画入图4 b 中,画法正确的是()若| a |> 0 ,那么() A. a > 0 B. a < 0 C. a ≠ 0D. a 为任意有理数10. 一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优4惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价 5收费。

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.在1,-0.1,0,-2这四个数中,最小的数是( )A .0B .-0.1C .-2D .12.15-的相反数是( ) A .15- B .15C .-5D .5 3.下列变形正确的是( )A .若a b =,则12+=+a bB .将10a +=移项得1a =C .若a b =,则33a b -=-D .将1103a +=去分母得10a += 4.如图所示的是一个正方体的展开图,把展开图折叠成小正方体,和“民”字一面相对面的字是( )A .强B .明C .文D .主5.如图,一副三角板(直角顶点重合)摆放在桌面上.若160AOD ∠=︒,则BOC ∠等于()A .70°B .20°C .50°D .30°6.数据639000这个数字用科学记数法可表示为( )A .66.3910⨯B .60.63910⨯C .50.63910⨯D .56.3910⨯ 7.如图,数轴上点A ,B ,C 对应的有理数分别为a ,b ,c .下列结论:①a+b+c>0;①abc>0;①a+b−c<0;①0<b a<1.其中正确的是( )A .①①①B .①①①C .①①D .①①8.如图,已知①AOB :①BOC =2:3,①AOC =75°,那么①AOB =( )A .20°B .30°C .35°D .45°9.某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套,设安排x 名工人生产片,则可列方程( )A .60(28)90x x --B .6090(28)x x --C .260(28)90x x ⨯-=D .60(28)290x x -=⨯10.下面计算正确的是( )A .2x 2﹣x 2=1B .4a 2+2a 3=6a 5C .5+m =5mD .10.2504ab ab -+= 二、填空题11.若单项式22n x y -与3m x y 是同类项,则m n -=______.12.比较大小(用“>,<,=”表示):2--______-(-2).13.一个长方形的长是2a ,宽是1a +,则这个长方形的周长为__________.14.已知x =3是关于x 的方程2x -a =1的解,则a 的值是________15.若()2230-++=x y ,则x y 的值是 .16.如图,在33⨯幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x 的值为______.17.观察一列有规律的单项式:x ,3x 2,5x 3,7x 4,9x 5…,它的第n 个单项式是______.18.点C 是线段AB 上的三等分点,D 是线段AC 的中点,若AB =6,则BD 的长为______.三、解答题19.计算:(﹣2)3÷4﹣(﹣1)2021+|﹣6|.20.解方程:2151132x x +--=21.先化简,后求值:()()2222212a b ab a b +---,其中2a =,2b =-22.某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,﹣35,﹣40,+210,﹣32,+20,﹣18,﹣5,+20,+85,﹣25(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.05升,则他们共耗氧多少升?23.如图,在平面内有A 、B 、C 三点,(1)请根据下列语句画图:①画直线AC 、线段BC 、射线AB ;①在线段BC 上任取一点D (不同于点B 、C ),连接线段AD ;(2)此时图中的线段共有 条.24.如图,以点O 为端点按顺时针方向依次作射线OA 、OB 、OC 、OD.(1)若①AOC 、①BOD 都是直角,①BOC =60°,求①AOB 和①DOC 的度数.(2)若①BOD =100°,①AOC =110°,且①AOD =①BOC+70°,求①COD 的度数. (3)若①AOC =①BOD =α,当α为多少度时,①AOD 和①BOC 互余?并说明理由.25.对于有理数a ,b ,定义了一种新运算“①”为:()()223a b a b a b a b a b ⎧-≥⎪=⎨-<⎪⎩※,如:5①3=2×5﹣3=7,2131313=-⨯=-※. (1)计算:①2①(﹣1)= ;①(-4)①(﹣3)= ;(2)若3①m =﹣1+3x 是关于x 的一元一次方程,且方程的解为x =2,求m 的值;(3)若A <B ,A =﹣x 3+4x 2﹣x+1,B =﹣x 3+6x 2﹣x+2,且A①B =﹣3,求2x 3+2x 的值.26.某校计划购买20张书柜和一批书架(书架不少于20只),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A 超市的优惠政策为每买一张书柜赠送一只书架,B 超市的优惠政策为所有商品八折.(1)若在同一超市购买所有的产品,购买多少只书架付出的钱数相等?(2)在(1)的基础上,若规定只能到其中一个超市购买所有物品,什么情况下到A超市(3)若学校想购买20张书柜和100只书架,分别求出在A超市和B超市购买所有产品付出的钱数.(4)若学校想购买20张书柜和100只书架,且可到两家超市自由选购.你认为至少要准备多少货款,请用计算说明.27.如图,点C、D是线段AB上两点,AC①BC=3①2,点D为AB的中点.(1)如图1所示,若AB=40,求线段CD的长.(2)如图2所示,若E为AC的中点,ED=7,求线段AB的长.参考答案1.C【分析】根据正数大于0,0大于负数,可得答案.【详解】-2<-0.1<0<1,故选C.【点睛】此题考查有理数比较大小,正数大于0,0大于负数是解题关键.2.B【分析】根据相反数的定义,即可求解.【详解】解:15的相反数是15.故选:B【点睛】本题主要考查了相反数的定义,熟练掌握只有符号不同的两个数互为相反数是解3.C 【分析】根据等式的性质,等式两边同时加上或减去同一个整式,等式仍成立,即可判断A 选项,根据在移项的过程中需要变号可判断B 选项,根据等式的性质,等式两边同时乘或除以同一个不为0的整式,等式仍成立,即可判断C ,根据去分母的性质即可判断D 选项;【详解】A 、若a=b ,则a+c=b+c ,所以12a b +≠+,故该选项错误;B 、将a+1=0移项得a=-1,故该选项错误;C 、若a=b ,则-3a=-3b ,故该选项正确;D 、将1103a +=去分母得a+3=0,故该选项错误; 故选:C .【点睛】本题主要考查了等式的性质以及移项和去分母需要注意的情况,熟练掌握等式的性质是解题的关键;4.B 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,和“民”字一面相对面的字是“明”,故B 正确.故选:B .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.B 【分析】如图可以看出,BOC ∠的度数正好是两个直角相加减去AOD ∠的度数,从而问题可解. 【详解】90AOB COD ∠=∠=,=160AOD ∠∴909016020BOC AOB COD AOD ∠=∠+∠-∠=+-=,故答案选B .【点睛】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.6.D 【分析】科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:639000=6.39×105,【点睛】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,解题的关键是掌握确定a 和n 的值的方法.7.B 【分析】先由数轴得出a <-2<b <-1<0<c <1,再根据有理数的加法法则、有理数的乘除法法则等分别分析,可得答案.【详解】解:由数轴可得:a <-2<b <-1<0<c <1,①a+b+c <0,故①错误;①a ,b ,c 中两负一正,①abc >0,故①正确;①a <0,b <0,c >0,①a+b-c <0,故①正确;①a <-2<b <-1,①0<b a<1,故①正确. 综上,可知,正确的是①①①.故选:B .【点睛】本题考查了数轴在有理数加减乘除法运算中的应用,数形结合,是解题的关键.8.B 【分析】由①AOB :①BOC=2:3,可得①AOB=25①AOC 进而求出答案,作出选择. 【详解】解:①①AOB :①BOC =2:3,①AOC =75°,①①AOB =223+①AOC =25×75°=30°, 故选:B .【点睛】本题考查角的有关计算,按比例分配转化为①AOB=25①AOC 是解答的关键. 9.C 【分析】根据题意列方程即可.【详解】设x 人生产镜片,则(28-x )人生产镜架.由题意得:260(28)90x x ⨯-=,故选C .【点睛】本题考查一元一次方程的应用,解决本题的关键是得到镜片数量和镜架数量的等量关系.10.D 【分析】根据合并同类项逐项判断即可求解.【详解】解:A 、2222x x x -= ,故本选项不符合题意;B 、24a 与32a 不是同类项,不能合并,故本选项不符合题意;C 、5 与m 不是同类项,不能合并,故本选项不符合题意;D 、10.2504ab ab -+=,故本选项符合题意;故选:D【点睛】本题主要考查了合并同类项,熟练掌握合并同类项就是把同类项的系数相加,所得的结果作为系数,字母连同指数不变是解题的关键.11.1【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.由同类项的定义可先求得m 和n 的值,再求值即可.【详解】解:①单项式22n x y -与3m x y 是同类项,①m=2,n=1.①m-n=2-1=1故答案为:1.【点睛】本题主要考查了同类项定义,注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关. 12.<.【分析】根据绝对值的意义、相反数的定义化简,然后根据正数大于负数即可求解. 【详解】解:22--=-,-(-2)=2,①-2<2, ①2--<-(-2);故填:<.【点睛】本题考查了有理数的大小比较、绝对值的性质和相反数的定义,是基础考查题. 13.62a +【分析】由长方形的周长计算公式进行计算,即可求出周长.【详解】解:根据题意,则①长方形的长是2a ,宽是1a +,长方形的周长为:2(21)62a a a ⨯++=+;故答案为:62a +.【点睛】本题考查了整式的加减,解题的关键是掌握运算法则进行计算.14.5a =【分析】把3x =代入原方程可得:61a -=,再解关于a 的一元一次方程,从而可得答案.【详解】解:把3x =代入方程得:61a -=,解得:5a =.故答案为5.【点睛】本题考查的是一元一次方程的解,一元一次方程的解法,掌握以上知识是解题的关键.15.9【分析】根据平方数和绝对值的非负性求出x 、y 的值,然后再代入代数式计算即可求解.【详解】解:①()2230-++=x y①20x -=,30y +=①2x =,=-3y①2=(-3)=9x y故答案为9【点睛】本题考查了平方数和绝对值的非负性,根据几个非负数的和等于0,则每一个算式都等于0列式求解是解题的关键.16.3【分析】根据题意可知每行每列每对角线上的三个数之和都相等可知4x+x+7=19+x 即可解出x 的值;【详解】① 每行每列每对角线上的三个数之和都相等,① 4x+x+7=19+x ,解得x=3,故答案为:3.【点睛】本题考查了有理数的加法,一元一次方程的应用,根据表格,根据每行每列每对角线上的三个数之和都相等得知4x+x+7=19+x 是解题的关键.17.()21nn x -【分析】根据单项式的系数与次数的变化,探索个数与系数、次数的关系的一般性规律即可.【详解】解:第1个单项式x 中,系数为1,次数为1;第2个单项式23x 中,系数为3,341221=-=⨯-,次数为2;第3个单项式35x 中,系数为5,561321=-=⨯-,次数为3;第4个单项式47x 中,系数为7,781421=-=⨯-,次数为4;第5个单项式59x 中,系数为9,9101521=-=⨯-,次数为5;依次类推,可知第n 个单项式的系数为21n -,次数为n ,单项式为()21nn x - 故答案为:()21nn x -. 【点睛】本题考查了单项式,数字规律的探究.解题的关键在于总结一般性规律. 18.5或4##4或5【分析】根据点C 是线段AB 上的三等分点,可得123AC AB == 或243AC AB ==,然后分两种情况讨论即可求解. 【详解】解:①点C 是线段AB 上的三等分点,AB =6, ①123AC AB == 或243AC AB ==, 当AC=2时,①D 是线段AC 的中点,①AD=1,①BD=AB-AD=5;当AC=4时,①D 是线段AC 的中点,①AD=2,①BD=AB-AD=4,综上所述,BD 的长为5或4.【点睛】本题主要考查了线段的中点的定义,线段间的数量关系,利用分类讨论的思想解答是解题的关键.19.5【分析】先计算乘方,再计算乘除,最后计算加减,一个负数的绝对值等于这个数的相反数,据此解题,注意负号的作用.【详解】解:原式(8)4(1)6=-÷--+,216=-++,5=.【点睛】本题考查含有乘方的有理数的混合运算,涉及绝对值等知识,是重要考点,难度较易,掌握相关知识是解题关键.20.111x =-.【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得. 【详解】2151132x x +--=, 方程两边同乘以6去分母,得2(21)3(51)6x x +--=,去括号,得421536x x +-+=,移项,得415623x x -=--,合并同类项,得111x -=,系数化为1,得111x =-. 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.21.22ab ,16.【分析】先去括号,再计算整式的加减,然后将a 、b 的值代入即可得.【详解】原式22222222a b ab a b +-+-=,22ab =,将2a =,2b =-代入得:原式222(2)16⨯⨯-==.【点睛】本题考查了整式的化简求值,熟练掌握整式的加减运算法则是解题关键. 22.(1)没有登顶,距离顶峰还有170米;(2)他们共耗氧气160升.【分析】(1)根据有理数的加法,可得到达的地点,再根据有理数的减法,可得他们距顶峰的距离;(2)根据路程乘以5个人的单位耗氧量,可得答案.(1)解:+150﹣35﹣40+210﹣32+20﹣18﹣5+20+85﹣25=330(米),500﹣330=170(米).答:他们最终没有登顶,距顶峰还有170米;(2)解:(+150+|﹣35|+|﹣40|+210+|﹣32|+20+|﹣18|+|﹣5|+20+85+|﹣25|)×(5×0.05) =640×0.25=160(升).答:他们共耗氧气160升.【点睛】本题考查了正数和负数以及有理数的混合运算,利用有理数的加法是解题关键,注意路程乘以5个人的单位耗氧量是总耗氧量.23.(1)①见解析;①见解析;(2)6【分析】(1)①依据直线、射线、线段的定义,即可得到直线AC,线段BC,射线AB;①依据在线段BC上任取一点D(不同于B,C),连接线段AD即可;(2)根据图中的线段为AB,AC,AD,BD,CD,BC,即可得到图中线段的条数.【详解】(1)①如图,直线AC,线段BC,射线AB即为所求;①如图,线段AD即为所求;(2)由题可得,图中线段为AB,AC,AD,BD,CD,BC,条数共为6.故答案为:6.【点睛】本题主要考查了直线、射线、线段的定义,是一个基础题,在作图的过程中要注意延伸性.24.(1)①AOB=30°,①DOC=30°;(2)①COD=30°;(3)当α=45°时,①AOD与①BOC互余.【分析】(1)根据互余的意义,即可求出答案;(2)设出未知数,利用题目条件,表示出①AOB、①BOC,进而列方程求解即可;(3)利用角度的和与差,反推得出结论,再利用互余得出答案.【详解】(1)①①AOC=90°,①BOD=90°,①BOC=60°,①①AOB=①AOC﹣①BOC=90°﹣60°=30°,①DOC=①BOD﹣①BOC=90°﹣60°=30°;(2)设①COD=x°,则①BOC=100°﹣x°.①①AOC=110°,①①AOB=110°﹣(100°﹣x°)=x°+10°.①①AOD=①BOC+70°,①100°+10°+x°=100°﹣x°+70°,解得:x=30,即①COD=30°;(3)当α=45°时,①AOD 与①BOC 互余.理由如下:要使①AOD 与①BOC 互余,即①AOD+①BOC=90°,①①AOB+①BOC+①COD+①BOC=90°,即①AOC+①BOD=90°.①①AOC=①BOD=α,①①AOC=①BOD=45°,即α=45°,①当α=45°时,①AOD 与①BOC 互余.【点睛】本题考查了互为余角的意义,通过图形直观得出角度的和或差,以及各个角之间的关系是得出正确答案的前提.25.(1)5,2-(2)1(3)16【分析】(1)根据新定义计算即可;(2)分当3m ≥,当3m <两种情况求解即可;(3)根据条件列出等式整理可得38x x +=,然后代入2x 3+2x 计算即可.(1)解:①2①(-1)=2×2-(-1)=5,①(-4)①(-3)=-4-23×(-3)=-2. 故答案为:5,2-(2)解:当3m ≥时,2313m x ⨯-=-+,①x =2,①23132m ⨯-=-+⨯,此时1m =;当3m <时,23133m x -=-+, ①x =2, ①231323m -=-+⨯, 此时3m =-,舍去.综上所述,m 的值是1.(3)解:当A B <时,由3A B =-※,得233A B -=-, 即()32322416233x x x x x x -+-+--+-+=-, 整理得38x x +=,所以()332222816x x x x +=+=⨯=.26.(1)40;(2) 购买数量大于20只,小于40只书架选择到A 超市购买合算;(3) 到A 超市付出的钱数为9800元,到B 超市购买付出的钱数为8960元;(4) 8680元【详解】试题分析:(1)设买x 只书架时,到两家超市一样优惠.根据在A 超市购买所需的钱数=在B 超市购买所需的钱数建立方程,求解即可;(2)根据(1)的计算结果可知,购买数量大于20只,小于40只书架选择到A 超市购买合算;(3)根据A 超市和B 超市的优惠政策,即可求出购买20张书柜和100只书架时分别在A 超市和B 超市付出的钱数;(4)根据A 超市和B 超市的优惠政策,可知:到A 超市购买20个书柜和20个书架,到B 超市购买80只书架,钱数最少,再计算即可.试题解析:(1)设买x 只书架时,到两家超市一样优惠.根据题意得:20×210+70(x-20)=0.8×(20×210+70x ),解得:x=40.答:若在同一超市购买所有的产品,购买40只书架付出的钱数相等;(2)根据实际问题,购买数量大于20只,小于40只书架选择到A 超市购买合算; (3)学校购买20张书柜和100只书架,到A 超市付出的钱数为:20×210+70×(100-20)=9800元,到B 超市购买付出的钱数为:0.8×(20×210+70×100)=8960元.(4)经分析:到A 超市购买20个书柜和20个书架,到B 超市购买80只书架, 共需货款:20×210+70×(100-20)×0.8=8680元.27.(1)4(2)35【分析】(1)根据AC①BC =3①2,AB =40,可得24AC = ,再由点D 为AB 的中点.可得2201AD AB == ,即可求解; (2)设3,2AC x BC x == ,则5AB x =,根据点D 为AB 的中点.可得1522AD AB x == ,再由E 为AC 的中点,可得1322AE AC x == ,从而得到DE AD AE x =-=,即可求解.(1)解:①AC①BC =3①2,AB =40, ①3402432AC =⨯=+ , ①点D 为AB 的中点. ①2201AD AB == , ①4CD AC AD =-= ;(2)解:设3,2AC x BC x == ,则5AB x = ,①点D 为AB 的中点. ①1522AD AB x == , ①E 为AC 的中点, ①1322AE AC x == , ①5322DE AD AE x x x =-=-= ,①ED =7, ①7x = , ①535AB x == .。

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试题一、单选题1.用科学记数法表示2022000,正确的是( )A .2022×103B .2.022×105C .2.022×106D .0.2022×107 2.下列计算正确的是( )A .220--=B .4228a 6a 2a -=C .()3b 2a 3b 2a -=-D .239-=-3.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 4.若﹣5am +1b 2与13a 3bn ﹣1是同类项,则m ﹣n 的值为( )A .1B .2C .﹣1D .﹣25.买一个足球需m 元,买一个篮球需n 元,则买4个足球和7个篮球共需( )元. A .11mnB .28mnC .74m n +D .47m n +6.下列说法正确的是( ) A .一个平角就是一条直线;B .连接两点间的线段,叫做这两点的距离;C .两条射线组成的图形叫做角;D .两点之间线段最短.7.某土建工程共需动用30台挖运机械,每台机械每分钟能挖土3m 3,或者运土2m 3,为了使挖土和运土工作同时结束,安排了x 台机械挖土,这里的x 应满足的方程是( ) A .302x 3x -= B .3x 2x 30-= C .()2x 330x =- D .()3x 230x =- 8.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=-,怎么办呢?小明想了一想,便翻看书后答案,此方程的解是53y =-,于是很快就补好了这个常数,你能补出这个常数吗?它应是( )A .4B .3C .2D .19.如图,数轴上A 、B 、C 三点所表示的数分别是a 、6、c .已知AB =8,a +c =0,且c 是关于x 的方程(m -4)x +16=0的一个解,则m 的值为( )A .-4B .2C .4D .6 10.若1x =是方程260x m +-=的解,则m 的值是( ) A .﹣4 B .4 C .﹣8 D .8 二、填空题11.物体向右运动4m 记作+4m ,那么物体向左运动8m ,应记作____m 12.比较大小:-|-8|_____-6(填“>”或“<号”) 13.已知一个角为31°40′,则这个角的补角为____.14.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为_________________.15.如果x =3时,式子px 3+qx +1的值为2020,则当x =﹣3时,式子px 3+qx ﹣2的值是____.16.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.17.如图所示的是一个正方体的展开图,它的每一个面上都写有一个自然数,并且相对的两个面的两个数字之和相等,那么a +b ﹣2c =____.三、解答题18.计算 ()()2211113223⎡⎤⎛⎫-+-⨯÷-+ ⎪⎢⎥⎝⎭⎣⎦19.解方程3157146x x ---=20.先化简,再求值:22222(3)2(2)a b ab a b ab a b -+---,其中 1,2a b =-=-21.在数轴上表示a 、0、1、b 四个数的点如图所示,已知OA =OB ,求|a +b|+|ab|+|a +1|+a 的值.22.如图,一块正方形的铁皮,边长为x cm (x >4),如果一边截去宽4 cm 的一块,相邻一边截去宽3 cm 的一块.(1)求剩余部分(阴影)的面积; (2)若x =8,则阴影部分的面积是多少?23.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB=a ,CE=b ,且()215290a b -+-=,求a ,b 的值; (2)在(1)的条件下,求线段CD 的长.24.某超市的平时购物与国庆购物对顾客实行优惠规定如下:例如:某人在平时一次性购物600元,则实际付款为:200+(600-200)×0.9=560(元)(1)若王阿姨在国庆期间一次性购物600元,他实际付款______元. (2)若王阿姨在国庆期间实际付款380元.那么王阿姨一次性购物____元;(3)王阿姨在平时和国庆先后两次购买了相同价格的货物,两次一共付款1314元,求王阿姨这两次每次购买的货物的原价多少元?25.如图是一个长方体纸盒的表面展开图,已知纸盒中相对两个面上的数互为相反数.(1)填空:a = ,b = ; (2)先化简,再求值:22(25)3()a b a b ---.26.已知150AOB ∠=︒,射线OP 从OB 出发,绕O 逆时针以1°/秒的速度旋转,射线OQ 从OA 出发,绕O 顺时针以3°/秒的速度旋转,两射线同时出发,运动时间为t 秒()060t <≤(1)当12t =秒时,求POQ ∠; (2)当OP OQ ⊥,求t 的值;(3)射线OP ,OQ ,OB ,其中一条射线是其他两条射线所形成的角的平分线,求t 的值.参考答案1.C 2.D 3.A 4.C 5.D 6.D 7.D 8.B 9.A 10.B 11.-8【详解】解:物体向右运动4m 记作+4m ,那么物体向左运动8m ,应记作-8 m 故答案为:-8.【点睛】本题考查了具有相反意义的量,解题的关键是理解具有相反意义的量. 12.<【分析】先化简绝对值,进而根据两个负数,绝对值大的其值反而小,进行判断即可. 【详解】解:∵-|-8|=-8,88,66,86-=-=> ∵-|-8|<-6 故答案为:< 13.148∵ 20′【分析】根据补角的概念求解即可. 【详解】解:一个角为31°40′, 则它的补角为:180311824004'=︒︒-'︒. 故答案为:148∵ 20′. 14.两点确定一条直线.【分析】依据两点确定一条直线来解答即可.【详解】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查的是直线的性质,掌握直线的性质是解题关键. 15.-2021【分析】把x=3代入31px qx ++可得27p+3q+1=2020,整理得:27p+3q=2019,再将x=-3代入,变形可得结果. 【详解】解:当x=3时,代入31px qx ++可得27p+3q+1=2020,整理得:27p+3q=2019当x=-3时,代入32px qx +-得-27p-3q-2=-(27p+3q )-2=-2019-2=-2021故答案为:-2021.【点睛】本题考查了代数式的求值,解题的关键是运用整体思想代入求值. 16.10【详解】∵轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时, ∵水流的速度为:(2824)22-÷=(千米/时),∵水面上的漂浮物顺水漂流20千米所需的时间为:20210÷=(小时). 故答案为10.点睛:本题解题的关键是要清楚:在航行问题中,∵顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;∵水面上漂浮物顺水漂流的速度等于水流速度. 17.38【分析】由已知条件相对两个面上所写的两个数之和相等得到:8425a b c +=+=+,进一步得到a c -,b c -的值,整体代入()()2a b c a c b c +-=-+-求值即可. 【详解】解:由题意8425a b c +=+=+21b c ∴-=,17a c -=,()()2a b c a c b c ∴+-=-+-172138=+=.故答案为:38.【点睛】本题考查灵活运用正方体的相对面解答问题,解题的关键是得到a c - ,b c -的值后用这些式子表示出要求的原式. 18.16-【分析】先算中括号内的乘方、乘法、然后计算加减法,最后计算中括号外的除法. 【详解】解:原式11711167676⎛⎫⎛⎫⎛⎫=+⨯-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则. 19.x =﹣1【分析】首先去分母,然后移项合并系数,即可解得x .【详解】方程两边同时乘以12得:3(3x ﹣1)﹣2(5x ﹣7)=12, 去括号得:9 x ﹣3﹣10x+14=12, 移项得:9x ﹣10x =12﹣14+3, 合并同类项得:﹣x =1, 系数化为1得:x =﹣1.【点睛】本题主要考查解一元一次方程的知识点,解题时要注意,移项时要变号,本题比较基础. 20.2ab - ; 4【分析】先化简代数式,再将a 和b 的值代入化简后的式子计算即可得出答案. 【详解】解:原式=2222234+2a b ab a b ab a b -+-- =2-ab将1,2a b =-=-代入原式=2(1)(2)4--⨯-=【点睛】本题考查的是整式的化简求值,记住先化简再求值. 21.0【分析】由已知条件和数轴可知:101b a >>>->,再由这个确定所求绝对值中的正负值就可求出此题.【详解】解:由已知条件和数轴可知:101b a >>>->,OA OB =∴10110aa b a a a a b+++++=+--+=, 1aa b a a b∴+++++的值为0. 【点睛】本题主要考查了数轴和绝对值的定义,即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0,数轴左边的为负数,右边的为正数,解题的关键是根据数轴判断a ,b 的大小. 22.(1)x 2-7x+12 (2)20【分析】(1)根据图形分别求得阴影部分的长和宽,进而即可求得面积; (2)根据(1)的结论,将x =8,代入求解即可 (1)解:阴影部分的长为()3x -cm ,宽为()4x -cm , 则面积为()3x -⨯()4x -= x 2-7x+12 (2) x=8时阴影的面积=(8-3)×(8-4)=20【点睛】本题考查了列代数式,多项式的乘法,代数式求值,理解题意是解题的关键. 23.(1)a=15,b=4.5;(2)1.5.【分析】(1)由()215290a b -+-=,根据非负数的性质即可推出a 、b 的值; (2)根据(1)所推出的结论,即可推出AB 和CE 的长度,根据C 为线段AB 的中点AC=7.5,然后由AE=AC+CE ,即可推出AE 的长度,由D 为AE 的中点,即可推出DE 的长度,再根据线段的和差关系可求出CD 的长度. 【详解】(1)∵()215290a b -+-=, ∵()215a -=0,29b -=0, ∵a 、b 均为非负数, ∵a=15,b=4.5,(2)∵点C 为线段AB 的中点,AB=15, ∵17.52AC AB ==,∵CE=4.5, ∵AE=AC+CE=12, ∵点D 为线段AE 的中点, ∵DE=12AE=6,∵CD=DE−CE=6−4.5=1.5.【点睛】本题考查非负数的性质:绝对值,非负数的性质:平方和线段的和差.能通过非负数的性质求出a ,b 的值是解决(1)的关键;(2)能利用线段的和差,用已知线段去表示所求线段是解决此题的关键. 24.(1)550 (2)400 (3)720元【分析】(1)根据题意和表格中的数据,可以计算出王阿姨实际付款多少;(2)根据题意,可以先判断购买的货物是否超过,然后列出相应的方程,再求解即可; (3)根据题意,利用分类讨论的方法列出相应的方程,然后求解即可. (1)解:()()2005002000.96005000.8550+-⨯+-⨯=; (2)解:设王阿姨一次购物x 元,若500x =时,王阿姨实际付款应为:()2005002000.8440+-⨯=(元), 440380200>>,200500x ∴<<,∴列方程:()2002000.9380x +-⨯=,解得:400x =;∴王阿姨这两次每次购买的货物的原价400元;(3)解:设这两次每次购物的货物原价为x 元, ∵当200x ≤时,2400x ≤,不符合题意; ∵当200500x <≤时,可列方程为:()()2002000.92000.91314x x +-⨯+-⨯=,解得:73709x =, 73705009>,不符合题意; ∵当500800x <≤时,可列方程()()()2002000.92005002000.95000.81314x x +-⨯++-⨯+-⨯=,解得:720x =,500720800<<,符合题意;∵当800x >时,可列方程()()()()2008002000.98000.82005002000.95000.8x x +-⨯+-⨯++-⨯+-⨯1314=,解得:715x =,715800<,不符合题意,综上述720x =.答:王阿姨这两次每次购买的货物的原价720元.【点睛】本题主要考查一元一次方程的应用,解题的关键是明确题意,找出等量关系,列出相应的方程.25.(1)a=-1,b=3 ;(2)-a 2-2b ,-7【分析】(1)观察图中要求的a 、b 与那些数字所在的面相邻,则剩下的为它的对面,再求相反数.(2)化简代数式后代入求值.【详解】解:(1)∵纸盒中相对两个面上的数互为相反数,a 的对面是1, ∵a=-1∵b 的对面是-3, ∵b=3 故答案为:-1; 3.(2)解:原式=2a 2-5b -3a 2+3b =-a 2-2b 当a=-1,b=3时原式=-(-1)²-2×3=-1-6=-7.【点睛】本题考查了长方体相对两个面上的文字,整式的加减,依据长方体对面的特点确定出a 、b 的值是解题的关键.26.(1)102POQ ∠=︒;(2)当15t =或60时,OP OQ ⊥;(3)当30t =或3007时,OP 、OQ 、OB 其中一条射线是其他两条射线所形成的角的平分线 【分析】(1)分别算出12t =秒时,OP OQ 转过的角度,用150AOB ∠=︒减去转过的角度即可;(2)分两种情况进行讨论:相遇前OP OQ ⊥以及相遇后OP OQ ⊥,分别计算即可; (3)分三种情况进行讨论:当OP 平分QOB ∠时;当OQ 平分POB ∠时;当OB 平分POQ ∠时;分别进行计算即可.【详解】(1)当12t =时,12336AOQ ∠=⨯︒=︒,12112POB ∠=⨯︒=︒∵1503612102POQ AOB AOQ POB ∠=∠-∠-∠=︒-︒-︒=︒.(2)3AOP t ∠=,POB t ∠=,OQ 与OP 相遇前,当037.5t ≤≤时,1501504POQ AOQ POB t ∠=-∠-∠=-∵OP OQ ⊥,∵150490t ︒-=︒,15t =,OQ 与OP 相遇后,37.550t <≤时,()150415050POQ POB AOQ t ∠=∠--∠=-≤︒,∵OP 不垂直OQ ,当5060t <≤时,()1504150POQ POB AOQ t ∠=∠+∠-=-,∵OP OQ ⊥,,∵415090t -=︒,60t =,综上所述,当15t =或60时,OP OQ ⊥.(3)当OP 平分QOB ∠时,12POQ POB QOB ∠=∠=∠, ∵1504t t -=,30t =,当OQ 平分POB ∠时,12POQ QOB POB ∠=∠=∠,115032t t =-,7300t =,3007t =,当OB 平分POQ ∠时,POB QOB ∠=∠,3150t t =-,75t =(不合题意),综上所述,当30t =或3007时,OP 、OQ 、OB 其中一条射线是其他两条射线所形成的角的平分线.。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试卷及答案

人教版七年级上册数学期末考试试题一、单选题1.15-的倒数是( )A .﹣5B .5C .15- D .152.单项式2a 的系数是( )A .2B .2aC .1D .a 3.一元一次方程4x+1=0的解是( ) A .x 14=B .x 14=- C .x =4 D .x =﹣4 4.若一个角为45°,则它的补角的度数为( )A .55°B .45°C .135°D .125° 5.下列图形中,是圆锥的侧面展开图的是( )A .B .C .D .6.已知关于x 的方程3x 2a 2+=的解是a 1-,则a 的值是( ) A .1 B .35 C .15D .1-7.把2.36°用度、分、秒表示,正确的是( )A .2°18′36″B .2°21′36″C .2°30′60″D .2°3′6″8.将方程3x+6=2x ﹣8移项后,四位同学的结果分别是(1)3x+2x =6﹣8;(2)3x ﹣2x =﹣8+6;(3)3x ﹣2x =8﹣6;(4)3x ﹣2x =﹣6﹣8,其中正确的有( ) A .0个 B .1个 C .2个 D .3个9.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A.10cm B.8cm C.8cm或10cm D.2cm或4cm10.代数式2ax+5b的值会随x的取值不同而不同,下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=4的解是()A.12B.4C.-2D.0二、填空题11.计算:6﹣(3﹣5)=_____.12.一个多项式减去﹣x2+x﹣2得x2﹣1,则此多项式应为_______.13.如图,OA表示南偏东32°,OB表示北偏东57°,那么∠AOB=_____°.14.今年妈妈26岁,儿子2岁,_______年后,妈妈的年龄是儿子年龄的5倍.15.将一副三角板和一个直尺按如图所示的位置摆放,则1∠的度数为____________度.16.下列四个数中:∠0;∠12020-;∠5;∠﹣1.最小的数是_______.17.若关于x,y的单项式xm﹣1y2n与单项式13x2yn+1是同类项,则这两个单项式的和为_______.18.如图,在数轴上有A、B两个动点,O为坐标原点.点A、B从图中所示位置同时向数轴的负方向运动,A点运动速度为每秒1个单位长度,B点运动速度为每秒3个单位长度,当运动_____秒时,点O恰好为线段AB中点.三、解答题19.计算:6×(﹣14)﹣(﹣14)+(﹣1)2022.20.解方程:4x﹣3(20﹣x)=6x﹣7(9﹣x).21.如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB的度数.AB.再反向延长AC至点D,使得22.已知线段AB=2cm,延长AB至C,使BC=12AD=AC.(1)准确画出图形,并标出相应字母.(2)求出线段BD的长度.23.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.(1)求这个小组男生百米测试的达标率是多少?(2)求这个小组8名男生的平均成绩是多少?24.如图,直线ED上有一点O,∠AOC=∠BOD=90°,射线OP是∠AOD的平分线,(1)说明射线OP是∠COB的平分线;(2)写出图中与∠COD互为余角的角.25.老师写出一个整式(ax2+bx﹣1)﹣(4x2+3x)(其中a,b为常数),然后让同学们给a,b 赋予不同的数值进行化简.(1)甲同学给出了a=5,b=﹣1,请按照甲同学给出的数值化简整式;(2)乙同学给出了一组数据,最后化简的结果为2x2﹣3x﹣1,求a,b的值.26.已知关于x的方程2(x+1)﹣m=﹣22m的解比方程5(x﹣1)﹣1=4(x﹣1)+1的解大2.(1)求第二个方程的解;(2)求m的值.27.如图,将两个直角三角板的顶点叠放在一起进行探究.(1)如图∠,将一副直角三角板的直角顶点C叠放在一起,若CE恰好是∠ACB的平分线,请你猜想此时CB是不是∠ECD的平分线,并简述理由;(2)如图∠,将一副直角三角板的直角顶点C叠放在一起,若CB始终在∠DCE的内部,请猜想∠ACE与∠DCB是否相等,并简述理由;(3)如图∠,若将两个同样的三角板中60°锐角的顶点A叠放在一起,请你猜想∠DAB与∠CAE有何关系,并说明理由.参考答案1.A【分析】根据乘积为1的两个数互为倒数,求解即可.【详解】解:∠(15-)×(-5)=1,∠15-的倒数是-5.故选:A.【点睛】此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2.A【详解】试题分析:对于一个单项式而言,它的系数是指字母前面的常数,本题中2a 的系数为2.考点:单项式的系数.3.B【分析】先移项,再把系数化为1,即可求解.【详解】解:4x+1=0,移项得:41x=-,解得:14x=-.故选:B【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的基本步骤是解题的关键.4.C【分析】根据补角的性质,即可求解.【详解】解:∠一个角为45°,︒-︒=︒.∠它的补角的度数为18045135故选:C【点睛】本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键.5.A【分析】根据圆锥的侧面展开图的特点作答.【详解】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.观察四个选项,只有A符合;故选A.【点睛】考查了几何体的展开图,解题关键是掌握圆锥的侧面展开图是扇形.6.A【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.【详解】根据题意得:3(a-1)+2a=2,解得a=1故选A.【点睛】考查了方程解的定义,已知a-1是方程的解实际就是得到了一个关于a的方程.7.B【分析】根据大单位化小单位除以进率,可得答案.【详解】解:2.36°=2°+0.36×60′=2°21′+0.6×60″=2°21′36″,故选:B.【点睛】此题主要考查度、分、秒的转化运算,进行度、分、秒的转化运算,注意以60为进制.8.B【分析】根据移项要变号,进行判断即可.【详解】∠3x+2x=6﹣8没有变号,∠(1)错误;∠3x﹣2x=﹣8+6,6没有变号,∠(2)错误;∠3x﹣2x=8﹣6;-8没有移项,却变号,∠(3)错误;∠(4)3x﹣2x=﹣6﹣8,,∠(4)正确;故选B.【点睛】本题考查了移项,注意移项必须改变符号是解题的关键.9.C【分析】根据题意作图,由线段之间的关系即可求解.【详解】如图,∠点C是线段AB的中点,∠AC=BC=12AB=6cm当AD=23AC=4cm时,CD=AC-AD=2cm∠BD=BC+CD=6+2=8cm;当AD=13AC=2cm时,CD=AC-AD=4cm∠BD=BC+CD=6+4=10cm;故选C.【点睛】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.10.C【分析】根据表格中的数据确定出a与b的值,代入方程计算即可求出解.【详解】解:根据题意得:-2a+5b=0,5b=-4,解得:a=-2,b=4-5,代入方程得:-4x-4=4,解得:x=-2,故选:C.11.8【详解】【分析】先计算括号内的,然后再利用有理数的减法法则进行计算即可得出答案.【详解】6﹣(3﹣5)=6﹣(﹣2)=8,故答案为8.12.x-3 【分析】根据被减数=差+减数列式求解.【详解】解:由题意得x2﹣1+(﹣x2+x﹣2)= x2﹣1﹣x2+x﹣2=x ﹣3,故答案为:x-3.13.91【分析】根据方位角的定义求解即可.【详解】∠OA 表示南偏东32°,OB 表示北偏东57°, ∠∠AOB =(90°﹣32°)+(90°﹣57°)=58°+33°=91°, 故答案为91.【点睛】本题考查了方向角,熟练掌握方向角的意义是解答本题的关键.在观测物体时,地球南北方向与观测者观测物体视线的夹角叫做方向角.14.4【分析】设x 年后,妈妈的年龄是儿子年龄的5倍,根据题意列出方程,即可求解. 【详解】解:设x 年后,妈妈的年龄是儿子年龄的5倍,根据题意得:()2652x x +=+ ,解得:4x =答:4年后,妈妈的年龄是儿子年龄的5倍. 故答案为:415.75【分析】首先计算4∠的度数,再根据平行线的性质可得14∠=∠,进而可得答案. 【详解】解:∠260∠=︒,345∠=︒, ∠4180604575∠=︒-︒-︒=︒, ∠//a b , ∠1475∠=∠=︒, 故答案为:75.【点睛】此题主要考查了平行线的性质,掌握平行线的性质并能灵活应用是解题关键. 16.-1【分析】根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.【详解】解:1120202020-=,11-=, ∠112020<, ∠12020->-1, ∠-1<12020-<0<5, 故答案为:-1.【点睛】本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键. 17.2243x y 【分析】先根据同类项的定义(如果两个单项式,它们所含字母相同,并且相同字母的指数也分别相同,那么这两个单项式是同类项)求出,m n 的值,再计算合并同类项即可得.【详解】解:由题意得:12,21m n n -==+, 解得3,1m n ==,则这两个单项式的和为2222221433x y x y x y +=, 故答案为:2243x y . 【点睛】本题考查了同类项、合并同类项、一元一次方程的应用,熟记同类项的定义是解题关键.18.1【分析】设经过t 秒,点O 恰好是线段AB 的中点,因为点B 不能超过点O ,所以0<t <2,经过t 秒,点A ,B 表示的数为﹣2﹣t ,6﹣3t ,根据题意可知﹣2﹣t <0,6﹣3t >0,化简|﹣2﹣t|=|6﹣3t|,即可得出答案.【详解】解:设经过t 秒,点O 恰好为线段AB 中点.根据题意可得:经过t 秒,点A 表示的数为﹣2﹣t ,AO 的长度为|﹣2﹣t|,点B 表示的数为6﹣3t ,BO 的长度为|6﹣3t|.因为点B 不能超过点O ,所以0<t <2,则|﹣2﹣t|=|6﹣3t|. 因为﹣2﹣t <0,6﹣3t >0, 所以﹣(﹣2﹣t )=6﹣3t , 解得:t=1. 故答案为:1.【点睛】本题考查了绝对值的意义以及解一元一次方程,根据题意列出等式应用绝对值的意义化简是解答本题的关键.19.-69【详解】解:原式=(-14)×(6-1)+1 =-70+1 =-69.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行.有时也可以根据运算律改变运算的顺序.20.x=12【分析】方程去括号,移项、合并同类项,把x 系数化为1,即可求出解.【详解】解:去括号得:4x−60+3x =6x−63+7x , 移项,得4x +3x−6x−7x =60−63, 合并同类项,得:−6x =−3, 系数化为1,得x=12.【点睛】本题考查解一元一次方程.解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,注意移项要变号.21.130°.【分析】根据角平分线的定义可知,∠AOC=2∠AOD ,∠BOC=2∠BOE ,根据角的和差可知,∠AOB=∠AOC+∠BOC ,计算得出∠AOB 的度数.【详解】因为OD 、OE 分别是∠AOC 和∠BOC 的平分线,∠AOD =40°,∠BOE =25°, 所以∠AOC=2∠AOD=40°×2=80°,∠BOC=2∠BOE=25°×2=50°, 因为∠AOB=∠AOC+∠BOC , 所以∠AOB=80°+50°=130°.22.(1)见解析;(2)5cm 【分析】(1)根据题意,做出图形,并且标出相应字母即可; (2)先计算出BC 的长度,然后求出AD 的长度,用AD+AB 可求得BD 的长度. 【详解】解:(1)如图:;(2)∠12BC AB = ∠1BC cm =∠213AC AB BC cm =+=+=∠AD =AC∠3AD cm =∠BD AB AD =+∠()235BD cm =+=【点睛】关于线段的延长,要注意分清方向,关于线段的长度的计算,搞清楚是哪些线段的和差即可进行计算23.(1)这个小组男生百米测试的达标率是62.5%;(2)这个小组8名男生的平均成绩是13.9秒.【分析】(1)根据非正数是达标数,解得达标数,再将达标数除以总人数即可解题;(2)计算数据的总和,再除以8即可解题.【详解】解:(1)达标人数为5,达标率为58×100%=62.5%. 答:这个小组男生百米测试的达标率是62.5%;(2) 1.20.7010.30.20.30.58-++--+++=﹣0.1(秒), 14﹣0.1=13.9(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】本题考查正数、负数的实际应用,掌握非正数是达标数是解题关键. 24.(1)见解析;(2)∠BOC 和∠AOE .【分析】(1)根据题意可得∠COD =∠AOB ,根据角平分线的定义及角的和差关系可得∠POB =∠POC ,进而得出射线OP 是∠COB 的平分线;(2)根据互余的两角之和为90°求解即可.【详解】解:(1)∠∠AOC =∠BOD =90°,∠∠AOD ﹣∠AOC =∠AOD ﹣90°=∠AOD ﹣∠BOD ,∠∠COD =∠AOB ,∠射线OP 是∠AOD 的平分线;∠∠POA =∠POD ,∠∠POA ﹣∠AOB =∠POD ﹣∠COD ,∠∠POB =∠POC ,∠射线OP 是∠COB 的平分线;(2)∠∠COD =∠AOB ,∠AOC =∠BOD =90°,∠∠AOE =∠BOC ,∠∠COD+∠BOC =90°,∠图中与∠COD 互为余角的角有∠BOC 和∠AOE .【点睛】本题考查了余角和补角以及角平分线,解答本题的关键是掌握互余的两角之和为90°,互补的两角之和为180°.25.(1)x 2-4x-1(2)6,0a b ==【分析】(1)先将原式化简,再将a =5,b =﹣1代入,即可求解;(2)先将原式化简,可得42,33a b -=-=-,即可求解.(1)解:原式=ax 2+bx-1-4x 2-3x=(a-4)x 2+(b-3)x-1,当a=5,b=-1时原式=x 2-4x-1(2)根据题意得:(a-4)x 2+(b-3)x-1=2x 2-3x-1得42,33a b -=-=-,解得:6,0a b == .【点睛】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.26.(1)x=3;(2)m=22.【分析】(1)按去括号、移项、合并同类项的步骤进行求解即可;(2)根据(1)中求得的x 的值,由题意可得关于x 的方程2(x+1)﹣m=﹣m 22-的解,然后代入可得关于m 的方程,通过解该方程求得m 值即可.【详解】(1)5(x ﹣1)﹣1=4(x ﹣1)+1,5x ﹣5﹣1=4x ﹣4+1,5x ﹣4x=﹣4+1+1+5,x=3;(2)由题意得:方程2(x+1)﹣m=﹣m22-的解为x=3+2=5,把x=5代入方程2(x+1)﹣m=﹣m22-,得:2×(5+1)﹣m=﹣m22-,12﹣m=﹣m22-,解得:m=22.【点睛】本题考查了一元一次方程的解、解一元一次方程.熟练掌握解解一元一次方程的一般步骤是解题的关键.27.(1)CB是∠ECD的平分线,理由见解析(2)∠ACE=∠DCB,理由见解析(3)∠DAB+∠EAC=120°,理由见解析【分析】(1)根据角平分线的定义求得∠ECB=45°,进而求得∠BCD=45°,证得∠ECB=∠DCB即可解答;(2)根据等角的余角相等解答即可;(3)根据角的运算求解即可.(1)解:CB是∠ECD的平分线.理由:∠∠ACB=90°,CE恰好是∠ACB的平分线,∠∠ECB=45°,∠∠DCE=90°,∠∠DCB=90°-45°=45°,∠∠ECB=∠DCB,∠CB是∠ECD的平分线;(2)解:∠ACE=∠DCB.理由:∠∠ACB=∠DCB=90°,∠∠ACE+∠ECB=90°,∠DCB+∠ECB=90°,∠∠ACE=∠DCB;(3)解:∠DAB+∠EAC=120°.理由:∠∠BAE=∠CAD=60°,∠∠DAE+∠EAC=60°,∠EAC+∠CAB=60°,∠∠DAE+∠EAC+∠EAC+∠CAB=120°,∠∠DAE+∠EAC+∠CAB=∠DAB,∠∠DAB+∠CAE=120°.【点睛】本题考查三角板中角的运算、等角的余角相等、角平分线的定义,熟练掌握图形中的角的运算是解答的关键.。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.﹣3的相反数是()A .13-B .13C .3-D .32.单项式﹣2ab 2的系数是()A .﹣2B .2C .3D .43.下列各组单项式是同类项的是()A .4x 和4yB .xy 2和4xyC .4xy 2和﹣x 2yD .﹣4xy 2和y 2x4.下列图形通过折叠能围成一个三棱柱的是()A .B .C .D .5.若∠α与∠β互余,且∠α:∠β=3:2,那么∠α的度数是()A .54°B .36°C .72°D .60°6.下列等式变形正确的是()A .由7x =5得x =75B .由10.2x=得2x=10C .由2﹣x =1得x =1﹣2D .由3x﹣2=1得x ﹣6=37.下列比较大小,正确的是()A .﹣|﹣5|>0B .(﹣2)2<(﹣2)3C .﹣34>﹣45D .﹣1﹣(﹣2)<08.如图,几何体的左视图是()A .B .C .D .9.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为()A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+10.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n 需几根火柴棒()A .2+7nB .8+7nC .4+7nD .7n+1二、填空题11.某县2018年元旦的最高气温为5℃,最低气温为﹣2℃,那么这天的最高气温比最低气温高_____℃.12.将数12000000科学记数法表示为_____.13.把多项式5x 2+4x ﹣x 3﹣3按x 的降幂排列为_____.14.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =_____.15.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测小岛A 在它北偏东63°49′8″的方向上,观测小岛B 在南偏东38°35′42″的方向上,则∠AOB 的度数是_____.16.与原点的距离为3个单位的点所表示的有理数是_____.三、解答题17.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣916)÷(﹣32)2(3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+318.如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.19.先化简,再求值:(1)(4a2﹣3a)﹣(2a2+a﹣1),其中a=4.(2)已知m、n互为倒数,求:﹣2(mn﹣3m2)﹣m2+5(mn﹣m2)的值.20.解方程:(1)2121136x x+--=;(2)1(35)2(5)2x x x--=+.21.如图,点A、O、B在一直线上,已知∠AOC=50°,OD是∠COB的平分的角平分线,求∠AOD的度数.22.如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.(1)图中共有条线段;(2)求AC的长;(3)若点E在直线AB上,且EA=2cm,求BE的长.23.某地宽带上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.06元/分;第二种是包月制,72元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通讯费0.01元/分.(1)若小明家一个月上网的时间为x小时,用含x的代数式分别表示出两种收费方式下,小明家一个月应该支付的费用;(2)若小明估计自家一个月内上网的时间为25小时,你认为他家采用哪种方式较为合算?(3)小明的姑姑也准备给家里安装宽带,请为她选择一种合算的方式(直接写出方案即可)参考答案1.D【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.A【分析】直接利用单项式的系数确定方法得出答案.【详解】单项式﹣2ab2的系数是:-2.故答案选:A.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式.3.D【解析】【分析】利用同类项的定义判定即可.【详解】解:A.4x和4y所含字母不同,不是同类项;B.xy2和4xy所含相同字母的指数不同,不是同类项;C.4xy2和﹣x2y所含相同字母的指数不同,不是同类项;D.﹣4xy2和y2x符合同类项的定义,故本选项正确.故选:D.【点睛】本题主要考查了同类项,解题的关键是熟记同类项的定义.4.C【解析】【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【详解】A、通过折叠能围成一个三棱锥,故本选项错误;B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C、折叠后能围成三棱柱,故本选项正确;D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.【点睛】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.5.A【解析】【分析】由∠α与∠β互余可得两角之和为90°,再由角度比例关系即可求解角度.【详解】解:设∠α,∠β的度数分别为3x°,2x°,则3x+2x=90,解得x=18.∴∠α=3x°=54°,故选A.【点睛】本题考查了余角的概念.6.D【分析】分别利用等式的基本性质判断得出即可.性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式【详解】解:A、等式的两边同时除以7,得到:x=57,故本选项错误;B、原方程可变形为1012x,故本选项错误;C、在等式的两边同时减去2,得到:-x=1-2,故本选项错误;D、在等式的两边同时乘以3,得到:x-6=3,故本选项正确;故选D.【点睛】此题主要考查了等式的基本性质,熟练掌握性质是解题关键.7.C【分析】先把各数化简,再根据有理数的大小比较方法比较即可.【详解】A.∵﹣|﹣5|=-5,∴﹣|﹣5|<0,故不正确;B.∵(﹣2)2=4,(﹣2)3=-8,∴(﹣2)2>(﹣2)3,故不正确;C.∵3445-<-,∴﹣34>﹣45,故正确;D.∵﹣1﹣(﹣2)=1,∴﹣1﹣(﹣2)>0,故不正确;故选C.【点睛】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.本题也考查了绝对值的意义、有理数的乘方、有理数的减法等知识点. 8.A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:如图所示,其左视图为:.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.9.C【分析】她家到游乐场的路程为xkm,根据时间=路程÷速度结合“若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟”,即可得出关于x的一元一次方程,此题得解.【详解】她家到游乐场的路程为xkm,根据题意得:x8x5 1060860+=-,故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,弄清题意,找准等量关系,正确列出一元一次方程是解题的关键.10.D【解析】∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n+1根;故选D .点睛:本题是一道规律题.分析图形得出从第2个图形开始每增加一个八边形需要7根火柴是解题的关键.11.7【分析】用最高气温减去最低气温列式计算即可.【详解】由题意得5-(-2)=7℃.故答案为7.【点睛】本题考查了有理数减法的实际应用,根据题意正确列出算式是解答本题的关键.12.1.2×107【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数12000000科学记数法表示为1.2×107,故答案是:1.2×107,【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.13.﹣x 3+5x 2+4x ﹣3【分析】一个多项式按照某个字母的降幂排列,即按照这个字母的指数从高到底排列即可.【详解】根据题意,得把多项式5x 2+4x ﹣x 3﹣3按x 的降幂排列是﹣x 3+5x 2+4x ﹣3故答案为﹣x 3+5x 2+4x ﹣3.【点睛】本题考查多项式.14.23【详解】∵x +5=7-2(x -2)∴x=2.把x=2代入6x +3k =14得,12+3k =14,∴k=23.15.77°35′10〃【分析】根据已知条件结合补角的定义可直接确定∠AOB 的度数.【详解】∵OA 是表示北偏东6349'8︒''方向的一条射线,OB 是表示南偏东383542'︒''方向的一条射线,∴∠AOB=180°-6349'8︒''-383542'︒''=77°35′10〃,故答案是:77°35′10〃.【点睛】本题考查了余角和补角、方向角及其计算,基础性较强16.±3【分析】根据数轴上两点间距离的定义进行解答即可.【详解】设数轴上,到原点的距离等于3个单位长度的点所表示的有理数是x ,则x =3,±.解得:x=3故本题答案为:3±.【点睛】本题考查了数轴,解决本题的关键突破口是知道原点距离为3的长度有两个,不要遗漏.17.(1)10;(2)﹣1;(3)0;(4)2.【解析】【详解】(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号.18.(1)①如图所示,射线AC即为所求,见解析;②如图所示,线段AB,BC,BD即为所求,见解析;③如图所示,线段CF即为所求,见解析;(2)根据两点之间,线段最短.【解析】【分析】(1)①连接AC并延长即可;②连接AB,BC,BD即可;③以点A为圆心,BD长为半径画弧交AC于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.19.(1)2a2﹣4a+1,17;(2)3mn,3.【分析】(1)先去括号合并同类项,再把a=4代入计算即可;(2)由m、n互为倒数,可知mn=1,然后把所给代数式去括号合并同类项后代入计算即可.【详解】解:(1)原式=4a2﹣3a﹣2a2﹣a+1=2a2﹣4a+1,当a=4时,原式=32﹣16+1=17;(2)根据题意得:mn=1,则原式=﹣2mn+6m2﹣m2+5mn﹣5m2=3mn=3.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.本题主要利用去括号合并同类项的知识,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变. 20.(1)x=38(2)x=6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=3 2;(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.∠AOD=115°.【分析】根据补角的定义可求出∠COB的度数,利用角平分线的定义求出∠COD=65°,进而利用角的加法可求出∠AOD的度数.【详解】解:∵∠AOC=50°,∴∠COB=180°﹣50°=130°,∵OD是∠COB的角平分线,∴∠COD=65°,∴∠AOD=50°+65°=115°.【点睛】本题考查了补角的定义,角平分线的定义及角的和差从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线..22.(1)6(2)12cm(3)16cm或20cm【分析】(1)线段的个数为n n-12(),n为点的个数.(2)由题意易推出CD的长度,再算出AC=4CD即可.(3)E点可在A点的两边讨论即可.【详解】(1)图中有四个点,线段有=6.故答案为6;(2)由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=18,解得CD=3,AC=4CD=4×3=12cm;(3)①当点E在线段AB上时,由线段的和差,得BE=AB﹣AE=18﹣2=16cm,②当点E在线段BA的延长线上,由线段的和差,得BE=AB+AE=18+2=20cm.综上所述:BE的长为16cm或20cm.【点睛】本题考查的知识点是射线、直线、线段,解题的关键是熟练的掌握射线、直线、线段. 23.(1)计时制:4.2x元;包月制:(72+0.6x)元;(2)小明家采用包月制合算;(3)见解析.【解析】【分析】(1)记时制费用=上网时间费用+上网通讯费,包月制费用=包月费用+上网通讯费,把相关数值代入即可求解;(2)把x=25代入(1)得到的式子,计算结果比较即可;(3)设小明的姑姑家一个月内上网m小时,让两种费用相等,列出方程求出费用相等的时间,然后根据题意回答即可.【详解】解:(1)采用计时制应付的费用为:0.06x×60+0.01x×60=4.2x元;采用包月制应付的费用为:72+0.01x×60=(72+0.6x)元.(2)当x=25时,4.2x=4.2×25=105,72+0.6x=72+0.6×25=87.∵105>87,∴小明家采用包月制合算.(3)设小明的姑姑家一个月内上网m小时,两种方式收费相同,根据题意得:4.2m=72+0.6m,解得:m=20.由(2)可知,上网时间为25小时,即多于20小时时,选择包月制较合算.综上所述:一个月内上网时间少于20小时时,选择计时制较合算;一个月内上网时间等于20小时时,两种方式一样合算;一个月内上网时间多于20小时时,选择包月制较合算.【点睛】本题考查列代数式及一元一次方程的应用,得到两种付费方式的代数式是解决本题的关键.。

人教版七年级上册数学《期末考试试题》附答案

人教版七年级上册数学《期末考试试题》附答案
∴2x-2y=2.
∴原式=2x-2y-3=2-3=-1.
故选B.
13.已知2016xn+7y与-2017x2m+3y是同类项,则(2m-n)2的值是( )
A.16B.48C.-40D.5
【答案】A
【解析】
根据同类项的概念,含有相同的字母,相同字母的指数相同,可得n+7=2m+3,化简为2m-n=4,代入即可得到(2m-n)2=16.
A.a+b>0B.ab>0C.a﹣b<oD.a÷b>0
6.下列方程中,是一元一次方程的是()
A B. C. D.
7.一个角的余角是40º,则这个角的补角是( )
A.40ºB.50ºC.140ºD.130º
8.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是( )
A.用两个钉子就可以把木条固定在墙上
A.14,17B.14,18C.13,16D.12,16
二、填空题(本大题共4个小题:每小题3分,共12分,把正确答案填在横线上)
15.56°24’=______°.
16.某校图书室共藏书34500册,数34500用科学记数法表示为______.
17.已知2x+4与3x﹣2互为相反数,则x=_____.
故选A.
点睛:此题主要考查了同类项,解题关键是确定同类项,根据同类项的概念,含有相同的字母,相同字母的指数相同,然后列式求解即可.
14.小博表演扑克牌游戏,她将两副牌分别交给观众A和观众B,然后背过脸去,请他们各自按照她的口令操作:
a.在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;
故选D.
5.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )

人教版七年级上学期数学《期末检测试卷》附答案解析

人教版七年级上学期数学《期末检测试卷》附答案解析
人 教 版 数 学 七年 级上学 期
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题
1. 的倒数是[]
A. B. C. D.
2.x=-2是方程2a+3x=-16的解,则a的值是()
A.5B.-5C.-11D.11
3.有理数a,b,c在数轴上 位置如图所示,下列关系正确的是()
A.|a|>|b|B.a>﹣bC.b<﹣aD. ﹣a=b
4.下列说法错误的是()
A. 是二次三项式B. 不是单项式
C. 的系数是 D. 的次数是6
5.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):
城市
悉尼
纽约
时差/时
当北京6月15日23时,悉尼、纽约的时间分别是()
(3)点A. B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OB−mOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.
答案与解析
一、选择题
1. 的倒数是[]
A. B. C. D.
[答案]C
[解析]
先化为假分数,再根据乘积是1的两个数互为倒数解答:
A.4个B.3个C.2个D.1个
[答案]B
[解析]
[分析]
根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.
[详解]解:∵∠A和∠B互补,
∴∠A+∠B=180°,
①∵∠B+(90°-∠B)=90°,
∴90°-∠B是∠B的余角,

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试卷含答案

人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。

人教版2024年《数学》七年级上册期末试卷与参考答案[C卷]

人教版2024年《数学》七年级上册期末试卷与参考答案[C卷]

人教版2024年《数学》七年级上册期末试卷与参考答案[C卷]一、选择题本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的。

1.下列各组数中,不是互为相反意义的量的是()A.收入200元与支出20元B.超过0.05mm与不足0.03mmC.增加2L与减少2kg D.上升10m与下降7m答案:C答案解析:解;A、收入200元与支出20元,是一组互为相反意义的量,故A不符合题意;B、超过0.05mm与不足0.03mm,是一组互为相反意义的量,故B不符合题意;C、增加2L与减少2kg,不是相反意义的量,故C符合题意;D、上升10m与下降7m,是一组互为相反意义的量,故D不符合题意;故选:C.2.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A.两点确定一条直线B.两点之间,线段最短C.直线可以向两边延长D.两点之间线段的长度,叫做这两点之间的距离答案:A答案详解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.3.如图,轮船与灯塔相距120nmile,则下列说法中正确的是( )A.轮船在灯塔的北偏西65°,120 n mile处B.灯塔在轮船的北偏东25°,120 n mile处C.轮船在灯塔的南偏东25°,120 n mile处D.灯塔在轮船的南偏西65°,120 n mile处答案:B答案详解:灯塔在轮船的北偏东25°,120 n mile处.故选B.4.如图,数轴上点A表示的数可能是( )A.﹣3.6B.3.5C.4.5D.﹣4.5答案:A答案详解:根据题意可知点A在﹣4与﹣3之间,所以符合条件的只有﹣3.6.故选:A.5.将一副直角三角尺按如图所示摆放,则图中∠ABC 的度数是 ( )A .120°B .135°C .145°D .150°答案:B 答案解析:根据三角尺的角度可知:∠ABD=45°,∠DBC=90°,则∠ABC=45°+90°=135°,故选B .6.两个有理数,在数轴上的位置如图,下列四个式子中运算结果为正数的式子是( )A .B .C .D .答案:D 答案详解:由有理数a ,b 在数轴上的位置可得,a <-1,0<b <1,所以a+b <0;a-b <0;ab <0;-a-b >0;故选:D .7.下列各组算式中,其值最小的是( )A .B .C .D.a b +a b-a b abb a--()232---()()32-⨯-()()232-⨯-()()32-÷-答案详解:选项:原式选项:原式选项:原式选项:原式因为,所以各组算式中值最小的是选项.故选.8.已知与是同类项,则()A .,B .,C .,D .,答案:B答案解析:因为与是同类项,所以,,所以,,故选:B .9.农民在播种时,每垄地上每隔50cm 种一粒种子,为了保留湿度在种完种子后用塑料薄膜盖上,那么在一垄地上用5米长的塑料薄膜能盖上多少粒种子( )A .11或10B .9或10C .11或9D .11或12A ()2525=--=-B 6=C ()9218=⨯-=-D 32=32518<62-<-<A A 62m n -25y x m n 2x =1y =1x =3y =32x =6y =3x =1y =62m n -25y x m n 1x =26y =1x =3y =答案详解:5米=500cm,500÷50=10,当第一粒种子在50cm处时,薄膜能盖上10粒种子;当第一粒种子在0cm处时,薄膜能盖上10+1=11粒种子;则在一垄地上用5米长的塑料薄膜能盖上11或10粒种子,故选:A.10.如图,图(1)和图(2)中所有的正方形都完全相同,将图(1)的正方形放在图(2)中的某一位置,其中所组成的图形不能围成正方体的是( )A.①B.②C.③D.④答案:A答案详解:根据正方体的展开图的特征,11种情况中,“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,再根据“一线不过四、田凹应弃之”可得,只有放在①处,不能围成正方体,故选:A.11.我们常用的十进制数,如,我国古代《易经》一书记载,远古时期,人们通过在绳子上打结来记录数量,如图,一位母亲在从右到左依次排列的绳子上打结,并采用七进制(如),用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .1326天B .510天C .336天D .84天答案:B 答案详解:绳子上表示的七进制数为:,故选:B .12.(2020·泰州市第二中学附属初中月考)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2020次跳后它停的点所对应的数为( )A .1B .2C .3D .5答案:A 3212639=210+610+310+9´´´3212513=27+57+17+3´´´32113261737276343147146510=´+´+´+=+++=答案解析:由题意得:青蛙第1次跳到的那个点是3,青蛙第2次跳到的那个点是5,青蛙第3次跳到的那个点是2,青蛙第4次跳到的那个点是1,归纳类推得:青蛙跳后它停的点所对应的数是以循环往复的,因为,所以经2020次跳后它停的点所对应的数与经4次跳后它停的点所对应的数相同,即为1,故选:A .13.中国总理李克强2020年6月1日考察山东时表示,地摊经济、小店经济是就业岗位的重要来源,是人间的烟火,和“高大上”一样,是中国的生机.市场、企业、个体工商户活起来,生存下去,再发展起来,国家才能更好!为了响应党中央、国务院的号召,各地有序开放了“地摊经济”、“马路经济”,长沙某地摊摊主将进价为10元的小商品提价100%后再6折销售,该小商品的利润率()A .40%B .20%C .60%D .30%答案:B答案详解:设该小商品的利润率为x ,依题意,得:10×(1+100%)×0.6﹣10=10x ,解得:x =0.2=20%.故选:B .14.如图,已知点为直线上一点,,直角三角板的直角顶点落在点处.,在的内部,另一边在直线下方,则的度数是3,5,2,120204505=⨯O AB 60AOC ∠=︒O MN AB ⊥ON AOC ∠OM AB COM AON ∠+∠( )A .90°B .120°C .135°D .150°答案:D 答案解析:二、填空题本题共4个小题;每个小题3分,共12分,把正确答案填在横线上。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.4的倒数是( )A .4-B .4C .14- D .142.单项式23x y -的系数是( )A .3-B .1C .2D .33.下列各式中结果为负数的是( )A .()3--B .3-C .()23-D .23-4.如图,这个几何体是由哪个图形绕虚线旋转一周形成的( )A .B .C .D .5.已知关于x 的方程290x a +-=的解是3x =,则a 的值为( )A .2B .3C .4D .56.下列计算正确的是( )A .277x x x +=B .532y y -=C .437x y xy +=D .22232x y x y x y -=7.将一副三角板按如图所示位置摆放,其中α∠与β∠一定互余的是( ) A . B .C .D .8.若()123m m x --=是关于x 的一元一次方程,则m 的值是( )A .2-B .1C .2D .2±9.如图,点A 在点O 的北偏西60°方向,射线OB 与射线OA 所成的角是108°,则射线OB 的方向是( )A .北偏西42°B .北偏西48°C .北偏东42°D .北偏东48° 10.有一项城市绿化整治任务交甲、乙两个工程队完成,已知甲单独做10天完成,乙单独做8天完成,若甲先做1天,然后甲、乙合作x 天后,共同完成任务,则可列方程为( )A .11108x x +-=B .11108x x ++= C .11108x x --= D .11108x x -+= 11.将图①中的正方形剪开得到图①,图①中共有4个正方形;将图①中一个正方形剪开得到图①,图①中共有7个正方形;将图①中一个正方形剪开得到图①,图①中共有10个正方形……如此下法,则第2022个图中共有正方形的个数为( )A .2022B .6062C .6063D .606412.如图,点O 为直线AB 上一点,COD ∠为直角,OE 平分AOC ∠,OF 平分COB ∠,OG 平分BOD ∠.下列结论:①45FOG =︒∠;①90AOE FOB ∠+∠=︒;①130EOG ∠=︒;①90AOC BOD ∠-∠=︒.正确的有( )A .4个B .3个C .2个D .1个二、填空题13.数轴上表示2-和3+两个点之间的距离是______.14.300000-用科学记数法表示为______.15.若一个角是25°38′,则它的余角为______.16.若x 的相反数是3,y 的绝对值是7,则x y +的值为______.17.如图,点B 、C 在线段AD 上,CD=5,BD=9,B 是AC 的中点,则AC 的长为______.18.已知x+2y ﹣5=0,则代数式2x+4y ﹣7的值是_____.19.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“民”字一面的相对面上的字是_______.三、解答题20.解方程:127x -﹣1=33+x .21.已知213a b x y -与23x y -是同类项.(1)请直接写出:a =______,b =______;(2)在(1)的条件下,求()()2222523425a b ab b a+--+的值.22.直线AB ,CD 交于点O ,将一个三角板的直角顶点放置于点O 处,使其两条直角边OE ,OF ,分别位于OC 的两侧.若OC 平分①BOF ,OE 平分①COB .(1)求①BOE的度数;(2)写出图中①BOE的补角,并说明理由.23.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.24.用尺规作图按下列语句画图:(1)画射线BC,连接AC,AB;(2)反向延长线段AB至点D,使得DA=AB.25.某校计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架a只.(1)若该校到同一家超市选购所有商品,则到A超市要准备_____元货款,到B超市要准备_____元货款(用含a的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?26.如图,OD平分①BOC,OE平分①AOC.若①BOC=70°,①AOC=50°.(1)求出①AOB及其补角的度数;(2)请求出①DOC和①AOE的度数,并判断①DOE与①AOB是否互补,并说明理由.参考答案1.D2.A3.D4.A5.B6.D7.C8.A9.D10.B11.D12.B13.5.【分析】数轴上两点之间的距离,即数轴上表示两个点的数的差的绝对值,即较大的数减去较小的数.【详解】解:数轴上表示-2和+3的两个点之间的距离是3-(-2)=5.故答案是:5.【点睛】本题考查了数轴的定义.解答该题时,也可以利用借助数轴用几何方法求两点之间的距离.14.-3×105【分析】根据科学记数法的定义计算求值即可;-= -3×105,【详解】解:300000故答案为:-3×105【点睛】本题考查了科学记数法:把一个绝对值大于1的数表示成a×10n的形式(a大于或等于1且小于10,n是正整数);n的值为小数点向左移动的位数.15.64°22′【分析】根据余角的定义可知这个角的余角=90°-25°38′,然后将90°化为89°60′计算即可.【详解】解:它的余角=90°-25°38′=89°60′-25°38′=64°22′.故答案为:64°22′.【点睛】本题主要考查的是度分秒的换算、余角的定义,将90°转化为89°60′是解题的关键.16.4或10-或4-##10【分析】根据相反数的定义和绝对值的性质,先求出x、y的值,再代值求解.【详解】解:由题意,得:x=-3,y=±7;当x=-3,y=7时,x+y=-3+7=4;当x=-3,y=-7时,x+y=-3-7=-10.故答案为:4或10-.【点睛】此题主要考查绝对值的性质以及相反数的定义.有理数的加法运算,代数式的值,需注意的是互为相反数的两个数绝对值相等,不要漏解.17.8【分析】根据线段中点的定义和线段的和差即可得到结论.【详解】解:①CD=5,BD=9,①BC=BD-CD=4,①B是AC的中点,①AB=BC=4,①AC=AB+BC=8,故答案为:8.【点睛】本题考查了两点间的距离,熟练掌握线段中点的定义是解题的关键.18.3.【分析】直接利用已知得出x+2y=5,再将原式变形进而得出答案.【详解】①x+2y﹣5=0,①x+2y=5,①2x+4y﹣7=2(x+2y)﹣7=10﹣7=3.故答案为:3.19.化【详解】选择“民”这一面作为底面将正方体还原可得:“弘”与“族”是相对面,“扬”与“文”是相对面,“民”与“化”是相对面,故答案为:化.【点睛】本题考查了根据正方体表面展开图判断相对面的字,熟练掌握正方体表面展开图的特点是解题的关键,需要一定空间想象能力.20.原方程的解是x=﹣3.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】去分母,得3(1﹣2x)﹣21=7(x+3),去括号,得3﹣6x﹣21=7x+21,移项,得﹣6x ﹣7x =21﹣3+21,合并,得﹣13x =39,系数化1,得x =﹣3,则原方程的解是x =﹣3.21.(1)1,−2(2)32【分析】(1)两个单项式为同类项,则字母相同,对应字母的指数也相同,据此可求得a 、b 的值;(2)先去括号再合并同类项,最后代入求值.(1)解:①213a b x y -与23x y -是同类项,①2a=2,1−b=3,①a=1,b=−2;故答案为:1,−2;(2)解:()()2222523425a b ab b a +--+=5a 2+6b 2-8ab-2b 2-5a 2=4b 2-8ab ,当a=1,b=−2时,原式=4×(−2) 2-8×1×(−2)=16-(-16)=32.【点睛】本题考查整式的化简求值,同类项,解题的关键是掌握同类项的定义,整式的加减运算法则.22.(1)30°;(2)①BOE 的补角有①AOE 和①DOE .【分析】(1)根据OC 平分①BOF ,OE 平分①COB .可得①BOE =①EOC =12①BOC ,①BOC =①COF ,进而得出,①EOF =3①BOE =90°,求出①BOE ;(2)根据平角和互补的意义,通过图形中可得①BOE+①AOE =180°,再根据等量代换得出①BOE+①DOE =180°,进而得出①BOE 的补角.【详解】解:(1)①OC 平分①BOF ,OE 平分①COB .①①BOE =①EOC =12①BOC ,①BOC =①COF , ①①COF =2①BOE ,①①EOF =3①BOE =90°,①①BOE =30°,(2)①①BOE+①AOE =180°①①BOE 的补角为①AOE ;①①EOC+①DOE =180°,①BOE =①EOC ,①①BOE+①DOE=180°,①①BOE的补角为①DOE;答:①BOE的补角有①AOE和①DOE;【点睛】考查角平分线的意义、互补、邻补角的意义等知识,等量代换和列方程是解决问题常用的方法.23.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)①点C为原点,BC=1,①B所对应的数为﹣1,①AB=2BC,①AB=2,①点A所对应的数为﹣3,①m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)①点B为原点,AC=6,AB=2BC,AB+BC=AC,①AB=4,BC=2,①点A所对应的数为﹣4,点C所对应的数为2,①m=﹣4+2+0=﹣2;(3)①原点O到点C的距离为8,①点C所对应的数为±8,①OC=AB,①AB=8,当点C对应的数为8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为4,点A所对应的数为﹣4,①m=4﹣4+8=8;当点C所对应的数为﹣8,①AB=8,AB=2BC,①BC=4,①点B所对应的数为﹣12,点A所对应的数为﹣20,①m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.24.(1)见详解;(2)见详解.【分析】(1)根据尺规作图过程画射线BC,连接AC,AB即可;(2)根据尺规作图过程反向延长线段AB至点D,使得DA=AB即可.【详解】解:如图所示:(1)(1)射线BC,连接AC,AB即为所求作的图形;(2)如图所示即为所求作的图形.【点睛】本题考查了作图−−复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.25.(1)(70a+2800),(56a+3360);(2)购买40只书架时,无论到哪家超市所付货款都一样;(3)第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.【分析】(1)根据A、B两个超市的优惠政策即可求解;(2)由(1)和两家超市所付货款都一样可列出方程,再解即可;(3)去A超市买、去B超市买和去A超市购买20个书柜和20个书架,到B超市购买80只书架,三种情况讨论即可得出最少付款额.【详解】(1)根据题意得A超市所需的费用为:20×210+70(a﹣20)=70a+2800B超市所需的费用为:0.8×(20×210+70a)=56a+3360故答案为:(70a+2800),(56a+3360)(2)由题意得:70a+2800=56a+3360解得:a=40,答:购买40只书架时,无论到哪家超市所付货款都一样.(3)学校购买20张书柜和100只书架,即a=100时第一种方案:到A超市购买,付款为:20×210+70(100﹣20)=9800元第二种方案:到B超市购买,付款为:0.8×(20×210+70×100)=8960元第三种方案:到A超市购买20个书柜和20个书架,到B超市购买80只书架,付款为:20×210+70×(100﹣20)×0.8=8680元.因为8680<8960<9800所以第三种方案(到A超市购买20个书柜和20个书架,到B超市购买80只书架)所付款额最少,最少付款额为8680元.26.(1)120°,60°;(2)①DOE与①AOB互补,理由见解析.【分析】(1)①AOB的度数等于已知两角的和,再根据补角的定义求解;(2)根据角平分线把角分成两个相等的角,求出度数后即可判断.【详解】解:(1)①AOB=①BOC+①AOC=70°+50°=120°,其补角为180°-①AOB=180°-120°=60°.(2)①DOC=①BOC=×70°=35°,①AOE=①AOC=×50°=25°.①DOE与①AOB互补.理由如下:①①DOC=35°,①AOE=25°,①①DOE=①DOC+①COE =①DOC+①AOE=60°.①①DOE+①AOB=60°+120°=180°,①①DOE与①AOB互补.11。

【人教版】数学七年级上学期《期末检测试卷》带答案解析

【人教版】数学七年级上学期《期末检测试卷》带答案解析

人教版七年级上学期数学期末测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1. ﹣3的相反数是()A.1 3 -B.13C. 3-D. 32. 十九大报告提到:我国的粮食生产能力达到12000亿斤.用科学记数法表示”12000亿”正确的是( )A. 1.2×1012B. 1.2×1013C. 1.2×1014D. 1.2×1043. 若a是有理数,则计算正确的是()A. (﹣a)+(﹣a)=2aB. ﹣a+(﹣a)=0C. (﹣a)﹣(﹣a)=2aD. ﹣a﹣(+a)=﹣2a4. 如图,是一个圆柱体模型,若从这个圆柱的左边向右看,则得到的平面图形是()A. B. C. D.5. 某校七年级共有女生x人,占七年级人数的48%,则该校七年级男生有()A. 0.48x人B. 0.52x人C.0.48x人 D. 0.520.48x⨯人6. 若m是有理数,则多项式﹣2mx﹣x+2的一次项系数是()A. ﹣2B. ﹣1C. 2D. ﹣(2m+1)7. 若a表示任意一个有理数,则下列说法中正确的是()A. ﹣a是负有理数B. |a|是正有理数C.1a是有理数 D. 2a是有理数8. 一个两位数的十位数是a,个位数字比十位数字的2倍少1.用含a的代数式表示这个两位数正确的是()A. 3a﹣1B. 12a﹣1C. 12a﹣2D. 30a﹣19. 如图所示,O是直线AB上一点,∠AOC=∠FOE=90°,则图中∠EOC与∠BOF的关系是()A. 相等B. 互余C. 互补D. 互邻补角10. 如图,将一副三角板按图中位置摆放,则∠BAD+∠DEC=()A. 165°B. 210°C. 220°D. 255°11. 在数轴上,点B表示﹣2,点C表示4,若点A到点B和点C的距离相等,则点A表示的数是()A. 0B. 1C. ﹣1D. 312. 小玲和小明值日打扫教室卫生,小玲单独打扫雪20min完成,小明单独打扫雪16min完成.因小明要将数学作业本交到老师办公室推迟一会儿,故先由小玲单独打扫4min,余下的再由两人一起完成,则两人一起打扫完教师卫生需要多长时间?设两人一起打扫完教室卫生需要x min,则根据题意可列方程()A. 120(x+4)+116x=1 B.120x+116(x+4)=1C 120(x﹣4)+116x=1 D.120x+116(x﹣4)=1二、填空题13. 化简﹣2b﹣2(a﹣b)的结果是_____.14. 如果关于x的方程﹣12(x﹣m)﹣1=2x的解为x=1,那么关于y的方程﹣m(2y﹣5)=2y+3m的解是_____.15. 有理数a,b,c在数轴上的位置如图所示,化简|a+b|﹣|b+c|﹣|c+a|=_____.16. 观察按规律排列的一组数:﹣2,4,63,85,107,…其第n个数为_____.(n是正整数,用含n的代数式表示)三、解答题17. 计算:(1)(﹣2)×(﹣2.5)+(﹣2)×3÷1.5;(2)(﹣52)×(﹣2)2﹣(﹣3)3÷(﹣13﹣12)2÷(﹣0.25).18. 先化简,再求值:﹣x2﹣2(x﹣1)+2[x2+x﹣(x2﹣2x+1)],其中x=﹣23.19. 解方程:(1)﹣x﹣2=2x+1;(2)32(x﹣1)﹣85x=﹣05(x﹣1).20. 如图,点C为线段AB上一点,点C将AB分成2:3两部分,M是AC的中点,N是BC的中点,若AN=35cm.求AB的长.21. 如图,长方形纸片ABCD,点E,F分别在AB,CD上连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得到折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得到折痕EN.已知∠A′EN=35°,求∠B′EM的度数.22. 已知长方形的周长为18cm,长方形的长比宽的3倍少1cm,求该长方形的面积.(结果精确到0.1cm2)23. 如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.24. 甲、乙两支”徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?答案与解析一、选择题1. ﹣3的相反数是()A.13- B.13C. 3-D. 3【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2. 十九大报告提到:我国的粮食生产能力达到12000亿斤.用科学记数法表示”12000亿”正确的是( )A. 1.2×1012B. 1.2×1013C. 1.2×1014D. 1.2×104【答案】A【解析】【分析】用科学记数法的定义判断即可.【详解】解:12000亿=1.2×1012.故选:A.【点睛】用科学记数法表示较大的数时, 一般形式为10na⨯, 其中(1≤|a|<10,n为整数), 据此判断即可.3. 若a是有理数,则计算正确的是()A. (﹣a)+(﹣a)=2aB. ﹣a+(﹣a)=0C. (﹣a)﹣(﹣a)=2aD. ﹣a﹣(+a)=﹣2a【答案】D【解析】【分析】根据合并同类项法则:系数相加字母及指数不变,可得答案.【详解】.解:A、(﹣a)+(﹣a)=﹣2a,故A错误;B、(﹣a)+(﹣a)=﹣2a,故B错误;C 、(﹣a )﹣(﹣a )=0,故C 错误;D 、﹣a ﹣(+a )=﹣2a ,故D 正确;故选D .【点睛】本题考查合并同类项,解题关键是系数相加、字母及指数不变.4. 如图,是一个圆柱体模型,若从这个圆柱的左边向右看,则得到的平面图形是( )A. B. C. D.【答案】A【解析】【分析】根据不同方向观察物体和几何体可得到答案.【详解】解:从左边向右看这个几何体可看到长方形.故答案为:A.【点睛】本题主要考查从不同方向观察物体和几何体.5. 某校七年级共有女生x 人,占七年级人数的48%,则该校七年级男生有( )A. 0.48x 人B. 0.52x 人C. 0.48x 人D. 0.520.48x ⨯人 【答案】D【解析】【分析】由七年级共有女生x 人, 占七年级人数的48%得出七年级总人数为, 继而可得该校七年级男生数.【详解】解:七年级共有女生x 人,占七年级人数的48%, ∴七年级总人数为0.48x 则该校七年级男生有0.48x (1-48%)=0.48x ⨯0.52, 故选: D.【点睛】本题主要考查列代数式求解.6. 若m 是有理数,则多项式﹣2mx ﹣x+2的一次项系数是( )A. ﹣2B. ﹣1C. 2D. ﹣(2m+1) 【答案】D【解析】合并关于x的同类项后即可求出一次项的系数.【详解】∵﹣2mx﹣x+2=﹣(2m+1)x+2,∴﹣2mx﹣x+2的一次项系数是﹣(2m+1).故选D.【点睛】本题考查了多项式的项,多项式中的每个单项式都叫做这个多项式的项,每一项都包括前面的符号,解答本题时注意要先合并关于x的同类项.7. 若a表示任意一个有理数,则下列说法中正确的是()A. ﹣a是负有理数B. |a|是正有理数C. 1a是有理数 D. 2a是有理数【答案】D【解析】【分析】根据有理数的定义进行判断即可.【详解】解:若a表示任意一个有理数, 则当a=0时,-a不是负有理数, |a|不是正有理数, 1a无意义, 故1a不是有理数.故选项A、 B、 C错误.不论a取任何有理数, 2a总是有理数.故选项D正确故选: D.【点睛】本题主要考查有理数的定义.8. 一个两位数的十位数是a,个位数字比十位数字的2倍少1.用含a的代数式表示这个两位数正确的是()A. 3a﹣1B. 12a﹣1C. 12a﹣2D. 30a﹣1【答案】B【解析】【分析】首先表示出个位数字, 则这个数即可得到.【详解】解:十位数字是a则个位数字是:2a-1,则这个两位数是. 10a+2a-1=12a-1, 故选B.【点睛】本题主要考查列代数式及整式的运算.9. 如图所示,O是直线AB上的一点,∠AOC=∠FOE=90°,则图中∠EOC与∠BOF的关系是()A. 相等B. 互余C. 互补D. 互为邻补角【答案】C【解析】【分析】根据已知∠AOE=∠FOE=90o, 结合图形利用角运算不难推出∠AOF和∠EOC的大小关系;接下来根据∠AOF+∠BOF=180o,进一步分析便可得出∠EOC与∠BOF的关系.【详解】解:互补.∠AOC=∠FOE=90o,∴∠LAOF+∠COF=90o, ∠EOC+∠COF=90o,∠AOF=∠EOC.∠AOF+∠BOF=180o,∴∠EOC +∠BOF=180o即∠EOC与∠BOF的关系是互补.故选C.【点睛】分析题意, 结合角之间的加减运算, 可以得到解答本题.10. 如图,将一副三角板按图中位置摆放,则∠BAD+∠DEC=()A. 165°B. 210°C. 220°D. 255°【答案】D【解析】由三角形的外角和定理进行计算可得答案.【详解】解:由题意得:∠BAD=∠BAC+∠CAD=30o+90o=120o,由外角性质得:∠DEC=∠D+∠DAC=45o+90o=135o,∠BAD+∠DEC=120o+135o=255o.故答案选D.【点睛】本题主要考查三角形的外角和定理.11. 在数轴上,点B表示﹣2,点C表示4,若点A到点B和点C的距离相等,则点A表示的数是()A. 0B. 1C. ﹣1D. 3【答案】B【解析】【分析】点C到点A的距离与点C到点B的距离相等,则点C是线段AB的中点,据此即可求解.【详解】如图,,由数轴,得:点A表示的数是1.故选B.【点睛】本题主要考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把”数”和”形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12. 小玲和小明值日打扫教室卫生,小玲单独打扫雪20min完成,小明单独打扫雪16min完成.因小明要将数学作业本交到老师办公室推迟一会儿,故先由小玲单独打扫4min,余下的再由两人一起完成,则两人一起打扫完教师卫生需要多长时间?设两人一起打扫完教室卫生需要x min,则根据题意可列方程()A. 120(x+4)+116x=1 B.120x+116(x+4)=1C. 120(x﹣4)+116x=1 D.120x+116(x﹣4)=1【答案】A 【解析】由小玲单独打扫雪20min 完成, 小明单独打扫雪16min 完成知小玲打扫的效率为120, 小明打扫的效率116, 根据 "小玲的工作量+小明的工作量=1”,可得方程.【详解】解:小玲单独打扫雪20min 完成,小明单独打扫雪16min 完成, 小玲打扫的效率为120,小明打扫的效率为116根据题意,得:1 20(x+4)+116x=1, 故选: A.【点睛】本题主要考查一元一次方程的应用,由实际问题抽象列出方程式解题的关键.二、填空题13. 化简﹣2b ﹣2(a ﹣b )的结果是_____.【答案】﹣2a【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:原式=﹣2b -2a+2b=-2a ,故答案为: -2a ,【点睛】本题主要考查整式的加减运算.14. 如果关于x 的方程﹣12(x ﹣m )﹣1=2x 的解为x=1,那么关于y 的方程﹣m (2y ﹣5)=2y+3m 的解是_____.【答案】y=78 【解析】【分析】根据方程的解满足方程, 可得关于m 的方程, 可得m 的值, 代入关于y 的方程, 根据解方程, 可得答案.【详解】解:将x=1代入﹣12(x ﹣m )﹣1=2x,得, 1(1)1212m ---=⨯,解得m=7, 将m=7代入﹣m (2y ﹣5)=2y+3m,得,7(25)237y y --=+⨯,解得y=7 8 .故答案:y=7 8 .【点睛】本题主要考查一元一次方程的解.15. 有理数a,b,c在数轴上的位置如图所示,化简|a+b|﹣|b+c|﹣|c+a|=_____.【答案】﹣2b【解析】【分析】先根据数轴判断出a、b、c的正负情况以及绝对值的大小, 然后判断出(a+b), (b+c), (c+a)的正负情况, 再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形,a<b<0<c,且|b|<|c|<|a|,∴a+b<0,b+c>0,c+a<o,原式=-(a+b)-(b+c)+(c+a)=-a-b-b-c+c+a,=-2b.故答案为-2b.【点睛】本题主要考查绝对值及数轴等知识.16. 观察按规律排列的一组数:﹣2,4,63,85,107,…其第n个数为_____.(n是正整数,用含n的代数式表示)【答案】2 23n n-【解析】【分析】观察此组数的规律,可得出第n个数的表达式.详解】解:221-=-,441=这组数为:21-,41,63,85,107…∴第n个数为2 23n n-故答案应填为:223nn-.【点睛】本题主要考查数字的变化的规律.三、解答题17. 计算:(1)(﹣2)×(﹣2.5)+(﹣2)×3÷1.5;(2)(﹣52)×(﹣2)2﹣(﹣3)3÷(﹣13﹣12)2÷(﹣0.25).【答案】(1)1;(2)413825 -【解析】【分析】(1) 先算乘法, 再算加减.(2) 先算乘方, 再算乘法, 最后算加减. 【详解】解:(1)原式=5﹣4=1;(2)原式=﹣10﹣27÷2536÷025,=﹣10﹣27×3625×4,=﹣10﹣3888 25=﹣4138 25.【点睛】本题主要考查有理数的运算.18. 先化简,再求值:﹣x2﹣2(x﹣1)+2[x2+x﹣(x2﹣2x+1)],其中x=﹣23.【答案】﹣x2+4x;28 9 -.【解析】【分析】先去括号, 再合并同类项化简原式, 再将x的值代入计算可得. 【详解】解:原式=﹣x2﹣2x+2+2(x2+x﹣x2+2x﹣1),=﹣x2﹣2x+2+2x2+2x﹣2x2+4x﹣2,=﹣x2+4x,当x=﹣时,原式=﹣(﹣)2+4×(﹣),=﹣﹣=﹣289.【点睛】本题主要考查整式的加减-化简求值.19. 解方程:(1)﹣x﹣2=2x+1;(2)32(x﹣1)﹣85x=﹣0.5(x﹣1).【答案】(1)x=﹣1;(2)x=5.【解析】【分析】根据解一元一次方程的步骤求解即可.【详解】解:(1)移项,得:﹣x﹣2x=1+2,合并同类项,得:﹣3x=3,系数化为1,得:x=﹣1;(2)去分母,得:15(x﹣1)﹣16x=﹣5(x﹣1),去括号,得:15x﹣15﹣16x=﹣5x+5,移项,得:15x﹣16x+5x=5+15,合并同类项,得:4x=20,系数化为1,得:x=5.【点睛】本题主要考查解一元一次方程的步骤:去分母、, 去括号, 移项、合并同类项未知数系数化为1.20. 如图,点C为线段AB上一点,点C将AB分成2:3两部分,M是AC的中点,N是BC的中点,若AN=35cm.求AB的长.【答案】50cm.【解析】【分析】设AC=2xcm, BC=3xcm, 根据中点定义可得CN=12BC=123x=1.5x,进而可列方程2x+1.5x=35, 解出x的值,可得AB的长.【详解】解:∵点C将AB分成2:3两部分,∴设AC=2xcm,BC=3xcm,∵N是BC的中点,∴CN=BC=×3x=1.5x,∵AN=35cm,∴2x+1.5x=35,解得:x=10,∴AB=5×10=50cm.【点睛】本题主要考查两点间的距离及一元一次方程的应用.21. 如图,长方形纸片ABCD,点E,F分别在AB,CD上连接EF,将∠BEF对折,点B落在直线EF上的点B′处,得到折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得到折痕EN.已知∠A′EN=35°,求∠B′EM的度数.【答案】∠B′EM=55°.【解析】【分析】先由翻折的性质得到∠AEN=∠A' EN, ∠BEM=∠B' EM, 从而可知∠NEM的值, 然后,根据余角的性质即可得到结论.【详解】解:由翻折的性质可知:∠AEN=∠A′EN=35°,∠BEM=∠B′EM.∠NEM=∠A′EN+∠B′EM=∠AEA′+∠BEB′=×180°=90°.∴∠B′EM=90°﹣∠A′EN=55°.【点睛】本题主要考查角度间的计算.22. 已知长方形的周长为18cm,长方形的长比宽的3倍少1cm,求该长方形的面积.(结果精确到0.1cm2)【答案】16.3 cm2.【解析】【分析】设该长方形的宽为x cm,则长为(3x﹣1)cm,由长方形的周长为18cm可得x的值,可得长方形的面积.【详解】解:设该长方形的宽为x cm,则长为(3x﹣1)cm,依题意得:x+(3x﹣1)=解得x=,所以3x﹣1=所以长方形的面积=×≈16.3(cm2).答:该长方形的面积约为16.3cm2.【点睛】本题主要考查一元一次方程的应用. 23. 如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.【答案】(1)∠MON=90°;(2)∠MON=90°;(3)∠MON=90°.【解析】【分析】(1)由∠AOB=∠COD=90°,∠BOC=20°,可得∠MOC=∠BON的度数,可得∠MON的度数:(2)同理由∠AOB=∠COD=90°,∠BOC=α,可得∠MOC=∠BON的度数,可得∠MON的度数: (3)由∠AOB=∠COD=90°,∠BOC=α,可得∠AOC=∠BOD=90°+α,∠MOC=∠BON=45°+α可得∠MON的度数:【详解】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°; (2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α. ∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=∠BON=45°﹣α, ∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=∠BON=45°+α, ∴∠MON=∠MOC ﹣∠COB+∠BON=45°+α﹣α+45°+=90°. 【点睛】本题主要考查角平分线的性质及角度间的计算.24. 甲、乙两支”徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间? (2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?【答案】(1) 2小时;(2)253千米;(3)2.5小时或3.5小时或145.75小时两队间间隔的路程为1千米 【解析】 【详解】(1)设乙队追上甲队需要x 小时,根据题意得:()641x x ,=+ 解得:2x =,答:乙队追上甲队需要2小时.(2)联络员追上甲需要的时间:4×1÷(10-4)=23(小时), 返回到乙需要的的时间:[4-(6-4)×23]÷(10+6)=16(小时), (23+16)×10=253(千米).答:他跑步的总路程是253千米. (3)要分三种情况讨论:设t 小时两队间间隔的路程为1千米,则①当甲出发后,乙为出发前,甲乙相距1千米, t=14②当甲队出发1小时后,相遇前与乙队相距1千米,由题意得()()6141411t t ---=⨯-, 解得: 2.5t =.③当甲队出发1小时后,相遇后与乙队相距1千米,由题意得:()()6141411t t ,---=⨯+解得: 3.5t =.答:2.5小时或3.5小时或5.75小时两队间间隔的路程为1千米.。

人教版七年级数学上册期末测试卷含答案

人教版七年级数学上册期末测试卷含答案

人教版七年级数学上册期末测试卷含答案七年级(上)期末数学试卷1(总分:100分时间:90分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如果水库水位上升2m记作+2m,那么水库水位下降2m记作( ) A.-2 B.-4 C.-2m D.-4m2.下列式子计算正确的个数有( )①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.A.1个 B.2个 C.3个 D.0个3.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥 B.四棱柱C.三棱锥 D.三棱柱4.已知2016x n+7y与-2017x2m+3y是同类项,则(2m-n)2的值是( ) A.16 B.4048 C.-4048 D.55.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为( )A.144元 B.160元 C.192元 D.200元6.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式是CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,……,设C(碳原子)的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示( )A.C n H2n+2 B.C n H2nC.C n H2n-2D.C n H n+3二、填空题(本大题共6小题,每小题3分,共18分)7.-12的倒数是________.8.如图,已知∠AOB =90°,若∠1=35°,则∠2的度数是________.9.若多项式2(x 2-xy -3y 2)-(3x 2-axy +y 2)中不含xy 项,则a =2,化简结果为_________.10.若方程6x +3=0与关于y 的方程3y +m =15的解互为相反数,则m =________. 11.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排25名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.12.在三角形ABC 中,AB =8,AC =9,BC =10.P 0为BC 边上的一点,在边AC 上取点P 1,使得CP 1=CP 0,在边AB 上取点P 2,使得AP 2=AP 1,在边BC 上取点P 3,使得BP 3=BP 2.若P 0P 3=1,则CP 0的长度为________.三、(本大题共5小题,每小题6分,共30分) 13.(1)计算:13.1+1.6-(-1.9)+(-6.6);(2)化简:5xy -x 2-xy +3x 2-2x 2.14.计算:(1)(-1)2×5+(-2)3÷4;(2)⎝ ⎛⎭⎪⎫58-23×24+14÷⎝ ⎛⎭⎪⎫-123+|-22|.15.化简求值:5a+3b-2(3a2-3a2b)+3(a2-2a2b-2),其中a=-1,b=2. 16.解方程:(1)x-12(3x-2)=2(5-x);(2)x+24-1=2x-36.17.如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.四、(本大题共3小题,每小题8分,共24分)18.我区期末考试一次数学阅卷中,阅B卷第22题(简称B22)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍.在阅卷过程中,由于情况变化,需要从阅B22的教师中调12人阅A18,调动后阅B22剩下的人数比原先阅A18人数的一半还多3人,求阅B22和阅A18原有教师人数各是多少.19.化简关于x 的代数式(2x 2+x )-[kx 2-(3x 2-x +1)],当k 为何值时,代数式的值是常数?20.用“⊕”定义一种新运算:对于任意有理数a 和b ,规定a ⊕b =ab 2+2ab +a .如:1⊕3=1×32+2×1×3+1=16. (1)求(-2) ⊕3的值;(2)若312a +⎛⎫⊕ ⎪⎝⎭⊕⎝ ⎛⎭⎪⎫-12=8,求a 的值.五、(本大题共2小题,每小题9分,共18分) 21.如图,点A 、B 都在数轴上,O 为原点.(1)点B 表示的数是________;(2)若点B 以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B 表示的数是________;(3)若点A 、B 都以每秒2个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后有一个点是一条线段的中点,求t 的值.22.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?六、(本大题共12分)23.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.期末数学试卷1 答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.C 2.B 3.A4.A 【解答】由题意得2m+3=n+7,移项得2m-n=4,所以(2m-n)2=16.故选A.5.B 6.A二、填空题(本大题共6小题,每小题3分,共18分)7.-2 8.55°9.2 -x2-7y210.27211.2512.5或6 【解答】设CP0的长度为x,则CP1=CP0=x,AP2=AP1=9-x,BP3=BP2=8-(9-x)=x-1,BP0=10-x.∵P0P3=1,∴|10-x-(x-1)|=1,11-2x=±1,解得x=5或6.三、(本大题共5小题,每小题6分,共30分)13.【解答】(1)原式=13.1+1.9+1.6-6.6=10.(3分)(2)原式=5xy-xy=4xy.(6分)14.【解答】(1)原式=3.(3分)(2)原式=19.(6分)15.【解答】原式=5a+3b-6a2+6a2b+3a2-6a2b-6=5a+3b-3a2-6.(3分)当a=-1,b=2 时,原式=5×(-1)+3×2-3×(-1)2-6=-5+6-3-6=-8.(6分)16.【解答】(1)x=6.(3分)(2)x=0.(6分)17.【解答】设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(1分)又因为BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(2分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(3分)所以x=14,所以∠ABC=7x°=98°.(6分)四、(本大题共3小题,每小题8分,共24分)18.【解答】设阅A18原有教师x人,则阅B22原有教师3x人,(2分)依题意得3x-12=12x+3,解得x=6.所以3x=18.(7分)答:阅A18原有教师6人,阅B22原有教师18人.(8分)19.【解答】(2x2+x)-[kx2-(3x2-x+1)]=2x2+x-kx2+(3x2-x+1)=2x2+x-kx 2+3x 2-x +1=(5-k )x 2+1.(5分)若代数式的值是常数,则5-k =0,解得k =5.(7分)则当k =5时,代数式的值是常数.(8分)20.【解答】(1)根据题中定义的新运算得(-2)⊕3=-2×32+2×(-2)×3+(-2)=-18-12-2=-32.(3分)(2)根据题中定义的新运算得a +12⊕3=a +12×32+2×a +12×3+a +12=8(a+1),(5分)8(a +1)⊕⎝ ⎛⎭⎪⎫-12=8(a +1)×⎝ ⎛⎭⎪⎫-122+2×8(a +1)×⎝ ⎛⎭⎪⎫-12+8(a +1)=2(a +1),(7分)所以2(a +1)=8,解得a =3.(8分) 五、(本大题共2小题,每小题9分,共18分) 21.【解答】(1)-4(2分)(2)0(4分)(3)由题意可知有两种情况:①O 为BA 的中点时,(-4+2t )+(2+2t )=0,解得t =12;(6分)②B 为OA 的中点时,2+2t =2(-4+2t ),解得t =5.(8分)综上所述,t =12或5.(9分)22.【解答】(1)顾客在甲超市购物所付的费用为300+0.8(x -300)=(0.8x +60)元;在乙超市购物所付的费用为200+0.85(x -200)=(0.85x +30)元.(3分)(2)他应该去乙超市,(4分)理由如下:当x =500时,0.8x +60=0.8×500+60=460(元),0.85x +30=0.85×500+30=455(元).∵460>455,∴他去乙超市划算.(6分)(3)根据题意得0.8x +60=0.85x +30,解得x =600.(8分)答:李明购买600元的商品时,到两家超市购物所付的费用一样.(9分) 六、(本大题共12分)23.【解答】(1)由题意得∠BOC =180°-∠AOC =150°,又∵∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -∠COE =∠COD -12 ∠BOC =90°-12×150°=15°.(3分)(2)∠DOE=12α.(6分) 解析:由(1)知∠DOE=∠COD-12∠BOC=∠COD-12(180°-∠AOC)=90°-12(180°-α)=12α.(3)①∠AOC=2∠DOE.(7分)理由如下:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°-∠DOE,∴∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE)=2∠DOE.(9分)②4∠DOE-5∠AOF=180°.(10分)理由如下:设∠DOE=x,∠AOF=y,由①知∠AOC=2∠DOE,∴∠AOC-4∠AOF=2∠DOE-4∠AOF=2x-4y,2∠BOE+∠AOF =2(∠COD-∠DOE)+∠AOF=2(90°-x)+y=180°-2x+y,∴2x-4y=180°-2x+y,即4x-5y=180°,∴4∠DOE-5∠AOF=180°.(12分)七年级(上)期末数学试卷2(总分:120分时间:90分钟)一、选择题(本题包括12小题,每小题3分,共36分。

人教版初一数学上册期末试卷 (含答案)

人教版初一数学上册期末试卷 (含答案)

初一数学上册期末试卷一、选择题1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.如图所示的几何体,从上往下看得到的平面图是()A.B.C.D.3.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=14.若单项式的系数、次数分别是a、b,则()A.B.C.D.5.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上6.方程a﹣x﹣(x+1)=15的解是x=﹣2,则a的值是()A.12B.﹣14C.18D.227.如图直线AB、CD相交于点O,∠1=∠2,若∠AOE=140°,则∠AOC的度数为()A.50°B.60°C.70°D.80°8.按照如图所示的计算程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第6次得到的结果为()A.1B.2C.3D.49.如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.5 cm B.1 cm C.5或1 cm D.无法确定10.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.11.在下列说法中:①﹣a表示负数;②多项式﹣a2b+2a2b2+ab﹣2的次数是4;③单项式的系数为;④若|a|=﹣a,则a为非正数.其中正确的个数有()A.0个B.1个C.2个D.3个12.已知a为整数,关于x的元一次方程的解也为整数,则所有满足条件的数a的和为()A.0B.24C.36D.48二、填空题(本大题6个小题,每小题4分,共24分)请将答案填在答题卷相应空格处. 13.人教版初中数学教科书共六册,总字数约97800个字,用科学记数法可将97800表示为.14.若a与b互为相反数,m和n互为倒数,则=.15.∠α=37°49′40″,∠β=52°59′45″,∠β﹣∠a=.16.如图,射线OA的方向是北偏东20度,射线OB的方向是北偏西40度,OD是OB的后向延长线.若OC是∠AOD的平分线,则射线OC的方向是北偏东度.17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有人,这个物品的价格是元.18.早上,甲、乙、丙三人在同一条路上不同起点朝同方向以不同的速度匀速跑:6点30分时,乙在中间,丙在前,甲在后,且乙与甲、丙的距离相等:7点时,甲追上乙;7点10分时,甲追上丙;当乙追上丙时,若从6点30分起计时,丙跑的时间为分钟.三、解答题(本大题共8个小题,19-25题每小题10分,26题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 19.(1)计算:(﹣1)2020×|﹣2﹣1|+2×(﹣2)﹣32;(2)解方程:20.如图,在平面内有A,B,C三点.(1)画直线AB,射线AC,线段BC;(2)在线段BC上任取一点D(不同于B,C),连接AD,并延长AD至E,使DE=AD;(3)数一数,此时图中线段共有条.21.先化简,后求值已知(x﹣3)2+|y+|=0,求代数式2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9的值.22.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km)﹣8﹣11﹣140﹣16+41+8(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶50km需用汽油4升,汽油价6.8元/升,计算小明家这7天的汽油费用大约是多少元?23.已知O为直线MN上的一点,且∠AOB为直角,OC平分∠MOB.(1)如图1,若∠BON=36°,则∠AOC等于多少度;(2)如图2,若OD平分∠CON,且∠DON﹣∠AOM=21°,求∠BON的度数.24.为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共102人,其中乙单位人数少于50人,且甲单位人数不够100人.经了解,该风景区的门票价格如表:数量(张)1~5051~100101张及以上单价(元/张)605040如果两单位分别单独购买门票,一共应付5500元.(1)甲、乙两单位各有多少名退休职工准备参加游玩?(2)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?25.对每个数位数字均不为零且互不相等的一个三位正整数x,若将x的十位数字与百位数字交换位置,得到一个新的三位数y,我们称y为x的“置换数”,如:123的“置效为“213”;若由x的百位、十位、个位上的数字任选两个组成一个新的两位数,所有新的两位数之和记为z,我们称z为x的“衍生数”.如456:因为45+46+54+56+64+65=330,所以456的“衍生数”为330.(1)直接写出987的“置换数”,并求987的“衍生数”;(2)对每个数位数字均不为零且互不相等的一个三位正整数x,设十位数字为1,若x 的“衍生数”与x的“置换数”之差为102,求x.26.如图,直线l上有AB两点,AB=18cm,点O是线段AB上的一点,OA=2OB (1)OA=cm,OB=cm;(2)若点C是直线AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为3cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以4cm/s的速度也向右运动.当点M追上点Q后立即返回,以4cm/s的速度向点P运动,遇到点P后再立即返回,以4cm/s的速度向点Q运动,如此往返.当点P与点Q重合时,P,Q两点停止运动.此时点M也停止运动.在此过程中,点M行驶的总路程是多少?参考答案一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的定义直接进行计算.解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.如图所示的几何体,从上往下看得到的平面图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形判定则可.解:从上面可看是一层三个等长等宽的矩形.故选:C.3.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=1【分析】先根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.解:A、3a和2b不是同类项,不能合并,A错误;B、2a3和3a2不是同类项,不能合并,B错误;C、3a2b﹣3ba2=0,C正确;D、5a2﹣4a2=a2,D错误,故选:C.4.若单项式的系数、次数分别是a、b,则()A.B.C.D.【分析】直接利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,分别得出答案.解:单项式的系数、次数分别是a、b,则a=﹣,b=6.故选:B.5.下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上【分析】根据线段的性质对各选项进行逐一分析即可.解:A、根据两点确定一条直线,故本选项错误;B、确定树之间的距离,即得到相互的坐标关系,故本选项错误;C、根据两点之间,线段最短,故本选项正确;D、根据两点确定一条直线,故本选项错误.故选:C.6.方程a﹣x﹣(x+1)=15的解是x=﹣2,则a的值是()A.12B.﹣14C.18D.22【分析】把x=﹣2代入方程得出关于a的方程解答即可.解:把x=﹣2代入方程a﹣x﹣(x+1)=15得:a+2﹣(﹣2+1)=15,解得:a=12.故选:A.7.如图直线AB、CD相交于点O,∠1=∠2,若∠AOE=140°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【分析】根据邻补角定义计算出∠2的度数,进而可得∠1的度数,然后可得∠BOD的度数,再根据对顶角相等可得∠AOC的度数.解:∵∠AOE=140°,∴∠2=180°﹣140°=40°,∵∠1=∠2,∴∠1=40°,∴∠DOB=80°,∴∠AOC=80°,故选:D.8.按照如图所示的计算程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第6次得到的结果为()A.1B.2C.3D.4【分析】根据计算程序的特征确定出所求即可.解:把x=2代入计算程序得:×2=1,把x=1代入计算程序得:1+3=4,把x=4代入计算程序得:4×=2,依次以1,4,2循环,∵6÷3=2,整除,∴第6次得到的结果是2,9.如果A、B、C三点在同一直线上,且线段AB=6cm,BC=4cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为()A.5 cm B.1 cm C.5或1 cm D.无法确定【分析】分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可.解:如图1,当点B在线段AC上时,∵AB=6cm,BC=4cm,M,N分别为AB,BC的中点,∴MB=AB=3,BN=BC=2,∴MN=MB+NB=5cm,如图2,当点C在线段AB上时,∵AB=6cm,BC=4cm,M,N分别为AB,BC的中点,∴MB=AB=3,BN=BC=2,∴MN=MB﹣NB=1cm,故选:C.10.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.【分析】先设他家到学校的路程是xkm,再把10分钟、5分钟化为小时的形式,根据题意列出方程,选出符合条件的正确选项即可.解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.11.在下列说法中:①﹣a表示负数;②多项式﹣a2b+2a2b2+ab﹣2的次数是4;③单项式的系数为;④若|a|=﹣a,则a为非正数.其中正确的个数有()A.0个B.1个C.2个D.3个【分析】直接利用单项式的系数以及多项式的次数确定方法,正数和负数,绝对值的性质分别分析得出答案.解:①﹣a表示正数或零或负数,原说法错误;②多项式﹣a2b+2a2b2+ab﹣2的次数是4,原说法正确;③单项式πab的系数为π,原说法错误;④若|a|=﹣a,则a为非正数,原说法正确.其中正确的个数有2个,故选:C.12.已知a为整数,关于x的元一次方程的解也为整数,则所有满足条件的数a的和为()A.0B.24C.36D.48【分析】依次移项,合并同类项,系数化为1,解原方程,根据“方程解为整数”,列出几个关于a的一元一次方程,解之,求出a的值中找出整数,相加求和即可得到答案.解:∵,∴(6﹣a)x=6,∵关于x的元一次方程的解为整数,∴x=为整数,∴6﹣a=±1或±2或±3或±6,又∵a为整数,∴a=5或7或4或8或3或9或0或12,∴所有满足条件的数a的和为:5+7+4+8+3+9+0+12=48,故选:D.二、填空题(本大题6个小题,每小题4分,共24分)请将答案填在答题卷相应空格处. 13.人教版初中数学教科书共六册,总字数约97800个字,用科学记数法可将97800表示为9.78×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:用科学记数法可将97800表示为9.78×104.故答案为:9.78×104.14.若a与b互为相反数,m和n互为倒数,则=.【分析】根据互为相反数、倒数的概念得到a+b=0,mn=1,代入计算得到答案.解:∵a与b互为相反数,∴a+b=0,∵m和n互为倒数,∴mn=1,∴(a+b)+mn=×0+×1=,故答案为:.15.∠α=37°49′40″,∠β=52°59′45″,∠β﹣∠a=14°20′40″.【分析】根据1度=60分,即1°=60′,1分=60秒,即1′=60″进行计算.解:∠β﹣∠α=52°10′20″﹣37°49′40″=14°20′40″,故答案为:14°20′40″.16.如图,射线OA的方向是北偏东20度,射线OB的方向是北偏西40度,OD是OB的后向延长线.若OC是∠AOD的平分线,则射线OC的方向是北偏东80度.【分析】先求出∠AOB=60°,再求得∠AOD的度数,由角平分线得出∠AOC的度数,即可确定OC的方向.解:∵OB的方向是北偏西40°,OA的方向是北偏东20°,∴∠AOB=40°+20°=60°,∴∠AOD=180°﹣60°=120°,∵OC是∠AOD的平分线,∴∠AOC=60°,∵20°+60°=80°,∴射线OC的方向是北偏东80°;故答案为:80.17.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有7人,这个物品的价格是53元.【分析】设共有x人,则这个物品的价格是(8x﹣3)元,根据“每人出7元,则还差4元”,即可得出关于x的一元一次方程,解之即可得出结论.解:设共有x人,则这个物品的价格是(8x﹣3)元,依题意,得:8x﹣3=7x+4,解得:x=7,∴8x﹣3=53.故答案为:7;53.18.早上,甲、乙、丙三人在同一条路上不同起点朝同方向以不同的速度匀速跑:6点30分时,乙在中间,丙在前,甲在后,且乙与甲、丙的距离相等:7点时,甲追上乙;7点10分时,甲追上丙;当乙追上丙时,若从6点30分起计时,丙跑的时间为60分钟.【分析】设6点30分时,甲、乙之间的距离为s,甲的运动速度为v,则乙的速度为(v ﹣2s),丙的速度为(v﹣3s),再利用乙追上丙的时间=乙、丙之间的距离÷二者的速度之差,即可求出结论.解:设6点30分时,甲、乙之间的距离为s,甲的运动速度为v,则乙的速度为(v﹣2s),丙的速度为(v﹣3s),∴乙追上丙的时间为=1.1小时=60分钟.故答案为:60.三、解答题(本大题共8个小题,19-25题每小题10分,26题8分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 19.(1)计算:(﹣1)2020×|﹣2﹣1|+2×(﹣2)﹣32;(2)解方程:【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)原式=1×|﹣3|+(﹣4)﹣9=1×3﹣4﹣9=3﹣4﹣9=﹣10;(2)去分母得:2(5x﹣7)+12=3(3x﹣1),去括号得:10x﹣14+12=9x﹣3,移项合并得:x=﹣1.20.如图,在平面内有A,B,C三点.(1)画直线AB,射线AC,线段BC;(2)在线段BC上任取一点D(不同于B,C),连接AD,并延长AD至E,使DE=AD;(3)数一数,此时图中线段共有8条.【分析】(1)依据直线、射线、线段的定义,即可得到直线AC,线段BC,射线AB;(2)依据在线段BC上任取一点D(不同于B,C),连接线段AD即可;(3)根据图中的线段为AB,AC,AD,AE,DE,BD,CD,BC,即可得到图中线段的条数.解:(1)如图,直线AC,线段BC,射线AB即为所求;(2)如图,线段AD和线段DE即为所求;(3)由题可得,图中线段的条数为8,故答案为:8.21.先化简,后求值已知(x﹣3)2+|y+|=0,求代数式2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9的值.【分析】根据非负数的性质分别求出x、y,根据整式的混合运算法则化简,代入计算即可.解:由题意得,x﹣3=0,y+=0,解得,x=3,y=﹣,则2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9=2xy2﹣6x+4(2x﹣1)+2xy2+9=2xy2﹣6x+8x﹣4+2xy2+9=4xy2+2x+5=4×3×(﹣)2+2×3+5=14.22.随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.第一天第二天第三天第四天第五天第六天第七天路程(km)﹣8﹣11﹣140﹣16+41+8(1)请求出这7天中平均每天行驶多少千米?(2)若每行驶50km需用汽油4升,汽油价6.8元/升,计算小明家这7天的汽油费用大约是多少元?【分析】(1)首先用50乘7,然后用所得的积加上每天的路程的记数,求出这7天行驶的路程之和,再用它除以7,求出这7天中平均每天行驶多少千米即可.(2)首先用这7天一共行驶的路程除以50,求出有多少个50千米;然后用它乘4,求出一共需要汽油多少升;然后用它乘每升汽油的价格,求出小明家这7天的汽油费用大约是多少元即可.解:(1)[50×7+(﹣8)+(﹣11)+(﹣14)+0+(﹣16)+(+41)+(+8)]÷7=(350﹣8﹣11﹣14﹣16+41+8)÷7=350÷7=50(千米)答:这7天中平均每天行驶50千米.(2)350÷50×4×6.8=7×4×6.8=28×6.8≈190(元)答:小明家这7天的汽油费用大约是190元.23.已知O为直线MN上的一点,且∠AOB为直角,OC平分∠MOB.(1)如图1,若∠BON=36°,则∠AOC等于多少度;(2)如图2,若OD平分∠CON,且∠DON﹣∠AOM=21°,求∠BON的度数.【分析】(1)由∠BON=36°,求得∠BOM=144°,由OC平分∠MOB,求得∠COB =72°,由于∠AOB为直角,则由∠AOC=∠AOB﹣∠COB可求得结论;(2)设∠BOC=∠MOC=x°,再根据角的关系得出方程,解答后求出结论即可.解:(1)∵∠BON=36°,∴∠BOM=144°,∵OC平分∠MOB,∴∠COB=72°,∵∠AOB为直角,∴∠AOC=∠AOB﹣∠COB=18°;(2)设∠BOC=∠MOC=x°,∵∠AOB为直角,∴∠AOM=90°﹣2x°,∵∠DON﹣∠AOM=21°,∴∠DON=∠AOM+21°=111°﹣2x°,∵OD平分∠CON,∴∠CON=222°﹣4x°,∵∠CON+∠MOC=180°,∴222°﹣4x°+x°=180°,∴x°=14°,∴∠BON=180°﹣∠BOM=180°﹣28°=152°.24.为了丰富老年人的晚年生活,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位退休职工共102人,其中乙单位人数少于50人,且甲单位人数不够100人.经了解,该风景区的门票价格如表:数量(张)1~5051~100101张及以上单价(元/张)605040如果两单位分别单独购买门票,一共应付5500元.(1)甲、乙两单位各有多少名退休职工准备参加游玩?(2)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?【分析】(1)设甲单位有x名退休职工准备参加游玩,则乙单位有(102﹣x)名退休职工准备参加游玩,根据总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论;(2)结合(1)的结论可得出甲单位参加游玩的职工数,根据该风景区的门票价格表,可找出4种购票方案,利用总价=单价×数量可求出4种购票方案所需费用,比较后即可得出结论.解:(1)设甲单位有x名退休职工准备参加游玩,则乙单位有(102﹣x)名退休职工准备参加游玩,依题意,得:50x+60(102﹣x)=5500,解得:x=62,∴102﹣x=40.答:甲单位有62名退休职工准备参加游玩,乙单位有40名退休职工准备参加游玩.(2)∵62﹣12=50(名),50+40=90(名),∴有4种购买方案,方案1:甲、乙两单位分开购票,甲单位购买50张门票、乙单位购买40张门票;方案2:甲、乙两单位分开购票,甲单位购买51张门票、乙单位购买40张门票;方案3:甲、乙两单位联合购票,购买90张门票;方案4:甲、乙两单位联合购票,购买101张门票.方案1所需费用为60×50+60×40=5400(元);方案2所需费用为50×51+60×40=4950(元);方案3所需费用为50×90=4500(元);方案4所需费用为40×101=4040(元).∵5400>4950>4500>4040,∴甲、乙两单位联合购票,购买101张门票最省钱.25.对每个数位数字均不为零且互不相等的一个三位正整数x,若将x的十位数字与百位数字交换位置,得到一个新的三位数y,我们称y为x的“置换数”,如:123的“置效为“213”;若由x的百位、十位、个位上的数字任选两个组成一个新的两位数,所有新的两位数之和记为z,我们称z为x的“衍生数”.如456:因为45+46+54+56+64+65=330,所以456的“衍生数”为330.(1)直接写出987的“置换数”,并求987的“衍生数”;(2)对每个数位数字均不为零且互不相等的一个三位正整数x,设十位数字为1,若x 的“衍生数”与x的“置换数”之差为102,求x.【分析】(1)根据题意即可写出987的“置换数”,并求得987的“衍生数”;(2)根据题意可得,设三位正整数x为:100b+10+a,所以x的“衍生数”为:22b+22a+22,x的“置换数”为:100+10b+a,进而列出方程即可求解.解:(1)987的“置换数”为897,因为98+97+89+87+79+78=528,所以987的“衍生数”为528;(2)根据题意可知:设三位正整数x为:100b+10+a,所以x的“衍生数”为:10b+1+10b+a+10+b+10+a+10a+b+10a+1=22b+22a+22,x的“置换数”为:100+10b+a,所以22b+22a+22﹣(100+10b+a)=102所以或,所以x=804或118.26.如图,直线l上有AB两点,AB=18cm,点O是线段AB上的一点,OA=2OB (1)OA=12cm,OB=6cm;(2)若点C是直线AB上一点,且满足AC=CO+CB,求CO的长;(3)若动点P,Q分别从A,B同时出发,向右运动,点P的速度为3cm/s,点Q的速度为1cm/s.设运动时间为ts,当点P与点Q重合时,P,Q两点停止运动.①当t为何值时,2OP﹣OQ=4;②当点P经过点O时,动点M从点O出发,以4cm/s的速度也向右运动.当点M追上点Q后立即返回,以4cm/s的速度向点P运动,遇到点P后再立即返回,以4cm/s的速度向点Q运动,如此往返.当点P与点Q重合时,P,Q两点停止运动.此时点M也停止运动.在此过程中,点M行驶的总路程是多少?【分析】(1)由OA=2OB结合AB=OA+OB=18即可求出OA、OB的长度;(2)设CO的长是xcm,分点C在线段AO上、在线段OB上以及在线段AB的延长线上三种情况考虑,根据两点间的距离公式结合AC=CO+CB即可得出关于x的一元一次方程,解之即可得出结论;(3)找出运动时间为ts时,点P、Q表示的数,由点P、Q表示的数相等即可找出t的取值范围.①由两点间的距离公式结合2OP﹣OQ=4即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论;②令点P表示的数为0即可找出此时t的值,再根据路程=速度×时间即可算出点M行驶的总路程.解:(1)∵AB=18cm,OA=2OB,∴OA+OB=3OB=AB=18cm,解得:OB=6cm,OA=2OB=12cm.故答案为:12;6.(2)设CO的长是xcm,依题意有:①当点C在线段AO上时,12﹣x=x+6+x,解得x=2;②当点C在线段OB上时,12+x=x+6﹣x,解得:x=﹣6(舍去);③当点C在线段AB的延长线上时,12+x=x+x﹣6,解得x=18.故CO的长为2cm或18cm;(3)当运动时间为ts时,点P表示的数为3t﹣12,点Q表示的数为t+6.当3t﹣12=t+6时,t=9,∴0≤t≤9.①∵2OP﹣OQ=4,∴2|3t﹣12|﹣|t+6|=4.当0≤t<4时,有2(12﹣3t)﹣(6+t)=4,解得t=2;当4≤t≤9时,有2(3t﹣12)﹣(6+t)=4,解得t=6.8.故当t为2s或6.8s时,2OP﹣OQ=4.②当3t﹣12=0时,t=4,4×(9﹣4)=20(cm).答:在此过程中,点M行驶的总路程是20cm.1、三人行,必有我师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级上册数学期末试卷与答案一、选择题(每题3分,共30分)1.计算:(﹣3)2=()a. 6 b.﹣6 c. 9 d.﹣9考点:有理数的乘方.分析:根据有理数的乘方运算,(﹣3)2表示2个(﹣3)的乘积.解答:解:(﹣3)2=9.故选c.点评:本题考查了有理数的乘方,乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.2.下列数轴的画法正确的是() a. b. c. d.考点:数轴.分析:数轴就是规定了原点、正方向、单位长度的直线.数轴的这三个要素必须同时具备.解答:解:a、正确;b、单位长度不统一,故错误;c、没有正方向,故错误;d、单位长度不统一,故错误.故选a.点评:数轴的三要素:原点、正方向、单位长度在画数轴时必须同时具备.3.在,,,中,无理数有()个. a. 1 b. 2 c. 3 d. 4考点:无理数.分析:由于无理数是无限不循环小数,利用无理数的定义即可判定选择项.解答:解:在,,,中,根据无理数的概念,则其中的无理数有﹣、两个.故选b.点评:此题主要考查了无理数的定义.此题注意:﹣ =﹣3,是有理数.4.若3xn+5y与﹣x3y 是同类项,则n=() a. 2 b.﹣5 c.﹣2 d. 5考点:同类项.分析:根据同类项的定义(所含字母相同,并且所含相同字母的次数分别相同的项,叫做同类项),推出n+5=3,即可求出n的值.解答:解:∵若3xn+5y与﹣x3y 是同类项,∴n+5=3,∴n=﹣2.故选c.点评:本题主要考查学生对同类项概念的理解和认识,关键在于认真的运用同类项的定义进行正确的分析.5.如果x=﹣1是关于x的方程3x ﹣2m=5的根,则m的值是() a.﹣4 b.﹣2 c. 1d.﹣1考点:一元一次方程的解.专题:计算题.分析:把x=﹣1代入方程计算即可求出m的值.解答:解:把x=﹣1代入方程得:﹣3﹣2m=5,解得:m=﹣4.故选a点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列各式中运算正确的是() a. 4a ﹣3a=1 b. a3+a3=a6 c. 2a3+6a2=8a5 d. 5a3b2﹣6b2a3=﹣a3b2考点:合并同类项.分析:根据合并同类项:系数相加字母及指数不变,可得答案.解答:解:a、系数相加字母及指数不变,故a错误;b、系数相加字母及指数不变,故b错误;c、不是同类项的不能合并,故c错误;d、系数相加字母及指数不变,故d正确;故选:d.点评:本题考查了合并同类项,系数相加字母及指数不变是解题关键.7.如图,已知∠aob=40°,∠aoc=90°,od平分∠boc,则∠aod的度数是() a.20° b.25° c.30° d.35°考点:角平分线的定义.分析:先求出∠boc=40°+90°=130°,再根据角平分线的定义求得∠bod=65°,把对应数值代入∠aod=∠bod﹣∠aob即可求解.解答:解:∵∠aob=40°,∠aoc=90°,∴∠boc=40°+90°=130°,∵od平分∠boc,∴∠bod=65°,∴∠aod=∠bod﹣∠aob=65°﹣40°=25°.故选b.点评:本题主要考查了角平分线的定义和角的运算.要会结合图形找到其中的等量关系:∠boc=∠aoc+∠aob,∠aod=∠bod﹣∠aob是解题的关键.8.如图,将矩形abcd沿ae折叠,使d点落在bc边的f 处,若∠baf=60°,则∠dae等于() a.15° b.30° c.45° d.60°考点:矩形的性质.专题:计算题.分析:本题主要考查矩形的性质以及折叠,求解即可.解答:解:因为∠eaf是△dae沿ae折叠而得,所以∠eaf=∠dae.又因为在矩形中∠dab=90°,即∠eaf+∠dae+∠baf=90°,又∠baf=60°,所以∠aed==15°.故选a.点评:图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的两个图形是全等三角形,复合的部分就是对应量.9.元旦那天,6位朋友均匀地围坐在圆桌旁共度佳节.圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两名客人,每人向后挪动了相同的距离,再左右调整位置,使8人都坐下,并且8人之间的距离与原来6人之间的距离(即在圆周上两人之间的圆弧的长)相等.设每人向后挪动的距离为x,根据题意,可列方程()a. b. c.2π(60+10)×6=2π(60+π)×8 d.2π(60﹣x)×8=2π(60+x)×6考点:由实际问题抽象出一元一次方程.专题:几何图形问题;压轴题.分析:首先理解题意找出题中存在的等量关系:8人之间的距离=原来6人之间的距离,根据等量关系列方程即可.解答:解:设每人向后挪动的距离为x,则这8个人之间的距离是:,6人之间的距离是:,根据等量关系列方程得: = .故选a.点评:列方程解应用题的关键是找出题目中的相等关系.10.一个机器人从数轴原点出发,沿数轴正方向以每前进3步后退2步的程序运动.设该机器人每秒前进或后退1步,并且每步的距离为1个单位长,xn表示第n秒时机器人在数轴上的位置所对应的数,给出下列结论:①x3=3;②x5=1;③x103<x104;④x2011<x2012其中,正确结论的序号是() a.①③ b.②③ c.①②③ d.①②④考点:数轴.分析:按“前进3步后退2步”的步骤去算,就可得出正确的答案.解答:解:根据题意得:x1=1,x2=2,x3=3,x4=2,x5=1,由此的出规律“前进3步后退2步”这5秒组成一个循环结构,把n是5的倍数哪些去掉,就剩下1~4之间的数,然后再按“前进3步后退2步”的步骤去算,就可得出①,②,④.故选d.点评:此题主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.二、填空题(每题2分,共20分)11.比较大小:﹣2<.(用“>”、“<”或“=”填空)考点:有理数大小比较.分析:先得到这2个数的绝对值,进行比较,进而根据两个负数的比较方法,比较即可.解答:解:∵|﹣2|=2,|﹣ |= ,2<,∴﹣2<,故答案为:<.点评:考查有理数的比较;用到的知识点为:两个负数,绝对值大的反而小.12.化简3a﹣(3a﹣2)的结果是2.考点:整式的加减.专题:计算题.分析:原式去括号合并即可得到结果.解答:解:原式=3a﹣3a+2=2.故答案为:2点评:此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.13.如图,c是线段ab的中点,d在线段cb上,ad=7,db=4,则cd的长等于1.5.考点:两点间的距离.分析:先根据ad=7,db=4求出线段ab的长,再由点c是线段ab的中点求出bc的长,由cd=bc﹣db即可得出结论.解答:解:∵ad=7,db=4,∴ab=ac+bd=7+4=11,∵c是线段ab的中点,∴bc= ab=×11=5.5,∴cd=bc﹣db=5.5﹣4=1.5.故答案为:1.5.点评:本题考查的是两点间的距离,解答此类问题时要注意各线段之间的和、差关系.14.如图,把一块直角三角板的直角顶点放在一条直线上,如果∠2=53°42′,那么∠1=36°18′.考点:余角和补角.分析:根据直角三角形的性质,即可推出∠1=90°﹣∠2,由∠2=53°42′,即可而推出∠1的度数.解答:解:如图,∵∠2=53°42′,∴∠1=90°﹣∠2=90°﹣53°42′=36°18′.故答案为:36°18′.点评:本题主要考查直角三角形的性质,角的计算,度分秒之间的换算等知识,关键在于认真的进行计算.15.一个角的补角比它的余角的2倍大40度,则这个角的度数为40度.考点:余角和补角.分析:设出所求的角为x,则它的补角为180°﹣x,余角为90°﹣x,根据题意列出方程,再解方程即可,解答:解:设这个角为的度数为x;根据题意得:180°﹣x=2(90°﹣x)+40°,解得x=40°,因此这个角的度数为40°;故答案为:40.点评:本题考查了余角和补角的定义;根据角之间的互余和互补关系列出方程是解决问题的关键.16.当x=1时,代数式px3+qx ﹣1的值是2014,则当x=﹣1时,代数式px3+qx﹣1的值是﹣2016.考点:代数式求值.分析:把x=1代入代数式得2014,由此可得到p+q的值;把x=﹣1代入,可得到含有p+q 的式子,直接解答即可.解答:解:当x=1时,代数式px3+qx﹣1=p+q﹣1=2014,即p+q=2015,所以当x=﹣1时,代数式px3+qx﹣10=﹣p﹣q﹣1=﹣(p+q)﹣1=﹣2015﹣1=﹣2016.故答案为:﹣2016.点评:本题考查了代数式求值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式p+q的值,然后利用“整体代入法”求代数式的值.17.写出一个系数是3,且含有字母a、b的4次单项式3ab3.考点:单项式.专题:开放型.分析:根据单项式的系数是数字因数,次数是字母指数和,可得答案.解答:解:系数是3,且含有字母a、b的4次单项式有3ab3.故答案为:3ab3.点评:本题考查了单项式,利用了单项式的系数,单项式的次数.18.有理数a、b在数轴上的表示如图所示,则下列结论中:①ab<0;②a+b<0;③a﹣b<0;④a<|b|;⑤﹣a>﹣b.正确的有①②④(只要填写序号).考点:数轴.分析:先根据a,b在数轴上的位置得到a,b的符号,以及绝对值的大小,再根据有理数的运算法则及不等式的性质进行判断.解答:解:根据数轴可得:b<0<a,且|b|>|a|.即a<|b|,故④正确;根据有理数的乘法法则得到:①ab<0正确;根据有理数加法法则得到:②正确;∵a>b,∴a﹣b>0.故③错误;由a>b,根据不等式的性质两边同时乘以﹣1,得:﹣a<﹣b,故⑤错误.故正确的有:①②④.点评:本题考查了利用数轴确定a,b的大小关系,有理数的运算法则及不等式的性质.19.按下面的程序运算,若开始输入x的值为正数,最后输出的结果为656,请写出两个符合条件的x的值0.8或5或26或131(答案不).考点:一元一次方程的应用.专题:开放型;图表型.分析:根据题意,首先能得到:5x+1=656,可求出x的值,然后循环代入计算即可.解答:解:根据最后计算的结果是656,则有5x+1=656,解得x=131;再根据5x+1=131,解得x=26;再根据5x+1=26,解得x=5;再根据5x+1=5,解得x=0.8.点评:此题要根据结果计算x的值,要能熟练解方程.20.一列匀速前进的火车,从它进入600米的隧道到离开,共需30秒,又知在隧道顶部的一盏固定的灯发出的一束光线垂直照射火车5秒,则这列火车的长度是120米.考点:一元一次方程的应用.专题:行程问题.分析:等量关系为:(隧道长度+火车长度)÷30=火车长度÷5解答:解:设这列火车的长度是x米.由题意得:(600+x)÷30=x÷5,解得:x=120.∴这列火车的长度是120米.点评:根据速度不变找到相应的等量关系是解决问题的关键,难点是理解火车通过隧道走的路程为隧道长度+火车长度.三、解答题(共50分)21.计算:(1)11﹣13+18(2)( + ﹣)×(﹣60)(3)﹣ [﹣32}×(﹣)2﹣2].考点:有理数的混合运算.分析:(1)分类计算即可;(2)利用乘法分配律简算;(3)先算乘方,再算括号里面的乘法,再算括号里面的减法,最后算括号外面的.解答:解:(1)原式=29﹣13=16;(2)原式= ×(﹣60)+ ×(﹣60)﹣×(﹣60)=﹣45﹣35+70=﹣10;(2)原式=﹣×[﹣9× ﹣2]=﹣×[﹣4﹣2]=﹣×(﹣6)= .点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号计算即可.22.解下列方程:(1)4x﹣3(5﹣x)=6(2)﹣=1.考点:解一元一次方程.专题:计算题.分析:(1)方程去括号,移项合并,把x系数化为1,求出解即可;(2)方程去分母,去括号,移项合并,把x系数化为1,求出解即可.解答:解:(1)去括号得:4x﹣15+3x=6,移项合并得:7x=21,解得:x=3;(2)去分母得:4(2x﹣1)﹣3(2x﹣3)=12,去括号得:8x﹣4﹣6x+9=12,移项合并得:2x=7,解得:x=3.5.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.23.先化简,再求值.(1)9x+6x2﹣3(x﹣ x2),其中x=1;(2)已知m﹣n=4,mn=﹣1.求:(﹣2mn+2m+3n)﹣(3mn+2n﹣2m)﹣(m+4n+mn)的值.考点:整式的加减—化简求值.专题:计算题.分析:(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)原式去括号合并后,把已知等式代入计算即可求出值.解答:解:(1)原式=9x+6x2﹣3x+2x2=8x2+6x,当x=1时,原式=8+6=14;(2)原式=﹣2mn+2m+3n﹣3mn﹣2n+2m﹣m﹣4n﹣mn=﹣6mn+3m﹣3n=﹣6mn+3(m﹣n),把m﹣n=4,mn=﹣1代入得:原式=6+12=18.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.如图,点c是∠aob的边ob上的一点,按下列要求画图并回答问题.(1)过点c画ob的垂线,交oa于点d;(2)过点c画oa的垂线,垂足为e;(3)比较线段ce、od、cd的大小关系(用“<”连接),并说明理由.考点:作图—基本作图;垂线段最短.分析:(1)过点c画∠dcb=90°即可;(2)过点c画∠ceo=90°即可;(3)根据点到直线的距离可得,线段ce、od、cd这三条线段大小关系.解答:解:(1)如图所示:d为所求;(2)如图所示:e为所求;(3)ce<od<cd (从直线外一点到这条直线所作的垂线段最短).点评:本题主要考查了基本作图﹣﹣﹣﹣作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.25.如图,直线bc与mn 相交于点o,ao⊥bc.(1)分别写出图中与∠aom互余和互补的角;(2)已知oe平分∠bon,且∠eo n=20°,求∠aom的度数.考点:余角和补角;角平分线的定义;对顶角、邻补角.分析:(1)若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.根据已知条件由互余、互补的定义即可确定.(2)首先根据角的平分线的定义求得∠bon,然后根据对顶角相等求得∠moc,然后根据∠aom=90°﹣∠即可求解.解答:解:(1)与∠aom互余的角是:∠,∠bon;互补的角是:∠aon;(2):∵oe平分∠bon,∴∠bon=2∠eon=40°,∴∠=∠bon=40°,∵ao⊥bc,∴∠aoc=90°,∴∠aom=90°﹣∠=90°﹣40°=50°.点评:此题综合考查余角和补角,垂直的定义、角平分线的定义以及对顶角的性质,(2)中正确求得∠moc的度数是关键.26.(1)甲每天能生产某种零件80个,甲生产3天后,乙加入与甲生产同一种零件,再经过5天,两人共生产这种零件940个.问乙每天生产零件多少个?(2)a、b 两地相距940千米,甲以每小时80千米的速度从a地出发去b地,3小时后,乙从b地出发去a地,再经过5小时,甲、乙两人相遇.问乙的速度是多少?(3)请你谈谈(1)、(2)两题的联系.(字数不超过40个)考点:一元一次方程的应用.分析:(1)乙每天生产零件x个,根据甲、乙一共生产的零件为940个建立方程求出其解即可;(2)设乙的速度是每小时y千米.根据甲行驶的路程+乙行驶的路程=全程940建立方程求出其解就可以了;(3)根据题意可以得出这两道题的类型不一样,但是解法相同.解答:解:(1)设乙每天生产零件x个.由题意,得3×80+5(80+x)=940 解得:x=60 答:乙每天生产零件60个.(2)设乙的速度是每小时y千米.由题意,得:3×80+5(80+y)=940解得:y=60 答:乙的速度是每小时60千米.(3)通过分析得:这是两个实质一样,情景不一样的应用题,可用相同的方程解答.点评:本题考查了列一元一次方程解行程问题和解工程问题的运用题的运用,工作量=工作效率×工作时间,路程=速度×时间的运用,解答时根据数量关系建立方程是关键.27.为了鼓励居民节约用水,某小区水费收费标准如下:(水费每月一交)设每户家庭用水量为x吨时,应交水费y元.月水量/吨收费标准/元0~17(含17) 3.0017~30(含30) 5.0030以上 6.80(1)当0≤x≤17时,y=3x(用含x的代数式表示);当17<x≤30时,y=5x(用含x的代数式表示).(2)小明家四月份交水费56元,五月份比四月份少用水2吨,五月份和六月份一共交水费119元,请问小明家这个季度共用水多少吨?考点:一元一次方程的应用.分析:(1)因为月用水量不超过 17吨时,按3元/吨计费,所以当0≤x≤17时,y与x的函数表达式是y=3x;因为月用水量超过17吨而不大于30吨时,按5元/吨计费,所以当17<x≤30时,y与x的函数表达式是y=5x;(2)由题意可得:因为四月份缴费金额不超过51元,所以用y=3x计算用水量;五月份比四月份少用水2吨,利用y=5x计算水费;五月份和六月份一共交水费119元,进一步得出结果即可.解答:解:(1)当0≤x≤17时,y与x的函数表达式是y=3x;当17<x≤30时,y与x的函数表达式是y=5x;故答案是:3x;5x;(2)∵56>17×3=51,∴把y=56代入y=3x中,得x= .则五月份的用水量为: +2= (吨),五月份的水费是:y= ×5= ,六月份的水费:119﹣ = (元).把y= 代入y=2x,得 =2x,解得 x= .所以小明家这个季度共用水: + + = (吨).答:小明家这个季度共用水吨.点评:此题考查一次函数的实际运用,根据题目蕴含的数量关系解决问题.。

相关文档
最新文档