分式的约分、通分专项练习题

合集下载

分式的约分和通分

分式的约分和通分

分式的约分和通分(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.3.例题与练习:例1: 约分:()532164.1abc bc a - ()()()x y a y x a --322.2 (1)①有没有公因式?②公因式是什么? 解:23235324444164ca abc c abc a abc bc a -=⋅⋅-=- 小结:分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分(2).请学生分析如何约分:由于()y x x y --=-,所以,分子和分母的公因式是:()y x a -,约分可得:解:()()()()()()()()2232322222y x a y x a y x y x a y x a y x a x y a y x a --=--⋅--=---=-- 小结:①当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.②注意对分子、分母符号的处理.分子或分母的系数是负数时,一般先把负号提到分式本身的前边.例2 .把下列各式约分:()x x x 525.122-- ()634.222-+++a a a a 解:()()()()x x x x x x xx x 5555525.122+=--+=-- ()()()()()212313634.222-+=-+++=-+++a a a a a a a a a a (五)小结:1.约分的主要步骤:先把分式的分子,分母分解因式,然后约去分子分母中的相同因式的最低次幂,(包括分子分母中系数的最大公约数)。

2.约分的依据是分式的基本性质:约去分子与分母的公因式相当于被约去的公因式同时除原分式的分子分母,根据分式的基本性质,所得的分式与原分式的值相等。

分式的约分通分

分式的约分通分

分式的约分通分一. 填空题1. 约分:=-++22112m m m ;=+-+2311a a a ;=⋅-+-2321213n an n ba ab (n 为正整数) 2. 计算:=-⋅224)2()2(c ab c ;=⋅-⋅-4222)1()()(ab a b b a =-÷-⋅-)()()(2222xy x y y x ;=⋅-112112)2()2(yx x y ;=÷62332)2()43(a bc ab c ;=-⋅+-÷-222222)(xy x xy y xy x x xy 。

二. 判断题下列运算正确的打“√”,错误的打“×”:1. y x xy x x y y x y x y y x x +=÷+=+⋅+÷+2122( )2.33632)(zy x z y x +=+( ) 3.249223)(z y x z y x =( )4.n n n a b a b 2422)(-=-(n 为正整数)( )5.69323278)32(ab a b -=-( ) 三. 选择题1. 已知3:=y x ,则分式222)(yx y x --的值是( )A.43B.2627C.21D.1314 2. 在分式x a 3,y x xy 226+,2222y x y x +-,2)(y x x y --,2233yx y x -+中,最简分式有( ) A. 1个 B. 2个 C. 3个 D. 4个 3. 下列各式正确的是( )A.y x yx yx y x +-=+-2222 B.222)11(1212-+-=--++x x x x x x C.b b a b a 2+= D.2222)(b a c b a c +=+ 四. 计算1. )6()43(8232y x z y x x -⋅-⋅ 2.223332)()()3(a b a b b a b a x +-÷-⋅+ 3.222222)()(yb x a ab x b a x ab y b a y --⋅++-+++4.)5(2310396962222-+⋅---÷--+-x x x x x x x x x 5.x x x x xx x --+⋅+÷+--36)3(4462226.)]2(11[1122322-+÷+-÷+++x x x x x x x 7.214415610722322++-÷+++⋅++++a a a a a a a a a a8.3222)()(b a a ab b a -⋅-9.2224422222322)(1)2()(x ax a x a x ax a x a x a +-⋅-++÷+-10.ab c b a bc c b a ac c b a ab c b a 2222222222222222+-++--÷-+---+11.])([)(2222y x y xy y xy y x -+-÷-+12.yx yx x y x y 21312313232+-⋅-+13.112244442222232223-+÷+--+-⋅+++++x x x x x x x x x x x x14.)2(44124416222+÷--÷+--x x x x x x 15.32242227]2)([)(])(3[a b a ab a b a b a -÷-⋅+-16.2222322226535244)28(a ab b ba ab b b ab b a b a +-⋅--++÷-,其中21-=a ,41=b 。

分式性质及通分约分练习题

分式性质及通分约分练习题

1.已知:分式432+-x x 当x 取何值时,分式没有意义? 2)当x取何值时,分式有意义?2.当x 为何值时,下列各式有意义?3.当x 取何值时,分式的值为0?422+x x ,12-x x ,152+x x . x x --22||,392+-x x ,1-x x .3.当m 为何值时,分式的值为0(1)1-m m (2)32+-m m (3) 112+-m m4. 当x 为何值时,分式的值为0?(1) (2) (3)分式性质(一)(1)()yxy x 222= (2)()a b a =--5 (3)()122=++ab b a b a(4)()a b a a 2=+ (5)3)(32-=-a a a a ;()y x x xy x -=-32422; (6)()2xy xyy x =+不改变分式的值,使下列分式中的分子、分母不含负号 (7)ba 32--y x 2---mn 54---x 21- (8) a b 56--, y x 3-, n m --2,n m 67--, y x 43---1.填空: (1)xx x3222+=()3+x (2)32386b b a =()33a(3)c a b ++1=cnan +)((4)()222y x y x +-=)(yx -2.不改变分式的值,使下列分式的分子和分母都不含“-”号.(1) 233ab y x -- (2) 2317b a --- (3) 2135x a --(4) mb a 2)(--3.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数: (1)13232-+---a a a a (2)32211x x x x ++-- (3)1123+---a a a二、约分 温馨提示:结果要化成最简分式(1)d b a c b a 42342135- (2) 23)(4)(2x y y y x x -- (3)22112m m m -+-1..下列各分式正确的是( )A.22a b a b = B. b a b a b a +=++22 C. a a a a -=-+-11122 D. x x xy y x 2168432=-- 2.约分(1)2242a a a -- (2)22)3(9--x x(3)bc a ac 22142-- (4)2)2(2x y y x --例1 约分:(1)c ab b a 2263 (2)532164xyz yz x -(3)xy y x --3)(21.判断下列约分是否正确: (1)c b c a ++=ba(2)22y x y x --=y x +1 (3)nm nm ++=02.约分:xx 57+x x 3217-xx x --221(1)cab b a 2263-; (2)122362+-x x ;例2 通分:(1)321ab 和c b a 2252 (2)xya2和23x b (3)223ab c和28bc a -(4)11-y 和11+y通分yx y x xy 32391,21,31 (2)2223,2,)(1b a b a b a -+-+3. 通分 (1)231ab 和ba 272 (2)x x x --21和x x x +-214.化简求值:222693y xy x xyx +--,其中34=x ,32-=y 。

分式的约分练习题

分式的约分练习题

分式的约分练习题分式的约分练习题在数学学科中,分式是一个常见的概念。

它是由两个整数或多项式组成的表达式,其中一个数或多项式位于分子,另一个数或多项式位于分母。

分式的约分是指将分子和分母中的公因数约去,使分式达到最简形式。

在本文中,我们将提供一些分式的约分练习题,以帮助读者更好地理解和掌握这一概念。

1. 约分练习题一:将分式 $\frac{12}{18}$ 约分到最简形式。

解答:首先,我们可以找到分子和分母的最大公因数。

12和18的公因数有1、2、3、6,其中6是最大的公因数。

因此,我们可以将分式 $\frac{12}{18}$ 约分为$\frac{2}{3}$。

2. 约分练习题二:将分式 $\frac{16}{24}$ 约分到最简形式。

解答:与上一个练习题类似,我们需要找到分子和分母的最大公因数。

16和24的公因数有1、2、4,其中4是最大的公因数。

因此,我们可以将分式$\frac{16}{24}$ 约分为 $\frac{2}{3}$。

3. 约分练习题三:将分式 $\frac{25}{35}$ 约分到最简形式。

解答:首先,我们找到分子和分母的最大公因数。

25和35的公因数有1、5,其中5是最大的公因数。

因此,我们可以将分式 $\frac{25}{35}$ 约分为 $\frac{5}{7}$。

4. 约分练习题四:将分式 $\frac{8}{12}$ 约分到最简形式。

解答:与之前的练习题相似,我们需要找到分子和分母的最大公因数。

8和12的公因数有1、2、4,其中4是最大的公因数。

因此,我们可以将分式$\frac{8}{12}$ 约分为 $\frac{2}{3}$。

通过以上的练习题,我们可以看出,约分是将分式转化为最简形式的重要步骤。

通过找到分子和分母的最大公因数,我们可以将分式约分为最简形式,使得计算和理解更加简单明了。

除了练习题,我们还可以通过实际生活中的例子来理解分式的约分。

例如,假设我们有一块蛋糕,需要将其平均分给3个人。

初二上册数学分式通分约分练习题

初二上册数学分式通分约分练习题

初二上册数学分式通分约分练习题在初二上册数学课程中,分式通分约分是一个重要的学习内容。

通过练习题的方式,能够帮助学生巩固理论知识,提高解题能力。

以下是一些例题,帮助学生进行练习。

例题1:通分将以下的两个分式通分:a) $\frac{2}{3}$,$\frac{5}{6}$解析:首先确定两个分式的分母乘积,得到6。

然后根据乘法法则,对分子和分母进行相同的乘法操作。

通分之后的结果为:$\frac{4}{6}$,$\frac{5}{6}$。

例题2:约分将以下的分式约分到最简形式:a) $\frac{8}{12}$解析:首先找到分子和分母的最大公因数,这里是4。

然后用分子和分母同时除以最大公因数,得到约分后的结果:$\frac{2}{3}$。

通过这些例题的练习,初二学生可以更好地理解分式的通分和约分。

接下来是更多的练习题:练习题1:通分与约分将以下的分式进行通分和约分:a) $\frac{3}{8}$,$\frac{2}{5}$练习题2:通分与约分将以下的分式进行通分和约分:a) $\frac{4}{9}$,$\frac{3}{12}$练习题3:通分与约分将以下的分式进行通分和约分:a) $\frac{7}{10}$,$\frac{9}{20}$通过这些练习题,学生可以加深对数学分式的通分和约分的理解,并提高解题的能力。

在处理练习题时,学生应该注意以下几点:1. 确定通分的分母乘积,将分子和分母进行相同的乘法操作。

2. 确定约分的最大公因数,将分子和分母同时除以最大公因数。

通过不断地练习,学生可以熟练地掌握数学分式的通分和约分,为今后的学习打下基础。

希望学生能够认真对待这些练习题,提高自己对数学的理解能力,取得优异的成绩!。

初中数学分式的约分通分综合练习题(附答案)

初中数学分式的约分通分综合练习题(附答案)

初中数学分式的约分通分综合练习题(附答案)初中数学分式的约分通分综合练题一、单选题1.下列分式中,不论$x$取何值,一定有意义的是()frac{x-1}{x-1}\cdot\frac{x+1}{x-1}$A。

$\frac{x+1}{x}$B。

$x$C。

$\frac{x^2-1}{x}$D。

$\frac{x^2+1}{x}$2.下列代数式中,是分式的为()A。

$\frac{1}{2}$B。

$\frac{x}{3}$C。

$\frac{x}{2}-y$D。

$\frac{5}{x^3}$3.下列各式中,是分式的是()A。

$\frac{2x+1}{x(x-3)}$B。

$2$C。

$\frac{x}{\pi-2}$D。

$\frac{1}{3x^2}$4.当分式$\frac{x}{2x-1}$无意义时,$x$的值是()A。

$2$B。

$-\frac{1}{2}$C。

$0$D。

$1$5.下列各式正确的是()A。

$\frac{b+xa}{b+x}=\frac{a}{b+1}$B。

$\frac{y^2n}{n-ax}=\frac{y}{x^2}$C。

$\frac{n}{ma}=\frac{1}{a}$($a\neq 0$)D。

$m=m-a$6.下列三个分式$\frac{1}{2x^2}$,$\frac{4(m-n)}{3x}$,$\frac{2x+4x^2y}{x^2-1}$,的最简公分母是()A。

$4(m-n)x$B。

$2(m-n)x^2$C。

$\frac{1}{4}x^2(m-n)$D。

$4(m-n)x^2$7.计算$\frac{(x+y)^2-(x-y)^2}{4xy}$的结果为()A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{4}$D。

$0$8.下列分式:$\frac{3x}{-x^2}$,$\frac{x-y}{x^2+y^2}$,$\frac{x+y}{xy+x}$,$\frac{2x+4x^2y}{x^2-1}$,其中是最简分式的有()A。

通分约分专项练习30大题(有答案)

通分约分专项练习30大题(有答案)

通分约分专项练习30题(有答案)1.把下面的分数化成分母是36,而大小不变的分数.= = == ==2.约分.= ===3.通分①和②、和.4.把下列各组分数通分.和和和和.5.先通分,再比较大小.和和和.6.把下列每组分数化成分母相同而大小不变的分数.和和和.7.把下面的分数约分,约分结果是假分数的化成整数或带分数..8.把下面每组中的两个分数通分.和9.把下面的分数约分.10.把下面各分数约分..11.把下面每组中的两个分数通分.和.12.约分.= = = 13.约成最简分数:.14.把下面的分数化成最简分数.= == =15.约分:= = = =====16.约分:= ===17.按要求完成下列各题(1)将分数化成最简分数.(2)把假分数化成带分数或整数..18.化简下列各分数.= = ====19.约分:.20.把分数、和通分,并比较大小.21.约分.===22.约分:= = ===23.把下面每组分数通分.(1)和和(2)和(3)(4)、和.24.约分:.25.把下面各组分数通分,再比较大小.①2和②和③和.26.把下面不是最简分数的化成最简分数.27.把下列每组分数化成分母相同而大小不变的分数.和和和.28.通分.(把下列各组分数化成分母相同的分数)(1)和(2)和(3)和(4)和.29.把下面每组分数通分和和和和.30.和和、和.通分约分专项练习30题参考答案:1. ;;;;;2.=;==;=;3.①=,=;②=,=,=.4.,,;,,;,,;,,;5.(1)==;==;所以>;(2)==;==;所以<;(3)==;==;所以<6.和,,;,,;,,;7.;;;;;;=3;;;8.(1);=;(2),;(3),;(4),9.=;;;=3;;10.==;==;==;== 11.(1)和==;==;所以)<;(2)和==;>,所以)>;(3)和==;所以<12.=;==;==13.==;==;==;==14.==,==,==,==.15.;=1;;;;=2;=;.16.==;==;==;==517.(1);;;(2)=2;=3;=5.18.==;==;==;==;==;==19.==1;=;==2;==2;==1;=;20.==;==;==;>>,所以>>21.==;==;==22. (1)==;(2)==;(3)==;(4)==;(5)==23.(1)和,==,==;(2)和,==,==; (3)和,==,=; (4)、和.==,==,==.24.;;;=3;25.①2===,则2>; ②==,==,,则; ③==,==,,则.26.=;=;=;=27.和==;==;和==;=;和====28.(1)和,=,;(2)和,,;(3)和,,;(4)和,,.29.(1)5和7的最小公倍数是35,==;==;(2)6和9的最小公倍数是18,==;==;(3)3和12的最小公倍数是12,==;;(4,10和4的最小公倍数是20,==;== 30.①,,所以.②12与15的最小公倍数是60,,,,即.③12,8,16的最小公倍数是48,=,,,,即,。

练习题约分通分

练习题约分通分

练习题约分通分题目:练习题约分通分在数学学习中,分数运算是一个基础而重要的知识点。

其中,分数的约分和通分是进行分数运算的前提和基础。

为了巩固和提高我们的分数计算能力,下面将为大家呈现一些练习题,重点练习分数的约分和通分。

1. 约分练习:a) 4/8 = __/2b) 12/18 = __/__c) 15/30 = __/10d) 5/25 = __/5e) 7/14 = __/__解答:a) 4/8 = 2/4b) 12/18 = 2/3c) 15/30 = 3/6d) 5/25 = 1/5e) 7/14 = 1/22. 通分练习:a) 3/4 + 1/2 = __/__b) 2/5 - 1/10 = __/__c) 2/3 × 6/7 = __/__d) 5/6 ÷ 2/3 = __/__e) 1/2 + 1/3 + 1/4 = __/__解答:a) 3/4 + 1/2 = 6/8 + 4/8 = 10/8b) 2/5 - 1/10 = 4/10 - 1/10 = 3/10c) 2/3 × 6/7 = 12/21d) 5/6 ÷ 2/3 = 5/6 × 3/2 = 15/12e) 1/2 + 1/3 + 1/4 = 6/12 + 4/12 + 3/12 = 13/12通过以上的练习题,我们可以巩固分数的约分和通分的基本操作。

在约分练习中,我们需要寻找分子和分母之间的最大公因数,并将其约去,使分数的形式更加简洁。

在本题中,我们以简单的分数为例,通过演示展示了约分的过程。

在通分练习中,我们需要找到多个分数的公共分母,并将分子和分母之间的数值按比例放大或缩小,以使分数具有相同的分母。

在本题中,通过加减乘除运算,演示了如何进行分数的通分操作。

分数的约分和通分是进行分数运算的基础,它们帮助我们简化计算过程,得到更精确和准确的结果。

在实际生活中,我们常常会遇到需要进行分数运算的情况,例如在烹饪、比赛计分和物品分配等方面。

初二约分和通分练习题

初二约分和通分练习题

初二约分和通分练习题在数学学习中,约分和通分是非常基础而重要的概念。

通过约分,我们可以将一个分数化简为最简形式,而通分则帮助我们将不同分母的分数转化为相同分母的分数,方便进行比较和计算。

本文将为大家提供一些初二约分和通分的练习题,帮助大家巩固和加深理解这两个概念。

练习题1:约分1. 将 12/18 约分为最简形式。

解析:我们可以发现 12 和 18 的公约数为 6,所以可以将分子和分母都除以 6,得到 2/3。

答案:2/32. 将 35/70 约分为最简形式。

解析:我们可以发现 35 和 70 的公约数为 35,所以可以将分子和分母都除以 35,得到 1/2。

答案:1/23. 将 63/81 约分为最简形式。

解析:我们可以发现 63 和 81 的公约数为 9,所以可以将分子和分母都除以 9,得到 7/9。

答案:7/9练习题2:通分1. 将 1/5 和 3/8 进行通分。

解析:我们可以找到两个分数的最小公倍数为 40,所以将分子和分母分别乘以对方的倍数,得到 8/40 和 15/40。

答案:8/40 和 15/402. 将 2/3、5/6 和 3/10 进行通分。

解析:我们可以找到三个分数的最小公倍数为 30,所以将分子和分母分别乘以对方的倍数,得到 20/30、25/30 和 9/30。

答案:20/30、25/30 和 9/303. 将 4/7 和 1/3 进行通分。

解析:我们可以找到两个分数的最小公倍数为 21,所以将分子和分母分别乘以对方的倍数,得到 12/21 和 7/21。

答案:12/21 和 7/21练习题3:综合练习1. 计算 2/3 + 3/4。

解析:首先进行通分,最小公倍数为 12,所以得到 8/12 + 9/12,相加得到 17/12。

需要进一步约分,得到最简形式 1 5/12。

答案:1 5/122. 计算 3/4 - 1/2。

解析:首先进行通分,最小公倍数为 4,所以得到 3/4 - 2/4,相减得到 1/4。

通分约分专项练习30大题(有答案)

通分约分专项练习30大题(有答案)

通分约分专项练习30 题(有答案)1.把下面的分数化成分母是36,而大小不变的分数.======2.约分.====3.通分①和②、和.4.把下列各组分数通分.和和和和.5.先通分,再比较大小.和和和.6.把下列每组分数化成分母相同而大小不变的分数.和和和.7.把下面的分数约分,约分结果是假分数的化成整数或带分数..8.把下面每组中的两个分数通分.和9.把下面的分数约分.10.把下面各分数约分..11.把下面每组中的两个分数通分.和.12.约分.=== 13.约成最简分数:.14.把下面的分数化成最简分数.====15.约分:==== ==== 16.约分:====17.按要求完成下列各题( 1)将分数化成最简分数.( 2)把假分数化成带分数或整数..18.化简下列各分数.======19.约分:.20.把分数、和通分,并比较大小.21.约分.===22.约分:=====23.把下面每组分数通分.(1)和和(2)和(3)(4)、和.24.约分:.25.把下面各组分数通分,再比较大小.①2和②和③和.26.把下面不是最简分数的化成最简分数.27.把下列每组分数化成分母相同而大小不变的分数.和和和.28.通分.(把下列各组分数化成分母相同的分数)(1)和(2)和(3)和(4)和.29.把下面每组分数通分和和和和.30.和和、和.通分约分专项练习1.;;;;;2.=;==;=;3.①=,=;②=,=,=.4.,,;,,;,,30题参考答案:;,,;5.(1)==;== ;所以>;(2)==;== ;所以<;(3)==;== ;所以<6.和,,;,,;,,;7.;;;;;;=3 ;;;8.( 1);=;(2),;( 3),;( 4),9.=;;;=3;;10.==;==,====;==.19.==1 ;15.;==;=;=1;====2;;11.(1)和==2;;==;==1;;==;=;=2;所以)<;20. ==;=;( 2)和==;.==;==;16.==;>,>>,==;所以)>;所以>>==;( 3)和21.==;==5==;==;17.( 1);所以<==;12.=;22. (1) ==;;==;( 2)==;( 2)=2;==(3) ==;=3;=5.13. == ;(4) == ;18. == ;==;( 5)====;==;23.( 1)和,==;====,==;14.==,==;==;==,(2)和,== ,== ;(3)和,== ,=;(4)、和.== ,== ,== .24.;;;=3;25.① 2===,则 2>;②==,== ,,则;③==,==,,则.26.=;=;=;=27.和==;==;和==;=;和====28.( 1)和,=,;(2)和,,;(3)和,,;(4)和,,.29.( 1)5 和 7 的最小公倍数是35,==;== ;( 2) 6 和 9 的最小公倍数是18,== ;== ;( 3) 3 和 12 的最小公倍数是12,==;;( 4, 10 和 4 的最小公倍数是20,== ;==30.①,,所以.② 12 与 15 的最小公倍数是60,,,,即.③12, 8, 16 的最小公倍数是 48,=,,,,即,。

中考数学专项练习分式的约分(含解析)

中考数学专项练习分式的约分(含解析)

中考数学专项练习分式的约分(含解析)【一】单项选择题1.计算a÷a×的结果是〔〕A.aB.1C.D.a22.计算的结果是〔〕A.B.C. yD.x3.以下计算中,正确的选项是〔〕A.B.C.D.4.化简分式的结果为〔〕A.B.C.D.5.的分子与分母的公因式是()bB.2abC.4a2b2D.2a2b26.以下分式化简正确的选项是〔〕A.B.=C.=D.7.以下约分正确的选项是〔〕A.=B.=0 C.=x3 D.=8.以下四个分式中,是最简分式的为〔〕A.B.C.D.9.以下各式中,约分后得的是〔〕A.B.C.D.10.计算·〔-〕·〔〕的结果是〔〕B.C.-D.-11.以下分式约分正确的选项是〔〕A.=a2 B.=1 C.=D.=12.化简的结果是〔〕A.B.C.D.13.计算:的结果是〔〕A.aB.bC.﹣bD.114.计算(a-4)·的结果是〔〕4B.a-4C.-a+4D.-a-4【二】填空题15.化简:=________.16.化简:÷〔﹣1〕•a=________17.化简的结果是________.18.计算:﹣=________.19.把﹣4m写成分式的形式,假设分母是﹣2mn2 ,那么分子是____ ____.20.约分:=________;化简:=________.21.计算的结果是________.22.化简分式的结果为________.【三】计算题23.计算:24.化简以下各式.〔1〕;〔2〕;〔3〕;〔4〕;〔5〕.25.化简:.26.先化简分式,然后在0,1,2三个数值中选择一个合适的a的值代入求值.27. ,求的值.28.化简:〔1〕;〔2〕【四】解答题29.〔1〕计算:;〔2〕请从以下三个代数式中任选两个构成一个分式,并化简该分式.2x+6,x2+6x+9,x2﹣9.30.问题:当a为何值时,分式无意义?小明是这样解答的:解:因为,由a﹣3=0,得a=3,所以当a=3时,分式无意义.你认为小明的解答正确吗?如不正确,请说明错误的原因.31.对分式进行变形:甲同学的解法是: = =a-b;乙同学的解法是: = ==a-b.请判断甲、乙两同学的解法是否正确,并说明理由.【五】综合题32.化简:〔1〕〔2〕〔3〕〔4〕.33.将以下各式约分的结果填在横线上.〔1〕﹣=________;〔2〕=________;〔3〕=________;〔4〕=________.【一】单项选择题1.计算a÷a×的结果是〔〕A.aB.1C.D.a2【考点】约分,分式的乘除法【解析】【分析】先把除化为乘(除以一个不为零的数,等于乘以它的倒数),再约分即可。

通分约分专项练习30大题(有答案)

通分约分专项练习30大题(有答案)

1.把下面的分数化成分母是36,而大小不变的分数.= = = = == 2.通分和和和和和.和和和.和和和和3.把下面的分数约分..19.把分数、和通分,并比较大小.20.约分.= = =21.约分:= = == =23.把下面每组分数通分.(1)和和(2)和(3)(4)、和.24.约分:.25.把下面各组分数通分,再比较大小.①2和②和③和.26.把下面不是最简分数的化成最简分数.27.把下列每组分数化成分母相同而大小不变的分数.和和和.28.通分.(把下列各组分数化成分母相同的分数)(1)和(2)和(3)和(4)和.29.把下面每组分数通分和和和和.30.和和、和.通分约分专项练习30题参考答案:1. ;;;;;2.=;==;=;3.①=,=;②=,=,=.4.,,;,,;,,;,,;5.(1)==;==;所以>;(2)==;==;所以<;(3)==;==;所以<6.和,,;,,;,,;7.;;;;;;=3;;;8.(1);=;(2),;(3),;(4),9.=;;;=3;;10.==;==;==;==11.(1)和==;==;所以)<;(2)和==;>,所以)>;(3)和==;所以<12.=;==;==13.==;==;==;==14.==,==,==,==.15.;=1;;;;=2;=;.16.==;==;==;==517.(1);;;(2)=2;=3;=5.18.==;==;==;==;==;==19.==1;=;==2;==2;==1;=;20.==;==;==;>>,所以>>21.==;==;==22. (1)==;(2)==;(3)==;(4)==;(5)==23.(1)和,==,==;(2)和,==,==;(3)和,==,=;(4)、和.==,==,==.24.;;;=3;25.①2===,则2>;②==,==,,则;③==,==,,则.26.=;=;=;= 27.和==;==;和==;=;和==== 28.(1)和,=,;(2)和,,;(3)和,,;(4)和,,.29.(1)5和7的最小公倍数是35,==;==;(2)6和9的最小公倍数是18,==;==;(3)3和12的最小公倍数是12,==;;(4,10和4的最小公倍数是20,==;==30.①,,所以.②12与15的最小公倍数是60,,,,即.③12,8,16的最小公倍数是48,=,,,,即,。

分式的基本性质约分通分练习题

分式的基本性质约分通分练习题

分式的基本性质约分通分练习题姓名_________________学号_____________【概念巩固】1.判断下列各式哪些是整式,哪些是分式?(1)9x+4, (2)x 7 , (3)209y +,(4) 54-m , (5) 238y y -,(6)91-x是分式的有 ;2.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时. (2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 . 2、对于BA分式而言 (1)当 时,分式有意义; (2)当 时,分式无意义; (3)当 时,分式的值为0; (4)当 时,分式的值为1; (5)当 时,分式的值为-1; (6)当 时,分式的值大于0; 0;例1 、 对于分式53-x , (1)当 时,分式有意义; (2)当 时,分式无意义; (3)当 时,分式的值为0; (4)当 时,分式的值为1; (5)当 时,分式的值为-1; (6)当 时,分式的值大于0; (7)当 时,分式的值小于0; 【针对性练习】1、当x 取何值时,分式 2312-+x x(1)当 时,分式有意义; (2)当 时,分式无意义; (3)当 时,分式的值为0;(4)当 时,分式的值为1; (5)当 时,分式的值为-1; (6)当 时,分式的值大于0; (7)当 时,分式的值小于0; 2、 当x 为何值时,分式xx x --21|| 的值为0?3、当x 取何值时,下列分式有意义? (1)x 25 (2)x x 235-+ (3)2522+-x x 答案:(1) ;(2) ;(3) ;【基础知识点】3、分式的基本性质:分式的分子分母同时乘以或除以同一个不为0的数或者式子,分式的值不变。

4、分式的约分(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分. (2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式. (4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式. 5、分式的通分把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分。

通分约分专项练习30大题(有答案)

通分约分专项练习30大题(有答案)

1.把下面的分数化成分母是36,而大小不变的分数.= = = = ==2.通分和和和和和.和和和.和和和和3.把下面的分数约分..19.把分数、和通分,并比较大小.20.约分.===21.约分:= = ===23.把下面每组分数通分.(1)和(2)和(3)和(4)、和 .24.约分:.25.把下面各组分数通分,再比较大小.①2 和② 和③ 和 .26.把下面不是最简分数的化成最简分数.27.把下列每组分数化成分母相同而大小不变的分数.和和和.28.通分.(把下列各组分数化成分母相同的分数)(1)和(2)和(3)和(4)和.29.把下面每组分数通分和和和和.30.和和、和.通分约分专项练习30题参考答案:1. ;;;;;2.=;==;=;3.①=,=;②=,=,=.4.,,;,,;,,;,,;5.(1)==;==;所以>;(2)==;==;所以<;(3)==;==;所以<6.和,,;,,;,,;7.;;;;;;=3;;;8.(1);=;(2),;(3),;(4),9.=;;;=3;;10.==;==;==;== 11.(1)和==;==;所以)<;(2)和==;>,所以)>;(3)和==;所以<12.=;==;==13.==;==;==;==14.==,==,==,==.15.;=1;;;;=2;=;.16.==;==;==;==517.(1);;;(2)=2;=3;=5.18.==;==;==;==;==;==19.==1;=;==2;==2;==1;=;20.==;==;==;>>,所以>>21.==;==;==22. (1)==;(2)==;(3)==;(4)==;(5)==23.(1)和,==,==;(2)和,==,==; (3)和,==,=; (4)、和.==,==,==.24.;;;=3;25.①2===,则2>; ②==,==,,则; ③==,==,,则.26.=;=;=;=27.和==;==;和==;=;和====28.(1)和,=,;(2)和,,;(3)和,,;(4)和,,.29.(1)5和7的最小公倍数是35,==;==;(2)6和9的最小公倍数是18,==;==;(3)3和12的最小公倍数是12,==;;(4,10和4的最小公倍数是20,==;== 30.①,,所以.②12与15的最小公倍数是60,,,,即.③12,8,16的最小公倍数是48,=,,,,即,。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档