相似三角形几何模型-一线三等角(培优篇)-2022-2023学年九年级数学下册基础知识讲练(人教版)
专题27.35 相似三角形几何模型-一线三等角(培优篇)(专项练习)-2022-2023学年九年级数
专题27.35 相似三角形几何模型-一线三等角(培优篇)(专项练习)一、单选题1.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB 上取点P ,使得△PAD 与△PBC 相似,则这样的P 点共有( )A .1个B .2个C .3个D .4个2.如图,已知正方形ABCD 的边长为4,P 是BC 边上一动点(与B ,C 不重合)连接AP ,作PE ∠AP 交∠BCD 的外角平分线于E ,设BP =x ,∠PCE 的面积为y ,则y 与x 的函数关系式是( )A .24y x x =-+B .2122y x x =- C .2122y x x =-+D .24y x x =-3.如图,在平面直角坐标系中,直线12y x m =+不经过第四象限,且与x 轴,y 轴分别交于,A B 两点,点P 为OA 的中点,点C 在线段OB 上,其坐标为(0,2),连结BP ,CP ,若BPC BAO =∠∠,那么m 的值为( )A .B .4C .5D .64.将矩形OABC 如图放置,O 为坐标原点,若点A (﹣1,2),点B 的纵坐标是72,则点C 的坐标是( )A.(4,2)B.(3,32)C.(3,94)D.(2,32)二、填空题5.如图,将等边三角形ABC折叠,使得点C落在边AB上的点D处,折痕为EF,点E,F分别在AC和BC上.若AC=8,AD=2,则CECF=_______________.6.如图,矩形ABCD中,AD=5,AB=8,点E为DC上一个动点,把∠ADE沿AE折叠,若点D的对应点D′,连接D′B,以下结论中:∠D′B的最小值为3;∠当DE=52时,∠ABD′是等腰三角形;∠当DE=2是,∠ABD′是直角三角形;∠∠ABD′不可能是等腰直角三角形;其中正确的有_____.(填上你认为正确结论的序号)7.如图,在四边形ABCD中,∠A=∠B,点E为AB边的中点,∠DEC=∠A.有下列结论:∠DE平分∠AEC;∠CE平分∠DEB;∠DE平分∠ADC;∠EC平分∠BCD.其中正确的是_______________.(把所以正确结论的序号都填上)三、解答题8.如图,四边形ABCD 是正方形,点E 是BC 边上动点(不与,B C 重合).连接,AE 过点E 作,EF AE ⊥交DC 于点F .()1求证:ABE ECF ;()2连接AF ,试探究当点E 在BC 什么位置时,BAE EAF ∠=∠,请证明你的结论.9.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADEC ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.10.如图,已知∠ABC 是边长为12的正三角形,AD 是边BC 上的高线,CF 是外角ACE的平分线,点P是边BC上的一个动点(与点B,C不重合),∠APQ=60°,射线PQ分别与边AC,射线CF交于点N,Q.(1)求证:∠ABP∠∠PCN;(2)不管点P运动到何处,在不添辅助线的情况下,除第(1)小题中的一对相似三角形外,请写出图中其它的所有相似三角形;(3)当点P从BD的中点运动到DC的中点时,点N都随着点P的运动而运动.在此过程中,试探究:能否求出点N运动的路径长?若能,请求出这个长度;若不能,请说明理由.11.如图,已知直线y=-34x+b与y轴相交于点B(0,3),与x轴交于点A,将△AOB沿y轴折叠,使点A落在x轴上的点C.(1)求点C的坐标;(2)设点P为线段CA上的一个动点,点P与点A、C不重合.联结PB.以点P为端点作射线PM交AB于点M,使∠BPM=∠BAC.∠求证:△PBC∽△MPA.∠是否存在点P,使△PBM为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.12.如图∠,在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.【试题再现】如图∠,在∠ABC中,∠ACB=90°,直角顶点C在直线DE上,分别过点A,B作AD∠DE于点D,BE∠DE于点E.求证:∠ADC∠∠CEB.【问题探究】在图∠中,若∠A=∠B=∠DEC=40°,试判断点E是否是四边形ABCD的边AB 上的相似点,并说明理由.【深入探究】如图∠,AD∠BC,DP平分∠ADC,CP平分∠BCD交DP于点P,过点P作AB∠AD于点A,交BC于点B.(1)请证明点P是四边形ABCD的边AB上的一个强相似点.(2)若AD=3,BC=5,试求AB的长.13.如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB ,过点P 作PE PB ⊥,交射线DC 于点E ,已知3AD =,4AB =.(1)求PEPB的值; (2)当PCE ∆是以PC 为底的等腰三角形时.请求出AP 的值;14.(1)【问题情境】八上《伴你学》第138页有这样一个问题:如图1,把一块三角板(,90AB BC ABC =∠=︒)放入一个“U ”形槽中,使三角形的三个顶点A 、B 、C 分别在槽的两壁及底边上滑动,已知90D E ∠=∠=︒,在滑动过程中,你发现线段AD 与BE 有什么关系?试说明你的结论;(2)【变式探究】小明在解决完这个问题后,将其命名为“一线三等角”模型;如图2,在ABC ∆中,点D 、E 、F 分别在边BC 、AC 、AB 上,若B FDE C ∠=∠=∠,则这三个相等的角之间的联系又会使图形中出现其他的一些等角.请你写出其中的一组,并加以说理;(3)【拓展应用】如图3,在ABC ∆中,BA BC =,45B ∠=︒,点D 、F 分别是边BC 、AB 上的动点,且2AF BD =.以DF 为腰向右作等腰DEF ∆,使得DE DF =,45EDF ∠=︒,连接CE .∠试判断线段DC 、BD 、BF 之间的数量关系,并说明理由;∠如图4,已知2AC =,点G 是AC 的中点,连接EA 、EG ,直接写出EA EG +的最小值.15.感知∠(1)数学课上,老师给出了一个模型∠如图1,∠BAD =∠ACB =∠AED =90°,由∠1+∠+2+∠BAD =180°,∠2+∠D +∠AED =180°,可得∠1=∠D ;又因为∠ACB =∠AED =90°,可得∠ABC ∠∠DAE ,进而得到BCAC= .我们把这个数学模型称为“一线三等角”模型.应用∠(2)实战组受此模型的启发,将三等角变为非直角,如图2,在∠ABC 中,点D 在边BC 上,并且DA=DE ,∠B =∠ADE =∠C .若BC =a ,AB=b ,求CE 的长度(用含a ,b 的代数式表示).拓展∠(3)创新组突发奇想,将此模型迁移到平行四边形中,如图3,在平行四边形ABCD 中,E 为边BC 上的一点,F 为边AB 上的一点.若∠DEF =∠B .求证∠AB ·FE =BE ·DE .16.[模型建立](一线三等角)(1)如图1,等腰Rt ABC 中,90,,ACB CB CA ∠=︒=直线ED 经过点C ,过点A 作AD ED ⊥于点,D 过点B 作BE ED ⊥于点,E 求证:BEC CDA ≌;[模型应用](2)如图2,直线14:43l y x =+与坐标轴交于点,A B 、直线2l 经过点A 与直线1l 垂直,求直线2l 的函数表达式.(3)如图3,平面直角坐标系内有一点()6,8,B -过点B 作BA x ⊥轴于点A BC y ⊥、轴于点,C 点P 是线段AB 上的动点,点D 是直线22y x =-+上的动点且在第四象限内.若CPD △成为等腰直角三角形,请直接写出点D 的坐标.参考答案1.C解:设AP=x ,则BP=7-x ,然后根据对应关系,分情况为:∠当∠ADP∠∠BCP 时,可得AD APBC BP =,即237x x =-,解得x=145,这时有一个P点;∠当∠ADP∠∠BPC 时,可得AD APBP BC =,即273x x =-,解得x=1或x=6,因此这样的点有两个;因此符合条件的P 点共有3个. 故选C【点拨】此题主要考查了相似三角形的性质,解题时,先根据相似三角形的性质,和相似三角形的对应关系,列出相应的比例式,求解即可.2.C解:过点E 作EH ∠BC 的延长线于点H ,因为∠APB+∠EPC=90°, ∠BAP+∠APB=90°,所以∠BAP=∠EPH ,因为∠B=∠H,所以∠ABP ∠∠PHE ,设EH =a ,因为∠ECH=45°,∠H=90°,所以CH =EH =a ,因为BP =x ,所以CP =4-x ,根据相似三角形的性质,可知AB PHBP EH=,即 44x ax a-+=,整理得:()()40x a x --=,解得()124,x x a ==不符合题意,所以y 与x 的函数关系式为:()211142222y PC EH x x x x =⨯⨯=⨯-⨯=-+,故选C.3.D 【分析】典型的“一线三等角”,构造相似三角形△AOB∠∠DPC,即可证明△PCD∠∠BPA ,由相似比求得边的相应关系,从而求解.解:在x 轴上找点D (4,0),连接CD.由12y x m =+可得A(-2m ,0 ),B(0,m ),直线12y x m =+不经过第四象限,所以m>0,所以OA=2m ,OB=m ;因为C 坐标为()0,2,点D (4,0)所以OC=2,OD=4, 因为12OB OC OA OD ==,∠AOB=∠DOC=90° ,所以△AOB∠∠DPC,所以∠CDO=∠BAO. 又因为BPC BAO ∠=∠,所以根据三角形内角和和平角定义可得:∠APB+∠1=∠APB+∠CPD所以∠1=∠CPD ,又因为∠CDO=∠BAO ,所以△PCD∠∠BPA ,所以AB APDP DC= , 因为点P 为OA 的中点,所以AP=OP=m ,PD=m+4,Rt △AOB 中,由勾股定理得m ,同理得AB APDP DC ==,解得m=6. 故选D.【点拨】本题考查一次函数综合题.需要掌握待定系数法求一次函数解析式,相似三角形的判定与性质,三角形面积的求法等知识点,4.B 【分析】首先构造直角三角形,利用相似三角形的判定与性质以及结合全等三角形的判定与性质得出CM =32=,MO =3,进而得出答案. 解:如图,过点A 作AE ∠x 轴于点E ,过点B 作BF ∠x 轴于点F ,过点A 作AN ∠BF 于点N ,过点C 作CM ∠x 轴于点M .∠∠EAO +∠AOE =90°,∠AOE +∠MOC =90°, ∠∠EAO =∠COM , 又∠∠AEO =∠CMO =90°,∠∠AEO ∠∠OMC , ∠OE AE CM OM=, ∠∠BAN +∠OAN =90°,∠EAO +∠OAN =90°,∠∠BAN =∠EAO =∠COM ,在△ABN 和△OCM 中,BNA CMO BAN COM AB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ABN ∠∠OCM (AAS ),∠BN =CM .∠点A (﹣1,2),点B 的纵坐标是72, ∠BN 32=, ∠CM 32=, ∠1232OM =,∠MO =3,∠点C 的坐标是:(3,32). 故选:B .【点拨】本题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM 的长是解题的关键.5.75解:∠∠ABC 是等边三角形,∠∠A =∠B =∠C =60°,AB =AC =BC =8,∠AD =2,∠DB =6,由折叠的性质可知,∠EDF =∠C =60°,EC =ED ,FC =FD ,∠∠AED +∠EDA =120°,∠EDA +∠BDF =120°,∠∠AED =∠BDF ,∠∠AED ∠∠BDF ,∠DF DE =BD DF BF AE AD DE ++++=BD BC AD AC ++=1410=75,∠CF CE =DF DE =75,故答案为75. 点睛:本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.6.∠∠∠【分析】当D′落在线段AB 上时,D′B 的值最小,此时D′B =AB ﹣AD =3,得出∠正确; 过D′作MN∠AB 交AB 于点N ,交CD 于点M ,设AN =x ,则EM =x ﹣2.5,证出∠ED′M =∠D′AN ,因此△EMD′∠∠D′NA ,得出对应边成比例ED EM AD D N =''',求出x =4,得出AN =BN ,因此AD′=D′B ,得出∠正确;当DE =2时,假设△ABD′是直角三角形,则E 、D′、B 在一条直线上,作EF∠AB 于点F ,由勾股定理求出D′B 、EB ,得出∠不正确;当AD′=D′B 时,由勾股定理的逆定理得出△ABD′不是直角三角形,当△ABD′是直角三角形时,由勾股定理求出D′B ,得出AD′≠D′B ,因此△ABD′不可能是等腰直角三角形,得出∠正确.解:当D′落在线段AB 上时,D′B 的值最小,如图1所示:此时D′B =AB ﹣AD =8﹣5=3,∠∠正确;过D′作MN∠AB 交AB 于点N ,交CD 于点M ,如图2所示:设AN =x ,则EM =x ﹣2.5,∠∠AD′N =∠DAD′,∠ED′M =180°﹣∠AD′E ﹣∠AD′N =180°﹣90°﹣∠AD′N =90°﹣∠AD′N ,∠∠ED′M =90°﹣∠DAD′,∠∠D′AN =90°﹣∠DAD′,∠∠ED′M =∠D′AN ,∠MN∠AB ,∠∠EMD′=∠AND′,∠∠EMD′∠∠D′NA , ∠ED EM AD D N=''', 即,2.55=解得:x =4,∠AN =BN ,∠AD′=D′B ,即△ABD′是等腰三角形,∠∠正确;当DE=2时,假设△ABD′是直角三角形,则E、D′、B在一条直线上,作EF∠AB于点F,如图3所示:D′B==∠2∠∠不正确;当AD′=D′B时,52+52≠82,∠∠ABD′不是直角三角形,当△ABD′是直角三角形时,D′B=∠AD′≠D′B,∠∠ABD′不可能是等腰直角三角形,∠∠正确;故答案为∠∠∠.【点拨】本题考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、勾股定理的逆定理、等腰直角三角形的判定等知识;本题综合性强,有一定难度,熟练掌握矩形的性质和翻折变换的性质是解决问题的关键.7.∠∠解:试题分析:在∠ADE中,∠ADE+∠AED+∠A=180°,又∠AED+∠DEC+∠BEC=180°,可得∠ADE+∠AED+∠A =∠AED+∠DEC+∠BEC,由∠A=∠DEC,可得∠ADE=∠BEC,又∠A=∠B,根据两角对应相等的两三角形相似,可得∠ADE∠∠BEC,可得DE AEEC BC=,又AE=BE,得到DE BEEC BC=,又∠DEC=∠B,根据两边对应成比例且夹角相等的两三角形相似,可知∠CDE∠∠CEB,然后根据相似三角形的对应角相等,可得∠DCE=∠BCE,因此EC平分∠BCD,即∠成立;同理∠ADE∠∠EDC,因此DE平分∠ADC;即∠成立;而∠DE平分∠AEC 不一定成立;∠CE平分∠DEB不一定成立.故答案为:∠∠.8.(1)证明见分析;(2)点E在BC中点位置时,BAE EAF∠=∠,证明见分析.【分析】(1)先根据正方形的性质可得90B C∠=∠=︒,再根据直角三角形的性质、角的和差可得BAE CEF∠=∠,然后根据相似三角形的判定即可得证;(2)如图(见分析),先根据正方形的性质、平行线的性质可得,B ECH BAE H∠=∠∠=∠,再根据三角形全等的判定定理与性质可得AE HE=,然后根据等腰三角形的判定与性质可得EAF H∠=∠,最后根据等量代换即可得.解:(1)四边形ABCD是正方形,90B C∴∠=∠=︒,90BAE BEA∴∠+∠=︒,EF AE⊥,90AEF∴∠=︒,90BEA CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,在ABE △和ECF △中,B C BAE CEF ∠=∠⎧⎨∠=∠⎩, ABE ECF ∴;(2)点E 在BC 中点位置时,BAE EAF ∠=∠,证明如下:如图,连接AF ,延长AE 于DC 的延长线相交于点H , E 为BC 中点,BE CE ∴=,四边形ABCD 是正方形,//AB DH ∴,,B ECH BAE H ∴∠=∠∠=∠,在ABE △和HCE 中,BAE H B ECH BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE HCE AAS ∴≅,AE HE ∴=,EF AH ⊥,AFH ∴是等腰三角形,EAF H ∴∠=∠,BAE EAF ∴∠=∠,故当点E 在BC 中点位置时,BAE EAF ∠=∠.【点拨】本题考查了相似三角形的判定、正方形的性质、三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形和等腰三角形是解题关键.9.(1)理由见详解;(2)2BD =1,理由见详解.【分析】(1)根据题目已知条件易得:180ADE ADB EDC ∠+∠+∠=︒,180B ADB DAB ∠+∠+∠=︒,所以得到DAB EDC ∠=∠,问题得证.(2)由题意易得ABC 是等腰直角三角形,所以90BAC ∠=︒,当ADE 是等腰三角形时,根据分类讨论有三种情况:∠AD=AE ,∠AD=DE ,∠AE=DE ;因为点D 不与B C 、重合,所以第一种情况不符合,其他两种情况根据等腰三角形的性质“等边对等角”及45B ADE ∠=∠=︒,求出问题即可.解:(1)如图可知:180ADE ADB EDC ∠+∠+∠=︒在ABD △中,∴ 180B ADB DAB ∠+∠+∠=︒ 又B ADE C ∠=∠=∠∴EDC DAB ∠=∠∴BDA CED △∽△.(2)B ADE C ∠=∠=∠,45B ∠=︒∴ABC 是等腰直角三角形∴90BAC ∠=︒BC=2,∴AB=AC=2∠当AD=AE 时,∴ADE AED ∠=∠45B ∠=︒,∴=45B ADE AED ∠=∠∠=︒∴90DAE ∠=︒∴90DAE BAC ∠=∠=︒点D 在BC 上运动时(点D 不与B C 、重合),点E 在AC 上∴此情况不符合题意.∠当AD=DE 时,∴DAE DEA ∠=∠∴由(1)结论可知:BDA CED ≌∴∴2BD =∠当AE=DE 时,45ADE DAE ∠=∠=︒∴AED 是等腰直角三角形45B ∠=︒,∴==45B C DAE ∠∠∠=︒∴90ADC ∠=︒,即AD BC ⊥ ∴1=12BD BC =.综上所诉:2BD =1.【点拨】本题主要考查相似三角形的判定及等腰三角形的存在性问题,关键是利用“K”型相似模型及根据“等边对等角”、等腰直角三角形的性质得到线段的等量关系,进而求解问题.10.(1)详见分析;(2)△ABD ∠∠ACD ;△APN ∠∠ACP ;△APN ∠∠QCN ;△ACP ∠∠QCN ;(3)1.5.【分析】(1)根据等边三角形性质得到∠ABP =∠PCN =60°,利用角的和差证明∠BAP =∠CPN ,根据相似三角形的判定定理证明结论;(2)因为△ABC 是正三角形,AD 是边BC 上的高线,由三线合一可证△ABD ∠∠ACD ;因为∠APN=∠ACP=60°,∠PAN=∠CAP,所以△APN ∠∠ACP ;因为∠APN=∠NCQ=60°,∠PNA=∠CNQ,所以△APN∠∠QCN ;因为△APN ∠∠ACP ,△APN∠∠QCN ,所以△ACP ∠∠QCN ;(3)当点P 在BD 的中点运动到DC 的中点时,利用相似三角形性质,设PB =x ,CN =y ,则3≤x ≤9,由第(1)题利用相似三角形性质可得:1212y x x -=,解得2112y x x =-+,又利用函数图象可知:当x =3或9时,y =94,当x =6时,y 最大=3,所以点N 运动的路径长为:(3-94)×2=1.5. 解:(1)在正三角形ABC 中,∠ABP =∠PCN =60°,∠∠BAP +∠BP A =120°,又∠∠APQ =60°,∠∠CPN +∠BP A =120°, ∠∠BAP =∠CPN ,∠∠ABP ∠∠PCN ;(2)△ABD ∠∠ACD ;△APN ∠∠ACP ;△APN ∠∠QCN ;△ACP ∠∠QCN ;理由:∠△ABC 是正三角形,AD ∠BC ,由三线合一可证△ABD ∠∠ACD ;∠∠APN=∠ACP=60°,∠PAN=∠CAP ,∠△APN ∠∠ACP ;∠∠APN=∠NCQ=60°,∠PNA=∠CNQ,∠△APN∠∠QCN ;∠△APN ∠∠ACP ,△APN∠∠QCN ,∠△ACP ∠∠QCN ;(3)能,设PB =x ,CN =y ,由第(1)题可得:1212y x x -=, ∠2112y x x =-+,又3≤x ≤9,利用函数图象可知: 当x =3或9时,y =94,当x =6时,y 最大=3; ∠点N 运动的路径长为:(3-94)×2=1.5. 【点拨】本题考查的是相似三角形的判定和性质、正三角形的性质,掌握相关的性质定理、灵活运用所学知识是解题的关键.11.(1)C (-4,0);(2)∠证明见分析,∠存在.使△PBM 为直角三角形的点P 有两个P1(-94,0),P2(0,0). 【分析】(1)根据B 点坐标求得直线解析式,再求得A 点坐标,然后根据A 与C 关于y 轴对称,据此即可确定C 的坐标;(2)∠根据点C 与点A 关于y 轴对称,即可得到BC=BA ,则∠BCP=∠MAP ,再根据三角形的外角的性质即可证得∠PMA=∠BPC ,从而证得两个三角形相似;∠首先求得B 的坐标,当∠PBM=90°时,则有∠BPO∠∠ABO ,根据相似三角形的对应边的比相等,即可求得PO 的长,求得P 的坐标;当∠PMB=90°时,则∠PMA═90°时,BP∠AC ,则此时点P 与点O 重合.则P 的坐标可以求得.(1)解:∠直线y=-34x+b与y轴相交于点B(0,3),∠b=3,∠直线的解析式为y=-34x+3,令y=0,得到x=4,∠A(4,0),∠点C与点A关于y轴对称,∠C(-4,0);(2)∠证明:∠∠BPM=∠BAC,且∠PMA=∠BPM+∠PBM,∠BPC=∠BAC+∠PBM,∠∠PMA=∠BPC,又∠点C与点A关于y轴对称,且∠BPM=∠BAC,∠∠BCP=∠MAP,∠∠PBC∠∠MPA;∠解:存在.由题意:A(4,0),B(0,3),C(-4,0)当∠PBM=90°时,则有∠BPO∠∠ABO,∠POBO=BOAO,即PO3=34,∠PO=94,即:P1(-94,0).当∠PMB=90°时,则∠PMA═90°,∠∠PAM+∠MPA=90°,∠∠BPM=∠BAC,∠∠BPM+∠APM=90°,∠BP∠AC.∠过点B只有一条直线与AC垂直,∠此时点P与点O重合,即:符合条件的点P2的坐标为:P2(0,0).∠使∠PBM为直角三角形的点P有两个P1(-94,0),P2(0,0).【点拨】本题是属于一次函数综合题,考查了相似三角形的判定和性质、待定系数法、一次函数的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.12.【试题再现】见分析;【问题探究】点E是四边形ABCD的边AB上的相似点. 理由见分析;【深入探究】(1) 点P是四边形ABCD的边AB上的一个强相似点,见分析;(2)解:试题分析:【试题再现】易证∠BCE=∠CAD,又∠ADC=∠CEB=90°,故得∠ADC∠∠CEB.【问题探究】要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明∠ADE∠∠BEC,所以问题得解.【深入探究】(1)分别证明∠ADP∠∠PDC,∠BPC∠∠PDC,从而∠ADP∠∠PDC∠∠BPC,故点P是四边形ABCD的边AB上的一个强相似点.(2)过点P作PE∠DC于点E,过点D作DF∠BC于点F,则四边形ABFD是矩形,通过证明∠ADP∠∠EDP和∠CBP∠∠CEP得DC =8,再求出CF=2,在Rt∠CDF中,由勾股定理,得解:【试题再现】∠∠ACB=90°,∠∠ACD+∠BCE=90°,∠AD∠DE,∠∠ACD+∠CAD=90°,∠∠BCE=∠CAD,∠∠ADC=∠CEB=90°,∠∠ADC∠∠CEB.【问题探究】点E是四边形ABCD的边AB上的相似点.理由如下:∠∠DEC=40°,∠∠DEA+∠CEB=140°.∠∠A=40°,∠∠ADE+∠AED=140°,∠∠ADE=∠CEB,又∠∠A=∠B,∠∠ADE∠∠BEC,∠点E 是四边形ABCD 的边AB 上的相似点.【深入探究】(1)∠AD∠BC,∠∠ADC+∠BCD=180°,∠DP 平分∠ADC,CP 平分∠BCD, ∠∠CDP+∠DCP=12(∠ADC+∠BCD)=90°, ∠DA∠AB,DA∠BC,∠CB∠AB,∠∠DPC=∠A=∠B=90°,∠∠ADP=∠CDP,∠∠ADP∠∠PDC,同理∠BPC∠∠PDC,∠∠ADP∠∠PDC∠∠BPC,即点P 是四边形ABCD 的边AB 上的一个强相似点.(2)过点P 作PE∠DC 于点E,过点D 作DF∠BC 于点F,则四边形ABFD 是矩形,∠DF=AB,在∠ADP 与∠EDP 中,ADP EDP,DAP DEP 90,DP DP,∠∠∠∠=⎧⎪==︒⎨⎪=⎩∠∠ADP∠∠EDP,∠AD=DE,同理∠CBP∠∠CEP,∠BC=EC,∠DC=AD+BC=8.在Rt∠CDF 中,CF=BC -BF=BC -AD=5-3=2,由勾股定理,得13.(1)34;(2)75. 分析:(1)如图,过点P 作CD 的垂线,分别交AB 、CD 于M 、N ,易证△PNE∠∠BMP,从而证得PE 3tan PB 4PN PN ACD BM CN ===∠= (2)首先证明BP=BC,再过点B 作BF 垂直AC 得PF=CF,由cos ,BC FC FCB AC BC ∠==得9,5FC PF == 根据AP=AC -PC 即可求解.解:(1)P CD AB CD M N 过点作的垂线,分别交、于点、,90PNE ∴∠︒=.ABCD 四边形是矩形,//90,AB CD ABC BCD ,∴∠=∠=︒BCMN 四边形是矩形,∴90,BMP BM CN ∴∠=︒=90,90,PNE BPE ∠=︒∠=︒90,90,NPE PCN MPB MPE ∴∠+∠=︒∠+∠=︒,90PEN MPB PNE BMP ∴∠=∠∠=∠=︒又~,PNE BMP ∴∆∆PE 3tan .PB 4PN PN ACD BM CN ∴===∠= 34PE PB ∴的值为 (2).PE CE EPC ECP =∠=∠当,则 ABCD 四边形是矩形,90,BCD ∴∠=︒,PE PB ⊥90.BPE ∴∠=︒BPC BCP ∴∠=∠.BP BC ∴=B BF AC F PF CF.⊥=过点作于点,则cos ,BC FC FCB AC BC∠== 3,53FC ∴= 9,5FC ∴= 9.5PF ∴= 187555AP AC PC ∴=-=-= 【点拨】本题考查的是矩形的性质、相似三角形的判定和性质以及解直角三角形,正确作出辅助线、灵活运用相关的定理是解题的关键.14.【小问1】AD BE =,说明见分析【小问2】BED FDC ∠=∠,EDB DFC ∠=∠;说理见分析【小问3】∠BD BF CD +=,理由见分析;∠AE EG +【分析】(1)【问题情境】证明()ABD BCE AAS ∆≅∆,即可求解.(2)【变式探究】利用等量代换即可求解.(3)【拓展应用】∠等量代换即可求解;∠在CD 上截取DM BF =,连接EM ,作点G 关于CE 的对称点N ,连接CN ,AN ,先证明()BDF MED SAS ∆≅∆,得到EM =CM ,在求出22.5ECM MEC ∠=∠=︒,即可确定E 点在射线CE 上运动,当A 、E 、N 三点共线时,EA +EG 的值最小,最小值为AN ,在Rt ANC 中求出AN 即可.解:(1)【问题情境】AD BE =,理由如下:90ABC ∠=︒,90ABD CBE ∴∠+∠=︒,90BAD ABD ∠+∠=︒,BAD CBE ∴∠=∠,AB BC =,()ABD BCE AAS ∴∆≅∆,AD BE ∴=;(2)【变式探究】BED FDC ∠=∠,EDB DFC ∠=∠;理由如下:B FDEC ∠=∠=∠,180EDB BED EDB FDC FDC DFC EDF ∴∠+∠=∠+∠=∠+∠=︒-∠,BED FDC ∴∠=∠,EDB DFC ∠=∠;(3)【拓展应用】∠AB BC =,AF BF BD CD ∴+=+,2AF BD =,2BD BF BD CD ∴+=+,BD BF CD ∴+=;∠在CD 上截取DM BF =,连接EM ,作点G 关于CE 的对称点N ,连接CN ,AN , 45B ∠=︒,45EDF ∠=︒,BFD EDM ∴∠=∠,DF DE =,()BDF MED SAS ∴∆≅∆,BD EM ∴=,EM BD =,45B DME ∠=∠=︒,CD BD BF =+,CM BD ∴=,EM CM ∴=,MCE MEC ∴∠=∠,45EMD ∠=︒,22.5ECM MEC ∴∠=∠=︒,E ∴点在射线CE 上运动, G 点与N 的关于CE 对称,EG EN∴=,EA EG EA EN AN∴+=+,∴当A、E、N三点共线时,EA EG+的值最小,最小值为AN,45B∠=︒,AB BC=,67.5ACB∴∠=︒,45ACE∴∠=︒,由对称性可知,ACE ECN∠=∠,90ACN∴∠=︒,点G是AC的中点,2AC=,1CG∴=,1CN∴=,在Rt ANC中,ANAE EG∴+【点拨】本题是三角形的综合题,熟练掌握三角形全等的判定及性质,轴对称求最短距离的方法是解题的关键.15.(1)AEDE;(2)CE=a-b;(3)见分析【分析】(1)根据相似三角形的性质即可求得结果;(2)由已知易证∠ADB∠∠DEC,从而由全等三角形的性质即可求得CE的长度;(3)作CG//FE交DE于点G,易证得∠FBE∠∠EGC,从而可得BEFE=CGEC;可证得∠DGC∠∠DCE,可得DCDE=CGEC,即有BEFE=DCDE,再由AB=CD即可得要证的结论.解:(1)∠∠ABC∠∠DAE∠BC AE AC DE故答案为:AE DE;(2)∠∠B=∠ADE=∠C,∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∠∠EDC=∠BAD又∠DA=DE∠∠ADB∠∠DEC∠EC=BD,AB=DC=b∠BD=BC-DC=a-b.即:CE=a-b.(3)∠∠DEF=∠B∠∠BFE+∠BEF=∠BEF+∠DEC∠∠BFE=∠DEC.作CG//FE交DE于点G,如图3.∠∠DEF=∠EGC∠∠B=∠EGC∠∠FBE∠∠EGC∠BEFE=CGEC∠四边形ABCD是平行四边形∠∠B+∠BCD=180°∠∠EGC+∠DGC=180°,且∠B=∠EGC ∠∠DGC=∠BCD又∠∠EDC=∠CDG ∠∠DGC∠∠DCE∠DCDE=CGEC∠BEFE=DCDE∠DC·FE=BE·DE又∠四边形ABCD是平行四边形∠AB=DC∠AB·FE=BE·DE【点拨】本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,平行四边形的性质等知识,(3)问中作辅助线是难点,灵活运用这些知识是重点.16.(1)答案见分析;(2)直线l2的函数表达式为:y=3944x--;(3)点D的坐标为2238,33⎛⎫-⎪⎝⎭或(8,﹣14)或1626,33⎛⎫-⎪⎝⎭【分析】(1)由垂直的定义得∠ADC=∠CEB=90°,平角的定义和同角的余角的相等求出∠DAC=∠ECB,最后由角角边证明:∠BEC∠∠CDA;(2)如图2,仿照(1)作辅助线,构建三角形全等,同理证明∠BOA∠∠AED,求出点D的坐标为(-7,3),最后利用待定系数法可得直线l2的函数表达式;(3)分三种情况:∠如图3,∠CPD=90°时,∠如图4,∠PCD=90°,此时P与A重合,∠如图5,∠CDP=90°,分别作辅助线,构建三角形全等,根据全等三角形的性质可得点D 的坐标.解:(1)如图1所示:∠AD∠ED,BE∠ED,∠∠ADC=∠CEB=90°,又∠∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∠∠ACD+∠BEC=90°,又∠∠ACD+∠DAC=90°,∠∠DAC=∠ECB ,在∠CDA 和∠BEC 中,ADC CEB DAC ECB AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∠∠CDA∠∠BEC (AAS );(2)如图2,在l 2上取D 点,使AD=AB ,过D 点作DE∠OA ,垂足为E ,∠直线y=43x+4与坐标轴交于点A 、B , ∠A (-3,0),B (0,4),∠OA=3,OB=4,由(1)得∠BOA∠∠AED ,∠DE=OA=3,AE=OB=4,∠OE=7,∠D (-7,3)设l 2的解析式为y=kx+b ,∠3703k b k b-+⎧⎨-+⎩== 解得3494k b ⎧-⎪⎪⎨⎪-⎪⎩== ∠直线l 2的函数表达式为:y =3944x --; (3)点D 的坐标为223833⎛⎫- ⎪⎝⎭,或(8,﹣14)或162633⎛⎫- ⎪⎝⎭,分三种情况:∠如图3,∠CPD=90°时,过P作MH∠x轴,过D作DH∠y轴,MH和DH交于H,∠∠CPD是等腰直角三角形,∠CPD=90°,∠CP=PD,同理得∠CMP∠∠PHD(AAS),∠DH=PM=6,PH=CM,设PH=a,则D(6+a,a-8-6),∠点D是直线y=-2x+2上的动点且在第四象限内.∠a-8-6=-2(6+a)+2,解得:a=43,∠D(2238,33);∠如图4,∠PCD=90°,此时P与A重合,过D作DE∠y轴于E,∠∠CPD是等腰直角三角形,同理得∠AOC∠∠CED,∠OA=CE=6,OC=DE=8,∠D(8,-14);∠如图5,∠CDP=90°,过点D作MQ∠x轴,延长AB交MQ于Q,则∠Q=∠DMC=90°,∠∠CDP是等腰直角三角形,同理得∠PQD∠∠DMC,∠PQ=DM,DQ=CM,设CM=b,则DM=6-b,AQ=8+b,∠D(6-b,-8-b),∠点D是直线y=-2x+2上的动点且在第四象限内,∠-8-b=-2(6-b)+2,解得:b=23,∠D(1626,33-);综上,点D的坐标为223833⎛⎫-⎪⎝⎭,或(8,﹣14)或162633⎛⎫-⎪⎝⎭,【点拨】本题是一次函数和四边形的综合题,综合考查了矩形的性质,全等三角形的性质和判定,一次函数上点的坐标的特点等知识点,重点是运用类比的方法,作辅助线,构建全等三角形依次解决问题.。
九年级下册一线三等角相似模型
一线三等角相似一.一线三直角1.如图,住平面直角系中,直线AB :()440y x a a=+≠分别交x 轴、y 轴于B 、A 两点,直线AE 分别交x 轴、y 轴于E 、A 两点,D 是x 轴上的一点,OA OD =,过D 作CD ⊥x 轴交AE 于C ,连接B C ,当动点B 在线段OD 上运动(不与点O 点D 重合)且AB BC⊥时(1)求证:ABO ∆∽BCD ∆;(2)求线段CD 的长(用a 的代数式表示); (3)若直线AE 的方程是1316y x b =-+,求tan BAC ∠的值.2.如图,在矩形ABCD 中,4AB =,6AD =,点P 是射线DA 上的一个动点,将三角板的直角顶点重合于点P ,三角板两直角中的一边始终经过点C ,另一直角边交射线BA 于点E .(1)判断△EAP 与△PDC 一定相似吗?请证明你的结论;(2)设PD x =,AE y =,求y 与x 的函数关系式,并写出它的定义域;(3)是否存在这样的点P ,是△EAP 周长等于△PDC 周长的2倍?若存在,请求出PD 的长度;若不存在,请简要说明理由.3. 如图,AB ∥CD ,∠A=90°,AB=2,AD=5,P 是AD 上一动点(不与A 、D 重合),PE ⊥BP ,P 为垂足,PE 交DC 于点E ,(1)设AP=x ,DE=y ,求y 与x 之间的函数关系式,并指出x 的取值范围;(2)请你探索在点P 运动的过程中,四边形ABED 能否构成矩形?如果能,求出AP 的长;如果不能,请说明理由.E PDCBA4.(2018上海,23,12分)已知:如图,正方形ABCD 中,P 是边BC 上一点,BE ⊥AP ,DF ⊥AP ,垂足分别是点E 、F . (1)求证:EF =AE -BE ; (2)联结BF ,如果,求证:EF =EP .二.等腰三角形中底边上一线三等角1.已知在等腰∆ABC 中,AB=AC,D 是BC 的中点,∠EDF=∠B, (1)求证:DFDECD BE =(2)求证:∆BDE ∽∆DFE2.已∆ABC 是等腰直角三角形,点O 为斜边AB 的中点,∠EOF=45° (1)求证:∆AOE ∽∆BFO (2)若AB=4,求AE •BF如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F . (1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3.已知:∆ABC 中,点D 为边BC 上一点,点E 在边AC 上,且∠ADE=∠B (1)如图1,若AB=AC ,求证:AC BDCD CE =(2)如图2,若AD=AE ,求证:AEBDCD CE =BC(备用图)如图,在菱形ABCD 中,∠D=60°,E 为AB 的中点、 (1)如图1,连接EC,求证:EC ⊥CD;(2)如图2,连接ED,作∠BED 的角平分线交BC 于点F,求CFBF的值。
相似三角形几何模型-一线三等角(基础篇)-2022-2023学年九年级数学下册基础知识讲练(人教版)
专题27.33 相似三角形几何模型-一线三等角(基础篇)(专项练习)一、单选题1.如图,在正方形ABCD中,P是BC上一点(点P不与点B,C重合),连接AP.作PE⊥AP,PE交CD于点E.若AB=6,点P为BC的中点,则DE=()A.32B.92C.12D.532.如图,在矩形ABCD中,点E、F分别在边AD、DC上,ABE DEF△△∽,AB=6,DE=2,DF=3,则BE的长是()A.12B.15C.313D.3153.如图,在等边三角形ABC中,AB=4,P是边AB上一点,BP=32,D是边BC上一点(点D不与端点重合),作⊥PDQ=60°,DQ交边AC于点Q.若CQ=a,满足条件的点D有且只有一个,则a的值为()A.52B.83C.2D.34.如图,在ABC中,AB=AC,D在AC边上,E是BC边上一点,若AB=3,AE=2,⊥AED=⊥B,则AD的长为()A .35B .32C .43D .345.如图,在ABC 中,AB AC =,点D 是边BC 上一点,且ADE B ∠=∠,下列说法错.误.的是( )A .AD CE BD DE ⋅=⋅B .ADE ACDC .ABD DCE △△D .AD DE =6.如图,在△ABC 中,AB =AC ,D 在AC 边上,E 是BC 边上一点,若AB =6,AE =2⊥AED =⊥B ,则AD 的长为( )A .3B .4C .5D .5.57.如图,在等边三角形ABC 中,P 为边BC 上一点,D 为边AC 上一点,且⊥APD =60°,BP =1,CD =23,则ΔABC 的边长为( )A .3B .4C .5D .68.如图,D 是等边三角形ΔABC 边上的点,AD =3,BD =5,现将ΔABC 折叠,使点C与点D 重合,折痕为EF ,且点E 点F 分别在边AC 和BC 上,则CECF的值为( )A .1113 B .35C .45D .899.如图,在矩形ABCD 中,E ,F ,G 分别在AB ,BC ,CD 上,DE ⊥EF ,EF ⊥FG ,BE =3,BF =2,FC =6,则DG 的长是( )A .4B .133C .143D .510.如图,在测量旗杆高度的数学活动中,小达同学在脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到旗杆的顶部.若眼睛距离地面 1.5AB =米,同时量得2BC =米,10CD =米,则旗杆高度DE 为( )A .7.5米B .403米 C .7米 D .9.5米二、填空题11.如图,在矩形ABCD 中,E 是BC 上的点,点F 在CD 上,要使ABE ∆与CEF ∆相似,需添加的一个条件是_______(填一个即可).12.如图,在边长为a 的正方形中,E 、F 分别为边BC 和CD 上的动点,当点E 和点F 运动时, AE 和EF 保持垂直.则⊥⊥ABE⊥⊥FCE;⊥当BE=12a 时、梯形ABCF 的面积最大;⊥当点E 运动到BC 中点时Rt ABE⊥Rt⊥AEF;⊥当Rt ABE⊥Rt⊥AEF 时cos⊥AFE=其中正确结论的序号是 .13.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且:1:4CF CD =,给出下列结论:⊥ABE ECF ∽;⊥ABE AEF ∽;⊥AE EF ⊥;⊥ADF ECF ∽.其中正确结论的序号为________.14.如图,四边形ABCD 是正方形,6AB =,E 是BC 中点,连接DE ,DE 的垂直平分线分别交AB DE CD 、、于M 、O 、N ,连接EN ,过E 作EF EN ⊥交AB 于F ,则AF =______.15.如图,在矩形ABCD 中,E ,F 分别是边BC ,CD 上的点,4AB =,8AD =,3CF =,若ABE △与以E ,C ,F 为顶点的三角形相似,则BE 的长为______.16.如图,在等边三角形ABC中,点D、点E分别在BC,AC上,且⊥ADE=60°,(1)写出和⊥CDE相等的角:______;(2)若AB=3,BD=1,则CE长为______.17.如图,在矩形ABCD中,点E、F分别在边AD、DC上,⊥ABE⊥⊥DEF,AB=3,AE=4,DE=1.2,则EF=_____.18.如图,D是等边三角形ABC的边AB上一点,且AD:1DB=:2,现将ABC折叠,使点C与点D重合,折痕为EF,点E、F分别在AC和BC上,且CE:CF的值为______.19.如图,在矩形ABCD中,E是BC的中点,连接AE,过点E作EF AE⊥交DC于BC=,则DF的长为______.点F.若4AB=,620.如图,将长方形纸片ABCD沿MN折叠,使点A落在BC边上点A′处,点D的对应点为D′,连接A'D′交边CD于点E,连接CD′,若AB=9,AD=6,A'点为BC的中点,则线段ED'的长为_____.三、解答题21.如图,正方形ABCD中,点E,F,G分别在AB,BC,CD上,且⊥EFG=90°.求证:⊥EBF⊥⊥FCG.22.如图,等边三角形△ACB的边长为3,点P为BC上的一点,点D为AC上的一点,连接AP、PD,⊥APD=60°.(1) 求证:△ABP⊥△PCD;(2) 若PC=2,求CD的长.23.如图,在⊥ABC中,AD是角平分线,点E是边AC上一点,且满足ADE B∠=∠.(1) 证明:ADB AED∆∆;(2) 若3AE =,5AD =,求AB 的长.24.如图,在ABC 中,AB AC =,120BAC ∠=︒,D 为BC 边上一点,E 为AC 边上一点,且30ADE ∠=︒,求证:ABD DCE ∽△△.25.在矩形ABCD 中,4AB =,6AD =,将矩形折叠,使点A 落在点P 处,折痕为DE .(1)如图⊥,若点P 恰好在边BC 上,连接AP ,求APDE的值; (2)如图⊥,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.26.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,NG l ⊥于点G ,由(1)易知NG =_______,ND 与直线l 交于点P ,求证:NP DP =.参考答案:1.B 【分析】根据正方形的性质,余角,可证明出⊥ABP ⊥⊥PCE ,再根据相似三角形的性质即可求出CE的值,最后根据线段的和差关系即可求解.解:在正方形ABCD中,AB=BC=CD=6,⊥B=⊥C=90°,⊥P为BC中点,⊥BP=PC=12AB=3,⊥AP⊥PE,⊥⊥APE=90°=⊥APB+⊥EPC,⊥⊥B=90°,⊥⊥APB+⊥BAP=90°,⊥⊥BAP=⊥EPC,⊥⊥B=⊥C=90°,⊥⊥ABP⊥⊥PCE,⊥AB PCBP CE=,即633CE=,⊥32 CE=,⊥DE=CD-CE=39622-=,故选:B.【点拨】本题主要考查了正方形的性质、相似三角形的判定与性质,证得⊥ABP⊥⊥PCE 是解答本题的关键.2.C【分析】利用相似三角形的性质求出AE的长,再利用勾股定理求解即可.解:⊥ABE DEF∽,⊥AB AE DE DF=,⊥623AE =,⊥9AE=,⊥矩形ABCD中,⊥A=90°,⊥222269313 BE AB AE++故选:C.【点拨】本题考查了矩形的性质、相似三角形的性质、勾股定理,解题关键是求出AE 的长后利用勾股定理求解.3.B【分析】先证明⊥BPD⊥⊥CDQ,利用相似三角形的性质得出比例式,进而建立关于BD的一元二次方程,再判别式为0,建立方程求解,即可得出结论.解:⊥⊥ABC是等边三角形,⊥⊥B=⊥C=60°,⊥⊥BPD+⊥BDP=180°-⊥B=120°,⊥⊥PDQ=60°,⊥⊥BDP+⊥CDQ=120°,⊥⊥BPD=⊥CDQ,⊥⊥B=⊥C=60°,⊥⊥BPD⊥⊥CDQ,⊥BP BD CD CQ=,⊥324BDBD a=-,⊥2BP2-8BP+3a=0,⊥满足条件的点P有且只有一个,⊥方程2BP2-8BP+3a=0有两个相等的实数根,⊥⊥=82-4×2×3a=0,⊥a=83.故选:B.【点拨】此题是相似形综合题,主要考查了等式的性质,相似三角形的判定和性质,一元二次方程根的判别式,利用方程的思想解决问题是解本题的关键.4.C【分析】由等边对等角可得⊥B=⊥C,即得出⊥C=⊥AED.再结合题意易证⊥EAD∼⊥CAE,即得出AD AE AE AC=,代入数据即可求出AD 的长. 解:根据题意可知AB =AC =3,⊥⊥B =⊥C ,⊥⊥B =⊥AED ,⊥⊥C =⊥AED ,又⊥⊥EAD =⊥CAE , ⊥⊥EAD ∼⊥CAE , ⊥AD AE AE AC =,即223AD =, 解得:43AD =, 故选C .【点拨】本题考查等腰三角形的性质,相似三角形的判定和性质.掌握相似三角形的判定方法是解题关键.5.D【分析】根据AB AC =和ADE B ∠=∠,可证得⊥ABD ⊥⊥DCE ,⊥ADE ⊥⊥ACD ,再逐项判断即可求解.解:⊥AB AC =,⊥⊥B =⊥C ,⊥⊥ADC =⊥B +⊥BAD ,⊥ADC =⊥ADE +⊥CDE ,ADE B ∠=∠,⊥⊥BAD =⊥CDE ,⊥⊥ABD ⊥⊥DCE ,故C 正确,不符合题意;⊥AD BD DE CE=, ⊥AD CE BD DE ⋅=⋅,故A 正确,不符合题意;⊥AB AC =,⊥⊥B =⊥C ,⊥ADE B ∠=∠,⊥⊥ADE =⊥C ,⊥⊥DAE =⊥CAD ,⊥⊥ADE ⊥⊥ACD ,故B 正确,不符合题意;⊥AD DE AC CD=,⊥AED =⊥ADC , ⊥点D 是边BC 上一点,⊥AC 不一定等于CD ,⊥⊥ADC 不一定等于⊥DAC ,⊥⊥AED 不一定等于⊥DAC ,⊥AD 不一定等于DE ,故D 错误,符合题意;故选:D .【点拨】本题主要考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质定理.6.A【分析】由等边对等角可得B C ∠=∠,即得出C AED ∠=∠.再结合题意易证EADCAE ,即得出AD AE AE AC =,代入数据即可求出AD 的长. 解:根据题意可知6AB AC ==,⊥B C ∠=∠.⊥B AED ∠=∠,⊥C AED ∠=∠.又⊥EAD CAE ∠=∠, ⊥EADCAE , ⊥AD AE AE AC =32632= 解得:3AD =.故选A【点拨】本题考查等腰三角形的性质,三角形相似的判定和性质.掌握三角形相似的判定方法是解题关键.7.A【分析】根据等边三角形性质求出AB =BC =AC ,⊥B =⊥C =60°,推出⊥BAP =⊥DPC ,证⊥BAP ⊥⊥CPD ,得出AB BP CP CD=,代入求出即可. 解:⊥⊥ABC 是等边三角形,⊥AB =BC =AC ,⊥B =⊥C =60°,⊥⊥BAP +⊥APB =180°-60°=120°,⊥⊥APD =60°,⊥⊥APB +⊥DPC =180°-60°=120°,⊥⊥BAP =⊥DPC ,即⊥B =⊥C ,⊥BAP =⊥DPC , ⊥⊥BAP ⊥⊥CPD , ⊥AB BP CP CD= ⊥23CD =,CP =BC -BP =x -1,BP =1, ⊥1213x x =-解得:AB =3.故选A .【点拨】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出⊥BAP ⊥⊥CPD ,主要考查了学生的推理能力和计算能力.8.A【分析】根据等边三角形的性质、相似三角形的性质得到⊥AED =⊥BDF ,根据相似三角形的周长比等于相似比计算即可.解:⊥⊥ABC 是等边三角形,⊥⊥A =⊥B =⊥C =60°,AB =AC =BC =3+5=8,由折叠的性质可知,⊥EDF =⊥C =60°,EC =ED ,FC =FD ,⊥⊥AED =⊥BDF , ⊥⊥AED ⊥⊥BDF ,⊥1113DE AE AD DE DF BD DF BF ++==++, ⊥1113CE DE CF DF ==,故选A.【点拨】本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.9.B【分析】先运用勾股定理可求得EF, 过G作GH⊥DE垂足为H,则四边形EFGH是矩形可得HG=EF,再说明⊥EBF⊥⊥DAE、⊥DAE⊥⊥GHD,进一步可得⊥EBF⊥⊥GHD,最后运用相似三角形的性质解答即可.解:⊥在Rt⊥BEF中,BF=2,BE=3⊥EF22223213BE BF+=+如图:过G作GH⊥DE垂足为H,⊥DE⊥EF,EF⊥FG⊥四边形EFGH是矩形⊥HG=EF13⊥矩形ABCD⊥⊥A=⊥B=90°⊥⊥AED+⊥ADE=90°⊥DE⊥EF⊥⊥AED+⊥BEF=90°⊥⊥BEF=⊥ADE又⊥⊥A=⊥B=90°⊥⊥EBF⊥⊥DAE同理:⊥DAE⊥⊥GHD⊥⊥EBF⊥⊥GHD⊥DG HGEF BE=,1313=解得DG=133.故选B.【点拨】本题主要考查了矩形的判定与性质、运用勾股定理解直角三角形、相似三角形的判定与性质等知识点,灵活运用相似三角形的判定与性质是解答本题的关键.10.A【分析】由平面镜反射可得:,ACB DCE ∠=∠ 再证明,ABC EDC ∽再利用相似三角形的性质可得答案.解:由平面镜反射可得:,ACB DCE ∠=∠90,ABC EDC ,ABC EDC ∽,AB BC DE CD1.5AB =米,2BC =米,10CD =米,1.52,10DE 解得:7.5DE =,经检验:符合题意,∴ 旗杆高度DE 为7.5米.故选A【点拨】本题考查的是相似三角形的应用,掌握“利用相似三角形的性质列方程求解”是解本题的关键.11.AE EF ⊥或⊥BAE =⊥CEF ,或⊥AEB =⊥EFC (任填一个即可)【分析】根据相似三角形的判定解答即可.解:⊥矩形ABCD , ⊥⊥ABE =⊥ECF =90︒,⊥添加⊥BAE =⊥CEF ,或⊥AEB =⊥EFC ,或AE⊥EF ,⊥⊥ABE⊥⊥ECF ,故答案为:⊥BAE =⊥CEF ,或⊥AEB =⊥EFC ,或AE⊥EF .【点拨】此题考查相似三角形的判定,关键是根据相似三角形的判定方法解答. 12.⊥⊥⊥解:⊥证明:⊥四边形ABCD 为正方形,⊥⊥B=⊥C=90°,又⊥AE⊥EF ,⊥⊥AEF=90°,⊥⊥AEB+⊥FEC=90°,而⊥AEB+⊥BAE=90°,⊥⊥BAE=⊥FEC ,⊥Rt⊥ABE⊥Rt⊥ECF ,故⊥正确⊥ 解 :⊥Rt⊥ABE⊥Rt⊥ECF ,⊥AB :EC=BE :CF ,又⊥AB=a ,设BE=x ,则CE=a ﹣x ,⊥a :(a ﹣x )=x :CF , ⊥CF=,⊥2)2221()21()215(28ABCF a x S CF AB BC ax x a a a a -=+⋅-=+⋅=-+梯形 ⊥当时,取得最大值.故⊥正确⊥当点E 运动到BC 中点时,BE=EC=在直角三角形ABE 中,由勾股定理解得又由Rt⊥ABE⊥Rt⊥ECF 可知AB BE AE EC CF EF ==即5222a a a CF EF== 解得CF=,EF=所以在直角三角形AEF 中,由勾股定理得在直角三角形ABE 和直角三角形AEF 中,⊥Rt ABE 与Rt⊥AEF 相似.故⊥正确⊥由⊥可知当Rt ABE⊥Rt⊥AEF 时,点E 是BC 的中点⊥ ⊥.故⊥错误考点:相似三角形的判定与性质;正方形的性质;梯形点评:本题主要考查相似三角形的判定与性质,掌握相似三角形的判定定理,灵活运用勾股定理是本题的关键13.①②③【分析】容易证明⊥△ABE ⊥△ECF ;利用⊥可得90AEB FEC ∠+∠=,,可得⊥AE ⊥EF ;且可得2AE AB EF EC==,可证得⊥△ABE ⊥△AEF ,而AD DF CE CF ≠,所以⊥不正确. 解:⊥E 为BC 中点,CF :CD =1:4,⊥2AB BE CE CF==, 且⊥B =⊥C , ⊥△ABE ⊥△ECF ,⊥⊥正确;⊥⊥BAE =⊥FEC ,且90BAE AEB ∠+∠=, ⊥90AEB FEC ∠+∠=,⊥90AEF ∠=,⊥AE ⊥EF ,⊥⊥正确;由⊥可得2AE AB EF EC ==, ⊥AB EC BE AE EF EF==,且90ABE AEF ∠=∠=, ⊥△ABE ⊥△AEF ,⊥⊥正确;⊥2,3DA DF CE CF ==, ⊥AD DF CE CF≠, ⊥△ADF 和△ECF 不相似,⊥⊥不正确,综上可知正确的为:⊥⊥⊥,故答案为⊥⊥⊥.【点拨】考查相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键. 14.2【分析】MN 垂直平分DE ,得出NE ND =,利用6DN NC +=,在ΔRt NCE 中利用勾股定理求得CN 的长,再证明FBE ECN ∆∆,利用相似比求得BF 的长度,进而求得AF 的长度.解:设CN x =,则6DN x =-MN 垂直平分DE∴6NE ND x ==-在ΔRt NCE 中,222CN CE NE +=又⊥E 是BC 中点⊥3CE =2223(6)x x ∴+=-解得94x = 又⊥EF EN ⊥90NEC FNB ∴∠+∠=,NEC EFB CNE FEB ∴∠=∠∠=∠ Δ~ΔFBE ECN ∴ FB CE BE CN∴= 3934FB ∴= 4FB ∴=642AF AB FB ∴=-=-=故答案为:2.【点拨】本题考查线段垂直平分线的应用,勾股定理及相似三角形的应用,解决本题的关键是各知识点的综合应用.15.26,或327【分析】设BE =x ,当ABE △⊥△ECF 时,AB BE EC CF =即483x x =-,当ABE △⊥△FCE 时,AB BE FC EC =即438x x=-,解方程即可. 解:设BE =x , 当ABE △⊥△ECF 时,AB BE EC CF =即483x x =- 整理得28120x x -+=,解得1226x x ==,,经检验都符合题意, 当ABE △⊥△FCE 时,AB BE FC EC=即438x x =-, 解得327x =. 经检验符合题意,故答案为26,或327. 【点拨】本题考查三角形相似性质,列分式方程,正确三角形相似性质,列分式方程是解题关键.16. ⊥BAD23【分析】 (1) 根据⊥ABC 是等边三角形,得到⊥B =⊥C = 60°, AB = BC ;又因为⊥ADC =⊥B +⊥BAD ,⊥EDC +⊥ADE = ⊥B +⊥BAD 就得到⊥EDC =⊥BAD(2) 因为⊥EDC =⊥BAD ,⊥C =⊥B 得到⊥ABD ~⊥DCE ,得到AB BD CD EC= ,即可求出EC ; (1) 证明: ⊥⊥ABC 是等边三角形,⊥B =⊥C = 60°, AB = BC ;又⊥⊥ADC =⊥B +⊥BAD⊥EDC +⊥ADE = ⊥B +⊥BAD又⊥⊥ADE =⊥B =60°⊥⊥EDC =⊥BAD所以和⊥CDE 相等的角为:⊥BAD故答案为:⊥BAD(2) ⊥⊥EDC =⊥BAD⊥⊥C =⊥B⊥ABD ~⊥DCE ,AB BD CD EC∴= 3,1BC AB BD === 又312CD BC BD =-=-=312EC∴= 解得:EC =23故答案为:23 ; 【点拨】此题主要考查了等边三角形的性质和相似三角形的判定和性质,能够证得⊥ABD ~⊥DCE 是解答此题的关键.17.2【分析】由勾股定理,求出BE =5,由⊥ABE ⊥⊥DEF ,得AB DE =BE EF ,进而求出EF 的长.解:在矩形ABCD 中⊥A =90°⊥AB =3,AE =4⊥BE 22AB AE +2234+⊥⊥ABE ⊥⊥DEF⊥AB DE =BE EF ⊥31.2=5EF解得EF =2故答案为:2. 【点拨】本题主要考查相似三角形的性质,借助于矩形的性质和勾股定理求边长,熟练掌握以上性质是解题的关键.18.45【分析】设AD =k ,则DB =2k ,得到AB =AC =BC=3k ,⊥A =⊥B =⊥C =⊥EDF =60°,进而证明⊥AED ⊥⊥BDF ,得到⊥AED 与⊥BDF 的相似比为4:5,即可求出CE :CF =DE :DF =4:5,问题得解.解:设AD =k ,则DB =2k ,⊥⊥ABC 为等边三角形,⊥CEF 折叠得到⊥DEF ,⊥AB =AC =BC =3k ,⊥A =⊥B =⊥C =⊥EDF =60°,⊥⊥EDA +⊥FDB =120°,⊥EDA +⊥AED =120°,⊥⊥FDB =⊥AED ,⊥⊥AED ⊥⊥BDF ,由⊥CEF 折叠得到⊥DEF ,得CE =DE ,CF =DF ,⊥⊥AED 的周长为4k ,⊥BDF 的周长为5k ,⊥⊥AED 与⊥BDF 的相似比为4:5,⊥CE :CF =DE :DF =4:5.故答案为:45.【点拨】本题主要考查了相似的性质与判定、等边三角形的性质、翻折变换的性质及其应用等知识,熟知等边三角形、翻折变换的性质,借助相似三角形的判定与性质(用含有k 的代数式表示)将两条线段的比转化为相似比是解题的关键.19.74 【分析】结合矩形的性质证明BAE CEF ∆∆可求得CF 的长,再利用DF CD DF =-可求解. 解:四边形ABCD 为矩形,90B C ∴∠=∠=︒,4CD AB ==,90BAE AEB ∴∠+∠=︒,EF AE ⊥,90AEF ∴∠=︒,90AEB CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,BAE CEF ∴∆∆,::AB CE BE CF ∴=,E 是BC 的中点,6BC =,3BE CE ∴==,4AB =, 4:33:CF ∴=, 解得94CF =, 97444DF CD DF ∴=-=-=. 故选:74. 【点拨】本题主要考查矩形的性质,相似三角形的判定与性质,证明BAECEF ∆∆是解题的关键.20.94 【分析】根据折叠的性质可得'AM AM =,''90MA D A ∠=∠=︒,设'AM A M x ==,则9BM x =-,由线段中点可得''11322A B AC BC AD ====,在'Rt A BM 中,利用勾股定理可得'5A M =,4MB =,利用相似三角形的判定定理及性质可得''A BMECA ,'''A E AC A M BM =,代入求解,同时根据线段间的数量关系即可得出结果. 解:将长方形纸片ABCD 沿着MN 折叠,使点A 落在BC 边上点'A 处,⊥'AM AM =,''90MA D A ∠=∠=︒,设'AM A M x ==,则9BM x =-, ⊥'A 是BC 的中点,⊥''11322A B AC BC AD ====, 在'Rt A BM 中,'22'2A B BM AM+=, 即()22239+-=x x ,解得:5x =,⊥'5A M =,4MB =,⊥''90MA B EAC ∠+∠=︒,''90A EC EAC ∠+∠=︒, ⊥''MA B A EC ∠=∠,⊥'90B ACE ∠=∠=︒,⊥''A BM ECA ,⊥'''A E AC A M BM =,即'354A E =, ⊥'154A E =, ⊥'''''159644ED A D A E AD A E =-=-=-=, 故答案为:94 【点拨】题目主要考查长方形中的折叠问题,包括勾股定理,相似三角形的判定及性质等,结合图形,熟练掌握运用折叠的性质及相似三角形的性质是解题关键.21.见分析【分析】根据正方形的性质得⊥B =⊥C =90°,再利用等角的余角相等得⊥BEF =⊥CFG ,然后根据有两组角对应相等的两个三角形相似可得到⊥EBF ⊥⊥FCG .解:⊥四边形ABCD 为正方形,⊥⊥B =⊥C =90°,⊥⊥BEF +⊥BFE =90°,⊥⊥EFG =90°,⊥⊥BFE +⊥CFG =90°,⊥⊥BEF =⊥CFG ,⊥⊥EBF ⊥⊥FCG .【点拨】本题考查正方形的性质,相似三角形的判定,解的关键是掌握相似三角形的判定定理.22.(1)见分析(2)CD 的长为23【分析】(1)由等边三角形和⊥APD =60°得,⊥B =⊥C =⊥APD =60°,⊥APB +⊥CPD =120°,在△APB中,⊥APB +⊥BAP =120°,由此可得⊥BAP =⊥CPD .因此△ABP ⊥△PCD ;(2)由(1)的结论△ABP ⊥△PCD 可得BP AB CD PC =,从而可以求出线段CD 的长. (1)证明:⊥等边三角形ABC ,⊥⊥B =⊥C =60°,⊥⊥APD =60°,⊥⊥APB +⊥CPD =120°,在△APB 中,⊥APB +⊥BAP =120°,⊥⊥BAP =⊥CPD ,⊥⊥ABP ⊥⊥PCD ;(2)解:等边三角形边长为3,PC =2,由(1)得△ABP ⊥△PCD ,BP AB CD PC =,⊥132CD =,⊥CD =23.答:CD 的长为23. 【点拨】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△ABP ⊥△PCD .23.(1)见分析(2)253【分析】(1)证出⊥BAD =⊥EAD .根据相似三角形的判定可得出结论;(2)由相似三角形的性质可得出AD AB AE AD =,则可得出答案. 解:(1)⊥AD 是⊥BAC 的角平分线,⊥⊥BAD =⊥EAD .⊥⊥ADE =⊥B ,⊥⊥ADB ⊥⊥AED .(2)⊥⊥ADB ⊥⊥AED ,⊥AD AB AE AD=, ⊥AE =3,AD =5,⊥535AB =, ⊥253AB =. 【点拨】本题考查了相似三角形的判定与性质以及三角形内角和定理,熟练掌握相似三角形的判定定理和性质定理是解题的关键.24.见分析【分析】利用三角形的外角性质证明⊥EDC =⊥DAB ,即可证明⊥ABD ⊥⊥DCE .证明:⊥AB=AC ,且⊥BAC =120°,⊥⊥ABD =⊥ACB =30°,⊥⊥ADE =30°,⊥⊥ABD =⊥ADE =30°,⊥⊥ADC =⊥ADE +⊥EDC =⊥ABD +⊥DAB ,⊥⊥EDC =⊥DAB ,⊥⊥ABD ⊥⊥DCE .【点拨】本题考查了三角形相似的判定、等腰三角形的性质、三角形的外角性质,利用三角形的外角性质证明⊥EDC =⊥DAB 是解题的关键.25.(1)23(2)32【分析】(1)根据矩形的性质可得⊥BAD =⊥ABC =90°,再由折叠的性质可得APB AED ∠=∠.可证得ABP △⊥DAE △.即可求解;(2)过点E 作EH DP ∥交AD 于H ,由折叠的性质可得HED HDE ∠=∠,从而得到EH DH =.然后设EH DH x ==,则6AH x =-,由勾股定理可得103DH =,从而得到83AH =.再证得AEH △⊥BFE △,即可求解. (1)解:在矩形ABCD 中,⊥BAD =⊥ABC =90°,⊥90BAP APB ∠+∠=︒,由折叠性质得:AP DE ⊥,⊥90BAP AED ∠+∠=︒,⊥APB AED ∠=∠.⊥90EAD ABP ∠=∠=︒,⊥ABP △⊥DAE △.⊥4263AP AB DE AD ===. (2)解:过点E 作EH DP ∥交AD 于H ,⊥EH DF ∥,⊥HED EDP ∠=∠.⊥由折叠性质得HDE EDP ∠=∠,⊥DPE =⊥A =90°,⊥HED HDE ∠=∠,⊥EH DH =.设EH DH x ==,则6AH x =-,⊥E 是AB 的中点,⊥2AE =,⊥AE 2+AH 2=EH 2,⊥()22226x x +-=,解得:103x =,即103DH =, ⊥83AH =. ⊥EH DF ∥,⊥⊥HEP =90°,⊥⊥AEH +⊥BEF =90°,⊥⊥A =⊥B =90°,⊥⊥AEH +⊥AHE =90°,⊥⊥AHE =⊥BEF ,⊥AEH △⊥BFE △, ⊥AE AH BF BE =,即8232BF =, 解得32BF =, ⊥BF 的长为32. 【点拨】本题主要考查了矩形与折叠问题,相似三角形的判定和性质,熟练掌握矩形与折叠的性质,相似三角形的判定和性质是解题的关键.26.(1)DE ,AE ;(2)AC .证明见详解.【分析】(1)根据(AAS)≌ABC DAE ,得出AC =DE ,BC =AE 即可;(2)过D 作DE ⊥直线l 于E ,先证⊥MCA ⊥⊥AGN (AAS ),得出AC =NG ,由(1)知(AAS)≌ABC DAE ,得出AC =DE ,再证⊥NGP ⊥⊥DEP (AAS )即可.(1)解:⊥(AAS)≌ABC DAE ,⊥AC =DE ,BC =AE ,故答案为DE ,AE ;(2)证明:过D 作DE ⊥直线l 于E ,⊥90MAN ∠=︒,⊥⊥CAM +⊥NAG =90°,⊥BM ⊥l ,⊥⊥MCA =90°,⊥⊥M +⊥CAM =90°,⊥⊥M =⊥NAG ,⊥NG l ⊥,⊥⊥AGN =90°,在⊥MCA 和⊥AGN 中,MCA AGN M GAN MA AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥⊥MCA ⊥⊥AGN (AAS ),⊥AC =NG ,由(1)知(AAS)≌ABC DAE ,⊥AC =DE ,⊥NG =DE ,在⊥NGP 和⊥DEP 中,90NGP DEP GPN EPDNG DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ⊥⊥NGP ⊥⊥DEP (AAS )⊥NP =DP ,故答案为AC.【点拨】本题考查一线三直角全等问题,掌握余角性质,三角形全等判定与性质是解题关键.。
数学人教版九年级下册相似三角形的判定——“一线三等角”数学模型
1
这就是“一线三等角” 模型,如图, 点C是线段AB上异于A和B的一点, 若∠A=∠1 =∠B,则 D △ ADC∽ △ BCE。
E B
无论这三个角是锐 角,直角还是钝角,这 个结论始终成立。对于 一些试题,只要看到这 个模型可以快速建立解 题思路。
1
A
C
二、定位着力点,巩固模型
例2:(1)如图在△ ABC中,∠BAC=90°, AB=AC,直线m经过点A,BD⊥直线m,CE ⊥直线m,垂足分别为点D和点E。求证: DE=BD+CE。
在矩形abcd中点p在ad上ab2ap1将三角板的直角顶点房子p处三角板的两直角边分别能与abbc边相交于点ef连接ef
一线三等角
河间市第ቤተ መጻሕፍቲ ባይዱ中学
周晓蕾
三角形相似的判定定理有哪些?
一 、 找准切入点,初识模型
例1:如图在△ ABC中,点D,E分别在BC, AC上连接AD,DE,使∠ 1=∠B= ∠C. 求证:△ ABD∽ △ DCE 。
例3. 在梯形ABCD中,AD//BC,AB=CD=AD=6, ∠ABC=60°,点E,F分别在线段AD,DC上(点E与点 A,D不重合),且∠BEF=120°,设AE=x,DF=y. (1)求y与x的函数关系式; (2)当x为何值时,y有最大值?最大值是多少?
A E D F B C
三、 弱化条件,构造模型
例4 在矩形ABCD中,点P在AD上,AB=2, AP=1,将三角板的直角顶点房子P处,三角板的 两直角边分别能与AB,BC边相交于点E,F,连 接EF。 (1)如图,当点E与点B重合时,点F恰好与点C 重合,求此时PC的长。
例4 在矩形ABCD中,点P在AD上,AB=2, AP=1,将三角板的直角顶点放在P处,三角 板的两直角边分别能与AB,BC边相交于点E, F,连接EF。 (2)将三角板从(1)中点位置开始,绕点 P顺时针旋转,当点E与点A重合时停止, ①∠PEF的大小是否发生变化? ②写出从开始到停止,线段EF的中点所经过 的路线长。
人教版初三数学下册相似三角形的判定——“一线三等角”数学模型
相似三角形的判定---“一线三等角”
一、教学目标
1.学生会运用两组对应角分别相等的两个三角形为相似三角形的判定方法证明两个三角形相似。
2.学生经历观察、比较、归纳的学习过程,归纳出“一线三等角”图形的基本特征,并且能够在不同的背景中认识和把握基本图形。
3.学生在学习过程中感受几何直观图形对几何学习的重要性。
二、教学重点、难点
1、重点:运用判定方法解决“一线三等角”的相关计算与证明
2、难点:在不同背景中识别基本图形
三、教学方法:教师主导与学生合作探究相结合。
四、教学过程
)将三角板从(1)中点位置开始,P顺时针旋转,当点E与点A。
数学人教版九年级下册三角形相似——一线三等角模型
教学设计
教学过程二、新课讲解
1、学生先观看一段关于一线三等角模型的视频
2、对所看视频有所总结提升
3、如图,已知A、D、E在一条直线上,∠BAC=90°,BD⊥DE于D,CE⊥DE于E,你能得出哪些结论?
三、例题讲解
例1、如图,四边形ABCD是正方形,且AB=4,E为BC上一点,F为CD上一点,且∠AEF=90°
(1)求证:ΔABE∽ΔECF (2)当BE=1,求CF的长度自主学习,认真思考
学生抢答
例题学生首先思考,然后由老师讲解并板书
练习巩固:1、如图,在等
边ΔABC中,边长为6,D是BC上的动点,∠ADE=60°(1)求证:ΔABD∽ΔDCE;(2)若BD=x,CE=y,求y与x之间的函数表达式;
联系中考:1、如图,正△ABC的边长为4 ,点P为BC 边上的任意一点(不与点B、C重合),且∠APD=60°,PD 交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()学生思考并完成来练习巩固,并随机抽一名学生上黑板展示并对此题进行讲解,学生做完练习巩固后将中考原来抛给学生,让学生思考并完成
能力提升:例2、如图,在平面直角坐标系中,A (0,1),B(2,0),第一象限内的点C满足AC⊥AB,且AC=3,求点C的坐标. 学生作答,并统计学生的答题情况
课堂小结模型的简单归纳:
小结。
相似三角形几何模型-一线三等角(巩固篇)(专项练习)-2022-2023学年九年级数学
专题4.39 相似三角形几何模型-一线三等角(巩固篇)(专项练习)一、单选题1. 如图,矩形ABCD 中,AD =2,AB =5,在边CD 上取一点P ,使得△PAD 与△PBC 相似,则这样的点P 共有( )A. 1个B. 2个C. 3个D. 4个2. 如图,已知矩形ABCD 中,点E 是边AD 上的任一点,连接BE ,过E 作BE 的垂线交BC 延长线于点F ,交边CD 于点P ,则图中共有相似三角形( )A. 6对B. 5对C. 4对D. 3对3. 如图,在正方形ABCD 中,E 为BC 中点,3DF FC . 联结AE AF EF 、、.那么下列结果错误的是( )A. ABE △与ECF 相似B. ABE △与AEF 相似C. ABE △与ADF 相似D. AEF 与ECF 相似4. 如图,已知△ABC 和△ADE 均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,图中相似的三角形有( )对.A. 3B. 4C. 5D. 65. 如图,在矩形ABCD 中,点,E F 分别在,BC CD 边上,,EF AE BH AC ⊥⊥于点H ,EF 与AC 交于点M ,BH 与AE 交于点N ,则下列结论错误的是A. EFC AEB ∆∆B. ECM ABN ∆∆C. CFM BEN ∆∆D. ANH EFC ∆∆ 6. 如图,已知矩形ABCD 中,点E 是边AD 上的任一点,连接BE ,过E 作BE 的垂线交BC 延长线于点F ,交边CD 于点P ,则图中共有相似三角形( )A. 6对B. 5对C. 4对D. 3对7. 如图,E 是正方形ABCD 的边BC 上一点,下列条件中:①BAE CEF ∠∠=;②AEB EFC ∠∠=;③AE EF ⊥;④AB BE EC CF =;⑤AE AB EF EC=.其中能使ABE ECF ∽的有( )A. ①②B. ①②③C. ①②③④D. ①②③④⑤8. 如图,在矩形ABCD 中,点E 为AD 上一点,且AB =8,AE =3,BC =4,点P为AB 边上一动点,连接PC 、PE ,若△PAE 与△PBC 是相似三角形,则满足条件的点P 的个数为( )A. 1B. 2C. 3D. 49. 如图,已知矩形AOBC 的顶点O 在坐标原点,点A 的坐标是(-2,1),点B 的纵坐标是3,则点C 的坐标是( )A. 1,42⎛⎫- ⎪⎝⎭B. 2,43⎛⎫- ⎪⎝⎭C. 1,2⎛- ⎝D. 2,3⎛- ⎝10. 如图,矩形ABCO ,点A 、C 在坐标轴上,点B 的坐标为()2,4-.将△ABC 沿AC 翻折,得到△ADC ,则点D 的坐标是( )A. 612,55⎛⎫ ⎪⎝⎭B. 65,52⎛⎫ ⎪⎝⎭C. 312,25⎛⎫ ⎪⎝⎭D. 35,22⎛⎫ ⎪⎝⎭二、填空题11. 如图,在矩形ABCD 中,AB =10,AD =4,P 是CD 边上的一个动点,则当△ADP 与△BCP 相似时,DP =__________.12. 如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在点Q 处,EQ 与BC 交于点G ,则EBG 的周长是________cm .13. 如图,将矩形纸片ABCD 沿AE 折叠,使点B 落在对角线AC 上的点F 处,再沿EG 折叠,使点C 落在矩形内的点H 处,且E 、F 、H 在同一直线上,若6AB =,8BC =,则CF =______,CG = ______.14. 如图,AB =4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE =12DB ,作EF ⊥DE ,并截取EF =DE ,连接AF 并延长交射线BM 于点C ,设BE =x ,BC =y ,则y 关于x 的函数解析式为_____.15. 如图,在边长为7的正方形ABCD 中放入四个小正方形后形成一个中心对称图形,其中两顶点E ,F 分别在边BC ,AD 上,则放入的四个小正方形的面积之和为___ .16. 如图,在矩形ABCD中,AB=3,BC=4,点P为射线BC上的一个动点,过点P的直线PQ垂直于AP与直线CD相交于点Q,当BP=5时,CQ=_____.17. 如图,P为线段AB上一点,AD与BC交于点E,∠CPD=∠A=∠B,BC交PD于点F,AD交PC于点G,则图中相似三角形有_____对.18. 如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕AE=,且34ECFC=,那么该矩形的周长为______cm.19. 如图,在矩形ABCD中,AB=2,BC=3,点M是BC边上的一个动点(点M 不与点B、C重合),BM=x,将△ABM沿着AM折叠,使点B落在射线MP上的点B′处,点E是CD边上一点,CE=y,将△CME沿ME折叠,使点C也落在射线MP 上的点C ′处,当y 取最大值时,△C ′ME 的面积为_____.20. 如图,在ABC 中,已知4AB AC ==,6BC =,P 是BC 边上的一动点(P 不与点B ,C 重合),连接AP ,B APE ∠=∠,边PE 与AC 交于点D ,当APD △为等腰三角形时,PB 的长为____.三、解答题21. 如图,,,6,4,14AB BD CD BD AB CD BD ⊥⊥===,点P 在BD 上移动,当以P ,C ,D 为顶点的三角形与ABP △相似时,求BP 的长.22. 如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE .且∠B =∠ADE =∠C .(1)证明:△BDA ∽△CED ;(2)若∠B =45°,BC =6,当点D 在BC 上运动时(点D 不与B 、C 重合).且△ADE 是等腰三角形,求此时BD 的长.23. 如图,在ABC 中,AB AC =,点E 在边BC 上,满足DEF B ∠=∠,且点D ,F 分别在边AB ,AC 上. 求证:BDE ∽CEF △.24. 如图,已知AB BD ⊥,CD BD ⊥.(1)若9AB =,4CD =,10BD =,请问在BD 上是否存在点P ,使以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?若存在,求BP 的长;若不存在,请说明理由;(2)若9AB =,4CD =,12BD =,请问在BD 上存在几个点使以三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?并求BP 的长.25. 如图1,两个全等的等边三角形如图放置,AC 与DE 交于点G ,点D 是AB 的中点,BC 与DF 交于点K ,连接GK.(1)写出两对相似(不含全等)三角形;(2)求证:GKD BKD ∠=∠;(3)若将条件中的两个全等的等边三角形改为两个全等的等腰三角形(DF EF AC BC ===),如图2,其余条件不变,直接判断(1)(2)中的结论是否依然成立.26. 感知:数学课上,老师给出了一个模型:如图1,点A 在直线DE 上,且90BDA BAC AEC ∠=∠=∠=︒,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角”模型.(1)如图2,Rt ABC △中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ≌;(2)如图3,在ABC 中,D 是BC 上一点,90CAD ∠=︒,AC AD =,DBA DAB ∠=∠,AB =C 到AB 边的距离;(3)如图4,在ABCD 中,E 为边BC 上的一点,F 为边AB 上的一点.若DEF B ∠=∠,10AB =,6BE =,求EF DE 的值.专题4.39 相似三角形几何模型-一线三等角(巩固篇)(专项练习)一、单选题【1题答案】【答案】C【解析】【分析】如图,以AB 为直径作⊙O 交CD 于点P 1,P 2,连接AP 1,BP 1,AP 2,BP 2.则△ADP 1∽△△P 1CB ,,△ADP 2∽△△P 2CB ,取CD 的中点P 3,连接AP 3,BP 3,则△ADP 3∽△P 3CB ,由此可得结论.【详解】解:如图,以AB 为直径作⊙O 交CD 于点P 1,P 2,连接AP 1,BP 1,AP 2,BP 2.∵AB 为⊙O 直径,∴190∠=︒APB ,∴1190APD BPC ∠+∠=︒ ,ABCD 为矩形,90ADC ∠=︒ ,∴1190DAP APD ∠+∠=︒ ,∴11DAP BPC ∠=∠ ,∴△ADP 1∽△P 1CB ,同理△ADP 2∽△P 2CB ,取CD 的中点P 3,连接AP 3,BP 3,则同理△ADP 3∽△P 3CB ,故选:C .【点睛】本题考查相似三角形的判定,矩形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【2题答案】【答案】A【解析】【分析】根据矩形的性质,得到直角和平行线,利用相似三角形的判定和性质进行推理判断即可.【详解】∵四边形ABCD是矩形,∴∠EDP=∠FCP=90°,∵∠EPD=∠FPC,∴△EDP∽△FCP;∵∠FEP=∠FCP=90°,∵∠F=∠F,∴△FEB∽△FCP;∴△FEB∽△EDP;∵四边形ABCD是矩形,∴∠A=∠D=90°,∵∠BEF=90°,∴∠AEB+∠DEP=90°,∠AEB+∠ABE=90°,∴∠DEP=∠ABE,∴△EDP∽△BAE;∴△FCP∽△BAE;∴△FEB∽△BAE;共有6对,故选A.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,互余原理,熟练掌握三角形相似的判定定理是解题的关键.【3题答案】【答案】C【解析】【分析】根据正方形的性质及勾股定理逆定理可以判断△AEF 是直角三角形,再根据三角形相似的判定可以选出结果错误的选项.【详解】解:设正方形边长为1 ,则由已知可得:54AE EF AF ======,∴222552541616AE EF AF +=+==,∴△AEF 是直角三角形,∴在RT △ABE 、RT △ECF 、RT △ADF 、RT △AEF 中,∠B=∠C=∠AEF=∠D ,42,3AB EC AE AD BE CF EF DF ====,∴RT △ABE 、RT △ECF 、RT △AEF 两两相似,但是△ABE 与 △ADF 不相似,∴A 、B 、D 正确,C 错误,故选C .【点睛】本题考查正方形与三角形相似的综合应用,灵活运用正方形的性质和三角形相似的判定是解题关键.【4题答案】【答案】C【解析】【分析】由等边三角形的性质得出∠BAC =∠B =∠C =∠DAE =∠ADE =∠E =60°,得出△ABC ∽△ADE ,再证出∠BAD =∠FAE ,得出△ABD ∽△AEF ;由∠AFE =∠DFC ,∠E =∠C ,证出△AEF ∽△DCF ,得出△ABD ∽△DCF ;由∠DAF =∠CAD ,∠ADF =∠C ,即可得出△ADF ∽△ACD .【详解】解:图中的相似三角形有△ABC ∽△ADE ,△ABD ∽△AEF ,△AEF ∽△DCF ,△ABD ∽△DCF ,△ADF ∽△ACD ;理由如下:∵△ABC 和△ADE 均为等边三角形,∴∠BAC =∠B =∠C =∠DAE =∠ADE =∠E =60°,∴△ABC ∽△ADE ;∵∠BAC =∠DAE ,∴∠BAD =∠FAE ,∴△ABD ∽△AEF ;∵∠AFE =∠DFC ,∠E =∠C ,∴△AEF ∽△DCF ,∴△ABD ∽△DCF ;∵∠DAF =∠CAD ,∠ADF =∠C ,∴△ADF ∽△ACD ,故选:C .【点睛】本题考查了等边三角形的性质、相似三角形的判定与性质;熟练掌握等边三角形的性质,并能进行推理论证与计算是解决问题的关键.【5题答案】【答案】D【解析】【分析】根据矩形四个角都是直角,又,EF AE BH AC ⊥⊥,利用等角的余角相等,逐个判别可以得出结论.【详解】如图:A. 在EFC AEB ∆∆、中,∵四边形ABCD 是矩形,且,EF AE BH AC⊥⊥∴1290∠+∠︒=,4290∠+∠︒=41∴∠=∠,且90ECF ABE ∠+∠︒=EFC AEB ∆∆ ,A 正确;B. 在ECM ABN ∆∆、中,∵四边形ABCD 是矩形,且,EF AE BH AC⊥⊥∴1290∠+∠︒=,190BAN ∠+∠=︒,则2BAN∠=∠∵390BAH ∠+∠︒=,90ABH ABH ∠+∠=︒,则3ABN∠=∠ECM ABN ∆∆ ,B 正确;C. 在CFM BEN ∆∆、中由前面知:3ABN ∠=∠,又390MCF ∠+∠︒=,90ABN NBE ∠+∠=︒, 则MCF NBE ∠=∠,又∵14∠∠=,CFM BEN ∆∆ ,C 正确;D.在ANH EFC ∆∆、中已经知道:2BAN ∠=∠,而AE 并不是BAC ∠的角平分线,∴2NAH ∠≠∠,ANH EFC ∆∆ ,错误.故选D .【点睛】本题考查了矩形的性质,同角或等角的余角相等,相似三角形的证明,熟练掌握相似三角形的证明方法是解题的关键.【6题答案】【答案】A【解析】【分析】根据矩形的性质,得到直角和平行线,利用相似三角形的判定和性质进行推理判断即可.【详解】∵四边形ABCD 是矩形,∴∠EDP =∠FCP =90°,∵∠EPD =∠FPC ,∴△EDP ∽△FCP ;∵∠FEP =∠FCP =90°,∵∠F =∠F ,∴△FEB ∽△FCP ;∴△FEB ∽△EDP ;∵四边形ABCD 是矩形,∴∠A =∠D =90°,∵∠BEF =90°,∴∠AEB +∠DEP =90°,∠AEB +∠ABE =90°,∴∠DEP =∠ABE ,∴△EDP ∽△BAE ;∴△FCP ∽△BAE ;∴△FEB ∽△BAE ;共有6对,故选A .【点睛】本题考查了矩形的性质,相似三角形的判定与性质,互余原理,熟练掌握三角形相似的判定定理是解题的关键.【7题答案】【答案】D【解析】【分析】对于①②④,直接利用相似三角形的判定方法判断即可;对于③,先利用同角的余角相等转化为①,即可进行判断,对于⑤,利用比例的性质和勾股定理进行判断.【详解】解:∵∠B =∠C =90°,∴只要满足BAE CEF ∠=∠或AEB EFC ∠=∠,均可判定△ABE ∽△ECF ,所以①②都正确;③中,当AE EF ⊥时,∵∠AEB +∠BAE =90°,∠AEB +∠CEF =90°,∴∠BAE =∠CEF ,∴△ABE ∽△ECF ,故③正确;④中对应边成比例,且夹角均为90°,∴△ABE ∽△ECF ,故④正确;⑤中,当AE AB EF EC =时,则AE EF AB EC =,即2222AE EF AB EC=,∴222222AE AB EF EC AB EC =--,∴2222BE CF AB EC =,∴BE CF AB EC =,又∵∠B =∠C =90°,∴△ABE ∽△ECF ,∴⑤正确;综上,故选D.【点睛】本题考查了正方形的性质、相似三角形的判定和性质、比例的性质和勾股定理等知识,熟知相似三角形的判定与性质是判断①②③④的关键,对于⑤,则需综合运用比例的性质和勾股定理进行判断.【8题答案】【答案】C【解析】【分析】设AP =x ,则BP =8﹣x ,分△PAE ∽△PBC 和△PAE ∽△CBP 两种情况,根据相似三角形的性质列出比例式,计算即可.【详解】解:设AP =x ,则BP =8﹣x ,当△PAE ∽△PBC 时,AE PA BC PB =,即348x x =-,解得,247x =,当△PAE ∽△CBP 时,AE PA PB BC=,即384x x =-,解得,x =2或6,可得:满足条件的点P 的个数有3个.故选:C .【点睛】本题考查了相似三角形的性质,解答时,注意分情况讨论思想的灵活运用.【9题答案】【答案】A【解析】【分析】作BD x ⊥轴于点D , 过点A 作FE x ⊥轴于点E ,过点C 作FG y ⊥轴于点G ,先通过角度等量代换证明EAO DOB ∆∆ ,求出32OD =,再证明DBO FAC ∆≅∆,求出FC ,AF ,则CG OE CF =-,EF AE FA =+,由此可解.【详解】解:如图,作BD x ⊥轴于点D , 过点A 作FE x ⊥轴于点E ,过点C 作FG y ⊥轴于点G ,∵点A 的坐标是(-2,1),点B 的纵坐标是3,∴1AE =,2OE =,3BD =,∵BD x ⊥轴,FE x ⊥轴,FG y ⊥轴,∴90AFC OEA BDO ∠=∠=∠=︒,∵ 四边形AOBC 是矩形,∴90CAO AOB ∠=∠=︒,∴=90EAO EOA DOB EOA ∠+∠=∠+∠︒,∴EAO DOB ∠=∠,∴EAO DOB ∆∆ ,∴OD BD AE OE =,即312OD =,∴32OD =.∵ 四边形AOBC 是矩形,∴AC OB =,∵=90EAO EOA FAC EAO ∠+∠=∠+∠︒,∴EOA FAC ∠=∠,又∵EAO DOB ∆∆ ,∴EOA DBO ∠=∠,∴DBO FAC ∠=∠,在DBO ∆和FAC ∆中,DBO FAC ODB CFA AC OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴DBO FAC ∆≅∆,∴32FC OD ==,3AF BD ==,∴31222CG OE CF =-=-=,134EF AE FA =+=+=,∵点C 在第二象限,∴点C 的坐标是1,42⎛⎫- ⎪⎝⎭.故选A .【点睛】本题考查矩形的性质、平面直角坐标系内点的坐标,全等三角形的判定与性质,相似三角形的判定与性质等知识点,通过作辅助线构造全等及相似三角形是解题的关键.【10题答案】【答案】A【解析】【分析】如图,过D 作DE x ⊥轴于点E ,延长BC 交DE 于F ,由题意知,四边形ABFE 是矩形,由翻折的性质可知90ADC ∠=︒,4AD AB ==,2CD BC ==,则2AE CF =+,4DF DE =-,证明ADE DCF △∽△,则AD DE AE DC CF DF ==,即4224DE CF CF DE+==-,计算求出CF 、DE 的长,进而可得D 点坐标.【详解】解:如图,过D 作DE x ⊥轴于点E ,延长BC 交DE 于F ,由题意知,四边形ABFE 是矩形,由翻折的性质可知90ADC ∠=︒,4AD AB ==,2CD BC ==,∴2AE CF =+,4DF DE =-,∵90DAE ADE ∠+∠=︒,90ADE CDF ∠+∠=︒,∴DAE CDF ∠=∠,∴ADE DCF △∽△,∴AD DE AE DC CF DF ==,即4224DE CF CF DE+==-,解得65CF =,125DE =,∴612,55D ⎛⎫ ⎪⎝⎭,故选A .【点睛】本题考查了翻折的性质,矩形的判定与性质,相似三角形的判定与性质.解题的关键在于构造ADE 、DCF ,利用相似的判定与性质求出线段CF 、DE 的长.二、填空题【11题答案】【答案】2或8或5【解析】【分析】需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC ,分别根据相似三角形的对应边成比例求得DP 的长度即可.【详解】解:在矩形ABCD 中,AB =CD =10,AD =BC =4,①当△APD ∽△PBC 时,可得AD PD PC BC=,即4104PD PD =-,解得:PD =2或PD =8;②当△PAD ∽△PBC 时,可得AD PD BC PC=,即4410PD PD =-,解得:DP =5.综上所述,DP 的长度是2或8或5.故答案为:2或8或5.【点睛】本题考查了矩形的性质,相似三角形的性质.熟练掌握相似三角形的性质是解题的关键.【12题答案】【答案】12【解析】【分析】首先根据翻折的性质可得DF =EF ,设EF =x cm ,表示出AF ,然后利用勾股定理列方程求出x ,从而得到AF 、EF 的长,再证出△AEF 和△BGE 相似,根据相似三角形对应边成比例列式求出BG 、EG ,然后根据三角形周长的定义列式计算即可得解.【详解】解:由翻折的性质得,DF =EF ,设EF =x cm ,则AF =(6−x )cm ,∵点E 是AB 的中点,∴()1632AE BE cm ==⨯=,在Rt △AEF 中,AE 2+AF 2=EF 2,即32+(6−x )2=x 2,解得154x =,∴154EF =,()159644AF cm =-=,∵∠FEG =∠D =90°,∴∠AEF +∠BEG =90°,∵∠AEF +∠AFE =90°,∴∠BEG =∠AFE ,又∵∠B =∠A =90°,∴△BGE ∽△AEF ,∴BE BG EG AF AE FE==,即3915344BG EG ==,∴BG =4cm ,EG =5cm ,∴△EBG 的周长=3+4+5=12(cm).故答案为:12.【点睛】本题考查了翻折变换的性质,勾股定理,相似三角形的判定与性质,熟记性质并求出△AEF 的各边的长,利用相似三角形的性质求出△EBG 各边的长是解题的关键.【13题答案】【答案】①. 4 ②. 52##2.5【解析】【分析】根据折叠的性质得到BE =EF ,AF AB =,利用勾股定理求出AC ,进而求出CF ,设BE x =,则EF x =,8CE x =-,在Rt CEF 中,由勾股定理得222EF CF EC +=,即()22248x x +=-,解方程求出BE ,进而求出CE ,再证ABE ECG ∽,即有BE AB CG EC=,则问题得解.【详解】根据折叠的性质有BE =EF ,AF AB =,∵8BC =,6AB =,则设BE x =,则EF x =,8CE x =-,6AF AB ==,在Rt ABC 中,由勾股定理得10AC ==,∴1064CF AC AF =-=-=,根据折叠的性质有∠B =∠AFE =90°,则有∠EFC =90°,在Rt CEF 中,由勾股定理得222EF CF EC +=,即()22248x x +=-,解得3x =,∴3BE =,5CE =,由折叠的性质得,12AEF BEF ∠=∠,12GEF CEF ∠=∠,∴90AEG ∠=︒,∴90CEG AEB ∠+∠=︒,又∵90BAE AEB ∠+∠=︒,∴BAE CEG ∠∠=,又∵90B ECG ∠=∠=︒,∴ABE ECG ∽,∴BE AB CG EC=,即365CG =,∴52CG =.故答案为:4,52.【点睛】本题考查了折叠的性质、勾股定理、相似三角形的判定与性质、一元二次方程的应用等知识,证得ABE ECG ∽进而得到BE AB CG EC =是解答本题的关键.【14题答案】【答案】y =124x x -(0<x ≤2)【解析】【分析】作FH ⊥BC 于H .证明△DBE ≌△EHF ,则FH =BE =x ,EH =BD =2BE =2x ,由0BD AB <≤求得自变量的范围,根据FH ∥AB ,得FH AB =CH CB,即可求解.【详解】解:作FH ⊥BC 于H .∵∠DBE =∠DEF =∠EMF =90°,∴∠DEB +∠BDE =90°,∠DEB +∠FEH =90°,∴∠BDE =∠FEH .在△DBE 和△EHF 中,BDE FEH B EHF DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EHF,BE =12DB ,∴FH =BE =x ,EH =BD =2BE =2x ,0BD AB <≤ , AB =4,024x ∴<≤,即02x <≤∵FH ∥AB ,CFH CAB∴ ∽∴FH AB =CH CB,∴4x =3y x y -,∴y =124x x-(0<x ≤2).故答案为:y =124x x -(0<x ≤2).【点睛】本题考查了全等三角形的性质与判定,相似三角形的性质与判定,函数关系式,证明CFH CAB ∽是解题的关键.【15题答案】【答案】22【解析】【分析】作GH ⊥BC ,证明△GHE ∽△EMN ,根据相似三角形的性质得到GH =2EM ,HE =2MN ,根据正方形的性质列方程求出MN ,根据勾股定理、正方形的面积公式计算,得到答案.【详解】解:如图,作GH ⊥BC ,则∠HGE +∠HEG =∠HEG +∠MEN =90°,∴∠HGE =∠MEN ,∵∠GHE =∠EMN =90°,∴△GHE ∽△EMN ,∴12HE HG EG MN EM EN ===,∴2,2GH EM HE MN ==,设MN x =,则2HE x =,∴74EM x =-,∴()2274GH EM x ==-,∴()274AB x x =+-,即:()7274x x =+-,解得:1x =,∴743EM x =-=,∴EN ===,∴2GE EN ==∴四个小正方形的面积之和22122=⨯+=.故答案为:22.【点睛】本题考查的是相似三角形的判定和性质、中心对称图形的概念,掌握相似三角形的判定定理和性质定理、正方形的性质是解题的关键.【16题答案】【答案】53【解析】【分析】通过证明△ABP ∽△PCQ ,可得AB BP CP CQ= ,即可求解.【详解】解:如图,∵BP=5,BC=4,∴CP=1,∵PQ⊥AP,∴∠APQ=90°=∠ABC,∴∠APB+∠BAP=90°=∠APB+∠BPQ,∴∠BAP=∠BPQ,又∵∠ABP=∠PCQ=90°,∴△ABP∽△PCQ,∴AB BP CP CQ=,∴35 1CQ =∴CQ=53,故答案为:53.【点睛】本题考查相似三角形、矩形的性质.根据题意找相似的条件是关键.利用相似比计算线段的长度是常用的方法.【17题答案】【答案】3【解析】【分析】先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角.【详解】解:∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.则图中相似三角形有3对,故答案为:3.【点睛】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角.【18题答案】【答案】72【解析】【分析】根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据34ECFC=,设CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【详解】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°-90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵34 ECFC=,∴设CE=3k,CF=4k,∴58 EF DE k AB CD k =====,,∵∠BAF=∠EFC ,且∠B=∠C=90°∴△ABF ∽△FCE ,∴AB BF FC CE =,即843k BF k k=,∴BF=6k ,∴BC=BF+CF=10k=AD ,∵AE 2=AD 2+DE 2,∴500=100k 2+25k 2,∴k=2∴AB=CD =16cm ,BC=AD=20cm ,∴四边形ABCD 的周长=72cm故答案为72.【点睛】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.【19题答案】【答案】2732.【解析】【分析】由折叠的性质得:∠AMB '=∠AMB ,∠EMC '=∠EMC ,得出∠AME =90°,∠AMB +∠EMC =90°,得出∠BAM =∠EMC ,证出△ABM ∽△MCE ,得出2,3BM AB x CE CM y x ==-即,求出221313922228y x x x ⎛⎫=-+=--+ ⎪⎝⎭,当x =32时,y 取最大值98,即CE =98,由三角形面积公式即可得出△C 'ME 的面积.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠C =90°,∴∠AMB +∠BAM =90°,由折叠的性质得:∠AMB '=∠AMB ,∠EMC '=∠EMC ,∵∠AMB '+∠AMB +∠EMC '+∠EMC =180°,∴∠AME =90°,∠AMB +∠EMC =90°,∴∠BAM =∠EMC ,∴△ABM ∽△MCE ,∴2,3BM AB x CE CM y x==-即∴221313922228y x x x ⎛⎫=-+=--+ ⎪⎝⎭,当x =32时,即CE =98即BM =32,CM =BC ﹣BM =32时,y 取最大值98,即CE =98,此时△C 'ME 的面积=△CME 的面积1392722832=⨯⨯=,故答案为2732.【点睛】本题考查了矩形的性质、翻折变换的性质、相似三角形的判定与性质等知识;熟练掌握翻折变换的性质,证明三角形相似是解决问题的关键.【20题答案】【答案】2或103【解析】【分析】分三种情况进行讨论:①当AP=PD 时,易得△ABP ≌△PCD .②当AD=PD 时,根据等腰三角形的性质,勾股定理以及三角形的面积公式求得答案.③当AD=AP 时,点P 与点B 重合.【详解】∵4AB AC ==,∴B C∠=∠∵B APE ∠=∠,APC B BAP APE CPE∠=∠+∠=∠+∠∴BAP CPE∠=∠①当AP PD =时,ABP PCD ≌,则4PC AB ==,故2PB =.②当AD PD =时,∴PAD APD ∠=∠.∵B APD C ∠=∠=∠,∴PAD C ∠=∠,∴PA PC =.如图,过P 作PH AC ⊥于H ,过A 作AG BC ⊥于G ,∴3CG =,AG ∴===,∴2CH =.设PC x =,∴1122APC S AG PC AC PH ∆=⋅=⋅,4PH =,PH x ∴=.∵222PC PH CH =+,∴224x ⎫=+⎪⎭,解得83x =(负值舍去),∴83PC =,∴103PB =.③当AD AP =时,点P 与点B 重合,不合题意.综上所述,PB 的长为2或103.【点睛】此题考查了勾股定理、全等三角形的判定和性质、等腰三角形的性质,熟练掌握性质定理是解题的关键.三、解答题【21题答案】【答案】当BP 为8.4或2或12时,以C 、D 、P 为顶点的三角形与以P 、B 、A 为顶点的三角形相似.【解析】【分析】设DP =x ,则BP =BD -x =14-x ,根据垂直的定义得到∠B =∠D =90°,再根据两组对应边的比相等且夹角对应相等的两个三角形相似,当AB BP CD DP =时,△ABP ∽△CDP ,即6144x x -=;当AB BP DP DC=时,△ABP ∽△PDC ,即6144x x -=;然后分别解方程求出x 即可.【详解】解:设DP =x ,则BP =BD -x =14-x ,∵AB ⊥BD 于B ,CD ⊥BD 于D ,∴∠B =∠D =90°,∴当AB BP CD DP =时,△ABP ∽△CDP ,即6144x x-=,解得2828148.455x BP ==-=,;当AB BP DP DC =时,△ABP ∽△PDC ,即6144x x -=,整理得x 2-14x +24=0,解得x 1=2,x 2=12,BP =14-2=12,BP =14-12=2,∴当BP 为8.4或2或12时,以C 、D 、P 为顶点的三角形与以P 、B 、A 为顶点的三角形相似.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.【22题答案】【答案】()见解析;(2)6-或3.【解析】【分析】(1)根据题目已知条件可知180ADE ADB EDC ∠+∠+∠=︒,180B ADB DAB ∠+∠+∠=︒,所以得到DAB EDC ∠=∠,即可得证.(2)由题意易得ABC 是等腰直角三角形,所以90BAC ∠=︒,当ADE 是等腰三角形时,根据分类讨论有三种情况:①AD =AE ,②AD =DE ,③AE =DE ;因为点D 不与B C 、重合,所以第一种情况不符合,其他两种情况根据等腰三角形的性质“等边对等角”及45B ADE ∠=∠=︒,求出问题即可.【详解】(1) 180ADE ADB EDC ∠+∠+∠=︒在ABD △中,180B ADB DAB ∠+∠+∠=︒B ADE∠=∠∴EDC DAB∠=∠又B C∠=∠ ∴BDA CED △∽△;(2) B ADE C ∠=∠=∠,45B ∠=︒∴ABC 是等腰直角三角形∴90BAC ∠=︒BC =6,∴AB =AC BC ①当AD =AE 时,则ADE AED∠=∠ 45B ∠=︒,∴=45B ADE AED ∠=∠∠=︒∴90DAE ∠=︒∴90DAE BAC ∠=∠=︒点D 在BC 上运动时(点D 不与B C 、重合),点E 在AC 上∴此情况不符合题意.②当AD =DE 时,如图,∴DAE DEA∠=∠∴由(1)可知EDC DAB∠=∠又B C∠=∠ :BDA CED≌∴AB =DC =∴6BD =-③当AE =DE 时,如图45B ∠=︒,∴==45B C DAE ADE ∠∠∠=∠=︒∴AD 平分BAC ∠,AD BC⊥∴1=32BD BC =.综上所述:BD =6-或3.【点睛】本题主要考查相似三角形的判定及等腰三角形的存在性问题,解题的关键是利用“K ”型相似模型及根据“等边对等角”、等腰直角三角形的性质得到线段的等量关系,进而求解问题.【23题答案】【答案】见详解.【解析】【分析】由等边对等角得B C ∠=∠,由三角形的内角和定理,得到EDB FEC ∠=∠,即可得到结论成立.【详解】证明:∵AB AC =,∴B C ∠=∠,∵180,180,B BED EDB BED DEF FEC DEF B ∠+∠+∠=︒∠+∠+∠=︒∠=∠,∴EDB FEC ∠=∠,∵B C ∠=∠,∴BDE CEF △∽△.【点睛】本题考查了相似三角形的判定定理:两个角对应相等,则这两个三角形相似.【24题答案】【答案】(1)存在,9013BP =,见解析;(2)存在2个点P 点,6BP =或10813,见解析.【解析】【分析】(1)存在1个P 点,设BP=x ,根据∠B=∠D=90°和相似三角形的判定得出当AB BP PD DC=或AB BP CD DP =时,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似,代入求出即可;(2)存在两个P 点,设BP=x ,根据∠B=∠D=90°和相似三角形的判定得出当AB BP PD DC =或AB BP CD DP=时,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似,代入求出即可.【详解】解:(1)存在1个P 点.设BP x =,则10PD x =-.∵AB BD ⊥,CD BD ⊥,∴B D ∠=∠.当ABP PDC ∆∆∽时,AB BP PD DC =,即9104x x =-.整理,得210360x x -+=,∵2(10)4136440∆=--⨯⨯=-<,∴此方程没有实数解;②当ABP CDP ∆∆∽时,AB BP CD DP=,即9410x x =-,解得9013x =.综上所述,BP 的长为9013;(2)存在2个点P.设BP x =,则12PD x =-.∵AB BD ⊥,CD BD ⊥,∴B D ∠=∠.①当ABP PDC ∆∆∽时,AB BP PD DC =,即9124x x =-,解得126x x ==;②当ABP CDP ∆∆∽时,即AB BP CD DP =,即9412x x=-,解得10813x =.综上所述,BP 的长为6或10813.【点睛】本题考查了相似三角形的判定和性质以及解一元二次方程,根据题意进行分类讨论是解题关键.【25题答案】【答案】(1)DAG KBD ∽△△,DGK BDK ∽△△;(2)见解析;(3)成立.【解析】【分析】(1)由等边三角形的性质得出∠A=∠B=∠EDF=60°,再由三角形的外角性质得出∠AGD=∠BDK ,证出△DAG ∽△KBD ,得出对应边成比例AD DG BK DK =,证出AD=BD=2,得出BD DG BK DK=,证出△KDG ∽△KBD 即可;(2)由(1)知:△KDG ∽△KBD ,根据相似三角形的对应角相等可得出结论;(3)解法同(1)(2).【详解】解:(1)DAG KBD ∽△△,DGK BDK ∽△△.理由如下:∵△ABC 和△DEF 是两个全等的等边三角形,∴∠A=∠B=∠EDF=60°,∵∠BDG=∠A+∠AGD ,∠BDG=∠BDK+∠EDF ,∴∠AGD=∠BDK ,∴△DAG ∽△KBD ,∴AD DG BK DK=,∵点D 是AB 的中点,∴AD=BD ,∴BD DG BK DK=,又∵∠B=∠GDK=60°,∴DGK BDK ∽△△;(2)∵DGK BDK ∽△△,∴GKD BKD ∠=∠.(3)解:(1)(2)中的结论依然成立;理由如下:∵△ABC 和△DEF 是两个全等的等腰三角形,DF=EF=AC=BC ,∴∠A=∠B=∠EDF ,∵∠BDG=∠A+∠AGD ,∠BDG=∠BDK+∠EDF ,∴∠AGD=∠BDK ,∴△DAG ∽△KBD ,∴ AD DG BK DK=,∵点D 是AB 的中点,∴AD=BD ,∴BD DG BK DK=, ∴△KDG ∽△KBD ,∴∠GKD=∠BKD.【点睛】本题是相似形综合题目,考查了相似三角形的判定与性质、等边三角形的性质、等腰三角形的性质、三角形的外角性质等知识.熟练掌握相似三角形的判定与性质是解答本题的关键.【26题答案】【答案】(1)见解析(2(3)35【解析】【分析】(1)根据“AAS ”证明BEC CDA ≌即可;(2)过D 作DF AB ⊥于点F ,过C 作CE AB ⊥交BA 延长线于点E ,可根据“AAS”证≌ CAE ADF 即可求解;(3)过D 作DM CD =交BC 的延长线于点M ,可得DCM M ∠=∠,由平行四边形ABCD 易证DEC BFE ∠=∠,故BFE MED ∽ ,由相似三角形的性质可求.【小问1详解】证明:∵90ACB ∠=︒,180BCE ACB ACD ∠+∠+∠=︒,∴90BCE ACD ∠+∠=︒.∵AD ED ⊥,BE ED ⊥,∴90BEC CDA ∠=∠=︒,90EBC BCE ∠+∠=︒,∴ACD EBC ∠=∠.又∵CB CA =,∴()BEC CDA AAS ≌.【小问2详解】解:如图,过D 作DF AB ⊥于点F ,过C 作CE AB ⊥交BA 延长线于点E .∵DBA DAB ∠=∠,∴AD BD =,∴12AF BF AB ===.∵90CAD ∠=︒,∴90DAF CAE ∠+∠=︒.∵90DAF ADF ∠∠=+︒,∴CAE ADF ∠=∠.在CAE 和ADF 中,==90==CEA AFD CAE ADF AC AD ∠∠︒⎧⎪∠∠⎨⎪⎩,∴()CAE ADF AAS ≌,∴CE AF ==,即点C 到AB【小问3详解】解:如图,过D 作DM CD =交BC 的延长线于点M ,∴DCM M ∠=∠.∵四边形ABCD 是平行四边形,∴10DM CD AB ===,AB CD ∥,∴B DCM M ∠=∠=∠.∵FEC DEF DEC B BFE ∠=∠+∠=∠+∠,B DEF ∠=∠,∴DEC BFE ∠=∠,∴BFE MED ∽ ,∴63105EF BE DE DM ===.【点睛】本题考查了全等三角形的判定与性质,平行四边形的性质,相似三角形的判定与性质,熟练运用全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.。
2022-2023学年人教版九年级数学下册《28-2相似三角形》同步培优提升训练题(附答案)
2022-2023学年人教版九年级数学下册《28.2相似三角形》同步培优提升训练题(附答案)一.选择题1.如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC =∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,不能判定△APC与△ACB相似的是()A.①B.②C.③D.④2.如图,在△ABC中,点D在AB边上,若BC=3,BD=2,且∠BCD=∠A,则线段AD 的长为()A.2B.C.3D.3.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列结论中错误的是()A.∠ACD=∠B B.CD2=AD•BDC.AC•BC=AB•CD D.BC2=AD•AB4.如图,在▱ABCD中,AB=10,AD=15,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,若BG=8,则△CEF的周长为()A.16B.17C.24D.255.如图,在一斜边长30cm的直角三角形木板(即Rt△ACB)中截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.200cm2B.170cm2C.150cm2D.100cm26.如图:在△ABC中,点D为BC边上的一点,且AD=AB=5,AD⊥AB于点A,过点D 作DE⊥AD,DE交AC于点E,若DE=2,则△ADC的面积为()A.B.4C.D.7.在平面直角坐标系中,等边△AOB如图放置,点A的坐标为(1,0),每一次将△AOB 绕着点O逆时针方向旋转60°,同时每边扩大为原来的2倍,第一次旋转后得到△A1OB1,第二次旋转后得到△A2OB2,…,以此类推,则点A2021的坐标为()A.(﹣22020,﹣×22020)B.(22021,﹣×22021)C.(22020,﹣×22020)D.(﹣22021,﹣×22021)二.填空题8.在△ABC中,D为AB边上一点,且∠BCD=∠A,已知BC=2,AB=3,则AD=.9.如图,在△ABC中,AB=15,AC=18,D为AB上一点,且AD=AB,在AC边上取一点E,便以A,D,E为顶点的三角形与△ABC相似,则AE等于.10.如图,线段AB=9,AC⊥AB于点A,BD⊥AB于点B,AC=2,BD=4,点P为线段AB上一动点,且以A、C、P为顶点的三角形与以B、D、P为顶点的三角形相似,则AP 的长为.11.如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D 在边AB上,CD⊥AE,垂足为F,则AD的长为.12.如图,在平面直角坐标系中,有一个Rt△OAB,∠ABO=90°,∠AOB=30°,直角边OB在y轴正半轴上,点A在第一象限,且OA=1,将Rt△OBA绕原点O逆时针旋转30°,同时把各边长扩大为原来的2倍(即OA1=2OA),得到Rt△OA1B1,同理,将Rt△OA1B1绕原点O逆时针旋转30°,同时把各边长扩大为原来的2倍,得到Rt△OA2B2,…,依此规律,得到Rt△OA2021B2021,则点B2021的纵坐标为.三.解答题13.如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△AED∽△ADC;(2)若AB=13,BC=10,求线段DE的长.14.如图,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F.(1)求证:△ABE∽△DEF;(2)求EF的长.15.如图,AB∥CD,AC与BD交于点E,且∠ACB=90°,AB=6,BC=6,CE=3.(1)求CD的长;(2)求证:△CDE∽△BDC.16.如图:在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.求证:BD•CD=BE•CF.17.如图,已知正方形ABCD的边长为4,点E在AD上(不与点A,D重合),EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)连接BF,设AE的长为x,DF的长为y,求y与x之间的函数表达式,并求函数y 的最大值.18.如图,在正方形ABCD中,点E在AD上,EF⊥BE交CD于点F.(1)求证:△ABE∽△DEF;(2)连接BF,若△ABE∽△EBF,试确定点E的位置并说明理由.19.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.20.已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF于F、求证:BP2=PE•PF.21.如图,CD是Rt△ABC斜边AB上的高,E为BC的中点,ED的延长线交CA于F.求证:AC•CF=BC•DF.22.在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC 向点C方向运动,动点Q从点C出发,沿线段CB向点B方向运动,如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3时,这时,P,Q两点之间的距离是多少.(2)当t为多少时,PQ的长度等于4?(3)当t为多少时,以点C,P,Q为顶点的三角形与ABC相似?23.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA 向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为(,)(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)设四边形OMPC的面积为S1,四边形ABNP的面积为S2,请你就x的取值范围讨论S1与S2的大小关系并说明理由;(4)当x为何值时,△NPC是一个等腰三角形?参考答案一.选择题1.解:①、当∠ACP=∠B,∵∠A=∠A,∴△APC∽△ACB,∴①不符合题意;②、当∠APC=∠ACB,∵∠A=∠A,∴△APC∽△ACB,∴②不符合题意;③、当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A∴△APC∽△ACB,∴③不符合题意;④、∵当AB•CP=AP•CB,即PC:BC=AP:AB,而∠P AC=∠CAB,∴不能判断△APC和△ACB相似,∴④符合题意;故选:D.2.解:∵∠BCD=∠A,∠B=∠B,∴△BCD∽△BAC,∴=,∵BC=3,BD=2,∴=,∴BA=,∴AD=BA﹣BD=﹣2=.故选:B.3.解:∵∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠B+∠BCD=90°,∴∠ACD=∠B,A正确,不符合题意;∵∠ACB=90°,CD⊥AB,∴CD2=AD•BD,B正确,不符合题意;由三角形的面积公式得,•AC•BC=AB•CD,∴AC•BC=AB•CD,C正确,不符合题意;∵∠ACB=90°,CD⊥AB,∴BC2=BD•AB,D错误,符合题意;故选:D.4.解:∵在▱ABCD中,CD=AB=10,BC=AD=15,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴DF=AD=15,同理BE=AB=10,∴CF=DF﹣CD=15﹣10=5;∴在△ABG中,BG⊥AE,AB=10,BG=8,在Rt△ABG中,AG===6,∴AE=2AG=12,∴△ABE的周长等于10+10+12=32,∵四边形ABCD是平行四边形,∴AB∥CF,∴△CEF∽△BEA,相似比为5:10=1:2,∴△CEF的周长为16.故选:A.5.解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∵EF∥BC,∴△AEF∽△ABC,∴==,∴BC=6x,在Rt△ABC中,AB==3x,∴3x=30,解得x=2,∴AC=6,BC=12,∴剩余部分的面积=×6×12﹣(4)2=100(cm2).故选:D.6.解:作CF⊥AD交AD的延长线于点F,∵AD=AB=5,AD⊥AB,∴∠B=∠ADB=45°,∵∠ADB=∠CDF,CF⊥AD,∴∠CDF=45°,∠CFD=90°,∴∠DCF=∠CDF=45°,∴CF=DF,∵AD⊥DE,AF⊥FC,∴DE∥FC,∴△ADE∽△AFC,∴,∵AD=5,DE=2,DF=CF,∴,∴,解得,CF=,∴△ADC的面积是:==,故选:D.7.解:由已知可得:第一次旋转后,A1在第一象限,OA1=2,第二次旋转后,A2在第二象限,OA2=22,第三次旋转后,A3在x轴负半轴,OA3=23,第四次旋转后,A4在第三象限,OA4=24,第五次旋转后,A5在第四象限,OA5=25,第六次旋转后,A6在x轴正半轴,OA6=26,......如此循环,每旋转6次,A的对应点又回到x轴正半轴,而2021=6×336+5,∴A2021在第四象限,且OA2021=22021,示意图如下:OH=OA2021=22020,A2021H=OH=×22020,∴A2021(22020,﹣×22020),故选:C.二.填空题8.解:∵∠BCD=∠A,∠B=∠B,∴△DCB∽△CAB,∴,∴=,∴BD=,∴AD=AB﹣BD=,故答案为:.9.解:∵△ABC∽△ADE或△ABC∽△AED,∴=或=,∵AD=AB,AB=15,∴AD=10,∵AC=18,∴=或=,解得:AE=12或.故答案为:12或.10.解:设AP=x.∵以A、C、P为顶点的三角形与以B、D、P为顶点的三角形相似,①当时,,解得x=3.②当时,,解得x=1或8,∴当以A、C、P为顶点的三角形与以B、D、P为顶点的三角形相似时,AP的长为1或3或8,故答案为1或3或8.11.解:过D作DH⊥AC于H,∵在等腰Rt△ABC中,∠C=90°,AC=15,∴AC=BC=15,∴∠CAD=45°,∴AH=DH,∴CH=15﹣DH,∵CF⊥AE,∴∠DHA=∠DF A=90°,∴∠HAF=∠HDF,∴△ACE∽△DHC,∴=,∵CE=2EB,∴CE=10,∴=,∴DH=9,∴AD=9,故答案为:9.12.解:在Rt△AOB中,∠AOB=30°,OA=1,∴OB=OA•cos∠AOB=,由题意得,OB1=2OB=×2,OB2=2OB1=×22,……OB n=2OB1=×2n=×2n﹣1,∵2021÷12=168……5,∴点B2021的纵坐标为:﹣×22020×cos30°=﹣×22020×=﹣3×22019,故答案为:﹣3×22019.三.解答题13.(1)证明:∵AB=AC,AD为BC边上的中线,∴∠BAD=∠CAD,AD⊥BC,∵AD⊥BC,DE⊥AB,∴∠AED=∠ADC=90°,∴△AED∽△ADC.(2)解:∵AD为BC边上的中线,∴BD=DC=BC=5,∵在Rt△ADB中∴AD==12,由(1)得△AED∽△ADC,∴=,∴=,∴DE=.14.(1)证明:∵四边形ABCD是矩形,∴∠D=∠A=90°,∵EF⊥BE,∴∠FEB=90°,∴∠DEF+∠AEB=90°,∠DEF+∠DFE=90°,∴∠DFE=∠AEB,∴△ABE∽△DEF.(2)在Rt△AEB中,BE==10,∵AD=12,AE=8,∴DE=4,∵△ABE∽△DEF,∴=∴=,∴EF=.15.(1)解:∵∠ACB=90°AB=6,BC=6,∴AC==12;∴AE=AC﹣CE=9,∵AB∥CD,∴△CDE∽△ABE;∴,∴CD===2,(2)证明:∵∠ACB=90°,CE=3,BC=6,∴BE==3,∵AB∥CD,∴△CDE∽△ABE,∴,∴DE=,∴BD=4,∵,,∴,∵∠D=∠D,∴△CDE∽△BDC.16.证明:∵△ABC中,AB=AC,∴∠B=∠C.∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,∴∠FDC=∠DEB,∴△BDE∽△CFD,∴=,即BD•CD=BE•CF.17.证明:(1)∵四边形ABCD是正方形,∴∠A=∠D=90°,∴∠ABE+∠AEB=90°,∵EF⊥BC,∴∠AEB+∠DEF=90°,∴∠ABE=∠DEF,又∵∠A=∠D,∴△ABE∽△DEF;(2)∵△ABE∽△DEF,∴,∴,∴y=﹣(x﹣2)2+1,∴当x=2时,y有最大值为1.18.(1)证明∵四边形ABCD是正方形,∴∠A=∠D=90°.∴∠AEB+∠ABE=90°.∵EF⊥BE,∴∠AEB+∠DEF=90°.∴∠ABE=∠DEF.在△ABE和△DEF中,∠ABE=∠DEF,∠A=∠D,∴△ABE∽△DEF;(2)解:点E为AD的中点时,△ABE∽△EBF,理由如下:∵△ABE∽△DEF,∴.∵△ABE∽△EBF,∴.∴.∴DE=AE.∴点E为AD的中点.19.(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF,∴∠FDC=∠EBC,∵BE平分∠DBC,∴∠DBE=∠EBC,∴∠FDC=∠EBD,∵∠DGE=∠DGE,∴△BDG∽△DEG.(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC,∵四边形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC,∴∠BEC=67.5°=∠DEG,∴∠DGE=180°﹣22.5°﹣67.5°=90°,即BG⊥DF,∵∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°,∴∠BDF=∠F,∴BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴=,∴BG×EG=DG×DG=4,∴DG2=4,∴DG=2,∴BE=DF=2DG=4.20.证明:连接PC,∵AB=AC,AD是中线,∴AD是△ABC的对称轴.∴PC=PB,∠PCE=∠ABP.∵CF∥AB,∴∠PFC=∠ABP(两直线平行,内错角相等),∴∠PCE=∠PFC.又∵∠CPE=∠EPC,∴△EPC∽△CPF.∴(相似三角形的对应边成比例).∴PC2=PE•PF.∵PC=BP∴BP2=PE•PF.21.证明:∵∠ACB=90°,CD⊥AB,∴∠DAC+∠B=∠B+∠DCB=90°,∴∠DAC=∠DCB,且∠ACD=∠CDB,∴△ADC∽△CDB,∴=,∵E为BC中点,∴DE=CE,∴∠EDC=∠DCE=∠DAC,∴∠FDC=∠F AD,且∠F=∠F,∴△FDC∽△F AD,∴=,∴=,∴AC•CF=BC•DF.22.解:由运动知,AP=4tcm,CQ=2tcm,∵AC=20cm,∴CP=(20﹣4t)cm,∵点P在AC上运动,∴4t≤20,∴t≤5,∵点Q在BC运动,∴2t≤15,∴t≤7.5,∴0≤t≤5,(1)当t=3时,CP=8cm,CQ=6cm,在Rt△PCQ中,根据勾股定理得,PQ==10(cm);(2)在Rt△PCQ中,根据勾股定理得,PQ2=CP2+CQ2,∵PQ=4,∴(4)2=(20﹣4t)2+(2t)2,解得,t=2或t=6(舍去),即当t为2时,PQ的长度等于4;(3)∵以点C,P,Q为顶点的三角形与ABC相似,且∠C=∠C=90°,∴①△CPQ∽△CAB,∴,∴,∴t=3,②△CPQ∽△CBA,∴,∴,∴t=,即当t为3或时,以点C,P,Q为顶点的三角形与ABC相似.23.解:(1)由题意可知,C(0,3),M(x,0),N(4﹣x,3),∴点P坐标为(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4,∴S=(4﹣x)×=﹣(x﹣2)2+,∴S的最大值为,此时x=2(3)由图形知,S1=S2=S△ABC﹣S△PCN=;当0<x<2时,S1<S2;当x=2时,S1=S2;当2<x<4时,S1>S2;(4)延长MP交CB于Q,则有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,则,CN=4﹣x,PQ=x,CP=x,4﹣x=x∴x=.③若CN=NP,则CN=4﹣x.∵PQ=x,NQ=4﹣2x,在Rt△PNQ中,PN2=NQ2+PQ2∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.综上所述,x=,或x=,或x=.。
相似三角形的基本模型(一线三等角)
模型中的相似三角形(2)【基本模型】CBBC C BAAA1. 如图1,BDE EDF C B ∆⇒∠=∠=∠∽CFD ∆(一线三等角)如图2,ABD ADE C B ∆⇒∠=∠=∠∽DCE ∆(一线三直角)如图3,特别地,当D 是BC 中点时:BDE ∆∽DFE ∆∽CFD ∆⇒ED 平分BEF ∠,FD 平分EFC ∠。
2. 一线三等角辅助线添加:一般情况下,已知一条直线上有两个等角(直角)或一个直角时,可构造“一线三等角”型相似。
【巩固提高】1. 已知ABC ∆中,120,6︒=∠==BAC AC AB ,D 是BC 的中点,AB 边上有一点AC E ,延长线上有一点F ,使.C EDF ∠=∠ 已知4=BE ,则=CF427提示:,120,6︒=∠==BAC AC AB ,D 是BC 的中点∴33==CD BD 由BDE ∆∽CFD ∆∴CF DB DC BE =, 427=CF2. 如图,等边ABC ∆中,D 是边BC 上的一点,且3:1:=DC BD ,把ABC ∆折叠,使点A 落在BC 边上的点D 处.那么ANAM 的值为 75.ABC提示:由翻折可得:A MDN DN AN DM AM ∠=∠==,,设:,3,1==DC BD 则4,4=+=+DN CN DM BM ∵BDM ∆∽CND ∆, ∴753414=++===∆∆CND BDM C C DN DM AN AM 3. 在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于 FE提示:作AD NF ⊥于F ,则6==AB FN ∵MAE ∆∽EFN ∆,∴EFAMFN AE = ∵AM AE 2=∴53,321===EN FN EF4. 在矩形ABCD 中,15=AD ,点E 在边DC 上,联结AE ,△ADE 沿直线AE 翻折后点D 落到点F ,过点F 作AD FG ⊥,垂足为点G ,如果3:1:=AD DG ,那么=DEN M GGAABEBE提示:作过点F 作MN ∥BC ,分别交AB 、CD 于M 、N 。
初中数学突破中考压轴题几何模型之相似三角形中的一线三等角模型
一线三等角相似三角形判定的基本模型A字型X字型反A字型反8字型母子型旋转型双垂直三垂直相似三角形判定的变化模型AD B C E一线三等角型相似三角形三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变。
此规律需通过认真做题,细细体会。
典型例题【例△1】如图,等边ABC中,边长为6,D是BC上动点,∠EDF=60°A(△1)求证:BDE∽△CFD(2)当BD=1,FC=3时,求BEE FB D C【例△2】如图,等腰ABC中,AB=AC,D是BC中点,∠EDF=∠B,求证:△BDE∽△DFEAFEB D C【例△3】如图,在ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM 交AC于点M,使∠APM=∠B;(△1)求证:ABP∽△PCM;A(2)设BP=x,CM=y.求y与x的函数解析式,并写出函数的定义域.(△3)当APM为等腰三角形时,求PB的长.MB P C【例4】(1)在∆ABC中,AB=AC=5,BC=8,点P、Q分别在射线C B、AC上(点P不与点C、点B重合),且保持∠APQ=∠ABC.A①若点P在线段CB上(如图),且BP=6,求线段CQ的长;②若BP=x,CQ=y,求y与x之间的函数关系式,并写出函数的定义域;BQP C(2)正方形ABCD的边长为5(如图12),点P、Q分别在直线C B、DC上..(点P不与点C、点B重合),且保持∠APQ=90︒.当CQ=1时,写出线段BP的长(不需要计算过程,请直接写出结果).AB C备用图A DB C图12点评:此题是典型的图形变式题,记住口诀:“图形改变,方法不变”。
新人教版九年级数学下册《相似专题——“一线三等角”模型》教案_13
《相似专题——“一线三等角”模型》教学设计一、【教材分析】目标知识技能经历观察、比较、归纳的学习过程,归纳出“一线三等角”模型的基本特征,并且能够在不同的背景中认识和把握基本模型。
过程方法1、培养学生观察、分析、想象、归纳和逻辑推理的能力;2、体会由特殊到一般思想、分类讨论思想和化归思想方法。
情感态度敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.教学重点归纳“一线三等角”模型的基本特征。
教学难点在不同的背景中识别“一线三等角”模型,以及灵活解决该模型的相关问题。
学情分析该班级学生已完成了中考第一轮基本知识点的复习,对相似的判定以及相似性质的运用较熟练。
为提升综合解决问题的能力,设计了“一线三等角”模型的专题训练。
教学内容分析《相似》一章的教学内容位于人教版九年级下册第二十七章,是中考的重要考点之一,而“一线三等角”模型也曾多次出现在中考的压轴题里面,因此有必要对“一线三等角”模型进行专题训练。
问题设计师生活动设计意图环节一·从特殊到一般【归纳1】“K字型”条件:三个直角学生回忆曾接触过的K字型,教师引导学生回答:K字型题目一般给出什么条件,能得到什么结论。
通过回忆K字型的条件与结论,为归纳“一线三等角”模型的基本特征作铺垫。
结论:△CBE∽△EAD几何画板展示三个直角变为三个相等的锐角或钝角。
【归纳2】“一线三等角”条件:①有三个相等的角;②三等角顶点在同一直线上。
结论:△CBE∽△EAD∠B的对应角为∠C的对应角为∠BEC的对应角为BC的对应边为BE的对应边为CE的对应边为则,学生思考:当三个直角变为三个相等的锐角或钝角的时候,两三角形相似的结论是否还成立?教师引导学生得出证明两三角形相似的过程,并归纳出“一线三等角”模型的基本特征。
学生找准相似三角形的三对对应角,三对对应边,从而得出进一步推论:对应边的比相等。
通过几何画板动态展示,让学生直观感受“一线三等角”模型的几种形态。
一线三等角模型-2023年中考数学压轴大题之经典模型培优案(全国通用)(解析版)
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题4一线三等角模型在直线AB 上有一点P ,以A ,B ,P 为顶点的∠1,∠2,∠3相等,∠1,∠2的一条边在直线AB 上,另一条边在AB 同侧,∠3两边所在的直线分别交∠1,∠2非公共边所在的直线于点C ,D . 1.当点P 在线段AB 上,且∠3两边在AB 同侧时. (1)如图,若∠1为直角,则有△ACP ∽△BPD .(2)如图,若∠1为锐角,则有△ACP ∽△BPD .2.当点P 在AB 或BA 的延长线上,且∠3两边在AB 同侧时. 如图,则有△ACP ∽△BPD .3.当点P 在AB 或BA 的延长线上,且∠3两边在AB 异侧时. 如图,则有△ACP ∽△BPD . 【例1】.(2022·全国·八年级课时练习)(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D ,E .求证:DE =BD +CE .321DBPAC 3CDBP A321CPDBA321CDBAP经典例题解题策略(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC 中,AB=AC,D,A,E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若S△AEG=7,则S△AEI=______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5【分析】(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;(2)由条件可知∠BAD+∠CAE=180°-α,且∠DBA+∠BAD=180°-α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG的中点.【详解】解:(1)证明:如图1中,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE ∠BDA=∠CEAAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(2)解:成立.理由:如图2中,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,在△ADB和△CEA中,{∠BDA=∠AEC ∠DBA=∠CAEAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=∠GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI和△GNI中,{∠GIN=∠EIM EM=GN∠GNI=∠EMI,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点.∴S△AEI=12S△AEG=3.5.故答案为:3.5.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.【例2】.(2022·全国·八年级专题练习)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是____________;(2)如图2,当0<α<180°时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在△ABC中,∠BAC是钝角,AB=AC,∠BAD<∠CAE,∠BDA=∠AEC=∠BAC,直线m与CB的延长线交于点F,若BC=3FB,△ABC的面积是12,求△FBD与△ACE的面积之和.【答案】(1)DE=BD+CE(2)DE=BD+CE仍然成立,理由见解析(3)△FBD与△ACE的面积之和为4【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA =∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,由AAS证得△ADB≌△CAE,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ABF即可得出结果.(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE =AD +AE =BD +CE , 故答案为:DE =BD +CE . (2)DE =BD +CE 仍然成立,理由如下, ∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α, ∴∠DBA =∠EAC , ∵AB =AC ,∴△DBA ≌△EAC (AAS ), ∴BD =AE ,AD =CE , ∴DE =AD +AE =BD +CE ; (3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC , ∴∠CAE =∠ABD , 在△ABD 和△CAE 中, {∠ABD =∠CAE ∠BDA =∠CEA AB =AC,∴△ABD ≌△CAE (AAS ), ∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h , ∴S △ABC =12BC •h =12,S △ABF =12BF •h , ∵BC =3BF , ∴S △ABF =4,∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4, ∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.【例3】.(2022·浙江绍兴·模拟预测)如图,△ABC 中∠B =∠C =30°,∠DEF =30°,且点E 为边BC 的中点.将∠DEF 绕点E 旋转,在旋转过程中,射线DE 与线段AB 相交于点P ,射线EF 与射线CA 相交于点Q ,连结PQ .(1)如图1,当点Q 在线段CA 上时, ①求证:△BPE ∽△CEQ ;②线段BE ,BP ,CQ 之间存在怎样的数量关系?请说明理由; (2)当△APQ 为等腰三角形时,求CQBP 的值.【答案】(1)①见解析,②BE ²=BP ·CQ (2)1或3【分析】(1)①推导角度关系可得∠CEQ =∠BPE ,结合∠B =∠C 即可得出结论;②由①中相似可得BE CQ =BPCE ,结合BE =CE 即可得出结论;(2)Q 点可能在线段CA 上或者线段CA 的延长线上,分两种情况讨论,结合(1)中的相似三角形即可得出结果. (1)解:①∵∠DEF =30°,∠B =30°,∴∠BED +∠CEQ =150°,∠BED +∠BPE =150° ∴∠CEQ =∠BPE , ∵∠B =∠C , ∴△BPE ∽△CEQ ; ②BE ²=BP ·CQ ,理由如下∶ ∵△BPE ∽△CEQ ∴BE CQ =BPCE ∴BE ·CE =BP ·CQ ∵点E 为边BC 的中点,∴BE=CE,∴BE²=BP·CQ;(2)解:①当点Q在线段AC上时,∵∠A=180°-∠B-∠C=120°,为钝角,∴△APQ为等腰三角形时有AP=AQ,∵∠B=∠C,∴AB=AC,∴BP=CQ,1∴CQBP=②当点Q在线段CA的延长线上时,如图:连接PQ∵∠BAC=120°,∴∠BAQ=60°,当△APQ为等腰三角形时,有△APQ为等边三角形设AB=AC=2a,则BC=2√3a,BE=CE=√3a,设AQ=AP=x,则CQ=2a+x,BP=2a-x,由(1)得∶BE²=BP·CQ∴(√3a)²=(2a+x)(2a-x),解得∶x=a,∴BP=a,CQ=3a,∴CQBP=3综上CQBP的值为1或3.【点睛】本题考查三角形相似综合问题,熟练掌握一线三等角的相似三角形模型是解题关键.一、解答题1.(2022·全国·八年级课时练习)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时.①请说明△ADC≌△CEB的理由;②请说明DE=AD+BE的理由;(2)当直线MN绕点C旋转到图2的位置时,DE、AD、BE具有怎样的等量关系?请写出等量关系,并予以证明.(3)当直线MN绕点C旋转到图3的位置时,DE、AD、BE具有怎样的等量关系?请直接在横线上写出这个等量关系:________.【答案】(1)①理由见解析;②理由见解析(2)DE=AD−BE,证明见解析(3)DE=BE−AD【分析】本题“一线三垂直”模型即可证明全等,根据全等三角形的性质即可分别在三个图形中证明AD、EB、DE之间的关系.(1)解:①∵AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠BEC=90°,培优训练∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中{∠ADC=∠BEC ∠DAC=∠BCEAC=BC,∴△ADC≌△CEB,②∵△ADC≌△CEB,∴AD=EC,CD=BE,∵DC+CE=DE,∴AD+EB=DE,(2)结论:DE=AD−BE,∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠BCE=90°,∵∠ACB=90°,∴∠ACE+∠BCE=90°,∴∠ACD=∠EBC,∴△ADC≌△CEB,∴AD=EC,CD=BE,∴DE=EC−CD=AD−EB,(3)结论:DE=BE−AD,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵BE⊥MN,AD⊥MN,∴∠ADC=∠DEC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中{∠ADC=∠BEC ∠DAC=∠BCE AC=BC∴△ADC≌△CEB,∴AD=EC,CD=BE,∴DE=CD−EC=EB−AD.【点睛】本题考查全等三角形的判断和性质,灵活运用“一线三垂直”模型是解题的关键.2.(2022·江苏·八年级课时练习)(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:△ABD≌△CAE;(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA =∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论△ABD≌△CAE是否成立?如成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图3,D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F 为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见详解;(2)成立,理由见详解;(3)见详解【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断ΔADB≌ΔCEA;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°−α,得出∠CAE=∠ABD,然后问题可求证;(3)由题意易得BF=AF=AB=AC,∠ABF=∠BAF=∠FAC=60°,由(1)(2)易证ΔADB≌ΔCEA,则有AE=BD,然后可得∠FBD=∠FAE,进而可证ΔDBF≌ΔEAF,最后问题可得证.【详解】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在ΔADB和ΔCEA中,{∠ABD=∠CAE ∠BDA=∠CEAAB=AC,∴ΔADB≌ΔCEA(AAS);解:(2)成立,理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,∵在ΔADB和ΔCEA中,{∠ABD=∠CAE ∠BDA=∠CEAAB=AC,∴ΔADB≌ΔCEA(AAS);(3)证明:∵△ABF和△ACF均为等边三角形,∴BF=AF=AB=AC,∠ABF=∠BAF=∠FAC=60°,∴∠BDA=∠AEC=∠BAC=120°,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−120°,∴∠CAE=∠ABD,∴ΔADB≌ΔCEA(AAS),∴AE=BD,∵∠FBD=∠FBA+∠ABD,∠FAE=∠FAC+∠CAE,∴∠FBD=∠FAE,∴ΔDBF≌ΔEAF(SAS),∴FD=FE,∠BFD=∠AFE,∴∠BFA=∠BFD+∠DFA=∠AFE+∠DFA=∠DFE=60°,∴△DFE是等边三角形.【点睛】本题主要考查全等三角形的判定与性质及等边三角形的性质与判定,熟练掌握全等三角形的判定与性质及等边三角形的性质与判定是解题的关键.3.(2022·全国·九年级专题练习)感知:(1)数学课上,老师给出了一个模型:如图1,∠BAD=∠ACB=∠AED=90°,由∠1+∠2+∠BAD=180°,∠2+∠D+∠AED=180°,可得∠1=∠D;又因为ACB=∠AED=90°,可得△ABC∽△DAE,进而得到BCAC=______.我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在△ABC中,AB=AC=10,BC=12,点P是BC边上的一个动点(不与B、C重合),点D是AC边上的一个动点,且∠APD=∠B.①求证:△ABP∽△PCD;②当点P为BC中点时,求CD的长;拓展:(3)在(2)的条件下如图2,当△APD为等腰三角形时,请直接写出BP的长.【答案】感知:(1)AEDE ;应用:(2)①见解析;②3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分P A=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【详解】感知:(1)∵△ABC∽△DAE,∴BCAE =ACDE,∴BCAC =AEDE,故答案为:AEDE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP=∠CPD,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD;②BC=12,点P为BC中点,∴BP=PC=6,·∵△ABP∽△PCD,∴ABPC =BPCD,即106=6CD,解得:CD=3.6;拓展:(3)当P A=PD时,△ABP≌△PCD,∴PC=AB=10,∴BP=BC-PC=12-10=2;当AP=AD时,∠ADP=∠APD,∵∠APD=∠B=∠C,∴∠ADP=∠C,不合题意,∴AP≠AD;当DA=DP时,∠DAP=∠APD=∠B,∵∠C=∠C,∴△BCA∽△ACP,∴BCAC =ACCP,即1210=10CP,解得:CP=253,∴BP=BC−CP=12−253=113,综上所述,当△APD为等腰三角形时,BP的长为2或113.【点睛】本题考查的是三角形相似的判定定理和性质定理、全等三角形的判定定理和性质定理以及三角形的外角性质,掌握相似三角形的判定定理和性质定理是解题的关键.4.(2022·山东烟台·七年级期末)问题背景:(1)如图①,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E,易证:DE=______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,请求出DE,BD,CE三条线段的数量关系,并证明.(3)实际应用:如图③,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(−2,0),点A的坐标为(−6,3),请直接写出B点的坐标.【答案】(1)BD;CE;证明见详解;(2)DE=BD+CE;证明见详解;(3)点B的坐标为B(1,4).【分析】(1)根据全等三角形的判定和性质得到AE=BD,AD=CE,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(3)根据△AEC≌△CFB,得到CF=AE=3,BF=CE=OE−OC=4,根据坐标与图形性质解答即可.【详解】(1)证明:∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中{∠ABD=∠CAE ∠ADB=∠CEAAB=CA,∴△ADB≌△CEA,∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE,即:DE=BD+CE,故答案为:BD;CE;(2)解:数量关系:DE=BD+CE,证明:在△ABD中,∠ABD=180°−∠ADB−∠BAD,∵∠CAE=180°−∠BAC−∠BAD,∠BDA=∠AEC,∴∠ABD=∠CAE,在△ABD和△CAE中,{∠ABD=∠CAE∠BDA=∠AECAB=CA∴△ABD≌△CAE,∴AE=BD,AD=CE,∴DE=AD+AE=BD+CE;(3)解:如图,作AE⊥x轴于E,BF⊥x轴于F,由(1)可知,△AEC≌△CFB,∴CF=AE=3,BF=CE=OE−OC=4,∴OF=CF−OC=1,∴点B的坐标为B(1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2021·浙江·义乌市绣湖中学教育集团八年级阶段练习)(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①已知直线y=34x+3与y轴交于A点,与x轴交于B点,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣5上的一点,若△APD是不以A为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.【答案】(1)见解析;(2)y=−17x+3;(3)(3,1)或(9,13)或(193,233)【分析】(1)由条件可求得∠EBC=∠ACD,利用AAS可证明△BEC≌△CDA;(2)由直线解析式可求得A、B的坐标,利用模型结论可得CE=BO,BE=AO,从而可求得C点坐标,利用待定系数法可求得直线AC的解析式;(3)分两种情况考虑:如图2所示,当∠ADP=90°时,AD=PD,设D点坐标为(x,2x−5),利用三角形全等得到11−2x+x=8,易得D点坐标;如图3所示,当∠APD=90°时,AP=PD,设点P的坐标为(8,m),表示出D点坐标为(14−m,m+8),列出关于m的方程,求出m的值,即可确定出D点坐标;如图4所示,当∠ADP=90°时,AD=PD时,同理求出D的坐标.【详解】解:(1)由题意可得,∠ACB=∠ADC=∠BEC=90°,∴∠EBC+∠BCE=∠BCE+∠ACD=90°,∴∠EBC=∠ACD,在△BEC和△CDA中{∠EBC=∠ACD∠E=∠DBC=AC,∴△BEC≌△CDA(AAS);(2)过点C作CD⊥x轴于点D,如图2,x+3中,令y=0可求得x=−4,令x=0可求得y=3,在y=34∴OA=3,OB=4同(1)可证得△CDB≌△BOA,∴CD=BO=4,BD=AO=3,∴OD=4+3=7,∴C(−7,4)且A(0,3),,设直线AC解析式为y=kx+3,把C点坐标代入可得−7k+3=4,解得k=−17x+3;∴直线AC解析式为y=−17(3)如图2,当∠ADP=90°时,AD=PD,过点D作DE⊥OA于E,过点D作DF⊥BC于F,同理可得:△AED≌△DFP设D点坐标为(x,2x−5),则AE=DF=6−(2x−5)=11−2x,∵DE+DF=EF=BC,即11−2x+x=8,解得x=3,可得D点坐标(3,1);如图3,当∠APD=90°时,AP=PD,过点P作PE⊥OA于E,过点D作DF⊥PE于F,设点P的坐标为(8,m),同理可得:△APE≌△PDF,∴PF=AE=6−m,DF=PE=8,∴D点坐标为(14−m,m+8),∴m+8=2(14−m)−5,得m=5,∴D点坐标(9,13);如图4,当∠ADP=90°时,AD=PD时,同理可得△ADE≌△DPF,设D(n,2n−5),则DE=PF=n,OE=2n−5,AE=DF则DF=AE=2n−5−6=2n−11,∵DE+DF=EF=OC=8∴n+2n−11=8,解得n=193,2n−5=233∴D点坐标(193,233),综上可知满足条件的点D的坐标分别为(3,1)或(9,13)或(193,233).【点睛】本题为一次函数的综合应用,涉及全等三角形的判定与性质、等腰直角三角形的性质、旋转的性质、分类讨论及数形结合的思想,解题的关键是熟练掌握并灵活运用相关性质进行求解.6.(2022·江苏·八年级专题练习)(1)课本习题回放:“如图①,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=2.5cm,DE=1.7cm.求BE的长”,请直接写出此题答案:BE的长为________.(2)探索证明:如图②,点B,C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上,且∠BED=∠CFD=∠BAC.求证:ΔABE≌ΔCAF.(3)拓展应用:如图③,在ΔABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD 上,∠BED=∠CFD=∠BAC.若ΔABC的面积为15,则ΔACF与ΔBDE的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm;(2)见解析(3)5【分析】(1)利用AAS定理证明△CEB≌△ADC,根据全等三角形的性质解答即可;(2)由条件可得∠BEA=∠AFC,∠4=∠ABE,根据AAS可证明△ABE≌△CAF;(3)先证明△ABE≌△CAF,得到ΔACF与ΔBDE的面积之和为△ABD的面积,再根据CD=2BD故可求解.【详解】解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,{∠E=∠ADC∠EBC=∠DCABC=AC∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5cm.∵DC=CE−DE,DE=1.7cm,∴DC=2.5−1.7=0.8cm,∴BE=0.8cm故答案为:0.8cm;(2)证明:∵∠1=∠2,∴∠BEA=∠AFC.∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE.∵∠AEB=∠AFC,∠ABE=∠4,AB=AC,∴△ABE≌△CAF(AAS).(3)∵∠BED=∠CFD=∠BAC∴∠ABE+∠BAE=∠F AC+∠BAE=∠F AC+∠ACF∴∠ABE=∠CAF,∠BAE=∠ACF又AB=AC∴△ABE≌△CAF,∴S△ABE=S△CAF∴ΔACF与ΔBDE的面积之和等于ΔABE与ΔBDE的面积之和,即为△ABD的面积,∵CD=2BD,△ABD与△ACD的高相同S△ABC=5则S△ABD=13故ΔACF与ΔBDE的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.7.(2022·全国·八年级课时练习)通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(深入探究)(3)如图,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,则有S1S2(填“>、=、<”)【答案】(1)DE;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D和点E作DH⊥FG于点H,EQ⊥FG于点Q,进而可得∠BAF=∠ADH,然后可证△ABF≌△DAH,则有AF=DH,进而可得DH=EQ,通过证明△DHG≌△EQG可求解问题;(3)过点D作DO⊥AF交AF于O,过点E作EN⊥OD交OD延长线于N,过点C作CM⊥OD交OD延长线于M,由题意易得∠ADC=∠90°,AD=DC,DF=DE,然后可得∠ADO=∠DCM,则有△AOD≌△DMC,△FOD≌△DNE,进而可得OD=NE,通过证明△ENP≌△CMP及等积法可进行求解问题.【详解】解:(1)∵△ABC≌△DAE,∴AC=DE;(2)分别过点D和点E作DH⊥FG于点H,EQ⊥FG于点Q,如图所示:∴∠DAH+∠ADH=90°,∵∠BAD=90°,∴∠BAF+∠DAH=90°,∴∠BAF=∠ADH,∵BC⊥AF,∴∠BFA=∠AHD=90°,∵AB=DA,∴△ABF≌△DAH,∴AF=DH,同理可知AF=EQ,∴DH=EQ,∵DH⊥FG,EQ⊥FG,∴∠DHG=∠EQG=90°,∵∠DGH=∠EGQ∴△DHG≌△EQG,∴DG=EG,即点G是DE的中点;(3)S1=S2,理由如下:如图所示,过点D作DO⊥AF交AF于O,过点E作EN⊥OD交OD延长线于N,过点C作CM⊥OD交OD延长线于M∵四边形ABCD与四边形DEGF都是正方形∴∠ADC=∠90°,AD=DC,DF=DE∵DO⊥AF,CM⊥OD,∴∠AOD=∠CMD=90°,∠OAD+∠ODA=90°,∠CDM+∠DCM=90°,又∵∠ODA+∠CDM=90°,∴∠ADO=∠DCM,∴△AOD≌△DMC,∴S△AOD=S△DMC,OD=MC,同理可以证明△FOD≌△DNE,∴S△FOD=S△DNE,OD=NE,∴MC =NE,∵EN⊥OD,CM⊥OD,∠EPN=∠CMP,∴△ENP≌△CMP,∴S△ENP=S△CMP,∵S△ADF=S△AOD+S△FOD,S△DCE=S△DCM−S△CMP+S△DEN+S△ENP,∴S△DCE=S△DCM+S△DEN=S△AOD+S△FOD,∴S△DCE=S△ADF即S1=S2.【点睛】本题主要考查全等三角形的性质与判定、直角三角形的两个锐角互余及等积法,熟练掌握全等三角形的判定条件是解题的关键.8.(2021·北京·东北师范大学附属中学朝阳学校八年级期中)如图,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,①求证:∠EAC=∠BCF.②猜想EF、AE、BF的数量关系并证明.(2)将直线l绕点C顺时针旋转,使l与底边AB交于点D(D不与AB点重合),请你探究直线l,EF、AE、BF之间的关系.(直接写出)【答案】(1)①证明见解析,②EF=AE+BF;证明见解析;(2)AE=BF+EF或BF=AE+EF.【分析】(1)①根据∠AEC=∠BFC=90°,利用同角的余角相等证明∠EAC=∠FCB即可;②根据AAS证△EAC≌△FCB,推出CE=BF,AE=CF即可;(2)类比(1)证得对应的两个三角形全等,求出线段之间的关系即可.【详解】(1)证明:①∵AE⊥EF,BF⊥EF,∠ACB=90°,∴∠AEC=∠BFC=∠ACB=90°,∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,∴∠EAC=∠FCB,②EF=AE+BF;证明:在△EAC和△FCB中,{∠AEC =∠CFB ∠EAC =∠FCB AC =BC,∴△EAC ≌△FCB (AAS ),∴CE =BF ,AE =CF ,∴EF =CE +CF =AE +BF ,即EF =AE +BF ;(2)①当AD >BD 时,如图①,∵∠ACB =90°,AE ⊥l 直线,同理可证∠BCF =∠CAE (同为∠ACD 的余角),又∵AC =BC ,BF ⊥l 直线即∠BFC =∠AEC =90°,∴△ACE ≌△CBF (AAS ),∴CF =AE ,CE =BF ,∵CF =CE +EF =BF +EF ,∴AE =BF +EF ;②当AD <BD 时,如图②,∵∠ACB =90°,BF ⊥l 直线,同理可证∠CBF =∠ACE (同为∠BCD 的余角),又∵AC =BC ,BE ⊥l 直线,即∠AEC =∠BFC =90°.∴△ACE ≌△CBF (AAS ),∴CF =AE ,BF =CE ,∵CE =CF +EF =AE +EF ,∴BF =AE +EF .【点睛】本题考查了三角形综合题,主要涉及到了全等三角形的判定与性质,解题关键是证明△ACE ≌△CBF(AAS),利用全等三角形的性质得出线段之间的关系.9.(2021·四川达州·九年级期中)模型探究:(1)如图1,在等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:BE=CD;模型应用:(2)已知直线l1:y=2x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,如图2,求直线l2的函数表达式;(3)如图3,已知点A、B在直线y=12x+4上,且AB=4√2.若直线与y轴的交点为M,M为AB中点.试判断在x轴上是否存在一点C,使得△ABC是以AB为斜边的等腰直角三角形.【答案】(1)见解析;(2)y=−12x−1;(3)不存在这样的点C【分析】(1)证明△ACD≌△CBE(AAS),即可得到结论;(2)设点B绕点A逆时针旋转90°到点C,过点C作CD⊥x轴于点D,根据(1)求出C的坐标,将A、C的坐标代入解析式即可求出答案;(3)先求出点M(0,4),得到OM=4,假设存在这样的点C,利用反证法根据等腰直角三角形的性质得到MC= 12AB=2√2<4,由此得到假设不成立进行论证.【详解】(1)证明:∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∵∠ACB=90°,∴∠ACD+∠BCE=180°−90°=90°,又∵∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,{∠D=∠E∠ACD=∠EBCCA=CB,∴△ACD≌△CBE(AAS),∴CD=BE;(2)设点B绕点A逆时针旋转90°到点C,过点C作CD⊥x轴于点D,由(1)可知:△ACD≌△BAO,∴CD=AO,AD=OB,∵l1:y=2x+4,当x=0时,y=4,∴点B(0,4),当y=0时,2x+4=0,x=−2,∴点A(−2,0),∴CD=AO=2,AD=OB=4,∴OD=OA+AD=6,∴C(−6,2),设l2的解析式为y=kx+b,把A、C两点坐标代入,得{−2k+b=0−6k+b=2,解得{k=−12b=−1,∴l2的解析式:y=−12x−1;(3)不存在.理由:当x=0时,y=4,∴点M(0,4),∴OM=4,假设存在这样的点C,∵△ABC是以AB为斜边的等腰直角三角形,∴点C在AB的垂直平分线与x轴的交点处,∠ACB=90°又∵MA=MB,∴MC=12AB=2√2<4(与“垂线段最短”矛盾)∴假设不成立,即不存在这样的点C.【点睛】此题考查等腰直角三角形的性质,全等三角形的判定及性质,待定系数法求一次函数的解析式,反证法,熟记全等三角形的判定定理及反证法的论证方法是解题的关键.10.(2022·全国·八年级课时练习)如图,线段AB=6,射线BG⊥AB,P为射线BG上一点,以AP为边做正方形APCD,且点C、D与点B在AP两侧,在线段DP上取一点E,使得∠EAP=∠BAP,直线CE与线段AB相交于点F(点F与点A、B不重合),(1)求证:△AEP≌△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)△AEF的周长是否为定值,若是,请求出这个定值,若不是,请说明理由.【答案】(1)证明见解析;(2)CF⊥AB,理由见解析;(3)是,为16.【分析】(1)根据正方形的性质得到DP平分∠APC,PC=P A,求得∠APD=∠CPD=45°,根据全等三角形的判定定理得到△AEP≌△CEP(SAS);(2)根据全等三角形的性质得到∠EAP=∠ECP,求得∠BAP=∠FCP,根据垂直的定义得到CF⊥AB;(3)过点C作CN⊥PB.根据平行线的性质得到∠CPN=∠PCF=∠EAP=∠P AB,根据全等三角形的性质得到CN=PB=BF,PN=AB,推出AE=CE,于是得到△AEF的周长.【详解】解:(1)证明:∵四边形APCD正方形,∴DP平分∠APC,PC=P A,∠APC=90°,∴∠APE=∠CPE=45°,在△AEP与△CEP中,{AP=CP∠APE=∠CPEPE=PE,∴△AEP≌△CEP(SAS);(2)CF⊥AB,理由如下:∵△AEP≌△CEP,∴∠EAP=∠ECP,∵∠EAP=∠BAP,∴∠BAP=∠FCP,∵∠APC=90°,∴∠FCP+∠CMP=90°,∵∠AMF=∠CMP,∴∠AMF+∠P AB=90°,∴∠AFM=90°,∴CF⊥AB;(3)过点C作CN⊥PB.∵CF⊥AB,BG⊥AB,∴∠PNC=∠B=90°,FC∥BN,∴∠CPN=∠PCF=∠EAP=∠P AB,又AP=CP,∴△PCN≌△APB(AAS),∴CN=PB=BF,PN=AB,∵△AEP≌△CEP,∴AE=CE,∴△AEF的周长=AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=2AB=16.故△AEF的周长是否为定值,为16.【点睛】本题考查了正方形的性质、全等三角形的判定和性质,其中(3)中证明△PCN≌△APB(AAS)是本题的关键.11.(2022·全国·八年级课时练习)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D 不与B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDE=115°时,∠BAD=°,点D从B向C运动时,∠BAD逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BAD等于多少时,△ADE是等腰三角形.【答案】(1)65°,大;(2)DC=2;(3)30°或60°.【分析】(1)利用三角形内角和计算即可求出∠BAD,由点的运动方式即可得出∠BAD逐渐变大;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≅△DCE(ASA);(3)分两种情况AD=DE或AE=DE讨论即可.【详解】解:(1)∵∠BDE=115°,∠ADE=40°,∴∠BDA=∠BDE−∠ADE=115°−40°=75°,∴∠BAD=180°−∠B−∠BDA=180°−75°−40°=65°,当点D从B向C运动时,∠BAD逐渐变大.故答案为:65°,大;(2)当DC=2时,△ABD≌△DCE,理由如下:∵AB=AC=2,∠B=40°∴∠C=∠B=40°,∵∠ADE=40°,又∵∠B+∠BAD=∠ADC=∠ADE+∠EDC,∴∠BAD=∠EDC,在△ABD和△DCE中,{∠BAD=∠EDCAB=DC∠B=∠C,∴△ABD≅△DCE(ASA);(3)当∠BAD得度数为30°或60°时,△ADE是等腰三角形.理由如下:∵∠C=∠B=40°,∴∠BAC=180°−(∠C+∠B)=100°,∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=12(180°−40°)=70°,∴∠BAD=∠BAC−∠DAC=100°−70°=30°,当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°−40°−40°=100°,∴∠BAD=∠BAC−∠DAC=100°−40°=60°,综上所述,当∠BAD得度数为30°或60°时,△ADE是等腰三角形.【点睛】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.12.(2022·重庆江北·八年级期末)如图,在平面直角坐标系中,已知A(a,0)、B(0,b)分别在坐标轴的正半轴上.(1)如图1,若a、b满足(a−4)2+√b−3=0,以B为直角顶点,AB为直角边在第一象限内作等腰直角△ABC,则点C的坐标是(________);(2)如图2,若a=b,点D是OA的延长线上一点,以D为直角顶点,BD为直角边在第一象限作等腰直角△BDE,连接AE,求证:∠ABD=∠AED;(3)如图3,设AB=c,∠ABO的平分线过点D(2,−2),直接写出a−b+c的值.【答案】(1)点C的坐标是(3,7);(2)见解析;(3)a−b+c=4【分析】(1)根据偶次幂的非负性以及算术平方根的非负性得出a,b的值,过点C作CD⊥y轴于点D,然后证明△OAB≌△DBC,进而得出结论;(2)过点E作EM⊥x轴于点M,根据题意证明△OBD≌△MDE(AAS),在△ABN和△DNE中,根据三角形内角和定理可得结论;(3)作DF⊥y轴于H,DH⊥x轴于H,DK⊥BA交BA的延长线于K,先证明△FBD≌△KBD(AAS)可得BK=BF=b+2,然后证明Rt△DAH≌Rt△DAK可得BK=c+a−2,进一步可得结果.【详解】解:(1)∵(a−4)2+√b−3=0,∴a=4,b=3,∴OA=4,OB=3,过点C作CD⊥y轴于点D,∵△ABC为等腰直角三角形,∴BA=BC,∠ABC=90°,∴∠CBD+∠ABO=90°,∵∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△BAO和△CBD中,{∠CBD=∠BAO ∠CDB=∠BOABC=AB,∴△BAO≌△CBD(AAS),∴OA=DB=4,CD=BO=3,∴OD=OB+BD=3+4=7,∴点C的坐标是(3,7);(2)证明:过点E作EM⊥x轴于点M,依题意有,∵△BDE为等腰直角三角形,∴BD=DE,∠BDE=90°,∴∠BDO+∠EDM=90°,∵∠EDM+∠MED=90°,∴∠ODB=∠MED,在Rt△OBD和Rt△MDE中,{BD=DE∠ODB=∠MED ∠BOD=∠DME,∴△OBD≌△MDE(AAS),∴OB=DM,OD=ME,又a=b,即OA=OB,∴AM=AD+DM=AD+OB=AD+OA=OD=ME,∴∠EAM=45°,即BA⊥AE,又BD⊥DE,设BD与AE相交于点N,∴在△ABN和△DNE中,∠BAN=∠EDN=90°,∠ANB=∠DNE,∴∠ABD=∠AED;(3)作DF⊥y轴于H,DH⊥x轴于H,DK⊥BA交BA的延长线于K,则DF=DH=2,∵BD平分∠ABO,DF⊥y轴,DK⊥BA,∴DF=DK=2,∵∠BFD=∠BKD=90°,∠FBD=∠KBD,BD=BD,∴△FBD≌△KBD(AAS),∴DF=DH=DK,BK=BF=b+2,在Rt△DAH和Rt△DAK中,{DH=DKDA=DA,∴Rt△DAH≌Rt△DAK(HL)∴AK=AH=a−2,∴BK=c+a−2,∴c+a−2=b+2,∴a−b+c=4.【点睛】本题考查了坐标与图形,等腰三角形的性质,全等三角形的判定与性质,偶次方与算数平方根的非负性的性质,根据题意构建出全等三角形是解本题的关键.13.(2021·湖北·咸宁市第三初级中学八年级期中)如图,在等腰Rt△ABC中,∠ABC=90°,点A、B分别在x轴、y轴上.(1)如图①,若点C的横坐标为5,求点B的坐标;(2)如图②,若x轴恰好平分∠BAC,BC交x轴于点M,过点C作CD⊥x轴于点D,求CDAM的值;(3)如图③,若点A的坐标为(−4,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限中作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴上移动时,PB的长度是否发生改变?若不变求PB的值;若变化,求PB的取值范围.【答案】(1)(0,5)(2)12(3)不变,等于2.【分析】(1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;(2)设AB=BC=a,根据勾股定理求出AC=√2a,根据MA(即x轴)平分∠BAC,得到BMMC =ABAC=√22,求得BM=(√2−1)a,MC=(2− √2)a,AM=√4−2√2a,再证明Rt△ABM∽Rt△CDM,得到ABCD =AMCM,即CD=AB⋅CMAM,即可解答,(3)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=12AO,即可解题.【详解】解:(1)如图1,作CD⊥BO于D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO和△BCD中,{∠BOA=∠BDC=90°∠CBD=∠BAOAB=BC,∴△ABO≌△BCD(AAS),∴CD=BO=5,∴B点坐标(0,5);(2)设AB=BC=a,则AC=√2a,∵MA(即x轴)平分∠BAC,∴BMMC =ABAC=√22,即MC=√2BM,∵BC=BM+MC=a,∴BM+√2BM=a,解得BM=(√2−1)a,MC=(2−√2)a 则AM=√AB2+BM2=√4−2√2a,∵∠ABM=∠CDM=90°且∠AMB=∠CMD∴Rt△ABM∽Rt△CDM,∴ABCD =AMCM,即CD=AB⋅CMAM,∴CDAM=a⋅(2−√2)a(√4−2√2a)2=12;(3)PB的长度不变,理由如下:如图3,作EG⊥y轴于G,∵∠BAO +∠OBA =90°,∠OBA +∠EBG =90°,∴∠BAO =∠EBG ,在△BAO 和△EBG 中,{∠AOB =∠BGE =90°∠BAO =∠EBG AB =BE,∴△BAO ≌△EBG (AAS ),∴BG =AO ,EG =OB ,∵OB =BF ,∴BF =EG ,在△EGP 和△FBP 中,{∠EPG =∠FPB∠EGP =∠FBP =90°EG =BF,∴△EGP ≌△FBP (AAS ),∴PB =PG ,∴PB =12BG =12AO =2. 【点睛】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.14.(2022·江西·丰城九中七年级期末)综合与探究:在平面直角坐标系中,已知A (0,a ),B (b ,0)且a ,b 满足(a ﹣3)2+|a ﹣2b ﹣1|=0。
2023年中考数学常见几何模型之一线三等角模型
专题05 一线三等角(K 型图)模型(从全等到相似) 全等三角形与相似三角形在中考数学几何模块中占据着重要地位。
相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。
如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(全等模型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角条件:A CED B ∠=∠=∠+ CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅V V异侧型一线三等角:锐角一线三等角 直角一线三等角 钝角一线三等角条件:FAC ABD CED ∠=∠=∠+ 任意一边相等证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅V V1.(2022·湖南湘潭·中考真题)在ABC V 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,过点B 、C 分别作l 的垂线,垂足分别为点D 、E .(1)特例体验:如图①,若直线l BC ∥,AB AC ==BD 、CE 和DE 的长;(2)规律探究:①如图②,若直线l 从图①状态开始绕点A 旋转()045αα<<︒,请探究线段BD 、CE 和DE 的数量关系并说明理由;②如图③,若直线l 从图①状态开始绕点A 顺时针旋转()4590αα︒<<︒,与线段BC 相交于点H ,请再探线段BD 、CE 和DE 的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD 交线段AC 于点F ,若3CE =,1DE =,求BFC S △.【答案】(1)BD =1;CE =1;DE =2(2)①DE =CE +BD ;理由见解析;②BD =CE +DE ;理由见解析 (3)258BFC S ∆=【分析】(1)先根据得出90452ABC ACB ︒∠=∠==︒,根据l BC ∥,得出45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,再根据90BDA CEA ∠=∠=︒,求出45ABD ∠=︒,45ACE ∠=︒,即可得出45DAB ABD EAC ACE ∠=∠=∠=∠=︒,最后根据三角函数得出1AD BD ==,1AE CE ==,即可求出2DE AD AE =+=;(2)①DE =CE +BD ;根据题意,利用“AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;②BD =CE +DE ;根据题意,利用“AAS”证明ABD CAE ∆∆≌,得出AD =CE ,BD =AE ,即可得出结论;(3)在Rt △AEC 中,根据勾股定理求出5AC ==,根据DF CE ∥,得出AD AF AE CF=,代入数据求出AF ,根据AC =5,算出CF ,即可求出三角形的面积.(1)解:∵90BAC ∠=︒,AB AC =,∴90452ABC ACB ︒∠=∠==︒, ∵l BC ∥,∴45DAB ABC ∠=∠=︒,45EAC ACE ∠=∠=︒,∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ∠=∠=︒,∴904545ABD ∠=︒−︒=︒,904545ACE ∠=−=︒︒︒,∴45DAB ABD EAC ACE ∠=∠=∠=∠=︒,∴sin 12AD BD AB DAB ==⨯∠==,sin 12AE CE AC EAC ==⨯∠==,∴2DE AD AE =+=. (2)①DE =CE +BD ;理由如下:∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ∠=∠=︒,∴90DAB DBA ∠+∠=︒,∵90BAC ∠=︒,∴90DAB CAE ∠+∠=︒,∴DBA CAE ∠=∠,∵AB =AC ,∴ABD CAE ∆∆≌,∴AD =CE ,BD =AE ,∴DE =AD +AE =CE +BD ,即DE =CE +BD ;②BD =CE +DE ,理由如下:∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ∠=∠=︒,∴90DAB DBA ∠+∠=︒,∵90BAC ∠=︒,∴90DAB CAE ∠+∠=︒,∴DBA CAE ∠=∠,∵AB =AC ,∴ABD CAE ∆∆≌,∴AD =CE ,BD =AE ,∴BD =AE =AD +DE =CE +DE ,即BD =CE +DE .(3)根据解析(2)可知,AD =CE=3,∴314AE AD DE =+=+=,在Rt △AEC 中,根据勾股定理可得:5AC ==,∵BD ⊥AE ,CE ⊥AE ,∴DF CE ∥,∴AD AF AE CF =,即345AF =,解得:154=AF , ∴155544CF AC AF =−=−=,∵AB =AC =5,∴1152552248BFC S CF AB ∆=⨯=⨯⨯=. 【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明ABD CAE ∆∆≌,是解题的关键.2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m , CE ⊥直线m ,垂足分别为点D 、E .证明∶DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD;(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=60°,FB=F A,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠F AE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.又AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°-α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠F AE.∵BF=AF,∴△DBF≌△EAF(SAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°.∴△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.3.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC V 是等腰直角三角形,90C ∠=︒,AE =BD ,则AED V ≌_______; ②如图2,ABC V 为正三角形,,60BD CF EDF =∠=︒,则BDE V ≌________; ③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l ⊥于E ,CF l ⊥于F .若1AE =,2CF =,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为(,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC V 中,90ACB ∠=︒,AC BC =,BE CE ⊥于E ,AD ⊥CE 于D ,4cm DE =,6cm AD =,求BE 的长.模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论; (2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设CPQ β∠=.当β在许可范围内变化时,α取何值总有△ABP ∽△PCQ ?当α在许可范围内变化时,β取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.【答案】(1)DE AE AD BD CE =+=+;证明见解析;(2)30α=︒;75β=︒;(3)可能;30α=︒,30β=︒或52.5α=︒,75β=︒.【分析】(1)证明△ADB ≌△CEA (AAS ),由全等三角形的性质得出AE =BD ,AD =CE ,则可得出结论;(2)由β=∠2或∠1=∠CQP ,即∠2=30°+β-α=β,解得α=30°,即可求解;由β=∠1或∠2=∠CQP ,同理可得:β=75°,即可求解;(3)①当α=30°,β=30°时,则∠2=∠B =α=30°,即可求解;②当β=75°,α=52.5°时,同理可解.【详解】解:(1)如图1,∵BDA BAC α∠=∠=,∴180DBA BAD BAD CAE ∠∠∠∠α+=+=︒−,∴DBA CAE ∠=∠,在△ADB 和△CEA 中,DBA EAC BDA AEC BA AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE BD =,AD CE =, ∴DE AE AD BD CE =+=+;(2)在△ABP 中,2230APC B αβ∠=∠+∠=+∠=︒+,∴1150β∠=︒−,同理可得:230βα∠=︒+−;由2β=∠或1CQP ∠=∠,即230βαβ∠=︒+−=,解得30α=︒,则△ABP ∽△PCQ ;∴当β在许可范围内变化时,30α=︒时,总有△ABP ∽△PCQ ;由1β=∠或2CQP ∠=∠,同理可得:75β=︒.∴当α在许可范围内变化时,75β=︒总有△ABP ∽△QCP ;(3)可能.①当30α=︒,30β=︒时,则230B α∠=∠==︒,则△ABP ∽△PCQ ∽△BCA ;②当75β=︒,52.5α=︒时,同理可得:115075ββ∠=︒−=︒=,23052.5βαα∠=︒+−=︒=,∴△ABP ∽△CQP ∽△BCA .【点睛】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质是解本题的关键.2.(2022·河南新乡·二模)如图,△ABC和△ADE是有公共顶点A的两个等腰直角三角形,∠DAE=∠BAC=90°,AD=AE,AB=AC=6,D在线段BC上,从B到C运动,点M和点N分别是边BC,DE的中点.(1)【问题发现】若点D是BC边的中点时,BDMN=,直线BD与MN相交所成的锐角的度数为(请直接写出结果)(2)【解决问题]若点D是BC边上任意一点时,上述结论是否成立,请说明理由.(3)【拓展探究】在整个运动过程中,请直接写出N点运动的路径长,及CN的最小值.,3.(2022·山东菏泽·三模)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B ∠=∠=∠=︒时,求证:AD BC AP BP ⋅=⋅.(2)探究:若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用:如图3,在ABC V 中,AB =45B ∠=︒,以点A 为直角顶点作等腰Rt ADE △.点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若CE =求CD 的长.模型3.一线三直角模型(相似模型)【模型解读与图示】“一线三直角”模型的图形,实则是“一线三等角”型的图形的特例,因为这种图形在正方形和矩形中出现的比较多,对它做一专门研究,这样的图形,因为有三个角是直角,就有两个角相等,再根据“等角的余角相等”可以得到另外一对角相等,从而判定两个三角形相似.BC=.点E是线段1.(2022·湖南郴州·中考真题)如图1,在矩形ABCD中,4AB=,6AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ⊥,交AB 于点F .(1)求证:AEF DCE V V ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM +的最小值;②当AG GM +取最小值时,求线段DE 的长.【答案】(1)见解析(2)①5;②3DE =3DE =【分析】(1)证明出DCE AEF ∠=∠即可求解;(2)①连接AM .先证明132BM CM GM BC ====.确定出点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM V 中利用勾股定理即可求出AM ,则问题得解.②先求出AF ,求AF 的第一种方法:过点M 作∥MN AB 交FC 于点N ,即有CMN CBF ∽△△,进而有12MN CM BF CB ==.设AF x =,则4BF x =−,()142MN x =−.再根据∥MN AB ,得到AFG MNG ∽△△,得到AF AG MN GM =,则有()21342x x =−,解方程即可求出AF ;求AF 的第二种方法:过点G 作GH AB ∥交BC 于点H .即有MHG MBA ∽△△.则有GM GH MH AM AB MB ==,根据5AM =,可得3543GH MH ==,进而求出125GH =,95MH =.由GH AB ∥得CHG CBF ∽△△,即可求出AF .求出AF 之后,由(1)的结论可得AF AE DE DC.设DE y =,则6AE y =−,即有164y y −=,解得解方程即可求出DE . (1)证明:如图1,∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,∴90CED DCE ∠+∠=︒.∵EF CE ⊥,∴90CED AEF ∠+∠=︒,∴DCE AEF ∠=∠,∴AEF DCE V V ∽;(2)①解:如图2-1,连接AM .∵BG CF ⊥,∴BGC V 是直角二角形.∴132BM CM GM BC ====. ∴点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点不共线时,由三角形两边之和大于箒三边得:AG GM AM +>, 当A ,G ,M 三点共线时,AG GM AM +=.此时,AG GM +取最小值.在Rt ABM V中,5AM =.∴AG GM +的最小值为5.②(求AF 的方法一)如图2-2,过点M 作∥MN AB 交FC 于点N ,∴CMN CBF ∽△△.∴12MN CM BF CB ==. 设AF x =,则4BF x =−,∴()11422MN BF x ==−. ∵∥MN AB ,∴AFG MNG ∽△△,∴AF AG MN GM =, 由①知AG GM +的最小值为5、即5AM =,又∵3GM =,∴2AG =.∴()21342xx =−,解得1x =,即1AF =.(求AF 的方法二)如图2-3,过点G 作GH AB ∥交BC 于点H .∴MHG MBA ∽△△.∴GM GH MH AM AB MB==, 由①知AG GM +的最小值为5,即5AM =,又∵3GM =,∴3543GH MH ==.∴125GH =,95MH =. 由GH AB ∥得CHG CBF ∽△△,∴GH CH FB CB =,即1293556FB +=,解得3FB =. ∴1AF AB FB =−=.由(1)的结论可得AF AE DE DC . 设DE y =,则6AE y =−,∴164y y −=,解得3y =或3∵036<<,036<<,∴3DE =3DE =【点睛】本题主要考查了相似三角形的判定与性质、平行的性质、勾股定理以及一元二次方程的应用等知识,掌握相似三角形的判定与性质是解答本题的关键.2.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R 放在直线l 上,分别过两锐角的顶点M ,N 作l 的垂线,垂足分别为P , Q ,(1)如图1.观察图1可知:与NQ 相等的线段是______________,与NRQ ∠相等的角是_____(2)问题探究直角ABC V 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作正方形ACEF 和正方形CDGH ,如图2,过E ,H 分别作BC 所在直线的垂线,垂足分别为K ,L .试探究EK 与HL 之间的数量关系,并证明你的结论.(3)拓展延伸:直角ABC V 中,90B ∠=︒,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作矩形ACEF 和矩形CDGH ,连接EH 交BC 所在的直线于点T ,如图3.如果AC kCE =,CD kCH =,试探究TE 与TH之间的数量关系,并证明你的结论.【答案】(1)PR ,PMR ∠,(2)EK LH =,证明见解析;(3)ET HT =,证明见解析.【分析】(1)根据等腰直角三角形的性质得到,=MR RN ,90MRN ∠=︒,根据余角性质得到PMR NRQ ∠=∠,再证明MPR NRQ ≌△△,即可得到QN PR =,NRQ PMR ∠=∠; (2)证明ABC CEK ≌△△,得到EK BC =,再证明DCB CHL ≌△△,得到BC HL =,可得到EK LH =;(3)证明ACB ECM ∽△△,得到BC kEM =,证明BCD NHC ∽△△,得到BC kHN =,得到EM HN =,证明NHT EMT ≌△△即可得到ET HT =.(1)解:∵MRN △是等腰直角三角形,∴=MR RN ,90MRN ∠=︒,∵MP PQ ⊥,NQ PQ ⊥,∴90MPR NQR ∠=∠=︒,∴90PMR MRP MRP NRQ ∠+∠=∠+∠=︒,∴PMR NRQ ∠=∠,在MPR △和NRQ △中,PMR NRQ MPR NRQ MR NR ∠=∠⎧⎪∠=∠⎨⎪=⎩∴MPR NRQ ≌△△,∴QN PR =,NRQ PMR ∠=∠,故答案为:PR ,PMR ∠;(2)解:∵四边形ACEF 是正方形,∴AC CE =,90ACE ∠=︒,∵EK BK ⊥∴90B EKC ∠=∠=︒,∴90BAC ACB ACB ECK ∠+∠=∠+∠=︒,∴BAC ECK ∠=∠,在ABC V 和CEK △中,BAC KCE B EKC AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC CEK ≌△△,∴EK BC =,∵四边形CDGH 是正方形,∴CD CH =,90DCH ∠=︒∵HL BC ⊥,∴90B CLH ∠=∠=︒,∴90DCB LCK LCK CHL ∠+∠=∠+∠=︒,∴DCB CHL ∠=∠,在DCB V 和CHL △中,B CLH BCD CHL CD CH ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DCB CHL ≌△△,∴BC HL =,EK LH =,(3)解:过E 作EM BC ⊥与M ,过H 作HN BC ⊥与N ,∵四边形ACEF 是矩形,∴∴BAC ECM ∠=∠,∴ACB △同理:BCD NHC ∽△△,∴在NHT △和EMT △中,⎧⎪⎨3.(2022·浙江·嘉兴一中一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC 中,∠ACB =90°,AC =BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:△ADC ≌△CEB .(1)探究问题:如果AC ≠BC ,其他条件不变,如图②,可得到结论;△ADC ∽△CEB .请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y =12x 与直线CD 交于点M (2,1),且两直线夹角为α,且tanα=32,请你求出直线CD 的解析式. (3)拓展应用:如图④,在矩形ABCD 中,AB =4,BC =5,点E 为BC 边上一个动点,连接AE ,将线段AE 绕点E 顺时针旋转90°,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.由(1)可得:△NFO∽△OEM,∴NF OF NOOE ME MO==,∵点M(2,1),∴OE ,∵tanα=ON=3,∴NF课后专项训练:1.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC V 中,90ACB ∠=︒,AC BC =,直线l 过点C ,过点A 作AD l ⊥,过点B 作BE l ⊥,垂足分别为D 、E .求证:CD BE =.(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为()4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x =−+与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45︒后,所得的直线交x 轴于点R .求点R 的坐标.由已知得OM=ON,且∠OMN=,∴由(1)得△OFM≌△MGN,∴MF=NG,OF=MG,设M(∴MF=m,OF=n,∴MG=n,,∵点N的坐标为(4,2)=35x+4.【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构2.(2022·广东·汕头市潮阳区教师发展中心教学研究室一模)(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①已知直线AB与y轴交于A点,与x轴交于B点,sin∠ABO=35,OB=4,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC 的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x−5上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.当D 在AB 的下方时,过D 作DE ⊥轴于E ,交BC 于F ,同(1)可证得△ADE ≌△DPF ,∴=AE =6-(2x -5)=11-2x ,DE =x,∴11-2x +x =8,∴x =3,∴D (3,1),当D 在AB 的上方时,如图,过D DE ⊥y 轴于E ,交BC 的延长线于F , 同(1)可证得ADE DPF △△≌,∴DF =AE =(2x -5)-6=2x -11,DE =x ,∴2∴19x =,∴1923,D ⎛⎫,综上述D 3.(2022·黑龙江·桦南县九年级期中)如图1,在ABC V 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)由图1,证明:DE AD BE =+;(2)当直线MN 绕点C 旋转到图2的位置时,请猜想出DE ,AD ,BE 的等量关系并说明理由;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2)DE AD BE =−,证明过程见解析;(3)DE BE AD =−,证明过程见解析【分析】(1)先证明△ADC ≌△CEB ,得到AD=CE ,DC=BE ,进而得到DE=CE+DC=AD+BE 即可;(2)同(1)中思路,证明△ADC ≌△CEB ,进而得到DE=CE -DC=AD -BE 即可;(3)同(1)中思路,证明△ADC ≌△CEB ,进而得到DE=DC -CE=BE -AD 即可.【详解】解:(1)证明:在ABC V 中,∵90ACB ∠=︒,∴90ACD BCE ∠+∠=︒, ∵AD MN ⊥,∴90ACD CAD ∠+∠=︒,∴BCE =∠∠CAD ,又∵AC BC =,90ADC CEB ∠=∠=o ,∴()V V ≌ADC CEB AAS ,∴AD CE =,DC BE =, ∵直线MN 经过点C ,∴DE CE DC AD BE =+=+;(2)DE ,AD ,BE 的等量关系为:DE AD BE =−,理由如下:∵AD MN ⊥于D ,BE MN ⊥于E ∴90ADC BEC ACB ∠=∠=∠=︒,∴90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,∴CAD BCE ∠=∠,在ADC V 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ,∴()ADC CEB AAS △≌△∴CE AD =,CD BE =,∴DE CE CD AD BE =−=−;(3)当MN 旋转到图3的位置时,DE 、AD 、BE 所满足的等量关系是DE BE AD =−,理由如下:∵AD MN ⊥于D ,BE MN ⊥于E ∴90ADC BEC ACB ∠=∠=∠=︒,∴90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,∴CAD BCE ∠=∠,在ADC V 和CEB △中90CAD BCE ADC BEC AC CB ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ,∴()ADC CEB AAS △≌△∴CE AD =,CD BE =,∴DE CD CE BE AD =−=−.【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.4.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E , 2.5cm AD =, 1.7cm DE =.求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图②,点B ,C 在MAN ∠的边AM 、AN 上,AB AC =,点E ,F 在MAN ∠内部的射线AD 上,且BED CFD BAC ∠=∠=∠.求证:ABE CAF ∆∆≌. (3)拓展应用:如图③,在ABC ∆中,AB AC =,AB BC >.点D 在边BC 上,2CD BD =,点E 、F 在线段AD 上,BED CFD BAC ∠=∠=∠.若ABC ∆的面积为15,则ACF ∆与BDE ∆的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB ≌△ADC ,根据全等三角形的性质解答即可; (2)由条件可得∠BEA =∠AFC ,∠4=∠ABE ,根据AAS 可证明△ABE ≌△CAF ; (3)先证明△ABE ≌△CAF ,得到ACF ∆与BDE ∆的面积之和为△ABD 的面积,再根据2CD BD =故可求解.【详解】解:(1)∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CEB ≌△ADC (AAS ),∴BE =DC ,CE =AD =2.5cm .∵DC =CE −DE ,DE =1.7cm ,∴DC =2.5−1.7=0.8cm ,∴BE =0.8cm 故答案为:0.8cm ; (2)证明:∵∠1=∠2,∴∠BEA =∠AFC .∵∠1=∠ABE +∠3,∠3+∠4=∠BAC ,∠1=∠BAC ,∴∠BAC =∠ABE +∠3,∴∠4=∠ABE .∵∠AEB =∠AFC ,∠ABE =∠4,AB =AC ,∴△ABE ≌△CAF (AAS ).(3)∵BED CFD BAC ∠=∠=∠∴∠ABE +∠BAE =∠F AC +∠BAE =∠F AC +∠ACF∴∠ABE =∠CAF ,∠BAE =∠ACF又AB AC =∴△ABE ≌△CAF ,∴ABE CAF S S =V V∴ACF ∆与BDE ∆的面积之和等于ABE ∆与BDE ∆的面积之和,即为△ABD 的面积,∵2CD BD =,△ABD 与△ACD 的高相同则13ABD ABC S S =△△=5 故ACF ∆与BDE ∆的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2022·无锡市九年级月考)(1)如图1,直线m 经过等腰直角△ABC 的直角顶点A ,过点B 、C 分别作BD ⊥m ,CE ⊥m ,垂足分别是D 、E .求证:BD +CE =DE ;(2)如图2,直线m 经过△ABC 的顶点A ,AB =AC ,在直线m 上取两点 D 、E ,使∠ADB =∠AEC =α,补充∠BAC = (用α表示),线段BD 、CE 与DE 之间满足BD +CE =DE ,补充条件后并证明;(3)在(2)的条件中,将直线m 绕着点A 逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC = (用α表示).通过观察或测量,猜想线段BD 、CE 与DE 之间满足的数量关系,并予以证明.【答案】(1)证明见详解,(2)∠BAC=α,证法见详解,(3)180º-α,DE=EC-BD,证明见详解.【分析】(1)根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA;(2)补充∠BAC=α.利用△ADB≌△CAE,即可得出三角形对应边之间的关系,即可得出答案;(3)180º-α,DE=CE-BD,根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA,即可得出三角形对应边之间的关系,即可得出答案.【详解】证明:(1)∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,∵∠BAC=90°,∠DAB+∠EAC=90º,∴∠DAB=∠ECA,又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.(2)∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180º-α,∴∠DAB=∠ECA,∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,∴AD+BE=CE+CD,所以BD+CE=DE.(3)180º-α,数量关系为DE=CE-BD,∵∠ADB=∠AEC=180º-α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.【点睛】点评:此题主要考查了三角形全等的证明,根据已知得出∠DAB=∠ECA,再利用全等三角形的判定方法得出是解决问题的关键.6.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在V ABC中,∠BAC=90°,ABAC=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在V ABC中,ABAC=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在V ABC中,沿V ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE =ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC 与AI之间的数量关系:.∵∠BAC =90°,∴∠BAD +∠CAE =90°∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ∵∠ABD =∠CAE ,∠BDA =∠CEA ,∴△ADB ∽△CEA ,∴BD AE =AB AC=k ; (2)成立,证明如下:如图2,∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°−α,∴∠DBA =∠CAE ,∵∠ABD =∠CAE ,∠BDA =∠CEA ∴△ADB ∽△CEA ,∴BD AE =AB AC=k ; (3)①过点G 作GM ∥AE 交AI 的延长线于点M ,连接EM∵四边形AGFC 是矩形,∴∠GAC =90°又AH ⊥BC ∴∠AHC =90° ∴∠5+∠CAH =∠4+∠CAH =90°∴∠5=∠4∵∠BDE =∠AHB =90°∴∠2+∠BAH =∠1+∠BAH =90°∴∠2=∠1又GM ∥AE ∴∠3=∠2∴∠3=∠1∴△ABC ∽△GMA∴AC BC AB GA AM GM ==又∵12AB AC AE AG == ∴12AC BC AB AB GA AM GM AE ====∴GM =AE 又∵GM ∥AE ∴四边形AGME 是平行四边形 ∴EI =IG 故I 为EG 的中点;②由①知12BC AC AB AB AM AG GM AE ====∴BC =12AM ∵四边形AGME 是平行四边形∴AI =IM ∴AI =12AM ∴BC =AI∴线段BC 与AI 之间的数量关系为BC =AI 故答案为:BC =AI .【点睛】此题主要考查相似三角形的判断与性质综合,解题的关键是根据题意找到相似三角形,列出比例式求解.7.(2022·湖北武汉·模拟预测)[问题背景](1)如图1,ABC V 是等腰直角三角形,AC BC =,直线l 过点C ,AM l ⊥,BN l ⊥,垂足分别为M ,N .求证:AMC CNB △≌△;[尝试应用](2)如图2,AC BC =,90ACB ∠=︒,N ,B ,E 三点共线,CN NE ⊥,45E ∠=︒,1CN =,2BN =.求AE 的长;[拓展创新](3)如图3,在DCE V 中,45CDE ∠=︒,点A ,B 分别在DE ,CE 上,AC BC =,90ACB ∠=︒,若1tan 2DCA ∠=,直接写出AE AD 的值为 .)可知:AMC BNC ≌,CDE DAM DFN =∠=∠=a ,,∴32AF a =,8.(2022·黑龙江齐齐哈尔·三模)数学实践课堂上,张老师带领学生们从一道题入手,开始研究,并对此题做适当变式,尝试举一反三,开阔学生思维.(1)原型题:如图1,AB BD ⊥于点B ,CD BD ⊥于点D ,P 是BD 上一点,AP PC =,AP PC ⊥,则ABP △≌△________,请你说明理由.(2)利用结论,直接应用:①如图2,四边形ABCD 、EFGH 、NHMC 都是正方形,边长分别为a 、b 、c ,A 、B 、N 、E ,F 五点在同一条直线上,则CBN △≌△________,c =________(用含a 、b 的式子表示).②如图3,四边形ABCD 中,AB DC P ,AB BC ⊥,2AB =,4CD =,以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ∠=︒,则圆心O 到弦AD 的距离为________.(3)弱化条件,变化引申:如图4,M 为线段AB 的中点,AE 与BD 交于点C ,45DME A B ∠=∠=∠=︒,且DM 交AC 于点F ,ME 交BC 于点G ,连接FG ,则AMF V 与BGM V 的关系为:________,若AB =3AF =,则FG =________.9.(2022•郑州一模)如图,在平面直角坐标系xOy中.边长为4的等边△OAB的边OA在x轴上,C、D、E分别是AB、OB、OA上的动点,且满足BD=2AC,DE∥AB,连接CD、CE,当点E坐标为时,△CDE与△ACE相似.【分析】因为DE∥AB得到∠DEC=∠ACE,所以△CDE与△ACE相似分两种情况分类讨论.【解答】解:∵DE∥AB,∴∠DEC=∠ACE,△ODE∽△OBA,∴△ODE也是等边三角形,则OD=OE=DE,设E(a,0),则OE=OD=DE=a,BD=AE=4﹣a.∵△CDE与△ACE相似,分两种情况讨论:①当△CDE∽△EAC时,则∠DCE=∠CEA,∴CD∥AE,∴四边形AEDC是平行四边形,∴AC=a,,∵BD=2AC,∴4﹣a=2a,∴a=.∴E;②当△CDE∽△AEC时,∠DCE=∠EAC=60°=∠B,∴∠BCD+∠ECA=180°﹣60°=120°,又∵∠BDC+∠BCD=180°﹣∠B=120°,∴∠BCD+∠ECA=∠BDC+∠BCD,∴∠ECA=∠BDC,∴△BDC∽△ACE,∴,∴BC=2AE=2(4﹣a)=8﹣2a,∴8﹣2a+2=4,∴a=.∴.综上所述,点E的坐标为或.【点评】本题主要考查相似三角形,考虑分类讨论是本题的关键.10.(2022•广东中考模拟)(1)模型探究:如图1,D 、E 、F 分别为ABC ∆三边BC 、AB 、AC 上的点,且B C EDF α∠=∠=∠=,BDE ∆与CFD ∆相似吗?请说明理由. (2)模型应用:ABC ∆为等边三角形,其边长为8,E 为边AB 上一点,F 为射线AC 上一点,将AEF ∆沿EF 翻折,使点A 落在射线CB 上的点D 处,且2BD =.①如图2,当点D 在线段BC 上时,求AE AF的值; ②如图3,当点D 落在线段CB 的延长线上时,求BDE ∆与CFD ∆的周长之比.【答案】(1)~∆∆BDE CFD ,见解析;(2)①57AE AF =;②BDE ∆与CFD ∆的周长之比为13. 【分析】(1)根据三角形的内角和得到BED CDF ∠=∠,即可证明;(2)①设AE x =,AF y =,根据等边三角形的性质与折叠可知DE AE x ==,DF AF y ==,60EDF A ∠=∠=o ,根据三角形的内角和定理得BED CDF ∠=∠,即可证明~∆∆BDE CFD ,故BD BE DE CF CD FD ==,再根据比例关系求出AE AF的值; ②同理可证~∆∆BDE CFD ,得BD BE DE CF CD FD ==,得28810x x y y −==−,再得到13x y =,再根据相似三角形的性质即可求解.【详解】解(1)~∆∆BDE CFD ,理由:B C EDF α∠=∠=∠=,在BDE ∆中,180B BDE BED ∠+∠+∠=o ,180180BDE BED B α∴∠+∠=−∠=−o o ,180BDE EDF CDF ∠+∠+∠=o Q ,180180BDE CDF EDF α∴∠+∠=−∠=−o o ,BED CDF ∴∠=∠,B C ∠=∠Q ,~BDE CFD ∴∆∆;(2)①设AE x =,AF y =,ABC ∆Q 是等边三角形,60A B C ∴∠=∠=∠=o ,8AB BC AC ===,由折叠知,DE AE x ==,DF AF y ==,60EDF A ∠=∠=o ,在BDE ∆中,180B BDE BED ∠+∠+∠=o ,180120BDE BED B ∴∠+∠=−∠=o o , 180120BDE BED B ∠+∠=−∠=o o Q ,180BDE EDF CDF ∠+∠+∠=o Q ,180120BDE CDF EDF ∴∠+∠=−∠=o o ,BED CDF ∴∠=∠,60B C ∠=∠=o Q ,~BDE CFD ∴∆∆,BD BE DE CF CD FD∴==, 8BE AB AE x =−=−Q ,8CF AC AF y =−=−,6CD BC BD =−=2886x x y y −∴==−,()()2868y x y x y x ⎧=−⎪∴⎨=−⎪⎩,105147x y ∴==,57AE AF ∴=; ②设AE x =,AF y =,ABC ∆Q 是等边三角形, 60A ABC ACB ∴∠=∠=∠=o ,8AB BC AC ===,由折叠知,DE AE x ==,DF AF y ==,60EDF A ∠=∠=o ,在BDE ∆中,180ABC BDE BED ∠+∠+∠=o ,180120BDE BED ABC ∴∠+∠=−∠=o o , 180BDE EDF CDF ∠+∠+∠=o Q ,180120BDE CDF EDF ∴∠+∠=−∠=o o ,BED CDF ∴∠=∠,60ABC ACB ∠=∠=o Q ,120DBE DCF ∴∠=∠=o ,~BDE CFD ∴∆∆,BD BE DE CF CD FD ∴== 8BE AB AE x =−=−Q ,8CF AF AC y =−=−,10CD BC BD =+=,28810x x y y −∴==−,2(8)10(8)y x y x y x =−⎧∴⎨=−⎩,13x y ∴=. ~BDE CFD ∆∆Q .BDE ∴∆与CFD ∆的周长之比为13DE x DF y ==. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知等边三角形的性质及相似三角形的判定与性质.11.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC V 中,90ACB ∠=︒,AC BC =,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:ADC CEB △≌△. (1)探究问题:如果AC BC ≠,其他条件不变,如图②,可得到结论;ADC CEB △∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x=与直线CD交于点()2,1M,且两直线夹角为α,且3tan2α=,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,3AB=,5BC=,点E为BC边上—个动点,连接AE,将线段AE绕点E顺时针旋转90︒,点A落在点P处,当点P在矩形ABCD外部时,连接PC,PD.若DPC△为直角三角形时,请你探究并直接写出BE的长.由(1)得NFO OEM △∽△∵M 坐标()2,1 ∴2OE =,ME ∵3tan 2α= ∴32ON OM =解得:90∴△12.(2022·山东青岛·九年级期中)【模型引入】我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.【模型探究】如图,正方形ABCD中,E是对角线BD上一点,连接AE,过点E作EF⊥AE,交直线CB于点F.(1)如图1,若点F在线段BC上,写出EA与EF的数量关系并加以证明;(2)如图2,若点F在线段CB的延长线上,请直接写出线段BC,BE和BF的数量关系.【模型应用】(3)如图3,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD 于F,过F作FH⊥AE于F,过H作HG⊥BD于G.则下列结论:①AF=FH;②∠HAE =45°;③BD=2FG;④△CEH的周长为8.正确的结论有个.(4)如图4,点E是正方形ABCD对角线BD上一点,连接AE,过点E作EF⊥AE,交线段BC于点F,交线段AC于点M,连接AF交线段BD于点H.给出下列四个结论,①AE=EF;=CF;③S△AEM=S△MCF;④BE=DE;正确的结论有个.【模型变式】(5)如图5,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,。
相似三角形中的 “一线三等角”模型-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)
重难点专项突破:相似三角形中的“一线三等角”模型【知识梳理】一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。
或叫“K字模型”。
三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。
一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”【考点剖析】例1.如图,直角梯形ABCD 中,AB // CD ,90ABC ∠=︒,点E 在边BC 上,且34AB BE EC CD ==, AD = 10,求AED ∆的面积.【答案】24.【解析】90ABC ∠=,//AB CD , ∴90DCB ABC ∠=∠=.又34AB BE EC CD ==, ABE ECD ∴∆∆∽.∴AEB EDC ∠=∠. ∴34AE AB ED EC ==.90EDC DEC ∠+∠=,∴90AEB DEC ∠+∠=. ∴90AED ∠=.在Rt AED ∆中,10AD =,68AE ED ∴==,. 24AED S ∆∴=.【总结】本题考查一线三等角模型的相似问题,还有外角知识、平行的判定等.例2.已知:如图,△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,∠ADE =60°.(1)求证:△ABD ∽△DCE ;(2)如果AB =3,EC =,求DC 的长.【分析】(1)△ABC 是等边三角形,得到∠B =∠C =60°,AB =AC ,推出∠BAD =∠CDE ,得到△ABD∽△A B C DEDCE ;(2)由△ABD ∽△DCE ,得到=,然后代入数值求得结果.【解答】(1)证明:∵△ABC 是等边三角形,∴∠B =∠C =60°,AB =AC ,∵∠B+∠BAD =∠ADE+∠CDE ,∠B =∠ADE =60°,∴∠BAD =∠CDE∴△ABD ∽△DCE ;(2)解:由(1)证得△ABD ∽△DCE ,∴=,设CD =x ,则BD =3﹣x ,∴=,∴x =1或x =2,∴DC =1或DC =2.【点评】本题考查了等边三角形的性质,相似三角形的判定和性质,注意数形结合和方程思想的应用. 例3.已知,在等腰ABC ∆中,AB = AC = 10,以BC 的中点D 为顶点作EDF B ∠=∠, 分别交AB 、AC 于点E 、F ,AE = 6,AF = 4,求底边BC 的长.【答案】46.【解析】EDC B BED ∠=∠+∠,而EDC EDF FDC ∠=∠+∠,∴B BED EDF FDC ∠+∠=∠+∠. 又EDF B ∠=∠,∴BED FDC ∠=∠.AB C D EFAB AC=,∴B C∠=∠.EDB DCF∴∆∆∽.BE BDDC CF∴=.106104BDDC−∴=−,24DC BD∴=.又12CD DB BC==,BC∴=【总结】本题是对“一线三等角”模型的考查.例4.已知:如图,AB⊥BC,AD // BC, AB = 3,AD = 2.点P在线段AB上,联结PD,过点D作PD的垂线,与BC相交于点C.设线段AP的长为x.(1)当AP = AD时,求线段PC的长;(2)设△PDC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△APD∽△DPC时,求线段BC的长.满分解答:(1)过点C作CE⊥AD,交AD的延长线于点E.∵AB⊥BC,CE⊥AD,PD⊥CD,AD // BC,∴∠ABC =∠AEC =∠PDC = 90°,CE = AB = 3.∵AD // BC,∴∠A +∠ABC = 180°.即得∠A = 90°.又∵∠ADC =∠DCE +∠DEC,∠ADC =∠ADP +∠PDC,∴∠ADP =∠DCE.又由∠A =∠DEC = 90°,得△APD∽△DCE.∴AD APCE DE=.于是,由AP = AD = 2,得DE = CE = 3.…………………………(2分)在Rt△APD和Rt△DCE中,得PD=,CD=1分)AB CDPAB CD(备用图)于是,在Rt △PDC 中,得 PC = (1分)(2)在Rt △APD 中,由 AD = 2,AP = x ,得 PD 1分)∵ △APD ∽△DCE ,∴AD PD CE CD =.∴ 32CD PD ==1分)在Rt △PCD 中,22113332224PCD S PD CD x ∆=⋅⋅=⨯=+.∴ 所求函数解析式为2334y x =+.…………………………………(2分) 函数的定义域为 0 < x ≤ 3.…………………………………………(1分)(3)当△APD ∽△DPC 时,即得 △APD ∽△DPC ∽△DCE .…………(1分)根据题意,当△APD ∽△DPC 时,有下列两种情况:(ⅰ)当点P 与点B 不重合时,可知 ∠APD =∠DPC .由 △APD ∽△DCE ,得 AP PD DE DC =.即得AP DE PD CD =. 由 △APD ∽△DPC ,得AP AD PD DC =. ∴AD DE CD CD =.即得 DE = AD = 2. ∴ AE = 4.易证得四边形ABCE 是矩形,∴ BC = AE = 4.…………………(2分)(ⅱ)当点P 与点B 重合时,可知 ∠ABD =∠DBC .在Rt △ABD 中,由 AD = 2,AB = 3,得 BD =.由 △ABD ∽△DBC ,得AD BD BD BC =.即得 =. 解得 132BC =.………………………………………………………(2分)∴ △APD ∽△DPC 时,线段BC 的长分别为4或132.方法总结本题重点在于:过点C 作CE ⊥AD ,交AD 的延长线于点E .(构造一线三角,出现相似三角形,进行求解) 例5.在梯形ABCD 中,AD ∥BC ,︒=∠===90,2,1A BC AB AD .(如图1)(1)试求C ∠的度数;(2)若E 、F 分别为边AD 、CD 上的两个动点(不与端点A 、D 、C 重合),且始终保持︒=∠45EBF ,BD 与EF交于点P .(如图2)①求证:BDE ∆∽BCF ∆;②试判断BEF ∆的形状(从边、角两个方面考虑),并加以说明;③设y DP x AE ==,,试求y 关于x 的函数解析式,并写出定义域.答案:(1)作BC DH ⊥,垂足为H ,在四边形ABHD 中,AD ∥BC ,︒=∠==90,1A AB AD ,则四边形ABHD 为正方形又在CDH ∆中,1,1,90=−====∠︒BH BC CH AB DH DHC , ∴︒︒=∠−=∠452180DHC C .(2)①∵四边形ABHD 为正方形,∴︒=∠45CBD ,︒=∠45ADB ,又∵︒=∠45EBF ,∴CBF DBE ∠=∠又∵︒=∠=∠45C BDE ,∴BDE ∆∽BCF ∆.②BEF ∆是等腰直角三角形,∵BDE ∆∽BCF ∆, ∴CB FB BD BE =,又∵︒=∠=∠45DBC EBF ,∴EBF ∆∽DBC ∆,又在DBC ∆中,︒=∠=∠45C DBC ,为等腰直角三角形,∴BEF ∆是等腰直角三角形. ③x x x x x x y +−=+−⨯=1221222,(0<x <1).方法总结 第三问方法提示:过点P 作AD 的垂线于点H ,构造一线三直角相似,进行求解,很简单。
(完整版)几何模型:一线三等角模型
一线三等角模型一。
一线三等角概念“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。
不同地区对此有不同的称呼,“K形图",“三垂直”,“弦图”等,以下称为“一线三等角”。
二. 一线三等角的分类全等篇三、“一线三等角”的性质1。
一般情况下,如图3—1,由N 仁Z2=Z3,易得△AECs^BDEo2. 当等角所对的边相等时,则两个三角形全等.如图3.中点型“一线三等角 如图3—2,当Z1=Z2=Z3,且D 是BC 中点时,△BDEs^CFDs^DFE 。
4。
“中点型一线三等角“的1如图3—4“中点型一线三等角”通常与三角形的内心或旁心相关,ZBOC 二90。
+A BAC 这是内心的^2 性质,反之未必是内心.在图3-4(右图)中,如果延长BE 与CF ,交于点P,则点D 是APEF 的旁心.图3—5其实这个第4图,延长DC 反而好理解•相当于两侧型的,不延长理解,以为是一种新型的,同 侧穿越型?不管怎么变,都是由三等角确定相似三角形来进行解题四、“一线三等角”的应用1•“一线三等角”应用的三种情况.图3-1图3-3图3-4+Ja。
图形中已经存在“一线三等角”,直接应用模型解题;b。
图形中存在“一线二等角”,不上“一等角”构造模型解题;c・图形中只有直线上一个角,不上“二等角”构造模型解题。
体会:感觉最后一种情况出现比较多,尤其是压轴题中,经常会有一个特殊角或指导该角的三角函数值时,我经常构造“一线三等角”来解题.2。
在定边对定角问题中,构造一线三等角是基本手段,尤其是直角坐标系中的张角问题,在x轴或y轴(也可以是平行于x轴或y轴的直线)上构造一线三等角解决问题更是重要的手段。
在DC的延檢銭上截眼匚E二J3•构造一线三等角的步骤:找角、定线、构相似1IJttnZAEP=aaZPFB=啦-工上则以’唾二ZPFB=a二ZAPE』所I^APAEwABPF.在CP±WCE=则曲厶斗EOunZBFD=⑶“则ZAEC-ZBFD=ZAPB•所I^APAE«ABPF・坐标系中,要讲究“线"的特殊性如图3—6,线上有一特殊角,就考虑构造同侧型一线三等角(完整版)几何模型:一线三等角模型当然只加这两条线通常是不够的,为了利用这个特殊角导线段的关系,过C、D两点作直线I的垂线是必不可少的。
培优专题25 相似三角形的一线三等角模型-解析版
培优专题25 相似三角形的一线三等角模型【专题讲解】1.常见基本类型:同侧型(通常以等腰三角形或者等边三角形为背景)异侧型2.模型构造1.图中已存在“一线三等角”,则直接应用模型结论解题.2.图中存在“一线两等角”,补上“一等角”,构造模型解题.3.图中某直线上只存在1个角,补上“两等角”,构造模型解题.如果直线上只有1个角,要补成“一线三等角”时,该角通常是特殊角(30°、45°、60°)特征:构造特殊角的等角时,一般是在“定线”上做含特殊角的直角三角形。
“一线三等角”得到的相似,通常用外边的两等角的两边对应成比例求解长度3.构造步骤:找角——通常找“特殊角”。
如:30°、45°、60°等;特别地:当tanα=1/2、1/3等特定值时,α也可以是特殊角;定线——通常以“水平线”或者“竖直线”为“一线三等角”中的“一线”;特殊角度时也可以是45°等倾斜直线;构相似——通常以“特殊角”为“中间角”,过“中间角”的两边与“一线”的交点构造两个含特殊角的Rt △;例:如右图,当∠ABP=45°时,∵∠ABP 在y 轴上,∴在y 轴上分别构造两个等腰直角三角形△AOE ,△PHG ,则在y 轴上存在∠AEB=∠ABP=∠PBG=45°,∴△AEB ∽△BGP ∴(常用)GPBEBG AE 4.模型特例——K 型图(三垂定理)应用:1.当一个直角放在一条直线上时,通常要构造“K 型图”解题2.当一个直角放在平面直角坐标系中时,亦常构造“K 型图”解题3.由“K 型图”得到的相似比,基本都可以转化成“特定角”的正切值来计算4.“K 型图”常和“A 字图”或“8字图”类的平行相似结合在一起求长度“K 型图”常见构造方法:过直角订单分别作水平或竖直的直线,再过直角两边顶点分别作直线的垂线。
如图:【专题训练】1.(2020·河南郑州·二模)如图,已知矩形ABCD 的顶点B A 、分别落在x 轴y 轴上,4OB OA ==,AB=2BC 则点C 的坐标是( )A .()9,3B .(9,C .(4+D .(2,∵四边形ABCD 是矩形,∴CD=AB ,∠ABC=90°,2.(2020·江苏常州·一模)如图,在平面直角坐标系中,△AOB中,∠AOB=90°,∠ABO=30°,顶点A在反比例函y=3x(x>0)上运动,此时顶点B也在反比例函数y=mx上运动,则m的值为()A.-9B.-12C.-15D.-18【点睛】本题考查反比例函数的图象和性质,直角三角形的性质、相似三角形的判定和性质等知识,求出反比例函数图象上点的坐标是解答前提的关键.3.(2021·浙江·九年级专题练习)如图,正方形ABCD边长为4,边BC上有一点E,以DE为边作矩形EDFG,使FG过点A,则矩形EDFG的面积是( )A.B.C.D.16【答案】D【分析】先利用等角的余角证明∠ADF=∠EDC,再根据相似三角形的判定方法证明△ADF∽△CDE,然后利用相似比计算DF与DE的关系式,最后根据矩形的面积公式求得矩形的面积便可..【详解】解:∵四边形ABCD为正方形,∴AD=CD=4,∠ADC=∠C=90°,∵四边形EDFG为矩形,4.(2020·重庆八中九年级阶段练习)如图,点,D E 是正ABC D 两边上的点,将BDE D 沿直线DE 翻折,点B 的对应点恰好落在边AC 上,当4AC AF =时,BDBE的值是( )A .23B .34C .35D .57【答案】D【分析】先证明ADF CFE D D ∽,再根据相似三角形的周长比等于相似比和折叠的性质进行转化即可求解.【详解】解:设AF =x ,∵ABC D 为等边三角形,∴AC=AB=BC =4x , ∠A =∠B =∠C =60°,CF =3x ∵BDE D 翻折得到FDE D ,∴B D=FD,BE=FE, ∠B=∠DFE =60°,∴∠AFD +∠DFE =∠C +∠FEC ,∴∠AFD=∠CEF ,∴ADF CFE D D ∽,5.(2020·重庆八中九年级阶段练习)如图,点A是双曲线2yx=在第一象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边ABCV,点C在第二象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线kyx=上运动,则k的值为()A.8-B.6-C.4-D.2-6.(2022·湖北襄阳·一模)如图,ABC V 为等边三角形,点D ,E 分别在边AB ,AC 上,3BD =,将ADE V 沿直线DE 翻折得到FDE V ,当点F 落在边BC 上,且4BF CF =时,DE AF ⋅的值为______.∵△ABC为等边三角形,∴∠DFE=∠DAE= 60°∴∠CFE+∠FEC=∠CFE7.(2022·江苏扬州·九年级期末)如图,在边长为6的等边△ABC 中,D 是边BC 上一点,将△ABC 沿EF 折叠使点A 与点D 重合,若BD : DE =2 : 3,则CF=____.【答案】2.4【分析】根据折叠的性质可得∠EDF =∠A ,DF =AF ,再由等边三角形的性质可得∠EDF =60°,8.(2021·安徽·淮北市烈山区淮选学校九年级阶段练习)如图,在四边形ABCD中,∠A=∠D=120°,AB=6、AD=4,点E、F分别在线段AD、DC上(点E与点A、D不重合),若∠BEF=120°,AE=x、DF=y,则y关于x的函数关系式为________9.(2019·浙江·九年级期末)已知ABC V 是等边三角形,6AB =,点D ,E ,F 点分别在边,,AB BC AC 上,:2:3BD BE =,DE 同时平分BEF Ð和BDF Ð,则BD 的长为_____.上一点,2⊥于点F,与BD交于点G,则EF的长是______.OE=,连接BE,过点A作AF BE11.(2022·江苏·九年级专题练习)如图,四边形ABCD 是矩形,点P 是对角线AC 上一动点(不与A 、C 重合),连接PB ,过点P 作PE PB ^,交射线DC 于点E ,已知3AD =,5AC =.设AP 的长为x .(1)AB =___________;当1x =时,PE PB=_________;(2)试探究:否是定值?若是,请求出这个值;若不是,请说明理由;(3)当PCE V 是等腰三角形时,请求出x 的值.Q 四边形ABCD 是矩形,3BC AD \==,5AC =,90ABC Ð=2222534AB AC BC \=-=-=.在Rt APM △中,1PA =,35PM =,165BM AB AM \=-=,=,90Q,所以只能EP EC PECÐ>°\Ð=Ð,EPC ECPQ,Ð=Ð=°90BPE BCE\Ð=Ð,BPC BCP\=,BP BC=.Q,所以只能CP CEÐ>°PCE90\Ð=Ð,CPE EÐ=ÐQ,PGB CGEÐ=Ð=°90GPB GCE\Ð=Ð=Ð,PBG E CPEÐ+Ð=Q,APB CPEÐ+Ð=°ABP PBC9012.(2022·上海·七年级专题练习)等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转.(1)如图1,当P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;(2)在(1)问的条件下,FE、PB的延长线交于点G,如图2,求△EGB的面积;(3)在三角板旋转过程中,若CF=AE=2,(CF≠BP),如图3,求PE的长.【答案】(1)等边三角形13.(2022·山东菏泽·三模)(1)问题如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B Ð=Ð=Ð=°时,求证:AD BC AP BP ⋅=⋅.(2)探究若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在ABC V 中,AB =45B Ð=°,以点A 为直角顶点作等腰Rt ADE △.点D 在BC 上,点E在AC 上,点F 在BC 上,且45EFD Ð=°,若CE =CD 的长.【答案】(1)见解析;(2)成立,理由见解析;(3)5CD =【分析】(1)由∠DPC =∠A =B =90°,可得∠ADP =∠BPC ,即可证到△ADP ∽△BPC ,然后运用相似三角形的性质即可解决问题;14.(2021·吉林·长春市绿园区教师进修学校九年级期末)【感知】如图①,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),90A B DPC Ð=Ð=Ð=°.易证DAP PBC △△∽.(不需要证明)【探究】如图②,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),A B DPC Ð=Ð=Ð.若4PD =,8PC =,6BC =,求AP 的长.【拓展】如图③,在ABC V 中,8AC BC ==,12AB =,点P 在边AB 上(点P 不与点A 、B 重合),连结CP ,作CPE A Ð=Ð,PE 与边BC 交于点E ,当CPE △是等腰三角形时,直接写出AP 的长.15.(2021·全国·九年级专题练习)如图,在Rt△ABC中,∠ACB=90°,BC mAC n=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则DEDF= ;(2)数学思考:①如图2,若点E在线段AC上,则DEDF= (用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC BC=DF=CE的长.16.(2021·浙江衢州·中考真题)【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G .(1)求证:BCE CDG △△≌.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF =,9CE =,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC =,45HD HF =,求DE EC 的值(用含k 的代数式表示).(2)如图,连接EH,由(1)得BCE CDG △△≌,9CE DG \==,由折叠得BC BF =,CE FE =同理得HG HF =,DG m \=,同理可得BCE CDG △∽△,可得m CE FE k==,mx DE k \=,2222HF FE DH DE +=+Q ,。
2023年中考数学微专题复习课件4 一线三等角模型
;
【类比探究】如图2,在(1)的条件下,若90°<α<180°,则线段DE、BD、CE之间的
数量关系是
DE=BD+CE
;
【拓展探究】如图3,若点A是DE的中点,∠BAC=∠BDA=∠AEC=α,请问线段AD、
BD、CE之间满足什么数量关系?并说明理由.
7
思路点拨
= ∠,
ቃ
(1)∠ = ∠ = ∠➝∠ = ∠
൨→△BDA≌△AEC➝ =
∠ = ∠, =
→DE=BD+CE
(2)同(1)易得DE=BD+CE
(3)∠ = ∠ = ∠➝∠ = ∠
൨
∠ = ∠,
BD·CE
8
→△ ≌△
➝
=
→AD2=
点是的中点➝ =
注:三个相等的角可以是锐角、直角或钝角.
2
3.构造一线三等角的基本步骤
做题过程中,若出现一角的顶点在一条直线上的形式,就可以构造两侧的两个相等
的角,利用全等三角形或相似三角形解决相关问题,本质就是找角、定线、构相似.
3
类型
条件
图示
结论
点P在线段AB上,∠1
一线三
等角
(不包
含直
角)
同侧型(三
=∠2=∠3,三个角在
又∵∠PAD+∠PDA=90°,
∠PAD+∠QAM=90°,
∴∠PDA=∠QAM.
26
∠ = ∠,
ቐ∠ = ∠,
在△APD和△MQA中, = ,
∴△APD≌△MQA(AAS).
∴AQ=PD=2,
∴可设M(5,n),将M(5,n)代入y=,
专题27.10一线三等角型相似三角形综合问题(重难点培优)-2022-2023学年九年级数学下册尖子
2021-2022学年九年级数学下册尖子生培优题典【人教版】专题27.10一线三等角型相似三角形综合问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共22题,选择10道、填空6道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•鹿邑县月考)如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=18,BD=6,则CF=()A.4B.3C.2D.12.(2022•昆明一模)如图,在矩形ABCD中,AB=4,,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若,则CE=()A.B.C.D.3.(2022•齐齐哈尔模拟)如图,正方形ABCD的边长为4,E是BC上一点,过点E作EF⊥AE,交BC于点F,连接AF,则AF的最小值是()A.5B.C.D.34.(2022•唐河县二模)如图,平面直角坐标系中,A(4,0),点B为y轴上一点,连接AB,tan∠BAO=2,点C,D为OB,AB的中点,点E为射线CD上一个动点.当△AEB为直角三角形时,点E的坐标为()A.(4,4)或(2+2,4)B.(4,4)或(2﹣2,4)C.(12,4)或(2+2,4)D.(12,4)或(2﹣2,4)5.(2021秋•南京期末)如图,在矩形ABCD中,E,F,G分别在AB,BC,CD上,DE⊥EF,EF⊥FG,BE=3,BF=2,FC=6,则DG的长是()A.4B.C.D.56.(2021秋•蕉城区校级月考)如图,在边长为4的等边△ABC中,点D是AB边上一个动点,沿过点D 的直线折叠∠A,使点A落在BC边上的点F处,折痕交AC于点E,当BF=1,AE=时,则AD的长是()A.B.C.2D.7.(2021•鄂温克族自治旗一模)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为()A.6B.2C.3D.48.(2021•烟台模拟)如图,等腰直角三角形ABC中,AB=AC=4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=45°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.9.(2021秋•温州校级期中)如图,在矩形ABCD中,点E,F,H分别在边AB,BC,AD上,四边形EFGH 由两个正方形组成,若BF=AH=2,则线段BC的长为()A.4B.4.5C.5D.5.510.(2021秋•铁东区月考)如图,矩形ABCD中,AD=3,DC=2,以对角线BD为直角边作直角三角形DBF,若∠DBF=90°,∠BDF=30°,DF与BC交于点E,则DE:EF的比是()A.B.3:2C.2:1D.二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022•太原二模)如图,在△ABC中,AC=3,BC=4,∠C=90°,过CB的中点D作DE⊥AD,交AB于点E,则EB的长为.12.(2022秋•二道区月考)如图,在△ABC中,AB=AC=9,BC=12,D,E分别是BC,AB上的动点(点D与B,C不重合),且2∠ADE+∠BAC=180°,若BE=4,则CD的长为.13.(2022•孟村县二模)如图,在等边三角形ABC中,点D、点E分别在BC、AC上,且∠ADE=60°.(1)写出和∠CDE相等的角:;(2)若AB=3,BD=1,则CE长为.14.(2022•红花岗区二模)在数学探究活动中,小美将矩形ABCD纸片先对折,展开后折痕是EF,点M为BC边上一动点,连接AM,过点M作MN⊥AM交CD于点N.将△MCN沿MN翻折,点C恰好落在线段EF上,已知矩形ABCD中AB=4,BC=6,那么BM的长为.15.(2021秋•定海区期末)如图,矩形ABCD中,AD=6,CD=7,E为AD上一点,且AE=2,点F、H 分别在边AB、CD上,四边形EFGH为矩形,则当△HGC为直角三角形时,AF的值是.16.(2022•桐柏县一模)如图1,在矩形ABCD中,AD=5,AB=6.第一步,如图2,在CD边上找一点E,将矩形沿AE折叠,点D落在AB边上点F处;第二步,如图3,在AB上找一点M,将△CMB沿CM 折叠,得到△CMN,点N落在AE上,则MN的长为.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)17.(2022秋•丰城市期中)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,∠ADE=60°,BD=4,CE=3.(1)求证:△ABD∽△DCE;(2)求AB的边长.18.(2022秋•皇姑区校级月考)已知,如图,矩形ABCD中,AB=5,AD=3,点E是射线BC上一动点,将矩形ABCD沿直线AE翻折,点B落在点F处.(1)若点F恰好落在CD边上,如图1,求线段BE的长;(2)若BE=1,如图2,直接写出点F到BC边的距离;(3)若△CEF为直角三角形,直接写出CE所有值.19.(2022•安徽三模)如图,在四边形ABCD中,∠A=∠D=90°,AD=AB,以BC为直径的半⊙O与边AD相切于点E.(1)求证:∠BCE=∠DCE;(2)若,求DE的长.20.(2022•砀山县模拟)如图1,在四边形ABCD中,AC是对角线,且AB=AC.F是BC边上一动点,连接AF,DF,DF交AC于点E,其中∠DAF=90°,∠AFD=∠B.(1)求证:AC•EC=BF•CF;(2)若AB=AC=10,BC=16.①如图2,若DF∥AB,求的值;②如图3,若DF=DC,求△DCF的面积.21.(2022•静安区二模)如图①,已知梯形ABCD中,AD∥BC,∠A=90°,AB=,AD=6,BC=7,点P是边AD上的动点,联结BP,作∠BPF=∠ADC,设射线PF交线段BC于E,交射线DC于F.(1)求∠ADC的度数;(2)如果射线PF经过点C(即点E、F与点C重合,如图②所示),求AP的长;(3)设AP=x,DF=y,求y关于x的函数解析式,并写出定义域.22.(2022•齐齐哈尔三模)综合与实践数学实践课堂上,张老师带领学生们从一道题入手,开始研究,并对此题做适当变式,尝试举一反三,开阔学生思维.(1)原型题:如图1,AB⊥BD于点B,CD⊥BD于点D,P是BD上一点,AP=PC,AP⊥PC,则△ABP≌△,请你说明理由.(2)利用结论,直接应用:如图2,四边形ABCD、EFGH、NHMC都是正方形,边长分别为a、b、c,A、B、N、E、F五点在同一条直线上,则△CBN≌△,c=(用含a、b的式子表示).如图3,四边形ABCD中,AB∥DC,AB⊥BC,AB=2,CD=4,以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离为.(3)弱化条件,变化引申:如图4,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=45°,且DM交AC于点F,ME交BC于点G,连接FG,则△AMF与△BGM的关系为:,若,AF=3,则FG=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题27.35 相似三角形几何模型-一线三等角(培优篇)(专项练习)一、单选题1.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB 上取点P ,使得△PAD 与△PBC 相似,则这样的P 点共有( )A .1个B .2个C .3个D .4个2.如图,已知正方形ABCD 的边长为4,P 是BC 边上一动点(与B ,C 不重合)连接AP ,作PE ∠AP 交∠BCD 的外角平分线于E ,设BP =x ,∠PCE 的面积为y ,则y 与x 的函数关系式是( )A .24y x x =-+B .2122y x x =- C .2122y x x =-+D .24y x x =-3.如图,在平面直角坐标系中,直线12y x m =+不经过第四象限,且与x 轴,y 轴分别交于,A B 两点,点P 为OA 的中点,点C 在线段OB 上,其坐标为(0,2),连结BP ,CP ,若BPC BAO =∠∠,那么m 的值为( )A .25B .4C .5D .64.将矩形OABC 如图放置,O 为坐标原点,若点A (﹣1,2),点B 的纵坐标是72,则点C 的坐标是( )A.(4,2)B.(3,32)C.(3,94)D.(2,32)二、填空题5.如图,将等边三角形ABC折叠,使得点C落在边AB上的点D处,折痕为EF,点E,F分别在AC和BC上.若AC=8,AD=2,则CECF=_______________.6.如图,矩形ABCD中,AD=5,AB=8,点E为DC上一个动点,把∠ADE沿AE折叠,若点D的对应点D′,连接D′B,以下结论中:∠D′B的最小值为3;∠当DE=52时,∠ABD′是等腰三角形;∠当DE=2是,∠ABD′是直角三角形;∠∠ABD′不可能是等腰直角三角形;其中正确的有_____.(填上你认为正确结论的序号)7.如图,在四边形ABCD中,∠A=∠B,点E为AB边的中点,∠DEC=∠A.有下列结论:∠DE平分∠AEC;∠CE平分∠DEB;∠DE平分∠ADC;∠EC平分∠BCD.其中正确的是_______________.(把所以正确结论的序号都填上)三、解答题8.如图,四边形ABCD 是正方形,点E 是BC 边上动点(不与,B C 重合).连接,AE 过点E 作,EF AE ⊥交DC 于点F .()1求证:ABE ECF ;()2连接AF ,试探究当点E 在BC 什么位置时,BAE EAF ∠=∠,请证明你的结论.9.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADEC ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.10.如图,已知∠ABC 是边长为12的正三角形,AD 是边BC 上的高线,CF 是外角ACE的平分线,点P是边BC上的一个动点(与点B,C不重合),∠APQ=60°,射线PQ分别与边AC,射线CF交于点N,Q.(1)求证:∠ABP∠∠PCN;(2)不管点P运动到何处,在不添辅助线的情况下,除第(1)小题中的一对相似三角形外,请写出图中其它的所有相似三角形;(3)当点P从BD的中点运动到DC的中点时,点N都随着点P的运动而运动.在此过程中,试探究:能否求出点N运动的路径长?若能,请求出这个长度;若不能,请说明理由.11.如图,已知直线y=-34x+b与y轴相交于点B(0,3),与x轴交于点A,将△AOB沿y轴折叠,使点A落在x轴上的点C.(1)求点C的坐标;(2)设点P为线段CA上的一个动点,点P与点A、C不重合.联结PB.以点P为端点作射线PM交AB于点M,使∠BPM=∠BAC.∠求证:△PBC∽△MPA.∠是否存在点P,使△PBM为直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.12.如图∠,在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.【试题再现】如图∠,在∠ABC中,∠ACB=90°,直角顶点C在直线DE上,分别过点A,B作AD∠DE于点D,BE∠DE于点E.求证:∠ADC∠∠CEB.【问题探究】在图∠中,若∠A=∠B=∠DEC=40°,试判断点E是否是四边形ABCD的边AB 上的相似点,并说明理由.【深入探究】如图∠,AD∠BC,DP平分∠ADC,CP平分∠BCD交DP于点P,过点P作AB∠AD于点A,交BC于点B.(1)请证明点P是四边形ABCD的边AB上的一个强相似点.(2)若AD=3,BC=5,试求AB的长.13.如图,四边形ABCD是矩形,点P是对角线AC上一动点(不与A、C重合),连接PB ,过点P 作PE PB ⊥,交射线DC 于点E ,已知3AD =,4AB =.(1)求PEPB的值; (2)当PCE ∆是以PC 为底的等腰三角形时.请求出AP 的值;14.(1)【问题情境】八上《伴你学》第138页有这样一个问题:如图1,把一块三角板(,90AB BC ABC =∠=︒)放入一个“U ”形槽中,使三角形的三个顶点A 、B 、C 分别在槽的两壁及底边上滑动,已知90D E ∠=∠=︒,在滑动过程中,你发现线段AD 与BE 有什么关系?试说明你的结论;(2)【变式探究】小明在解决完这个问题后,将其命名为“一线三等角”模型;如图2,在ABC ∆中,点D 、E 、F 分别在边BC 、AC 、AB 上,若B FDE C ∠=∠=∠,则这三个相等的角之间的联系又会使图形中出现其他的一些等角.请你写出其中的一组,并加以说理;(3)【拓展应用】如图3,在ABC ∆中,BA BC =,45B ∠=︒,点D 、F 分别是边BC 、AB 上的动点,且2AF BD =.以DF 为腰向右作等腰DEF ∆,使得DE DF =,45EDF ∠=︒,连接CE .∠试判断线段DC 、BD 、BF 之间的数量关系,并说明理由;∠如图4,已知2AC =,点G 是AC 的中点,连接EA 、EG ,直接写出EA EG +的最小值.15.感知∠(1)数学课上,老师给出了一个模型∠如图1,∠BAD =∠ACB =∠AED =90°,由∠1+∠+2+∠BAD =180°,∠2+∠D +∠AED =180°,可得∠1=∠D ;又因为∠ACB =∠AED =90°,可得∠ABC ∠∠DAE ,进而得到BCAC= .我们把这个数学模型称为“一线三等角”模型.应用∠(2)实战组受此模型的启发,将三等角变为非直角,如图2,在∠ABC 中,点D 在边BC 上,并且DA=DE ,∠B =∠ADE =∠C .若BC =a ,AB=b ,求CE 的长度(用含a ,b 的代数式表示).拓展∠(3)创新组突发奇想,将此模型迁移到平行四边形中,如图3,在平行四边形ABCD 中,E 为边BC 上的一点,F 为边AB 上的一点.若∠DEF =∠B .求证∠AB ·FE =BE ·DE .16.[模型建立](一线三等角)(1)如图1,等腰Rt ABC 中,90,,ACB CB CA ∠=︒=直线ED 经过点C ,过点A 作AD ED ⊥于点,D 过点B 作BE ED ⊥于点,E 求证:BEC CDA ≌;[模型应用](2)如图2,直线14:43l y x =+与坐标轴交于点,A B 、直线2l 经过点A 与直线1l 垂直,求直线2l 的函数表达式.(3)如图3,平面直角坐标系内有一点()6,8,B -过点B 作BA x ⊥轴于点A BC y ⊥、轴于点,C 点P 是线段AB 上的动点,点D 是直线22y x =-+上的动点且在第四象限内.若CPD △成为等腰直角三角形,请直接写出点D 的坐标.参考答案1.C解:设AP=x ,则BP=7-x ,然后根据对应关系,分情况为:∠当∠ADP∠∠BCP 时,可得AD APBC BP =,即237x x =-,解得x=145,这时有一个P点;∠当∠ADP∠∠BPC 时,可得AD APBP BC =,即273x x =-,解得x=1或x=6,因此这样的点有两个;因此符合条件的P 点共有3个. 故选C【点拨】此题主要考查了相似三角形的性质,解题时,先根据相似三角形的性质,和相似三角形的对应关系,列出相应的比例式,求解即可.2.C解:过点E 作EH ∠BC 的延长线于点H ,因为∠APB+∠EPC=90°, ∠BAP+∠APB=90°,所以∠BAP=∠EPH ,因为∠B=∠H,所以∠ABP ∠∠PHE ,设EH =a ,因为∠ECH=45°,∠H=90°,所以CH =EH =a ,因为BP =x ,所以CP =4-x ,根据相似三角形的性质,可知AB PHBP EH=,即 44x ax a-+=,整理得:()()40x a x --=,解得()124,x x a ==不符合题意,所以y 与x 的函数关系式为:()211142222y PC EH x x x x =⨯⨯=⨯-⨯=-+,故选C.3.D 【分析】典型的“一线三等角”,构造相似三角形△AOB∠∠DPC,即可证明△PCD∠∠BPA ,由相似比求得边的相应关系,从而求解.解:在x 轴上找点D (4,0),连接CD.由12y x m=+可得A(-2m,0 ),B(0,m ),直线12y x m=+不经过第四象限,所以m>0,所以OA=2m,OB=m;因为C坐标为()0,2,点D(4,0)所以OC=2,OD=4,因为12OB OCOA OD==,∠AOB=∠DOC=90° ,所以△AOB∠∠DPC,所以∠CDO=∠BAO.又因为BPC BAO∠=∠,所以根据三角形内角和和平角定义可得:∠APB+∠1=∠APB+∠CPD所以∠1=∠CPD,又因为∠CDO=∠BAO,所以△PCD∠∠BPA,所以AB AP DP DC=,因为点P为OA的中点,所以AP=OP=m,PD=m+4,Rt△AOB中,由勾股定理得5m,同理得5AB APDP DC=525m=,解得m=6.故选D.【点拨】本题考查一次函数综合题.需要掌握待定系数法求一次函数解析式,相似三角形的判定与性质,三角形面积的求法等知识点,4.B【分析】首先构造直角三角形,利用相似三角形的判定与性质以及结合全等三角形的判定与性质得出CM=32=,MO=3,进而得出答案.解:如图,过点A作AE∠x轴于点E,过点B作BF∠x轴于点F,过点A作AN∠BF于点N,过点C作CM∠x轴于点M.∠∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∠∠EAO=∠COM,又∠∠AEO=∠CMO=90°,∠∠AEO ∠∠OMC ,∠OE AE CM OM=, ∠∠BAN +∠OAN =90°,∠EAO +∠OAN =90°,∠∠BAN =∠EAO =∠COM ,在△ABN 和△OCM 中,BNA CMO BAN COM AB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ABN ∠∠OCM (AAS ),∠BN =CM .∠点A (﹣1,2),点B 的纵坐标是72, ∠BN 32=, ∠CM 32=, ∠1232OM =,∠MO =3,∠点C 的坐标是:(33). 故选:B .【点拨】本题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM 的长是解题的关键.5.75解:∠∠ABC 是等边三角形,∠∠A =∠B =∠C =60°,AB =AC =BC =8,∠AD =2,∠DB =6,由折叠的性质可知,∠EDF =∠C =60°,EC =ED ,FC =FD ,∠∠AED +∠EDA =120°,∠EDA +∠BDF =120°,∠∠AED =∠BDF ,∠∠AED ∠∠BDF ,∠DF DE =BD DF BF AE AD DE ++++=BD BC AD AC ++=1410=75,∠CF CE =DF DE =75,故答案为75. 点睛:本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.6.∠∠∠【分析】当D′落在线段AB 上时,D′B 的值最小,此时D′B =AB ﹣AD =3,得出∠正确; 过D′作MN∠AB 交AB 于点N ,交CD 于点M ,设AN =x ,则EM =x ﹣2.5,证出∠ED′M =∠D′AN ,因此△EMD′∠∠D′NA ,得出对应边成比例ED EM AD D N =''',求出x =4,得出AN =BN ,因此AD′=D′B ,得出∠正确;当DE =2时,假设△ABD′是直角三角形,则E 、D′、B 在一条直线上,作EF∠AB 于点F ,由勾股定理求出D′B 、EB ,得出∠不正确;当AD′=D′B 时,由勾股定理的逆定理得出△ABD′不是直角三角形,当△ABD′是直角三角形时,由勾股定理求出D′B ,得出AD′≠D′B ,因此△ABD′不可能是等腰直角三角形,得出∠正确.解:当D′落在线段AB 上时,D′B 的值最小,如图1所示:此时D′B =AB ﹣AD =8﹣5=3,∠∠正确;过D′作MN∠AB 交AB 于点N ,交CD 于点M ,如图2所示:设AN =x ,则EM =x ﹣2.5,∠∠AD′N =∠DAD′,∠ED′M =180°﹣∠AD′E ﹣∠AD′N =180°﹣90°﹣∠AD′N =90°﹣∠AD′N ,∠∠ED′M =90°﹣∠DAD′,∠∠D′AN =90°﹣∠DAD′,∠∠ED′M =∠D′AN ,∠MN∠AB ,∠∠EMD′=∠AND′,∠∠EMD′∠∠D′NA ,∠ED EM AD D N=''', 即,222.555x =-解得:x =4,∠AN =BN ,∠AD′=D′B ,即△ABD′是等腰三角形,∠∠正确;当DE =2时,假设△ABD′是直角三角形,则E 、D′、B 在一条直线上,作EF∠AB 于点F ,如图3所示:D′B 222285AB D A -=-'39()222258261EF FB ++-= ∠23961∠∠不正确;当AD′=D′B 时,52+52≠82,∠∠ABD′不是直角三角形,当△ABD′是直角三角形时,D′B 222285AB D A -=-'39∠AD′≠D′B ,∠∠ABD′不可能是等腰直角三角形,∠∠正确;故答案为∠∠∠.【点拨】本题考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、勾股定理的逆定理、等腰直角三角形的判定等知识;本题综合性强,有一定难度,熟练掌握矩形的性质和翻折变换的性质是解决问题的关键.7.∠∠解:试题分析:在∠ADE中,∠ADE+∠AED+∠A=180°,又∠AED+∠DEC+∠BEC=180°,可得∠ADE+∠AED+∠A =∠AED+∠DEC+∠BEC,由∠A=∠DEC,可得∠ADE=∠BEC,又∠A=∠B,根据两角对应相等的两三角形相似,可得∠ADE∠∠BEC,可得DE AEEC BC=,又AE=BE,得到DE BEEC BC=,又∠DEC=∠B,根据两边对应成比例且夹角相等的两三角形相似,可知∠CDE∠∠CEB,然后根据相似三角形的对应角相等,可得∠DCE=∠BCE,因此EC平分∠BCD,即∠成立;同理∠ADE∠∠EDC,因此DE平分∠ADC;即∠成立;而∠DE平分∠AEC 不一定成立;∠CE平分∠DEB不一定成立.故答案为:∠∠.8.(1)证明见分析;(2)点E在BC中点位置时,BAE EAF∠=∠,证明见分析.【分析】(1)先根据正方形的性质可得90B C∠=∠=︒,再根据直角三角形的性质、角的和差可得BAE CEF∠=∠,然后根据相似三角形的判定即可得证;(2)如图(见分析),先根据正方形的性质、平行线的性质可得,B ECH BAE H∠=∠∠=∠,再根据三角形全等的判定定理与性质可得AE HE=,然后根据等腰三角形的判定与性质可得EAF H∠=∠,最后根据等量代换即可得.解:(1)四边形ABCD是正方形,90B C∴∠=∠=︒,90BAE BEA∴∠+∠=︒,EF AE⊥,90AEF∴∠=︒,90BEA CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,在ABE △和ECF △中,B C BAE CEF ∠=∠⎧⎨∠=∠⎩, ABE ECF ∴;(2)点E 在BC 中点位置时,BAE EAF ∠=∠,证明如下:如图,连接AF ,延长AE 于DC 的延长线相交于点H ,E 为BC 中点,BE CE ∴=,四边形ABCD 是正方形,//AB DH ∴,,B ECH BAE H ∴∠=∠∠=∠,在ABE △和HCE 中,BAE H B ECH BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE HCE AAS ∴≅,AE HE ∴=, EF AH ⊥,AFH ∴是等腰三角形,EAF H ∴∠=∠,BAE EAF ∴∠=∠,故当点E 在BC 中点位置时,BAE EAF ∠=∠.【点拨】本题考查了相似三角形的判定、正方形的性质、三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形和等腰三角形是解题关键.9.(1)理由见详解;(2)22BD =1,理由见详解.【分析】(1)根据题目已知条件易得:180ADE ADB EDC ∠+∠+∠=︒,180B ADB DAB ∠+∠+∠=︒,所以得到DAB EDC ∠=∠,问题得证.(2)由题意易得ABC 是等腰直角三角形,所以90BAC ∠=︒,当ADE 是等腰三角形时,根据分类讨论有三种情况:∠AD=AE ,∠AD=DE ,∠AE=DE ;因为点D 不与B C 、重合,所以第一种情况不符合,其他两种情况根据等腰三角形的性质“等边对等角”及45B ADE ∠=∠=︒,求出问题即可.解:(1)如图可知:180ADE ADB EDC ∠+∠+∠=︒在ABD △中,∴ 180B ADB DAB ∠+∠+∠=︒又B ADE C ∠=∠=∠∴EDC DAB ∠=∠∴BDA CED △∽△.(2)B ADE C ∠=∠=∠,45B ∠=︒∴ABC 是等腰直角三角形∴90BAC ∠=︒ BC=2,∴AB=AC=222∠当AD=AE 时,∴ADE AED ∠=∠45B ∠=︒,∴=45B ADE AED ∠=∠∠=︒∴90DAE ∠=︒∴90DAE BAC ∠=∠=︒点D 在BC 上运动时(点D 不与B C 、重合),点E 在AC 上∴此情况不符合题意.∠当AD=DE 时,∴DAE DEA ∠=∠∴由(1)结论可知:BDA CED ≌∴2∴22BD =∠当AE=DE 时,45ADE DAE ∠=∠=︒∴AED 是等腰直角三角形45B ∠=︒,∴==45B C DAE ∠∠∠=︒∴90ADC ∠=︒,即AD BC ⊥∴1=12BD BC =. 综上所诉:22BD =1.【点拨】本题主要考查相似三角形的判定及等腰三角形的存在性问题,关键是利用“K”型相似模型及根据“等边对等角”、等腰直角三角形的性质得到线段的等量关系,进而求解问题.10.(1)详见分析;(2)△ABD ∠∠ACD ;△APN ∠∠ACP ;△APN ∠∠QCN ;△ACP ∠∠QCN ;(3)1.5.【分析】(1)根据等边三角形性质得到∠ABP =∠PCN =60°,利用角的和差证明∠BAP =∠CPN ,根据相似三角形的判定定理证明结论;(2)因为△ABC 是正三角形,AD 是边BC 上的高线,由三线合一可证△ABD ∠∠ACD ;因为∠APN=∠ACP=60°,∠PAN=∠CAP,所以△APN ∠∠ACP ;因为∠APN=∠NCQ=60°,∠PNA=∠CNQ,所以△APN∠∠QCN ;因为△APN ∠∠ACP ,△APN∠∠QCN ,所以△ACP ∠∠QCN ;(3)当点P 在BD 的中点运动到DC 的中点时,利用相似三角形性质,设PB =x ,CN =y ,则3≤x ≤9,由第(1)题利用相似三角形性质可得:1212y x x -=,解得2112y x x =-+,又利用函数图象可知:当x =3或9时,y =94,当x =6时,y 最大=3,所以点N 运动的路径长为:(3-94)×2=1.5. 解:(1)在正三角形ABC 中,∠ABP =∠PCN =60°,∠∠BAP +∠BP A =120°,又∠∠APQ =60°,∠∠CPN +∠BP A =120°, ∠∠BAP =∠CPN ,∠∠ABP ∠∠PCN ;(2)△ABD ∠∠ACD ;△APN ∠∠ACP ;△APN ∠∠QCN ;△ACP ∠∠QCN ;理由:∠△ABC 是正三角形,AD ∠BC ,由三线合一可证△ABD ∠∠ACD ;∠∠APN=∠ACP=60°,∠PAN=∠CAP ,∠△APN ∠∠ACP ;∠∠APN=∠NCQ=60°,∠PNA=∠CNQ,∠△APN∠∠QCN ;∠△APN ∠∠ACP ,△APN∠∠QCN ,∠△ACP ∠∠QCN ;(3)能,设PB =x ,CN =y ,由第(1)题可得:1212y x x -=, ∠2112y x x =-+,又3≤x ≤9,利用函数图象可知: 当x =3或9时,y =94,当x =6时,y 最大=3; ∠点N 运动的路径长为:(3-94)×2=1.5. 【点拨】本题考查的是相似三角形的判定和性质、正三角形的性质,掌握相关的性质定理、灵活运用所学知识是解题的关键.11.(1)C (-4,0);(2)∠证明见分析,∠存在.使△PBM 为直角三角形的点P 有两个P1(-94,0),P2(0,0). 【分析】(1)根据B 点坐标求得直线解析式,再求得A 点坐标,然后根据A 与C 关于y 轴对称,据此即可确定C 的坐标;(2)∠根据点C 与点A 关于y 轴对称,即可得到BC=BA ,则∠BCP=∠MAP ,再根据三角形的外角的性质即可证得∠PMA=∠BPC ,从而证得两个三角形相似;∠首先求得B 的坐标,当∠PBM=90°时,则有∠BPO∠∠ABO ,根据相似三角形的对应边的比相等,即可求得PO 的长,求得P 的坐标;当∠PMB=90°时,则∠PMA═90°时,BP∠AC ,则此时点P 与点O 重合.则P 的坐标可以求得.(1)解:∠直线y=-34x+b与y轴相交于点B(0,3),∠b=3,∠直线的解析式为y=-34x+3,令y=0,得到x=4,∠A(4,0),∠点C与点A关于y轴对称,∠C(-4,0);(2)∠证明:∠∠BPM=∠BAC,且∠PMA=∠BPM+∠PBM,∠BPC=∠BAC+∠PBM,∠∠PMA=∠BPC,又∠点C与点A关于y轴对称,且∠BPM=∠BAC,∠∠BCP=∠MAP,∠∠PBC∠∠MPA;∠解:存在.由题意:A(4,0),B(0,3),C(-4,0)当∠PBM=90°时,则有∠BPO∠∠ABO,∠POBO=BOAO,即334,∠PO=94,即:P1(-94,0).当∠PMB=90°时,则∠PMA═90°,∠∠PAM+∠MPA=90°,∠∠BPM=∠BAC,∠∠BPM+∠APM=90°,∠BP∠AC.∠过点B只有一条直线与AC垂直,∠此时点P与点O重合,即:符合条件的点P2的坐标为:P2(0,0).∠使∠PBM为直角三角形的点P有两个P1(-94,0),P2(0,0).【点拨】本题是属于一次函数综合题,考查了相似三角形的判定和性质、待定系数法、一次函数的应用等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.12.【试题再现】见分析;【问题探究】点E是四边形ABCD的边AB上的相似点. 理由见分析;【深入探究】(1) 点P是四边形ABCD的边AB上的一个强相似点,见分析;(2) 215解:试题分析:【试题再现】易证∠BCE=∠CAD,又∠ADC=∠CEB=90°,故得∠ADC∠∠CEB.【问题探究】要证明点E是四边形ABCD的AB边上的相似点,只要证明有一组三角形相似就行,很容易证明∠ADE∠∠BEC,所以问题得解.【深入探究】(1)分别证明∠ADP∠∠PDC,∠BPC∠∠PDC,从而∠ADP∠∠PDC∠∠BPC,故点P是四边形ABCD的边AB上的一个强相似点.(2)过点P作PE∠DC于点E,过点D作DF∠BC于点F,则四边形ABFD是矩形,通过证明∠ADP∠∠EDP和∠CBP∠∠CEP得DC =8,再求出CF=2,在Rt∠CDF中,由勾股定理,得15解:【试题再现】∠∠ACB=90°,∠∠ACD+∠BCE=90°,∠AD∠DE,∠∠ACD+∠CAD=90°,∠∠BCE=∠CAD,∠∠ADC=∠CEB=90°,∠∠ADC∠∠CEB.【问题探究】点E是四边形ABCD的边AB上的相似点.理由如下:∠∠DEC=40°,∠∠DEA+∠CEB=140°.∠∠A=40°,∠∠ADE+∠AED=140°,∠∠ADE=∠CEB,又∠∠A=∠B,∠∠ADE∠∠BEC,∠点E 是四边形ABCD 的边AB 上的相似点.【深入探究】(1)∠AD∠BC,∠∠ADC+∠BCD=180°,∠DP 平分∠ADC,CP 平分∠BCD,∠∠CDP+∠DCP=12(∠ADC+∠BCD)=90°, ∠DA∠AB,DA∠BC,∠CB∠AB,∠∠DPC=∠A=∠B=90°,∠∠ADP=∠CDP,∠∠ADP∠∠PDC,同理∠BPC∠∠PDC,∠∠ADP∠∠PDC∠∠BPC,即点P 是四边形ABCD 的边AB 上的一个强相似点.(2)过点P 作PE∠DC 于点E,过点D 作DF∠BC 于点F,则四边形ABFD 是矩形,∠DF=AB,在∠ADP 与∠EDP 中,ADP EDP,DAP DEP 90,DP DP,∠∠∠∠=⎧⎪==︒⎨⎪=⎩∠∠ADP∠∠EDP,∠AD=DE,同理∠CBP∠∠CEP,∠BC=EC,∠DC=AD+BC=8.在Rt∠CDF 中,CF=BC -BF=BC -AD=5-3=2, 由勾股定理,得2282-151513.(1)34;(2)75. 分析:(1)如图,过点P 作CD 的垂线,分别交AB 、CD 于M 、N ,易证△PNE∠∠BMP,从而证得PE 3tan PB 4PN PN ACD BM CN ===∠= (2)首先证明BP=BC,再过点B 作BF 垂直AC 得PF=CF,由cos ,BC FC FCB AC BC ∠==得9,5FC PF == 根据AP=AC -PC 即可求解.解:(1)P CD AB CD M N 过点作的垂线,分别交、于点、,90PNE ∴∠︒=.ABCD 四边形是矩形,//90,AB CD ABC BCD ,∴∠=∠=︒BCMN 四边形是矩形,∴90,BMP BM CN ∴∠=︒=90,90,PNE BPE ∠=︒∠=︒90,90,NPE PCN MPB MPE ∴∠+∠=︒∠+∠=︒,90PEN MPB PNE BMP ∴∠=∠∠=∠=︒又 ~,PNE BMP ∴∆∆PE 3tan .PB 4PN PN ACD BM CN ∴===∠= 34PE PB ∴的值为 (2).PE CE EPC ECP =∠=∠当,则ABCD 四边形是矩形,90,BCD ∴∠=︒,PE PB ⊥90.BPE ∴∠=︒BPC BCP ∴∠=∠.BP BC ∴=B BF AC F PF CF.⊥=过点作于点,则cos ,BC FC FCB AC BC∠== 3,53FC ∴= 9,5FC ∴= 9.5PF ∴= 187555AP AC PC ∴=-=-= 【点拨】本题考查的是矩形的性质、相似三角形的判定和性质以及解直角三角形,正确作出辅助线、灵活运用相关的定理是解题的关键.14.【小问1】AD BE =,说明见分析【小问2】BED FDC ∠=∠,EDB DFC ∠=∠;说理见分析【小问3】∠BD BF CD +=,理由见分析;∠AE EG +5【分析】(1)【问题情境】证明()ABD BCE AAS ∆≅∆,即可求解.(2)【变式探究】利用等量代换即可求解.(3)【拓展应用】∠等量代换即可求解;∠在CD 上截取DM BF =,连接EM ,作点G 关于CE 的对称点N ,连接CN ,AN ,先证明()BDF MED SAS ∆≅∆,得到EM =CM ,在求出22.5ECM MEC ∠=∠=︒,即可确定E 点在射线CE 上运动,当A 、E 、N 三点共线时,EA +EG 的值最小,最小值为AN ,在Rt ANC 中求出AN 即可.解:(1)【问题情境】AD BE =,理由如下:90ABC ∠=︒,90ABD CBE ∴∠+∠=︒,90BAD ABD ∠+∠=︒,BAD CBE ∴∠=∠,AB BC =,()ABD BCE AAS ∴∆≅∆,AD BE ∴=;(2)【变式探究】BED FDC ∠=∠,EDB DFC ∠=∠;理由如下: B FDE C ∠=∠=∠,180EDB BED EDB FDC FDC DFC EDF ∴∠+∠=∠+∠=∠+∠=︒-∠,BED FDC ∴∠=∠,EDB DFC ∠=∠; (3)【拓展应用】∠AB BC =,AF BF BD CD ∴+=+,2AF BD =,2BD BF BD CD ∴+=+,BD BF CD ∴+=;∠在CD 上截取DM BF =,连接EM ,作点G 关于CE 的对称点N ,连接CN ,AN , 45B ∠=︒,45EDF ∠=︒,BFD EDM ∴∠=∠,DF DE =,()BDF MED SAS ∴∆≅∆,BD EM ∴=,EM BD =,45B DME ∠=∠=︒,CD BD BF =+,CM BD ∴=,EM CM ∴=,MCE MEC ∴∠=∠,45EMD ∠=︒,22.5ECM MEC ∴∠=∠=︒,E ∴点在射线CE 上运动,G 点与N 的关于CE 对称,EG EN∴=,EA EG EA EN AN∴+=+,∴当A、E、N三点共线时,EA EG+的值最小,最小值为AN,45B∠=︒,AB BC=,67.5ACB∴∠=︒,45ACE∴∠=︒,由对称性可知,ACE ECN∠=∠,90ACN∴∠=︒,点G是AC的中点,2AC=,1CG∴=,1CN∴=,在Rt ANC中,5ANAE EG∴+5【点拨】本题是三角形的综合题,熟练掌握三角形全等的判定及性质,轴对称求最短距离的方法是解题的关键.15.(1)AEDE;(2)CE=a-b;(3)见分析【分析】(1)根据相似三角形的性质即可求得结果;(2)由已知易证∠ADB∠∠DEC,从而由全等三角形的性质即可求得CE的长度;(3)作CG//FE交DE于点G,易证得∠FBE∠∠EGC,从而可得BEFE=CGEC;可证得∠DGC∠∠DCE,可得DCDE=CGEC,即有BEFE=DCDE,再由AB=CD即可得要证的结论.解:(1)∠∠ABC∠∠DAE∠BC AE AC DE故答案为:AE DE;(2)∠∠B=∠ADE=∠C,∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∠∠EDC=∠BAD又∠DA=DE∠∠ADB∠∠DEC∠EC=BD,AB=DC=b∠BD=BC-DC=a-b.即:CE=a-b.(3)∠∠DEF=∠B∠∠BFE+∠BEF=∠BEF+∠DEC∠∠BFE=∠DEC.作CG//FE交DE于点G,如图3.∠∠DEF=∠EGC∠∠B=∠EGC∠∠FBE∠∠EGC∠BEFE=CGEC∠四边形ABCD是平行四边形∠∠B+∠BCD=180°∠∠EGC+∠DGC=180°,且∠B=∠EGC ∠∠DGC=∠BCD又∠∠EDC=∠CDG ∠∠DGC∠∠DCE∠DCDE=CGEC∠BEFE=DCDE∠DC·FE=BE·DE又∠四边形ABCD是平行四边形∠AB=DC∠AB·FE=BE·DE【点拨】本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,平行四边形的性质等知识,(3)问中作辅助线是难点,灵活运用这些知识是重点.16.(1)答案见分析;(2)直线l2的函数表达式为:y=3944x--;(3)点D的坐标为2238,33⎛⎫-⎪⎝⎭或(8,﹣14)或1626,33⎛⎫-⎪⎝⎭【分析】(1)由垂直的定义得∠ADC=∠CEB=90°,平角的定义和同角的余角的相等求出∠DAC=∠ECB,最后由角角边证明:∠BEC∠∠CDA;(2)如图2,仿照(1)作辅助线,构建三角形全等,同理证明∠BOA∠∠AED,求出点D的坐标为(-7,3),最后利用待定系数法可得直线l2的函数表达式;(3)分三种情况:∠如图3,∠CPD=90°时,∠如图4,∠PCD=90°,此时P与A重合,∠如图5,∠CDP=90°,分别作辅助线,构建三角形全等,根据全等三角形的性质可得点D 的坐标.解:(1)如图1所示:∠AD∠ED,BE∠ED,∠∠ADC=∠CEB=90°,又∠∠ACD+∠ACB+∠BEC=180°,∠ACB=90°,∠∠ACD+∠BEC=90°,又∠∠ACD+∠DAC=90°,∠∠DAC=∠ECB ,在∠CDA 和∠BEC 中,ADC CEB DAC ECB AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∠∠CDA∠∠BEC (AAS );(2)如图2,在l 2上取D 点,使AD=AB ,过D 点作DE∠OA ,垂足为E ,∠直线y=43x+4与坐标轴交于点A 、B , ∠A (-3,0),B (0,4),∠OA=3,OB=4,由(1)得∠BOA∠∠AED ,∠DE=OA=3,AE=OB=4,∠OE=7,∠D (-7,3)设l 2的解析式为y=kx+b ,∠3703k b k b-+⎧⎨-+⎩== 解得3494k b ⎧-⎪⎪⎨⎪-⎪⎩== ∠直线l 2的函数表达式为:y =3944x --; (3)点D 的坐标为223833⎛⎫- ⎪⎝⎭,或(8,﹣14)或162633⎛⎫- ⎪⎝⎭,分三种情况:∠如图3,∠CPD=90°时,过P作MH∠x轴,过D作DH∠y轴,MH和DH交于H,∠∠CPD是等腰直角三角形,∠CPD=90°,∠CP=PD,同理得∠CMP∠∠PHD(AAS),∠DH=PM=6,PH=CM,设PH=a,则D(6+a,a-8-6),∠点D是直线y=-2x+2上的动点且在第四象限内.∠a-8-6=-2(6+a)+2,解得:a=43,∠D(2238,33);∠如图4,∠PCD=90°,此时P与A重合,过D作DE∠y轴于E,∠∠CPD是等腰直角三角形,同理得∠AOC∠∠CED,∠OA=CE=6,OC=DE=8,∠D(8,-14);∠如图5,∠CDP=90°,过点D作MQ∠x轴,延长AB交MQ于Q,则∠Q=∠DMC=90°,∠∠CDP是等腰直角三角形,同理得∠PQD∠∠DMC,∠PQ=DM,DQ=CM,设CM=b,则DM=6-b,AQ=8+b,∠D(6-b,-8-b),∠点D是直线y=-2x+2上的动点且在第四象限内,∠-8-b=-2(6-b)+2,解得:b=23,∠D(1626,33-);综上,点D的坐标为223833⎛⎫-⎪⎝⎭,或(8,﹣14)或162633⎛⎫-⎪⎝⎭,【点拨】本题是一次函数和四边形的综合题,综合考查了矩形的性质,全等三角形的性质和判定,一次函数上点的坐标的特点等知识点,重点是运用类比的方法,作辅助线,构建全等三角形依次解决问题.。