重庆大学数值分析试卷
数值分析期末试题及答案
数值分析期末试题及答案试题一:1. 简答题(共10分)a) 什么是数值分析?它的主要应用领域是什么?b) 请简要解释迭代法和直接法在数值计算中的区别。
2. 填空题(共10分)a) 欧拉方法是一种______型的数值解法。
b) 二分法是一种______法则。
c) 梯形法则是一种______型的数值积分方法。
3. 计算题(共80分)将以下函数进行数值求解:a) 通过使用二分法求解方程 f(x) = x^3 - 4x - 9 = 0 的近似解。
b) 利用欧拉方法求解微分方程 dy/dx = x^2 + 2x + 1, y(0) = 1 在 x = 1 处的解。
c) 使用梯形法则计算积分∫[0, π/4] sin(x) dx 的近似值。
试题二:1. 简答题(共10分)a) 请解释什么是舍入误差,并描述它在数值计算中的影响。
b) 请解释牛顿插值多项式的概念及其应用。
2. 填空题(共10分)a) 数值稳定性通过______号检查。
b) 龙格-库塔法是一种______计算方法。
c) 零点的迭代法在本质上是将方程______转化为______方程。
3. 计算题(共80分)使用牛顿插值多项式进行以下计算:a) 已知插值节点 (-2, 1), (-1, 1), (0, 2), (1, 4),求在 x = 0.5 处的插值多项式值。
b) 已知插值节点 (0, 1), (1, 2), (3, 7),求插值多项式,并计算在 x = 2 处的值。
c) 使用 4 阶龙格-库塔法求解微分方程 dy/dx = x^2 + 1, y(0) = 1。
答案:试题一:1. a) 数值分析是研究使用数值方法解决数学问题的一门学科。
它的主要应用领域包括数值微积分、数值代数、插值和逼近、求解非线性方程、数值积分和数值解微分方程等。
b) 迭代法和直接法是数值计算中常用的两种方法。
迭代法通过反复迭代逼近解,直到满足所需精度为止;而直接法则通过一系列代数运算直接得到解。
重庆大学数学分析2002-2014
重庆大学2002数学分析重庆大学2003数学分析重庆大学2006年硕士研究生入学考试试题 科目代码:329科目名称:数学分析特别提醒考生:答题一律做在答题纸上(包括填空题包括填空题、、选择题选择题、、改错题等),直接做在试题上按零分计分计。
第一部分 计算题计算题((共70分)一、(10分)求极限xx x x sin 1sin lim 20→, 并说明能否使用洛必达法则,为什么? 二、(10分)设)(x y y =是由方程y x xy e 32=确定的隐函数,计算.)(2)2ln (2y y y ′−′′−三、(10分)应用定积分求极限∑=∞→+n i n i n n 122lim 。
四、(10分)讨论函数43)1()3()(+−=x x x f 的严格单调区间与极值。
五、(10分)判断函数列),3,2,1()(2 ===n nxe x f nx n 在区间[]1,0上的一致收敛性,并说明理由。
六、(10分)计算不定积分∫++dx x x 1142 七、(10分)化二重积分xdy d y x f D∫∫+)(为单积分,其中D :1≤+y x 。
第二部分 证明题证明题((共80分)八、(18分)写出极限)(lim x f x ∞→存在(有限)的柯西收敛法则及其否定叙述,并据此证明下述结论:(1)极限xx x cos lim +∞→存在(有限);(2)极限x x sin lim +∞→不存在。
九、(12分)叙述函数)(x f 闭区间[]b a ,上可积的定义,并据此证明函数−=11)(x f Qx Q x ∉∈,Q 是有理数集在闭区间[]b a ,上不可积。
第 2 页 共 2 页十、(12分)设函数)(x f 在闭区间[]b a ,上连续且变号(即非恒正,也非恒负),在开区间()b a ,二阶可导,且,0)()(==b f a f 证明:至少存在一点()0)(,,<′′∈ξξf b a 使得。
数值分析期末试题及答案
数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。
答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。
答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。
答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。
答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。
解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。
拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。
数值分析试卷及答案
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
数值分析考试题
山东科技大学2008-2009学年第一学期《数值分析》考试一、设x =9.1234, y =10.486均具有5位有效数字。
试分析x - y和x3 y啲绝对误差限和相对误差限。
二、求一条拟合3点A(0,1), B(1,3),C(2,2)的直线。
三、设n _ 2为正整数,c为正数,记x*二n.c1) 说明不能用下面的迭代格式1 _nx k 1 = cx k ,k =Q1,2:= = " =求x*的近似值。
2) 构造一个可以求x*的迭代格式,证明所构造迭代格式的收敛性,并指出收敛阶数四、给定线性方程组_4 -1 0卩1 一2〕-1 a 1 x2 = 64」]X3」:2J】0 1其中a为非零常数。
1) 写出Jacobi迭代格式与Gauss-Seidel迭代格式并分析其收敛性。
2) 分析a在什么范围取值时以上迭代格式收敛。
五、做一个5次多项式H (x)使得H(1) =3,H (2) = —1, H(4) =3,H'(1) =2, H'(2) =1, H *(2) =2,六、求f (x) =x2在区间0,1上的一次最佳一致逼近多项式。
七、给定积分公式:1f(x)d x :Af (-1) Bf (0) f (1)■ -41) 试确定求积系数A,B,C,使其具有尽可能高的代数精度,并指出其代数精度。
2) 试判断该求积公式是否为高斯型求积公式,并说明理由。
3) ................................................................................................ 将区间-1,作n等分,并记h=2,X j =-1 ih,i =0,1,............................................................ ,n,利用该求积公式n 构造一个复化求积公式。
数值分析报告试卷及问题详解
模拟试卷(一)—、填空题(每小题3分,共30分)1•有3个不同节点的高斯求积公式的代数精度是次的.■ 1 5 -2' ,2 .设A = -2 1 0 / x =-4_ 1 -4 2. 12 > ,则⑷J—,同广14 is 913 •已知尸心)的均差(差商)/[如,%]“] = —, f[x x yX] = — , f[x,x^x\ =—,8/ [x o,x2,x3 ] = —#那么均差 / [x4,X2^Y3]=4.已知n=4时Newton - Cotes求积公式的系数分别是:C計=[,C;“ =^,C列=丄,7 \J 1 J 1 J则C『)二5・解初始值问题<y = f(X,y)的改进的Euler方法是.)心0)=儿阶方法;6.求解线性代数方程组<5%| - 3X2-0.1X3 = 3-2x, + 6X2+ 0.7® = 2的高斯一S德尔迭代公式为Xj +2X2+3.5X3 = 1若取捫>=(1,71),则利)=7•求方程x = f(x)根的牛顿迭代格式是 ____________ .8. f0(A), £(x),…,仁(X)是以整数点兀),西,…,俎,为节点的Lagrange插值基函数,则1>0(忑)= ___________ •1-010・设/(・1) = 1J(O) = OJ(1) = 1J(2) = 5 ,则/(X)的三次牛顿插值多项式为 __________________ ,其误差估计式为______________________ .二.综合题(每题10分,共60分)1 .求一次数不超过4次的多项式“(X)满足:"⑴=15 , "(1) = 20 , /「(1) = 30 p(2) = 57 , p‘⑵= 72.其代数精度.3 .用Newton法求方程x-Inx = 2在区间(2,s)的根要求忙 #I <10-8. 1^14・用最小二乘法求形如y = a + hx2的经验公式拟合以下数据:5・用矩阵的直接三角分解法解方程组y f = f(\ y)6试用数值积分法建立求解初值问题•小、丿的如下数值求解公式卜(0)=儿儿+1 = y»-i + - (£+1 + 4人 + A-i),其中ft = /(兀,X), i = n-1,”,n + \.三.证明题(10分)设对任意的;V ,函数/(X)的导数广w都存在且0v/S广(QSM,对于满足2OvQv三的彳壬意几,迭代格式仏严九一兄/(忑)均收敛于/(%) = 0的根x・参考答案—s填空题1.5;2. & 9;3. — ;4. 一 ; 5•二;1545尤严)=(3 + 3 时)+o.lxf )/5 6. < 垮刖=(2 + 2屮初 _0.7歧))/6 ,(0.02,0.22,0.1543)£Z=(l — x ;Z —2x ;z)*2/7 • ■7・汕=入 _;二:]8-厂;° 以3) vl;10. —.V + x" —x, f (f)(x + 1)X (A * — l)(x — 2)/ 24 c s (—1,2) 6 6二综合题1・差商表:p{x) = 15 + 20(x -1) +15(x -1)2 + 7(x -1)' + (x - l)3(x - 2) = 5 + 4x + 3x 2 +2x 3+x其他方法:设 p(x) = 15 + 20(x 一 1) +15(x -1)2 + 7(x 一 1尸 + (x -1)3 (ax+b) 令 “(2) = 57 r⑵=72 ,求出 a 和b.2・取f(x) = 1, x ,令公式准确成立,得:2809I寸Eomom寸COMN CM"61II -二比三Eds H e•寸心Ix 三Ix H(X)J®Y寸・0)叵凶股皿眉•巾卑◎—€□((s 叵凶田ss H m ・m.^n s s gs ...寸r I S寸"H -WPQ 石 X H (X): iH p -W ^gH<+<1・ I H<+<-0-£3启孑刃咲&讯篠世迎ffl®議・s•§38.O H ^・zzr,肖6・0口9去监s §s .o「991寸In -11解下三角方程组;有” =5 ,匕=3 ,1 >'23 2 1 V3171 0 17解初值问题等价于如下形式y (x )=y (兀1)+匸几不)',取 Y =耳+i ,有 y(©+i ) = yCji)+「z fa 、y(x)\ix f 利用辛卜森求积公式可得儿+严畑+ g (/;1+1 + 4/;_ + /;,_.).三.证明题 证明 将 f(x) = 0 写成 x = x-/Lf(x) =(p(x) t 由于 ^(x) = [x-2/(x)r = l-2/r (x),所以 10(力曰1 一/lf(x)lvl 所以迭代格式札| =忑- A fM 均收敛于/(x) = 0的根F ・模拟试卷(二)一.填空题(每小题3分,共30分)1 .分别用2.718281和2.718282作数〔的近似值,则具有效位数分别有 _______ 位和再解上三角方程组得原方程组的解为“ 10 2 0'丁1 0 1 v 23 2 1兀362. 兰4.4=1 t = 1 t X3 =2 t X4 = 2 ・10 -2"2 .设4 =1 1 0 ■ x = 33-821>?3 =6,>4 =4・位;3•对于方程组Jacobi迭代法的迭代矩阵是G,=〔10刁-4七=3 J4.设f(jv) = H+x_l,则差商/[0,1,2,3]= _______________ , /[0, 1, 2, 3,4]= _________ •1 25・已知A=() ] f贝ij条件数Co认(A) ______________ ・6.为使两点的数值求积公式[f(x)dx = f(x0) + /(x,)具有最高的代数精确度,则具求积基点应为X。
重庆大学研究生数值分析试题解析
算精度为=10-2的近似根; (3)此迭代法的收敛阶是多少?说明之.
解 (1)因为0<x1时,(x)<0,x2时,(x)>0,所以(x)仅在(1,2)内有零点,而当1<x<2 时,(x)>0,故(x)单调.因此方程(x)=0有唯一正根,且在区间(1,2)内.
(3)因为0<</2,所以() 故,此迭代法线性收敛(收敛阶为1).
0
cos / 2 1 sin
三、(14分)设线性方程组
4x1 x2 2x3 1 x1 5x2 x3 2 2x1 x2 6x3 3
(1)写出Jacobi法和SOR法的迭代格式(分量形式); (2)讨论这两种迭代法的收敛性. (3)取初值x(0)=(0,0,0)T,若用Jacobi迭代法计算时, 预估误差x*-x(10) (取三位有效数字).
R(பைடு நூலகம்) f (4) ( x ) x(x 1)2 (x 2)
4!
五、(12分)试确定参数A,B,C及,使数值积分公式
2
2
f
(x)dx
Af
( )
Bf
(0)
Cf
( )
有尽可能高的代数精度,并问代数精度是多少?它是否是Gauss公式?
解 令公式对(x)=1,x,x2,x3,x4都精确成立,则有 4=A+B+C, 0=A-C, 16/3=A2+C2, 0=A3-C3 64/5=A4+C4 ,解得:A=C=10/9,B=16/9,=(12/5)1/2
考试题解析
数值分析试题及答案
数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
数值分析试题与答案
试题__2009___年~__2010___年第 一学期课程名称: 数值分析 专业年级: 2009级(研究生) 考生学号: 考生姓名: 试卷类型: A 卷 √ B 卷 □ 考试方式: 开卷 √ 闭卷 □………………………………………………………………………………………………………一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。
2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。
3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。
4. 1n +个节点的高斯求积公式的代数精确度为 。
二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。
三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。
(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。
(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。
(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分) 七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。
(完整)数值分析学期期末考试试题与答案(A),推荐文档
期末考试试卷( A 卷)2007 学年第二学期 考试科目: 数值分析 考试时间: 120 分钟学号 姓名 年级专业100011. 用计算机求11000时,应按照 n 从小到大的顺序相加。
n1n2. 为了减少误差 ,应将表达式 2001 1999 改写为 2进行计算。
( )2001 19993. 用数值微分公式中求导数值时,步长越小计算就越精确。
( )4. 采用龙格-库塔法求解常微分方程的初值问题时, 公式阶数越高,数值解越精确。
( )5. 用迭代法解线性方程组时, 迭代能否收敛与初始向量的选择、 系数矩阵及其演变方式有关,与常数项无关。
( ) 二、填空每空 2 分,共 36 分)1. 已知数 a 的有效数为 0.01 ,则它的绝对误差限为 _______ ,相对误差限为 _1 0 1 02. 设 A0 2 1 ,x 5 ,则 A 1____________________________ _, x 2 ______ ,Ax1 3 0 13. 已知 f (x) 2x 54x 35x,则 f[ 1,1,0] , f[ 3, 2, 1,1,2,3] .14. 为使求积公式 f (x)dx A 1f ( 3) A 2f (0) A 3f ( 3)的代数精度尽量高,应使13 3A 1 , A 2 , A 3,此时公式具有 次的代数精度。
5. n 阶方阵 A 的谱半径 ( A)与它的任意一种范数 A 的关系是 .6. 用迭代法解线性方程组 AX B 时,使迭代公式 X (k 1)MX (k)N (k 0,1,2,K )产 生的向量序列X (k)收敛的充分必要条件是 .7. 使用消元法解线性方程组AX B时,系数矩阵A可以分解为下三角矩阵L 和上三角矩阵U 的乘积,即A LU. 若采用高斯消元法解AX B,其中A 4 2,则21L ___________ ,U ____________ ;若使用克劳特消元法解AX B ,则u11 _______ ;若使用平方根方法解AX B,则l11与u11的大小关系为(选填:>,<,=,不一定)。
数值分析课程考试试卷(A)及答案
《 数值分析 》课程考试试卷(A )考试形式:闭卷√□、开卷□,允许带 计算器 入场考生姓名: 学号: 专业: 班级:一、填空(每个空3分,共30分)1,设 *3.1415, 3.141x x ==,则*x 有__________位有效数字。
2,*3587.6x =是经四舍五入得到的近似值,则其相对误差≤*r e ___________. 3,已知=⎪⎭⎫⎝⎛-=1,4032A A 则_______, =∞A _______.4,设0)(≥''x f , 则由梯形公式计算的近似值T 和定积分⎰=badx x f I )(的值的大小关系为___________.(大于或者小于)5, 已知,3,2,1,03210====x x x x 4,5.2,1.1,03210====f f f f ,则均差],,,[3210x x x x f _______________.6, 已知A=⎪⎪⎪⎭⎫ ⎝⎛2021012a a ,为使A 可分解为TLL A =,其中L 为对角线元素为正的下三角形矩阵,则a 的取值范围为_______________,如果a =1,则L =______________.7,若b a ,满足的正规方程组为:⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====n i n i ni i i i i n i ni i i y x b x a x y b x na 1112111 则x y 与之间的关系式为______________________8,若1λ是1-A 的按模最大的特征值,则A 的按模最小的特征值为___________二、设(1)0,(0)2,(1)4f f f -===,求 )(x p 使 )()(i i x f x p =,)2,1,0(=i ;又设 M x f ≤''')( ,则估计余项 )()()(x p x f x r -= 的大小 。
数值分析试题及答案
数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。
A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。
A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。
A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。
A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。
A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。
A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。
A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。
数值分析试题及答案
数值分析试题及答案一、单项选择题(每题3分,共30分)1. 线性代数中,矩阵A的逆矩阵记作()。
A. A^TB. A^-1C. A^+D. A*答案:B2. 插值法中,拉格朗日插值多项式的基函数是()。
A. 多项式B. 指数函数C. 正弦函数D. 余弦函数答案:A3. 在数值积分中,梯形规则的误差是()阶的。
A. O(h^2)B. O(h^3)C. O(h)D. O(1/h)答案:A4. 求解线性方程组时,高斯消元法的基本操作不包括()。
A. 行交换B. 行乘以非零常数C. 行加行D. 行除以非零常数答案:D5. 非线性方程f(x)=0的根的迭代法中,收敛的必要条件是()。
A. f'(x)≠0B. f'(x)=0C. |f'(x)|<1D. |f'(x)|>1答案:C6. 利用牛顿法求解非线性方程的根时,需要计算()。
A. 函数值B. 函数值和导数值C. 函数值和二阶导数值D. 函数值、一阶导数值和二阶导数值答案:B7. 矩阵的特征值和特征向量是()问题中的重要概念。
A. 线性方程组B. 特征值问题C. 线性规划D. 非线性方程组答案:B8. 在数值分析中,条件数是衡量矩阵()的量。
A. 稳定性B. 可逆性C. 正交性D. 稀疏性答案:A9. 利用龙格现象说明,高阶插值多项式在区间端点附近可能产生()。
A. 振荡B. 收敛C. 稳定D. 单调答案:A10. 雅可比迭代法和高斯-塞德尔迭代法都是求解线性方程组的()方法。
A. 直接B. 迭代C. 精确D. 近似答案:B二、填空题(每题4分,共20分)11. 线性代数中,矩阵A的行列式记作________。
答案:det(A) 或 |A|12. 插值法中,牛顿插值多项式的基函数是________。
答案:差商13. 在数值积分中,辛普森规则的误差是________阶的。
答案:O(h^4)14. 求解线性方程组时,迭代法的基本思想是从一个初始近似解出发,通过不断________来逼近精确解。
《数值计算试卷》重庆大学_2012-2013版本2
重庆大学试卷 教务处07版 第 1 页 共 1 页重庆大学《数值计算》课程试卷2012 ~2013 学年 第1学期开课学院:数统学院 课程号:考试日期:考试方式:考试时间120 分钟一、 填空题(3分/每空,共24分)1、精确值461972.2*=x ,近似值462041.2=x ,则x 有 位有效数字。
2、Simpson 公司的代数精度为。
3、若)(x f 在),(b a 上有连续的二阶导数,则梯形求积公式的截断误差为4、已知矩阵 A=250276428⎛⎫ ⎪- ⎪ ⎪-⎝⎭,则 A ∞= 。
5.)1(>>x 改变为 使得到的结果更有效。
6、解非线性方程0)(=x f 的牛顿迭代法,在单实根附近具有 阶收敛。
7、若线性方程组b Ax=的系数矩阵A 为严格对角占优阵,则雅可比迭代法_____8、迭代过程(k=1,2,…)收敛的充要条件是。
二、(18分)对方程组1231231234232622252x x x x x x x x x -+=⎧⎪-+-=⎨⎪--+=⎩用Gauss-Seidel 迭代法求解是否收敛?取初值()1,1,1T,并求出用Gauss-Seidel 迭代3次后的值(3)x 。
三.(16分)用经典的四阶R-K 方法求初值问题'2(0)1y x yy ⎧=+⎨=⎩的解在x =0.2处的值,取步长h =0.1四.(16分) 已知:5====,(1) 构造差商表;(2的近似值五.(12分)用逐次分半的复化梯形法公式计算积分⎰+=10211dx x I 要求精确至3位有效数。
六.试对矩阵A 进行Doolittle 分解 (14分)623251139A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦命题人:组题人:审题人:命题时间:教务处制学院 专业、班 年级 学号 姓名公平竞争、诚实守信、严肃考纪、拒绝作弊封线密。
重庆大学研究生数值分析期末考试试卷
重庆大学研究生数值分析课程试卷A卷B卷2012 ~2013 学年 第 1学期开课学院:数统学院 课程号:考试日期:考试方式:开卷闭卷 其他 考试时间 120 分钟注:1.大标题用四号宋体、小标题及正文推荐用小四号宋体;2。
按A4纸缩小打印一、 选择题(3分/每小题,共15分)1、以下误差公式不正确的是( A )A. ()()()1212x x x x εεε-=- B 。
()()()1212x x x x εεε+=+C .()()()122112x x x x x x εεε=+ D. ()()22x x x εε=2、通过点()00,x y ,()11,x y 的拉格朗日插值基函数()0l x ,()1l x 满足(C )A. ()000l x =,()110l x =B. ()000l x =,()111l x = C 。
()001l x =,()111l x = D. ()001l x =,()110l x =3、已知等距节点的插值型求积公式 ()()352k k k f x dx A f x =≈∑⎰,则3k k A ==∑( C )A. 1B. 2C. 3 D 。
44、解线性方程组Ax b =的简单迭代格式()()1k k x Bx f +=+收敛的充要条件是( B ) A 。
()1A ρ< B. ()1B ρ< C 。
()1A ρ> D 。
()1B ρ>5、已知差商021[,,]5f x x x =,402[,,]9f x x x =,234[,,]14f x x x =,032[,,]8f x x x =,则420[,,]f x x x =( B )A. 5B. 9C. 14D. 8二、 填空题(3分/每小题,共15分)1取 3.141592x =作为数3.141592654...的近似值,则x 有____6____位有效数字 2、Cotes 求积公式的代数精度为 5学院 专业、班 年级 学号 姓名公平竞争、诚实守信、严肃考纪、拒绝作弊封线密3、若()2[,]f x C a b ∈,则梯形求积公式的截断误差为:3''()()2b a f η--4、迭代法()1n n x x ϕ+=收敛的充分必要条件是:()'1x ϕ<5。
研究生《数值分析》试卷(带答案)
一.(6分) 已知描述某实际问题的数学模型为xy y x y x u 223),(+=,其中,y x ,由统计方法得到,分别为4,2==y x ,统计方法的误差限为0.01,试求出u 的误差限)(u ε和相对误差限)(u r ε.解:)(23)(6)(),()(),()(222y x y x x x y xy y y y x u x x y x u u εεεεε⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=∂∂+∂∂≈6.016.044.001.0)412(01.0)448(=+=⨯++⨯-=0.010714566.03)()(22=≈+=xy y x u u r εε 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f .解:21142512)1()2(]2,1[,311401)0()1(]1,0[=-=--==-=--=f f f f f f9232102]1,0[]2,1[]2,1,0[=-=--=f f f0!4)(]4,3,2,1,0[)4(==ξf f三.(6分)试确定求积公式: )]1(')0('[121)]1()0([21)(10f f f f dx x f -++≈⎰的代数精度. 解:记⎰=10)(dx x f I )]1(')0('[121)]1()0([21f f f f I n -++=1)(=x f 时:1110==⎰dx I 1]00[121]2[21=-+=n Ix x f =)(时:2110==⎰xdx I 21]11[121]1[21=-+=n I2)(x x f =时:31102==⎰dx x I 31]20[121]1[21=-+=n I3)(x x f =时:41103==⎰dx x I 41]30[121]1[21=-+=n I4)(x x f =时:51104==⎰dx x I 61]40[121]1[21=-+=n I求积公式)]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰具有3次代数精度. 四.(12分) 已知函数122)(23-++=x x x x f 定义在区间[-1,1]上,在空间},,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式.其中,权函数1)(=x ρ,154))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ϕϕϕ. 解:0))(),(())(),((21))(),((1101101100=====⎰⎰--dx x x x x x dx x x ϕϕϕϕϕϕ32))(),(())(),(())(),((112110220====⎰-dx x x x x x x x ϕϕϕϕϕϕ0))(),(())(),((1131221===⎰-dx x x x x x ϕϕϕϕ52))(),((11422==⎰-dx x x x ϕϕ解方程组⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1541532345203203203202210a a a 得⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛15161210a a a 则)(x f 的最佳平方逼近多项式为:1516)(2-+=x x x p 五.(16分) 设函数)(x f 满足表中条件:(1) 填写均差计算表((2) 分别求出满足条件22k k k k 的 2次 Lagrange 和 Newton 差值多项式.(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示.解:12)12)(02()1)(0()20)(10()2)(1()(22+-=----+----=x x x x x x x L12)1)(0(1)0)(1(1)(22+-=--+--+=x x x x x x N 令)2)(1()(12)(24--+++-=x x x b ax x x x H则)2()()2)(1)(()2)(1(22)('4-++--++--+-=x x b ax x x b ax x x ax x x H)1()(-++x x b ax由 ⎩⎨⎧-=+=+⇒⎩⎨⎧=-++-=-=-++-=1220)12(2)2(24)2('2)21)((22)1('44b a b a b a H b a H 解得 5,3=-=b a因此1820143)2)(1()53(12)(23424++-+-=--+-++-=x x x x x x x x x x x H 六.(16分)(1). 用Romberg 方法计算⎰31dx x ,将计算结果填入下表(*号处不填).(2). 试确定三点 Gauss-Legender 求积公式⎰∑-=≈11)()(k k k x f A dx x f 的Gauss 点k x 与系数k A ,并用三点 Gauss-Legender 求积公式计算积分: ⎰31dx x .解:过点(1,-1)和点(3,1)作直线得 y t x +=所以积分⎰⎰-+=11312dt t dx x由三次Legendre 多项式 )35(21)(33x x x p -= 得得Gauss 点:,515,0,515210==-=x x x再由代数精度得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==+-==++⎰⎰⎰---32535305155152111220112011210dt x A A dt x A A dt A A A即 ⎪⎩⎪⎨⎧=+=-=++9/10022020210A A A A A A A解得 ,95,98,95210===A A A所以三点Gauss-Legendre 求积公式为:()⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-≈⎰-5159509851595)(11f f f dx x f 因此 79746.2515295298515295211=+++-≈+=⎰-dx t I 七.(14分)(1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5110||-+<-k k x x ). 解:令 2ln )(--=x x x f),1(,011)('∞∈>-=x xx f > 即)(x f 在区间 ),1(∞ 单调增 又 04)(,02ln )2(22>-=<-=e e f f 所以 02ln =--x x 在区间 ),1(∞有一单根 ),1(20e x ∈Newton 迭代公式为1ln 112ln 1-+=----=+k kk k kk k k k x x x x x x x x x 令 20=x 计算得八. (12分) 用追赶法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x 的解.解: 由计算公式 ⎪⎩⎪⎨⎧-===+====-1,,2,,,2,,111111n i c n i b a c b i i ii i i i i i βααβγγβαα得 ,2,1,1,21,1,24321111======γγγββαα25211322212=⨯-=⇒=+ααβγb 52222222==⇒=αββαc c 53521133323=⨯-=⇒=+ααβγb 35333333==⇒=αββαc c 37352144434-=⨯-=⇒=+ααβγb因此 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛135152121137253125121211113112 即 LU A = 令 b Ly = 解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-022137253125124321y y y y 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛23753214321y y y y令 y Ux =解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛237532113515212114321x x x x 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛21104321x x x x九. (12分) 设求解初值问题⎩⎨⎧==00)(),('y x y y x f y 的计算格式为:)],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .(注:原题中)(2h o 错误)解:)],(),([111--+++=n n n n n n y x bf y x af h y y )](')('[)(1-++=n n n x by x ay h x y])('''21)('')('[)(')(2++-++=n n n n n x y h x hy x y hb x hay x y ++-++=)('''21)('')(')()(32n n n n x by h x by h x y b a h x y 对比 ++++=+)('''61)(''21)(')()(321n n n n n x y h x y h x hy x y x y 得 ⎩⎨⎧==+2/11b b a , 即 2/1==b a 时该计算格式具有二阶精度.。
数值分析考试卷及详细答案解答汇总
姓名 __________ 班级 ___________ 学号 _____________一、选择题i.F (2,5,-3,4)表示多少个机器数(C ).A 64B 129C 257D 256 2. 以下误差公式不正确的是(D )A ・ £(迎 *一七 *)« 5(Xj*)+£(£ *) c ,£(“*•£ *)«|^2 *k (-'l*) + |时住2 *)3. 设° =(、任_1)6,从算法设计原则上定性判断如下在数学上等价的表达式,哪一个在数值计算上将给出°较好的近似值? (D )A ———B 99-70V2C (3-2V2)3D —— (V2 +1)6 (3 + 204. 一个30阶线性方程组,若用Crammer 法则来求解,则有多少次乘法?(A ) A31X29X30! B 30X30X30! C31X30X31! D 31X29X29!5. 用一把有亳米的刻度的米尺来测量桌子的长度,读出的长度1235mm,桌子的精确长度 记为(D ) A 1235mm B 1235-0.5mm C 1235+0.5nun D 1235±0.5mm二、填空1. 构造数值算法的基本思想是 近似替代、离散化、递推化 。
2. 十进制123.3转换成二进制为1111011.0而1。
3. 二进制110010.1001转换成十进制为 50.5625 。
4. 二进制o.ioi 转换成十进制为-o75.已知近似数X *有两位有效数字,则其相对误差限 5%。
6.1112=0.69314718...,精确到 10一’的近似值是 0.693。
* *7. x = ;r = 3.1415926・・・,则“ =3.1416 , =3.141的有效数位分别为5 和 3 __________ o8. 设卅=2.001,严=-0.8030是由精确值x 和y 经四舍五入得到的近似值,则兀* +y *的误差限____________________ o9.设x = 2.3149541•…,取5位有效数字,则所得的近似值卅二2.3150 。
重庆大学《数值分析》期末考试真题及答案讲课讲稿
重庆大学《数值分析》期末考试真题及答案一.填空题:1. 若求积公式对任意不超过 m 次的多项式精确成立,而对 m+1 次多项式不成立,则称此公式的代数精度为m 次.2. 高斯消元法求解线性方程组的的过程中若主元素为零会发生 计算中断 ;.主元素的绝对值太小会发生 误差增大 .3. 当A 具有对角线优势且 不可约 时,线性方程组Ax=b 用简单迭代法和塞德尔迭代法均收敛.4. 求解常微分方程初值问题的欧拉方法是 1 阶格式; 标准龙格库塔法是 4 阶格式.5. 一个n 阶牛顿-柯特斯公式至少有 n 次代数精度,当n 偶数时,此公式可以有n+1 次代数精度.6. 相近数 相减会扩大相对误差,有效数字越多,相对误差 越大 .二计算题: 1. 线性方程组:⎪⎩⎪⎨⎧-=++-=+-=++5.1526235.333321321321x x x x x x x x x 1) 对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=79/123/5413314/33/113/11U L 2) 求出此方程组的解.)5.0,1,2('-=x2. 线性方程组:⎪⎩⎪⎨⎧=++-=++=++332212325223321321321x x x x x x x x x 1)对系数阵作LU 分解,写出L 阵和U 阵;⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=573235223152321321//////U L2)求出此方程组的解.),,('-=133x3) 此方程组能否用用简单迭代法和高斯塞德尔迭代法求解.0732223222305322303>=>=>,,A 对称正定,用高斯-塞德尔迭代法收敛;..,.,//////)(,6667033331027163432323232323232131=-==+-=-⎪⎪⎪⎭⎫ ⎝⎛-=+-=-λλλλλJ J B I U L D B 用简单迭代法不收敛3. 设f (x )= x 4, 以-1,0,1,2为插值节点,1) 试写出f (x )的三次拉格朗日插值多项式P 3(x )及其插值余项R 3(x );6)2)(1())()(())()(()(3020103210---=------=x x x x x x x x x x x x x x x x l 2)2)(1)(1())()(())()(()(3121013201--+=------=x x x x x x x x x x x x x x x x l 2)2)(1())()(())()(()(3212023102-+-=------=x x x x x x x x x x x x x x x x l 6)1)(1())()(())()(()(2313032103-+=------=x x x x x x x x x x x x x x x x l )(8)()()(3203x l x l x l x P ++=())2)(1)(1()2)(1()1(!4)()4(43--+=--+=x x x x x x x x x x R 2) 求出f (1.5)的近似值,并估计误差.0625.55.1)5.1(4==f-0.93755.05.05.25.1)2)(1)(1()5.1(3=-⨯⨯⨯=--+=x x x x R 6)9375.0(0625.5)5.1(3=--=P或:0.3125610.9375 0625.0)5.1(8)5.1()5.1()5.1(3203⨯++=++=l l l P =6 -0.937560625.5)5.1()5.1()5.1(33=-=-=P f R4 设x x f ln )(=, 以1,2,3为插值节点,1) 试写出f (x )的二次拉格朗日插值多项式P 2(x )及其插值余项R 2(x );2322010210))(())(())(()(--=----=x x x x x x x x x x x l ))(())(())(()(312101201---=----=x x x x x x x x x x x l2211202102))(())(())(()(--=----=x x x x x x x x x x x l98080124711438009861693102212...)(.)(.)(-+-=+=x xx l x l x P 23112312333ln ()()()()()()()!R x x x x x x x ξξ'''=---=---2) 求出)(ln e p e 2≈的近似值,与精确值1比较,并用误差公式估计误差限.0135010135122.,ln ,.)(===R e e p231123123331171830718302817011593ln ()()()()()()()!..(.).R e e e e e e e ξξ'''=---=---≤⨯⨯⨯-=5 有积分公式()()2)0(2)(33f c f b f a dx x f ⨯+⨯+-⨯=⎰-,c b a ,,是待定参数,试确定c b a ,,,使得上述公式有尽可能高的代数精度,并确定代数精度为多少.⎰⎰⎰---==+==+-==++==332333318)(40)(2612,1,0,)(dx x b a xdx b a dx c b a k x x f k)]()()([)(/,/33023343234933f f f dx x f c b a ++-====∴⎰- 至少有2次代数精度.[][]10872072435486,024024430,)(33433343=++≠==++-===⎰⎰--dx x dx x x x x f此公式代数精度为3. 6 有积分公式)]2(3)0(2)2(3[43)(33f f f dx x f ++-=⎰- 1) 试确定代数精度为多少;2) 用它计算⎰-33dx e x,精确到2位小数,与3333---=⎰e e dx e x 作比较.[][][][][]10872072435486,02402443012012431860643032343614,3,2,1,0,)(3343333323333=++≠==++-==++==++-==++====⎰⎰⎰⎰⎰-----dx x dx x dx x xdx dx k x x f k代数精度为3.04.2043.18]323[43333320332=-==++≈⎰⎰----e e dx e e e e dx e x x7. 某企业产值与供电负荷增长情况如下表:1) 试用一次多项式拟合出经验公式bx a y +=;⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛415521186062625..b a 解之: 0006101811.,.ab =-=0061018110..-=x y8. 测试某型号水泵得到扬程(米)和出水量(立米/小时)的对照表如下:1)试用一次多项式拟合出经验公式x ba y +=;bX a y x X +==,/1⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛12365491404514515....b a 解之: 59953043864.,.ba ==-38644953059./.-=x y2) 计算拟合值填入上表的空格,看是否与实际值基本吻合; 3) 某用户使用此型号水泵时扬程为2.6米,试估计此时出水量?67183864462953059.../.=-=y9 方程01=-+-x xe x有一个实根:1)用区间对分法搜索确定根所在的区间 (a,b ),使 b-a ≤0.2;(0.6,0.8)1) 用某种迭代法求出此正根,精确到5位有效数字65905.0*≈x10 方程x e x-=1) 证明它在(0,1)区间有且只有一个实根; 2) 证明Λ,,,101==-+k e x k x k ,在(0,1)区间内收敛;3) 用牛顿迭代法求出此根,精确到5位有效数字1),.)(,)(,)(063201100>=-==-=-f f e x x f x(0,1)区间有一个实根;)(,)(x f e x f x 011>>+='-是严格增函数,只有一个实根。
数值分析试题库与答案解析
y1
y0
h( 2
k1
k2)
2 0. 1 ( 0. 5 0. 5 7 1 4 2 9 )
2. 1 0 7 1 4 2 9
33 5 3 解 设3 5 9
5 9 17
1
d1
1 l21 l31
l21 1
d2
1 l32
l31 l32 1
d3
1
利用矩阵乘法可求得
2
5
d1 3 , d 2 2 , d3
, l 21 1 , l31
7. xk 1 xk xk f (xk ) ; 8. x j ; 9. 1 f (xk)
(B) 1;
10. 1 x3
x2
1 x,
f (4) ( )( x 1)x( x 1)(x 2) / 24
6
6
( 1,2)
二、综合题
1.差商表:
1 15
20
1 15
15
20
7
1 15
22
1
42
8
2 57
30
72
2 57
=
.
5.解初始值问题
y f ( x, y)
的改进的 Euler 方法是
y(x0) y0
阶方法;
5 x1 3 x2 0.1x3 3
6.求解线性代数方程组
2 x1 6 x2 0.7 x3 2 的高斯—塞德尔迭代公式为
,
x1 2 x2 3.5x3 1
若取 x (0) (1, 1,1) , 则 x(1)
.
7.求方程 x f ( x) 根的牛顿迭代格式是
, l 32 2
3
3
解方程组
1
y1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1
1
3
0
f
( x)dx
A0
f
( ) 4
A1 f
( ) 2
A2
f
() 4
解:令 f (x) 1, f (x) x, f (x) x2 对求积公式准确成立,则
A0 A1 A2 1
1
4
A0
1 2
A1
3 4
A2
1 2
1 16
A0
1 4
A1
9 16
A2
1 3
解该线性方程组得:
A0
2, 3
A1
则 f [x4 , x2 , x0 ] ( B ) A. 5 B. 9 C. 14
D. 8
二、 填空题(3 分/每小题,共 15 分)
1 取 x 3.141592 作为数 3.141592654... 的近似值,则 x 有____6____位有效数字
2、Cotes 求积公式的代数精度为
5
3、若 f x C2[a,b] ,则梯形求积公式的截断误差为: (b a)3 f '' ()
1、求出系数矩阵的 1 范数。2、作系数矩阵的 Doolittle 分解并求解这个方程组。
1 2 3
令 A 2 5
8
,则
A 1 25
3 8 14
四、 用牛顿法求 f x x3 3x 1 0 在 x0 2 附近的实根,精确到四位有效数
字(8 分)
解:由 f x x3 3x 1 0 ,得 f ' x 3x2 3
f
( x0
0.05,
y0
0) 2
0.1 0.051
0.005
K3
0.1
f
( x0
0.05,
y0
0.005) 2
0.1
0.05 1.0025
0.0050125
K4 0.1 f (x0 0.1, y0 0.005012) 0.1 0.11.005012 0.01005012
y1
y0
1 6
(K1
故
xk 1
xk
f (xk )
f xk
=
xk
x3 k
3xk
1
3x2 3
k
将 x0 2 代入迭代格式得
k xk
0
2
1
1.8889
2
1.8795
3
1.8794
4
1.8794
五、 用经典的四阶 R-K 方法求初值问题 y' xy y(0) 1
在 x=0.2 处的值,取步长 h=0.1(13 分) 1
2K2
2K3
K4)
=1
1 6
(0
0.01
0.010025
0.01005012)
=1.00501
同理可算出 y2
六、 已知连续函数 y f x 的如下数值表
xi
0.10
0.19
0.26
0.31
f xi
1.280
2.011
2.351
3.000
试构造差商表,并求 f 0.23 的近似值(小数点后保留 5 位)(12 分)
一、 选择题(3 分/每小题,共 15 分)
1、以下误差公式不正确的是( A )
A. x1 x2 x1 x2
B. x1 x2 x1 x2
封
C. x1x2 x2 x1 x1 x2
D. x2 2 x x
2、通过点 x0, y0 , x1, y1 的拉格朗日插值基函数 l0 x , l1 x 满足(C)
重庆大学数值分析课程试卷
A卷
B卷
2012 ~2013 学年 第 1 学期
姓名
公平竞争、诚实守信、严肃考纪、拒绝作弊
学号
开课学院:数统学院 课程号:
考试日期:
考试方式: 开卷 闭卷 其他
考试时间 120 分钟
密
总 题号 一 二 三 四 五 六 七 八 九 十
分
得分
注:1.大标题用四号宋体、小标题及正文推荐用小四号宋体;2.按 A4 纸缩小打印
yi1 yi 6 (K1 2K2 2K3 K4 )
K1 hf (xi , yi )
K2
hf
xi
h 2
,
yi
K1 2
K3
hf
xi
h 2
,
yi
K2 2
K4 hf (xi h, yi K3 )
代x0入公0,式y得0 :1
K1 0.1 f (x0 , y0 ) 0
K2
0.1
A. l0 x0 0 , l1 x1 0
B. l0 x0 0 , l1 x1 1
C. l0 x0 1, l1 x1 1
D. l0 x0 1, l1 x1 0
年级
专业、班
3、已知等距节点的插值型求积公式
5 f xdx
2
3
Ak f xk ,则
2
4、迭代法 xn1 xn 收敛的充分必要条件是: ' x 1
5.
方程组
5x1x13xx22
1 的 3
Jacobi
迭代格式为:
x1(k 1)
x(k 2
1)
3x(k) 1 2
5x(k) 3 1
三、 已知线性方程组
1 2 3 x1 2
2
5
8
x2
5
3 8 14 x3 9
3
Ak (
C
)
k 0
k 0
线 A. 1
B. 2
C. 3
D. 4
4、解线性方程组 Ax b 的简单迭代格式 xk1 Bxk f 收敛的充要条件是( B )
学院
A. A 1 B. B 1 C. A 1 D. B 1
5、已知差商 f [x0 , x2 , x1] 5 , f [x4 , x0 , x2 ] 9 , f [x2 , x3, x4 ] 14 , f [x0 , x3, x2 ] 8 ,
七、 用 n=5 的复化梯形公式计算积分 I 1 xdx (小数点后保留 4 位)(7 分)。 0
解:
x0
0,
x1
1 5
,
x2
2 5
,
x3
3 5
,
x4
4 5Βιβλιοθήκη ,x51h 1 5
I5
h 2
h0
h5
2 h1
h2
h3
h4
=
1 10
0
1
2
1 5
2 5
3 5
4 5
1 2
八、 确定下列公式的待定参数,使其代数精度尽可能的高,并指明求积公式的 代数精度(12 分)
1, 3
A2
2 3
所以得: 1 f (x)dx 2 f (1) 1 f (1) 2 f ( 3)
0
3432 34
令 f (x) x3 ,准确成立 令 f (x) x4 ,不成立,故代数精度为 3