【典型题】九年级数学上期末模拟试题(带答案)
九年级数学期末模拟精品测试题及答案,精品3套
(第2题)(第3题)(第6题)九年级数学期末模拟精品测试题及答案,精品3套九年级上全册精品试卷(满分:150分)一、选择题。
(本题共10个小题,每小题4分,共40分)1、2010上海世博会刚刚圆满闭幕,下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是()A、 B、 C、 D、2、如图,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O•的半径为()A、、、cm3、图中∠BOD的度数是()A、55°B、110°C、125° D.150°4、若x<0,则xxx2-的结果是()A.0 B.-2 C.0或-2 D.25、下列各式中,最简二次根式是()A、32B、22+a C、a8 D、23a6、我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”在此基础上,人们定义了点与点的距离,•点到直线的距离.类似地,如图,若P是⊙O外一点,直线PO交⊙O 于A、B两点,PC•切⊙O于点C,则点P到⊙O的距离是()A、线段PO的长度B、线段PA的长度C、线段PB的长度 D、线段PC的长度7、下列命题错误..的是()A、经过三个点一定可以作圆B、三角形的外心到三角形各顶点的距离相等C、同圆或等圆中,相等的圆心角所对的弧相等D、经过切点且垂直于切线的直线必经过圆心8、如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,(第8题)(第14题)(第15题)(第16题)∠AOD =90°,则∠B 的度数是( )A 、500B 、400C 、450D 、6009、已知一元二次方程230x px ++=的一个根为3-,则p 的值为( )A .1B .2C .3D .410、若m,n 是方程020102=--x x 的两根,则代数式)20102()20102(22++-⨯--n n m m 的值为( ).A .-2010 B.2010 C.0 D.1二、填空题。
2022-2023学年江苏省镇江市丹阳市数学九年级第一学期期末经典模拟试题含解析
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,在Rt △ABC 中,∠C=90°,AC=3,AB=5,则cosB 的值为( )A .45B .34C .43D .352.下列事件中是不可能事件的是( )A .三角形内角和小于180°B .两实数之和为正C .买体育彩票中奖D .抛一枚硬币2次都正面朝上 3.若点(3,4)A 是反比例函数k y x=图象上一点,则下列说法正确的是( ) A .图象位于二、四象限B .当0x <时,y 随x 的增大而减小C .点()2,6-在函数图象上D .当4y ≤时,3x ≥4.在平面直角坐标系中,以点(3,2)为圆心、2为半径的圆,一定( )A .与x 轴相切,与y 轴相切B .与x 轴相切,与y 轴相离C .与x 轴相离,与y 轴相切D .与x 轴相离,与y 轴相离 5.三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a 、b 、c ,则以a 、b 、c 为边长能构成等腰三角形的概率是( )A .19B .13C .59D .796.已知函数y =ax 2-2ax -1(a 是常数且a ≠0),下列结论正确的是( )A .当a=1时,函数图像过点(-1,1)B .当a = -2时,函数图像与x 轴没有交点C .当a 0>,则当x ≥1时,y 随x 的增大而减小D .当a 0<,则当x ≤1时,y 随x 的增大而增大7.若抛物线y=ax 2+2ax+4(a <0)上有A (- 3 2,y 1),B (-2 ,y 2),C (2 ,y 3)三点,则y 1,y 2,y 3的大小关系为( )A .y 1<y 2 <y 3B .y 3<y 2 <y 1C .y 3<y 1 <y 2D .y 2<y 3 <y 1 8.如图,用尺规作图作BAC ∠的平分线AD ,第一步是以A 为圆心,任意长为半径画弧,分别交,AB AC 于点,EF ;第二步是分别以,E F 为圆心,以大于12EF 长为半径画弧,两圆弧交于D 点,连接AD ,那么AD 为所作,则说明CAD BAD ∠=∠的依据是( )A .SSSB .SASC .ASAD .AAS9.在Rt △ABC 中,∠C=90°,AC=12,BC=5,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是 A .25π B .65π C .90π D .130π10.如图,在ACB ∆中,90C ∠=︒,则BC AB等于( )A .cos AB .sin BC .tan BD .sin A二、填空题(每小题3分,共24分)11.若关于x 的一元二次方程22(23)0x k x k +++=没有实数根,则k 的取值范围是__________.12.山西拉面,又叫甩面、扯面、抻面,是西北城乡独具地方风味的面食名吃,为山西四大面食之一.将一定体积的面团做成拉面,面条的总长度()y cm 与粗细(横截面面积)()2x cm 之间的变化关系如图所示(双曲线的一支).如果将这个面团做成粗为20.16cm 的拉面,则做出来的面条的长度为__________cm .13.关于x 的一元二次方程2x 2x m 0-+=的二根为12,x x ,且2112123x x x x x -+=,则m =_____________.14.如图,O 的半径OA 长为2,BA 与O 相切于点A ,交半径OC 的延长线于点B ,BA 长为23,AH OC ⊥,垂足为H ,则图中阴影部分的面积为_______.15.如图△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=35,则BC 的长为_____.16.一元二次方程(x ﹣1)2=1的解是_____.17.如图,二次函数()(202)y x x x =-≤≤的图象记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180°得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ;……如此进行下去,得到一条“波浪线”.若(2020,)P m 在这条“波浪线”上,则m =____.18.如图,已知菱形ABCD 的对角线AC 、BD 交于点O ,2cm OC =,30ABO ︒∠=,则菱形ABCD 的面积是________.三、解答题(共66分)19.(10分)已知:△ABC 中,点D 为边BC 上一点,点E 在边AC 上,且∠ADE =∠B(1) 如图1,若AB =AC ,求证:CE BD CD AC =; (2) 如图2,若AD =AE ,求证:CE BD CD AE=; (3) 在(2)的条件下,若∠DAC =90°,且CE =4,tan ∠BAD =12,则AB =____________.20.(6分)如图,在矩形ABCD 中,AB=6,AD=12,点E 在AD 边上,且AE=8,EF ⊥BE 交CD 于F(1)求证:△ABE ∽△DEF ;(2)求EF 的长.21.(6分)如图,直线22y x =+与x 轴交于点A ,与y 轴交于点B ,把AOB ∆沿y 轴对折,点A 落到点C 处,过点A 、B 的抛物线2y x bx c =-++与直线BC 交于点B 、D .(1)求直线BD 和抛物线的解析式;(2)在直线BD 上方的抛物线上求一点E ,使BDE ∆面积最大,求出点E 坐标;(3)在第一象限内的抛物线上,是否存在一点M ,作MN 垂直于x 轴,垂足为点N ,使得以M 、O 、N 为项点的三角形与BOC ∆相似?若存在,求出点M 的坐标:若不存在,请说明理由.22.(8分)网络销售是一种重要的销售方式.某农贸公司新开设了一家网店,销售当地农产品.其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量()y kg 与销售单价x (元)满足如图所示的函数关系(其中210x <≤).(1)若510x <≤,求y 与x 之间的函数关系式;(2)销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?23.(8分)已知,二次函数2y x bx c =-++的图象,如图所示,解决下列问题:(1)关于x 的一元二次方程20x bx c -++=的解为;(2)求出抛物线的解析式;(3)x 为何值时0y <.24.(8分)已知3是一元二次方程x 2-2x+a=0的一个根,求a 的值和方程的另一个根.25.(10分)如图,折叠边长为a 的正方形ABCD ,使点C 落在边AB 上的点M 处(不与点A ,B 重合),点D 落在点N 处,折痕EF 分别与边BC 、AD 交于点E 、F ,MN 与边AD 交于点G .证明:(1)AGM BME ∆∆∽;(2)若M 为AB 中点,则345AM AG MG ==; (3)AGM ∆的周长为2a .26.(10分)先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.参考答案一、选择题(每小题3分,共30分)1、B【详解】解:在Rt △ABC 中,∠C=90°,AC=3,AB=5,由勾股定理,得: 22AB AC -2253-.cosB=BC AB =45, 故选B .【点睛】本题考查锐角三角函数的定义.2、A【解析】根据三角形的内角和定理,可知:“三角形内角和等于180°”,故是不可能事件;根据实数的加法,可知两实数之和可能为正,可能是0,可能为负,故是可能事件;根据买彩票可能中奖,故可知是可能事件;根据硬币的特点,抛一枚硬币2次有可能两次都正面朝上,故是可能事件.故选A.3、B【分析】先根据点A(3、4)是反比例函数y=kx图象上一点求出k的值,求出函数的解析式,由此函数的特点对四个选项进行逐一分析.【详解】∵点A(3,4)是反比例函数y=kx图象上一点,∴k=xy=3×4=12,∴此反比例函数的解析式为y=12x,A、因为k=12>0,所以此函数的图象位于一、三象限,故本选项错误;B、因为k=12>0,所以在每一象限内y随x的增大而减小,故本选项正确;C、因为2×(-6)=-12≠12,所以点(2、-6)不在此函数的图象上,故本选项错误;D、当y≤4时,即y=12x≤4,解得x<0或x≥3,故本选项错误.故选:B.【点睛】此题考查反比例函数图象上点的坐标特点,根据题意求出反比例函数的解析式是解答此题的关键.4、B【分析】本题应将该点的横纵坐标分别与半径对比,大于半径时,则坐标轴与该圆相离;若等于半径时,则坐标轴与该圆相切.【详解】∵是以点(2,3)为圆心,2为半径的圆,则有2=2,3>2,∴这个圆与x轴相切,与y轴相离.故选B.【点睛】本题考查了直线与圆的位置关系、坐标与图形性质.直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.5、C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有27种等可能的结果,构成等腰三角形的有15种情况,∴以a、b、c为边长正好构成等腰三角形的概率是:155 279.故选:C.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.6、D【分析】根据二次函数的图象与性质逐项分析即可.【详解】y=ax2-2ax-1(a是常数且a≠0)A、当a=1时,y=x2−2x−1,令x=−1,则y=2,此项错误;B、当a=−2时,y=2x2+4x−1,对应的二次方程的根的判别式Δ=42−4×2×(−1)=24>0,则该函数的图象与x轴有两个不同的交点,此项错误;C、当a>0,y=ax2−2ax−1=a(x-1)2-a+1,则x≥1时,y随x的增大而增大,此项错误;D、当a<0时,y=ax2−2ax−1=a(x-1)2-a+1,则x≤1时,y随x的增大而增大,此项正确;故答案为:D.【点睛】本题考查了二次函数的图象与性质,掌握熟记图象特征与性质是解题关键.错因分析:较难题.失分原因可能是:①不会判断抛物线与x轴的交点情况;②不能画出拋物线的大致图象来判断增减性.7、C【分析】根据抛物线y=ax2+2ax+4(a<0)可知该抛物线开口向下,可以求得抛物线的对称轴,又因为抛物线具有对称性,从而可以解答本题.【详解】解:∵抛物线y=ax2+2ax+4(a<0),∴对称轴为:x=21 2aa,∴当x<−1时,y随x的增大而增大,当x>−1时,y随x的增大而减小,∵A(−32,y1),B(2y2),C2y3)在抛物线上,且−32<2,−0.52,∴y3<y1<y2,故选:C.【点睛】本题考查二次函数的性质,解题的关键是明确二次函数具有对称性,在对称轴的两侧它的增减性不一样.8、A【分析】根据作图步骤进行分析即可解答;【详解】解:∵第一步是以A为圆心,任意长为半径画弧,分别交,AB AC于点,E F∴AE=AF∵二步是分别以,E F为圆心,以大于12EF长为半径画弧,两圆弧交于D点,连接AD,∴CE=DE,AD=AD∴根据SSS可以判定△AFD≌△AED∴CAD BAD∠=∠(全等三角形,对应角相等)故答案为A.【点睛】本题考查的是用尺规作图做角平分线,明确作图步骤的依据是解答本题的关键.9、B【解析】解:由已知得,母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.10、D【分析】直接根据正弦的定义解答即可.【详解】在△ACB中,∠C=90°,BCsinAAB=,故选:D.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.二、填空题(每小题3分,共24分)11、34 k<-【分析】根据根判别式可得出关于k的一元一次不等式组,解不等式组即可得出结论.【详解】由于关于一元二次方程22(23)0x k x k +++=没有实数根,∵1a =,23b k =+,2c k =,∴()222423411290b ac k k k =-=+-⨯⨯=+<⊿, 解得:34k <-. 故答案为:34k <-. 【点睛】本题考查了一元二次方程20(0ax bx c a a b c ++=≠,,,为常数)的根的判别式24b ac =-⊿.当>⊿0,方程有两个不相等的实数根;当=⊿0,方程有两个相等的实数根;当<⊿0,方程没有实数根.12、1【分析】因为面条的总长度y (cm )是面条粗细(横截面面积)x (cm 2)反比例函数,且从图象上可看出过(0.05,3200),从而可确定函数式,再把x=0.16代入求出答案.【详解】解:根据题意得:y=k x ,过(0.04,3200). k=xy=0.04×3200=128,∴y=128x(x >0), 当x=0.16时, y=1280.16=1(cm ), 故答案为:1.【点睛】此题参考反比例函的应用,解题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式. 13、12【分析】先降次,再利用韦达定理计算即可得出答案.【详解】∵x 的一元二次方程2x 2x m 0-+=的二根为12,x x∴211()2x x m =-∴1121223x m x x x x --+=12123x x m x x +-=又122x x +=,12x x m =代入得23m m -=解得:m=12故答案为12. 【点睛】本题考查的是一元二次方程根与系数的关系,若x 的一元二次方程20ax bx c ++=的二根为12,x x ,则12c x x a +=-,12c x x a =.14、232π- 【分析】由已知条件易求直角三角形AOH 的面积以及扇形AOC 的面积,根据AOH AOC S S S=-阴影扇形,计算即可. 【详解】∵BA 与⊙O 相切于点A ,∴AB ⊥OA ,∴∠OAB=90°,∵OA=2,∴4OB ===, ∵2OA OB =,∴∠B=30°,∴∠O=60°,∵AH OC ⊥,∴∠OHA=90°,∴∠OAH=30°,∴1OA 12OH ==,∴AH =,∴2AOH AOC 602121360232S S S ππ=-=-⨯=-阴影扇形.故答案为:23π. 【点睛】 本题考查了切线的性质、勾股定理的运用以及扇形的面积计算,解答本题的关键是掌握扇形的面积公式.15、4【解析】试题解析:∵3 cos5BDC∠=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,4.BC===故答案为:4cm.16、x=2或0【分析】根据一元二次方程的解法即可求出答案.【详解】解:∵(x﹣1)2=1,∴x﹣1=±1,∴x=2或0故答案为:x=2或0【点睛】本题主要考查解一元二次方程的方法,形如x2=p或(nx+m)2=p(p⩾0)的一元二次方程可采用直接开平方的方法解一元二次方程.17、1【分析】根据抛物线与x轴的交点问题,得到图象C1与x轴交点坐标为:(1,1),(2,1),再利用旋转的性质得到图象C2与x轴交点坐标为:(2,1),(4,1),则抛物线C2:y=(x-2)(x-4)(2≤x≤4),于是可推出横坐标x为偶数时,纵坐标为1,横坐标是奇数时,纵坐标为1或-1,由此即可解决问题.【详解】解:∵一段抛物线C1:y=-x(x-2)(1≤x≤2),∴图象C1与x轴交点坐标为:(1,1),(2,1),∵将C1绕点A1旋转181°得C2,交x轴于点A2;,∴抛物线C2:y=(x-2)(x-4)(2≤x≤4),将C2绕点A2旋转181°得C3,交x轴于点A3;…∴P (2121,m )在抛物线C 1111上,∵2121是偶数,∴m=1,故答案为1.【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18、2【分析】在Rt △OBC 中求出OB 的长,再根据菱形的性质求出AC 、BD 的长,然后根据菱形的面积等于对角线乘积的一半计算即可.【详解】∵四边形ABCD 是菱形,∴∠BOC=90°,∵2cm OC =,30ABO ︒∠=,∴BC=4cm ,∴,∴AC=4cm ,BD=,∴菱形ABCD 的面积是:142⨯⨯cm 2.故答案为:2.【点睛】本题考查了菱形的性质,菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半,菱形是轴对称图形,它有两条对称轴.也考查了直角三角形的性质和勾股定理的应用.三、解答题(共66分)19、5【解析】分析:(1)180,B BAD ADB ∠+∠+∠=︒ 180,ADE CDE ADB ∠+∠+∠=︒∠ADE =∠B,可得,BAD CDE ∠=∠ ,AB AC = 根据等边对等角得到,B C ∠=∠△BAD ∽△CDE ,根据相似三角形的性质即可证明.(2) 在线段AB 上截取DB =DF ,证明△AFD ∽△DEC ,根据相似三角形的性质即可证明.(3) 过点E 作EF ⊥BC 于F ,根据tan ∠BAD =tan ∠EDF =12EF DF =,设EF =x ,DF =2x ,则DE =5x ,证明△EDC ∽△GEC ,求得410C 5G =,根据CE 2=CD ·CG ,求出CD =210, 根据△BAD ∽△GDE,即可求出AB 的长度.详解:(1) 180,B BAD ADB ∠+∠+∠=︒ 180,ADE CDE ADB ∠+∠+∠=︒∠ADE =∠B,可得,BAD CDE ∠=∠,AB AC =∴,B C ∠=∠∵△BAD ∽△CDE ,∴CE BD BD CD AB AC==; (2) 在线段AB 上截取DB =DF∴∠B =∠DFB =∠ADE∵AD =AE ∴∠ADE =∠AED ∴∠AED =∠DFB ,同理:∵∠BAD +∠BDA =180°-∠B ,∠BDA +∠CDE =180°-∠ADE ∴∠BAD =∠CDE∵∠AFD =180°-∠DFB ,∠DEC =180°-∠AED ∴∠AFD =∠DEC ,∴△AFD ∽△DEC ,∴CE DF BD CD AD AE== (3) 过点E 作EF ⊥BC 于F∵∠ADE =∠B =45°∴∠BDA +∠BAD =135°,∠BDA +∠EDC =135° ∴∠BAD =∠EBC (三等角模型中,这个始终存在)∵tan ∠BAD =tan ∠EDF =12EF DF = ∴设EF =x ,DF =2x ,则DE 5x ,在DC 上取一点G ,使∠EGD =45°, ∴△BAD ∽△GDE ,∵AD =AE ∴∠AED =∠ADE =45°, ∵∠AED =∠EDC +∠C =45°,∠C +∠CEG =45°,∴∠EDC =∠GEC , ∴△EDC ∽△GEC ,∴CG EG CE CE DE CD == ∴245CG x x =,105CG = 又CE 2=CD ·CG , ∴42=CD ·410,CD =10, ∴4102210x x ++=,解得210x = ∵△BAD ∽△GDE ∴2DE DG AD AB==∴6522AB ===. 点睛:属于相似三角形的综合题,考查相似三角形的判定于性质,掌握相似三角形的判定方法是解题的关键.20、(1)证明见解析(2)20EF 3= 【分析】(1)由四边形ABCD 是矩形,易得∠A=∠D=90°,又由EF ⊥BE ,利用同角的余角相等,即可得∠DEF=∠ABE ,则可证得△ABE ∽△DEF .(2)由(1)△ABE ∽△DEF ,根据相似三角形的对应边成比例,即可得BE AB EF DE=,又由AB=6,AD=12,AE=8,利用勾股定理求得BE 的长,由DE=AB -AE ,求得DE 的长,从而求得EF 的长.【详解】(1)证明:∵四边形ABCD 是矩形,∴∠A=∠D=90°,∴∠AEB+∠ABE=90°.∵EF ⊥BE ,∴∠AEB+∠DEF=90°,∴∠DEF=∠ABE .∴△ABE ∽△DEF .(2)解:∵△ABE ∽△DEF , ∴BE AB EF DE=. ∵AB=6,AD=12,AE=8,∴BE 10==,DE=AD-AE=12-8=1. ∴106EF 4=,解得:20EF 3=.21、(1)2-2y x x =++;(2)35(,)24E ;(3)存在,(1,2)M 或11(48+. 【分析】(1)由直线22y x =+可以求出A ,B 的坐标,由待定系数法就可以求出抛物线的解析式和直线BD 的解析式;(2)先求得点D 的坐标,作EF ∥y 轴交直线BD 于F ,设()()2222E x x x F x x -++-+,,,,利用三角形面积公式求得23327228BDE S x ⎛⎫=--+ ⎪⎝⎭,再利用二次函数性质即可求得答案; (3)如图1,2,分类讨论,当△BOC ∽△MON 或△BOC ∽△ONM 时,由相似三角形的性质就可以求出结论;【详解】(1)∵直线AB 为22y x =+,令y=0,则1x =-,令0x =,则y=2,∴点A 、B 的坐标分别是:A (-1,0),B(0,2),根据对折的性质:点C 的坐标是:(1,0) ,设直线BD 解析式为y kx b =+,把B(0,2),C(1,0)代入y kx b =+,得20b k b =⎧⎨+=⎩, 解得:2k =-,2b =,∴直线BD 解析式为-22y x =+,把A(-1,0),B(0,2)代入2y x bx c =-++得102b c c --+=⎧⎨=⎩, 解得:1b =,2c =,∴抛物线的解析式为2-2y x x =++; (2)解方程组2222y x y x x =-+⎧⎨=-++⎩得:1102x y =⎧⎨=⎩和2234x y =⎧⎨=-⎩, ∴点D 坐标为(3,-4) ,作EF ∥y 轴交直线BD 于F设()()2222E x x x F x x -++-+,,, ∴()()222223EF x x x x x =-++--+=-+ ()22113327 3322228BDE D S EF x x x x ⎛⎫=⨯=-+⨯=--+ ⎪⎝⎭ (0<x <3) ∴当32x =时,三角形面积最大, 此时,点E 的坐标为:35(,)24E ; (3)存在.∵点B 、C 的坐标分别是B (0,2)、C (1,0),∴2BO =,1CO =,①如图1所示,当△MON ∽△BCO 时,∴ON MN CO BO =,即12ON MN =,∴2MN ON =,设ON a =,则()2M a a ,, 将()2M a a ,代入抛物线的解析式2-2y x x =++得: 222,a a a -++=解得:12a =-(不合题意,舍去),21a =,∴点M 的坐标为(1,2);②如图2所示,当△MON ∽△CBO 时, ∴ON MN BO CO =,即21ON MN =, ∴MN=12ON , 设ON b =,则M(b ,12b), 将M(b ,12b)代入抛物线的解析式2-2y x x =++得: ∴212,2b b b -++= 解得:1133b -=(不合题意,舍去),21334b =, ∴点M 的坐标为(1334+,1338),∴存在这样的点(1,2)M 或11(,48+. 【点睛】本题考查了待定系数法求二次函数的解析式,一次函数的解析式的运用,相似三角形的性质的运用,解答时求出函数的解析式是关键.22、(1)40800y x =-+;(2)当10x =时,每天的销售利润最大,最大是3200元.【分析】(1)设y 与x 之间的函数关系式为y=kx+b ;利用待定系数法求出k 和b 的值即可得答案;(2)设每天的销售利润为w 元,根据利润=(售价-成本)×销量可得出w 与x 的关系式,利用二次函数的性质及一次函数的性质,根据x 的取值范围求出w 的最大值即可得答案【详解】(1)设y kx b =+,把()()5,600,10,400代入y kx b =+,得560010100k b k b +=⎧⎨+=⎩解得40800k b =-⎧⎨=⎩∴40800y x =-+;(2)设每天的销售利润为w 元,当25x <≤时,()60026001200w x x =-=-,∵600>0,∴w 随x 的增大而增大,∴当5x =时,max 600512001800w =⨯-=(元);当510x <≤时,()()408002w x x =-+-()240113240x =--+, ∴当10x =时,max 40132403200w =-⨯+=,综上所述,当10x =时,每天的销售利润最大,最大是3200元.【点睛】本题考查二次函数的应用,熟练掌握一次函数和二次函数的性质是解题关键.23、(1)-1或2;(2)抛物线解析式为y=-x 2+2x+2;(2)x >2或x <-1.【分析】(1)直接观察图象,抛物线与x 轴交于-1,2两点,所以方程的解为x 1=-1,x 2=2.(2)设出抛物线的顶点坐标形式,代入坐标(2,0),即可求得抛物线的解析式.(2)若y <0,则函数的图象在x 轴的下方,找到对应的自变量取值范围即可.【详解】解:(1)观察图象可看对称轴出抛物线与x 轴交于x=-1和x=2两点,∴方程的解为x 1=-1,x 2=2,故答案为:-1或2;(2)设抛物线解析式为y=-(x-1)2+k ,∵抛物线与x 轴交于点(2,0),∴(2-1)2+k=0,解得:k=4,∴抛物线解析式为y=-(x-1)2+4,即:抛物线解析式为y=-x 2+2x+2;(2)抛物线与x 轴的交点(-1,0),(2,0),当y <0时,则函数的图象在x 轴的下方,由函数的图象可知:x >2或x <-1;【点睛】本题主要考查了二次函数与一元二次方程、不等式的关系,以及求函数解析式的方法,能从图像中得到关键信息是解决此题的关键.24、a=-3;另一个根为-1.【分析】根据一元二次方程的解的定义把x=3代入x 2-2x+a=0可求出a 的值,然后把a 的值代入方程得到x 2-2x-3=0,再利用因式分解法解方程即可得到方程的另一根.【详解】解:设方程的另一个根为m ,则32m +=解得:1m =-∴方程的另一个根为1-∴a=-1⨯3=-3.【点睛】本题主要考查一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.25、(1)详见解析;(2)详见解析;(3)详见解析.【分析】(1)根据折叠和正方形的性质结合相似三角形的判定定理即可得出答案;(2)设BE=x ,利用勾股定理得出x 的值,再利用相似三角形的性质证明即可得出答案;(3)设BM=x ,AM=a-x ,利用勾股定理和相似三角形的性质即可得出答案.【详解】证明:(1)∵四边形ABCD 是正方形,∴90A B C ∠=∠=∠=︒,∴90AMG AGM ∠+∠=︒,∵EF 为折痕,∴90GME C ∠=∠=︒,∴90AMG BME ∠+∠=︒,∴AGM BME ∠=∠,在AGM ∆与BME ∆中∵A B ∠=∠,AGM BME ∠=∠,∴AGM BME ∆∆∽;(2)∵M 为AB 中点, ∴2a BM AM ==, 设BE x =,则ME CE a x ==-,在Rt BME ∆中,90B ∠=︒,∴222BM BE ME +=,即()2222a x a x ⎛⎫+=- ⎪⎝⎭, ∴38x a =, ∴38BE a =,58ME a =, 由(1)知,AGM BME ∆∆∽, ∴43AG GM AM BM ME BE ===, ∴4233AG BM a ==,4536GM ME a ==, ∴345AM AG MG ==; (3)设BM x =,则AM a x =-,ME CE a BE ==-,在Rt BME ∆中,90B ∠=︒,∴222BM BE ME +=,即()222x BE a BE +=-, 解得:222a x BE a=-, 由(1)知,AGM BME ∆∆∽, ∴2AGM BME C AM a C BE a x∆∆==+,∵BME C BM BE ME BM BE CE BM BC a x ∆=++=++=+=+, ∴()22AGM BME AM a C C a x a BE a x∆∆==+⋅=+⋅. 【点睛】本题考查的是相似三角形的综合,涉及的知识点有折叠的性质、正方形的性质、勾股定理和相似三角形,难度系数较大.26、1【分析】注意到23a +()可以利用完全平方公式进行展开,11a a +()(﹣)利润平方差公式可化为21a (﹣),,则将各项合并即可化简,最后代入12a =-进行计算. 【详解】解:原式2269148a a a a ++-=(﹣)-﹣22a += 将12a =-代入原式12212⎛⎫=⨯-+= ⎪⎝⎭【点睛】考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.。
2022-2023学年山西省晋城市陵川县九年级数学第一学期期末学业质量监测模拟试题含解析
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,将它绕着BC 中点D 顺时针旋转一定角度(小于90°)后得到△A ′B ′C ′,恰好使B ′C ′∥AB ,A 'C ′与AB 交于点E ,则A ′E 的长为( )A .3B .3.2C .3.5D .3.62.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( ) A .段① B .段② C .段③ D .段④3.如图,菱形ABCD 的边长是4厘米,60B ∠=︒,动点P 以1厘米/秒的速度自A 点出发沿AB 方向运动,动点Q 以2厘米/秒的速度自B 点出发沿BC 方向运动至C 点停止,同时P 点也停止运动若点P ,Q 同时出发运动了t 秒,记BPQ ∆的面积为S 厘米2,下面图象中能表示S 与t 之间的函数关系的是( )A .B .C .D .4.如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD .若∠ACD=30°,则∠DBA 的大小是( )A .15°B .30°C .60°D .75°5.如果2是方程x 2-3x +k =0的一个根,则常数k 的值为( )A .2B .1C .-1D .-26.某水果园2017年水果产量为50吨,2019年水果产量为70吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .()250170x -=B .()250170x += C .()270150x -= D .()270150x += 7.两个相似三角形对应高之比为1:2,那么它们的对应中线之比为( )A .1:2B .1:3C .1:4D .1:8 8.一元二次方程x 2+x ﹣1=0的两根分别为x 1,x 2,则1211x x +=( ) A .12 B .1 C 5 D 59.如图,反比例函数6y x=-在第二象限的图象上有两点A 、B ,它们的横坐标分别为-1,-3.直线AB 与x 轴交于点C ,则△AOC 的面积为( )A .8B .10C .12D .2410.对于反比例函数1y x =,下列说法正确的是( ) A .图象经过点()1,1- B .图象位于第二、四象限C .图象是中心对称图形D .当0x <时,y 随x 的增大而增大 11.在△ABC 与△DEF 中,60A D ∠=∠=,AB AC DF DE =,如果∠B=50°,那么∠E 的度数是( ). A .50°;B .60°;C .70°;D .80°.12.如图,已知抛物线y =ax 2+bx +c 与x 轴的一个交点为A(1,0),对称轴是直线x =-1,则ax 2+bx +c =0的解是( )A .x 1=-3,x 2=1B .x 1=3,x 2=1C .x =-3D .x =-2二、填空题(每题4分,共24分)13.已知函数22(0)(0)x x x y x x ⎧-+>=⎨≤⎩的图象如图所示,若直线y x m =+与该图象恰有两个不同的交点,则m 的取值范围为_____.14.如图,点A 为函数y =9x (x >0)图象上一点,连接OA ,交函数y =1x(x >0)的图象于点B ,点C 是x 轴上一点,且AO =AC ,则△ABC 的面积为______.15.如图,AC 是⊙O 的直径,B ,D 是⊙O 上的点,若⊙O 的半径为3,∠ADB =30°,则BC 的长为____.16.图甲是小张同学设计的带图案的花边作品,该作品由形如图乙的矩形图案设计拼接面成(不重叠,无缝隙).图乙中,点E 、F 、G 、H 分别为矩形AB 、BC 、CD 、DA 的中点,若AB =4,BC =6,则图乙中阴影部分的面积为 _____.17.在正方形ABCD 中,对角线AC 、BD 相交于点O .如果AC 2,那么正方形ABCD 的面积是__________.18.反比例函数k y x=(0k ≠)的图象经过点A (1,2),B (1,y 1),C (3,y 1),则y 1_______y 1.(填“<,=,>”) 三、解答题(共78分) 19.(8分)如图,已知A 、B 两点的坐标分别为(0,43)A ,(4,0)B -,直线AB 与反比例函数m y x =的图象相交于点C 和点()2,D n .(1)求直线AB 与反比例函数的解析式;(2)求ACO ∠的度数;(3)将OBC ∆绕点O 顺时针方向旋转α角(α为锐角),得到OB C ''∆,当α为多少度时OC AB '⊥,并求此时线段AB '的长度.20.(8分)2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.21.(8分)如图,AB 是O 的直径,AC 为弦,BAC ∠的平分线交O 于点D ,过点D 的切线交AC 的延长线于点E .求证:()1DE AE ⊥; ()2AE CE AB +=.22.(10分)在平面直角坐标系中,二次函数 y =ax 2+bx +2 的图象与 x 轴交于 A (﹣3,0),B (1,0)两点,与 y 轴交于点C .(1)求这个二次函数的关系解析式,x 满足什么值时y﹤0 ?(2)点p 是直线AC 上方的抛物线上一动点,是否存在点P,使△ACP 面积最大?若存在,求出点P的坐标;若不存在,说明理由(3)点M 为抛物线上一动点,在x 轴上是否存在点Q,使以A、C、M、Q 为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.CD=米,王老师用测倾器在A点23.(10分)如图,某中学一幢教学楼的顶部竖有一块写有“校训”的宣传牌CD,3=米,测得D点的仰角为30,再向教学楼前进9米到达B点,测得点C的仰角为45︒,若测倾器的高度AM=BN3不考虑其它因素,求教学楼DF的高度.(结果保留根号)24.(10分)如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(2,0),∠CAB=90°,AC=AB,顶点A 在⊙O上运动.(1)当点A在x轴的正半轴上时,直接写出点C的坐标;(2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;(3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式.25.(12分)《海岛算经》第一个问题的大意是:如图,要测量海岛上一座山峰A 的高度AH ,立两根高3丈的标杆BC 和DE ,两竿之间的距1000BD =步,D B H 、、成一线,从B 处退行123步到F ,人的眼睛贴着地面观察A 点,A C F 、、三点成一线;从D 处退行127步到G ,从G 观察A 点,A E G 、、三点也成一-线.试计算山峰的高度AH 及HB 的长. (这里1步6=尺,1丈10=尺,结果用丈表示) .怎样利用相似三角形求得线段AH 及HB 的长呢?请你试一试!26.已知关于x 的一元二次方程kx 2﹣4x +2=0有两个不相等的实数根.(1)求实数k 的取值范围;(2)写出满足条件的k 的最大整数值,并求此时方程的根.参考答案一、选择题(每题4分,共48分)1、D【解析】如图,过点D 作DF ⊥AB ,可证四边形EFDC '是矩形,可得C 'E =DF ,通过证明△BDF ∽△BAC ,可得DF AC BD AB=,可求DF =2.4=C 'E ,即可求解. 【详解】如图,过点D 作DF ⊥AB ,∵∠C=90°,AC=6,BC=8,∴AB223664AB BC+=+10,∵将Rt△ABC绕着BC中点D顺时针旋转一定角度(小于90°)后得到△A′B′C′,∴AC=A'C'=6,∠C=∠C'=90°,CD=BD=4,∵AB∥C'B'∴∠A'EB=∠A'C'B'=90°,且DF⊥AB,∴四边形EFDC'是矩形,∴C'E=DF,∵∠B=∠B,∠DFB=∠ACB=90°,∴△BDF∽△BAC∴DF AC BD AB=,∴6 410 DF=∴DF=2.4=C'E,∴A'E=A'C'﹣C'E=6﹣2.4=3.6,故选:D.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知旋转的定义、矩形的性质及相似三角形的判定与性质.2、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x xx x x x x++-=-=+++++1111xx x-=++.又∵x为正整数,∴121xx≤+<1,故表示22(2)1441xx x x+-+++的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.3、D【分析】用含t的代数式表示出BP,BQ的长,根据三角形的面积公式就可以求出S,从而得到函数的解析式,进一步即可求解.【详解】解:由题意得BP=4-t,BQ=2t,∴S=12×2t×32×(4-t)=-32t2+23t,∴当x=2时,S=-32×4+23×2=23.∴选项D的图形符合.故选:D.【点睛】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.4、D【详解】连接OD,∵CA,CD是⊙O的切线,∴OA⊥AC,OD⊥CD,∴∠OAC=∠ODC=90°,∵∠ACD=30°,∴∠AOD=360°﹣∠C﹣∠OAC﹣∠ODC=150°,∵OB=OD,∴∠DBA=∠ODB=12∠AOD=75°.故选D.考点:切线的性质;圆周角定理.5、A【分析】把x=1代入已知方程列出关于k 的新方程,通过解方程来求k 的值.【详解】解:∵1是一元二次方程x 1-3x+k=0的一个根,∴11-3×1+k=0,解得,k=1.故选:A .【点睛】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.6、B【分析】根据2019年的产量=2017年的产量×(1+年平均增长率)2,即可列出方程.【详解】解:根据题意可得,2018年的产量为50(1+x ),2019年的产量为50(1+x )(1+x )=50(1+x )2,即所列的方程为:50(1+x )2=1.故选:B .【点睛】此题主要考查了一元二次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程.7、A【分析】根据相似三角形对应高的比等于相似比,对应中线的比等于相似比解答.【详解】∵两个相似三角形对应高之比为1:2,∴它们的相似比是1:2,∴它们对应中线之比为1:2.故选A.【点睛】此题考查相似三角形的性质,解题关键在于掌握其性质.8、B【解析】根据根与系数的关系得到x 1+x 2=-1,x 1•x 2=-1,然后把1211x x +进行通分,再利用整体代入的方法进行计算. 【详解】根据题意得x 1+x 2=-1,x 1•x 2=-1, 所以1211x x +=121211x x x x +-=-=1,故选B .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=c a . 9、C【解析】试题分析:x=-1时,y=6,x=-3时,y=2,所以点A (-1,6),点B (-3,2),应用待定系数法求得直线AB 的解析式为y=2x+8,直线AB 与x 轴的交点C (-4,0),所以OC=4,点A 到x 轴的距离为6,所以△AOC 的面积为1462⨯⨯=1. 故选C .考点:待定系数法求一次函数解析式;坐标与图形.10、C【分析】根据反比例函数的图象和性质,可对各个选项进行分析,判断对错即可.【详解】解:A 、∵当x =1时,y =1,∴函数图象过点(1,1),故本选项错误;B 、∵10k =>,∴函数图象的每个分支位于第一和第三象限,故本选项错误;C 、由反比例函数的图象对称性可知,反比例函数的图象是关于原点对称,图象是中心对称图,故本选项正确;D 、∵10k =>,∴在每个象限内,y 随着x 的增大而减小,故本选项错误;故选:C .【点睛】本题重点考查反比例函数的图象和性质,熟练掌握反比例函数图象和性质是解题的关键.11、C【分析】根据已知可以确定ABC DFE △△;根据对应角相等的性质即可求得C ∠的大小,即可解题. 【详解】解:∵60A D ∠=∠=,AB AC DF DE =, ∴ABC DFE △△B ∴∠与F ∠是对应角,C ∠与E ∠是对应角,故180()180(6050)70E C A B ∠=∠=︒-∠+∠=︒-︒+︒=︒.故选:C .【点睛】本题考查了相似三角形的判定及性质,本题中得出C ∠和E ∠是对应角是解题的关键.12、A【解析】已知抛物线y =ax 2+bx +c 与x 轴的一个交点为A(1,0),对称轴是直线x =-1,由此可得抛物线与x 轴的另一个交点坐标为(-3,0),所以方程ax 2+bx +c =0的解是x 1=-3,x 2=1,故选A.二、填空题(每题4分,共24分)13、104m << 【解析】直线与y x =有一个交点,与22y x x =-+有两个交点,则有0m >,22x m x x +=-+时,140m ∆=->,即可求解.【详解】解:直线y x m =+与该图象恰有三个不同的交点,则直线与y x =有一个交点,∴0m >,∵与22y x x =-+有两个交点,∴22x m x x +=-+, 140m ∆=->,∴14m <, ∴104m <<; 故答案为104m <<. 【点睛】本题考查二次函数与一次函数的图象及性质;能够根据条件,数形结合的进行分析,可以确定m 的范围. 14、6.【分析】作辅助线,根据反比例函数关系式得:S △AOD =92, S △BOE =12,再证明△BOE ∽△AOD ,由性质得OB 与OA 的比,由同高两三角形面积的比等于对应底边的比可以得出结论.【详解】如图,分别作BE ⊥x 轴,AD ⊥x 轴,垂足分别为点E 、D ,∴BE ∥AD ,∴△BOE ∽△AOD ,∴22BOEAODS OBS OA=,∵OA=AC,∴OD=DC,∴S△AOD=S△ADC=12S△AOC,∵点A为函数y=9x(x>0)的图象上一点,∴S△AOD=92,同理得:S△BOE=12,∴112992BOEAODSS==,∴13 OBOA=,∴23 ABOA=,∴23ABCAOCSS=,∴2963ABCS⨯==,故答案为6.15、2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【详解】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴BC的长=12032 180ππ⨯=,故答案为:2π.【点睛】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.16、22 5【分析】根据S阴=S菱形PHQF﹣2S△HTN,再求出菱形PHQF的面积,△HTN的面积即可解决问题.【详解】如图,设FM =HN =a .由题意点E 、F 、G 、H 分别为矩形AB 、BC 、CD 、DA 的中点,∴四边形DFBH 和四边形CFAH 为平行四边形,∴DF ∥BH,CH ∥AF ,∴四边形HQFP 是平行四边形又HP=12CH=DP=PF , ∴平行四边形HQFP 是菱形,它的面积=14S 矩形ABCD =14×4×6=6, ∵FM ∥BJ ,CF =FB ,∴CM =MJ ,∴BJ =2FM =2a ,∵EJ ∥AN ,AE =EB ,∴BJ =JN =2a , ∵S △HBC =12•6•4=12,HJ =35BH , ∴S △HCJ =35×12=365, ∵TN ∥CJ ,∴△HTN ∽△HCJ , ∴HTN HCJ S S =(HN HJ )2=19, ∴S △HTN =19×365=45, ∴S 阴=S 菱形PHQF ﹣2S △HTN =6﹣85=225, 故答案为225.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质、菱形的判定与性质及相似三角形的性质.17、1【分析】由正方形的面积公式可求解.【详解】解:∵∴正方形ABCD的面积××12=1,故答案为:1.【点睛】本题考查了正方形的性质,熟练运用正方形的性质是解题的关键.18、>【分析】根据反比例函数的性质得出在每个象限内,y随x的增大而减小,图象在第一、三象限内,再比较即可.【详解】解:由图象经过点A(1,2),可知0k>,反比例函数图象在第一、三象限内,y随x的增大而减小,由此可知y1>y1.【点睛】本题考查反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.三、解答题(共78分)19、(1)直线AB的解析式为y=yx=;(2)∠ACO=30°;(3)当α为60°时,OC'⊥AB,AB'=1.【分析】(1)设直线AB的解析式为y=kx+b(k≠0),将A与B坐标代入求出k与b的值,确定出直线AB的解析式,将D坐标代入直线AB解析式中求出n的值,确定出D的坐标,将D坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;(2)联立两函数解析式求出C坐标,过C作CH垂直于x轴,在直角三角形OCH中,由OH与HC的长求出tan∠COH 的值,利用特殊角的三角函数值求出∠COH的度数,在三角形AOB中,由OA与OB的长求出tan∠ABO的值,进而求出∠ABO的度数,由∠ABO-∠COH即可求出∠ACO的度数;(3)过点B1作B′G⊥x轴于点G,先求得∠OCB=30°,进而求得α=∠COC′=60°,根据旋转的性质,得出∠BOB′=α=60°,解直角三角形求得B′的坐标,然后根据勾股定理即可求得AB′的长.【详解】解:(1)设直线AB的解析式为y=kx+b(k≠0),将A(0,,B(-1,0)代入得:40b k b ⎧=⎪⎨-+=⎪⎩解得b k ⎧=⎪⎨=⎪⎩ 故直线AB 解析式为将D(2,n)代入直线AB 解析式得:则D(2,,将D 坐标代入中,得:则反比例解析式为y =; (2)联立两函数解析式得:y y ⎧=+⎪⎨=⎪⎩解得解得:2x y =⎧⎪⎨=⎪⎩6x y =-⎧⎪⎨=-⎪⎩ 则C 坐标为(-6,,过点C 作CH ⊥x 轴于点H ,在Rt △OHC 中,CH=,OH=3,∵tan ∠COH=CH OH =, ∴∠COH=30°,∵tan ∠ABO=AO OB == ∴∠ABO=60°,∴∠ACO=∠ABO-∠COH=30°;(3)过点B′作B′G⊥x轴于点G,∵OC′⊥AB,∠ACO=30°,∴∠COC′=60°,∴α=60°.∴∠BOB′=60°,∴∠OB′G=30°,∵OB′=OB=1,∴OG=OB′=2,B′G=2,∴B′(-2,2),∴22-+-.(2)(4323)【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解析式,一次函数与x轴的交点,坐标与图形性质,勾股定理,以及锐角三角函数定义,熟练掌握待定系数法是解本题的关键.20、(1)该地这两天《中国机长》票房的平均增长率为40%;(2)最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元【分析】(1)根据题意列出增长率的方程解出即可.(2)根据题意列出不等式组,解出a的正整数值,再根据方案判断即可.【详解】(1)设该地这两天《中国机长》票房的平均增长率为x.根据题意得:1×(1+x)2=1.96解得:x1=0.4,x2=﹣2.4(舍)答:该地这两天《中国机长》票房的平均增长率为40%.(2)设购买《我和我的祖国》a张,则购买《中国机长》(200﹣a)张根据题意得:()()404520083502200a a a a ⎧+-≤⎪⎨≤-⎪⎩解得:130≤a ≤11333∵a 为正整数∴a =130,131,132,133∴该企业共有4种购买方案,购买《我和我的祖国》133张,《中国机长》67张时最省钱,费用为:40×133+45×67=8335(元). 答:最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元.【点睛】本题考查一元二次方程的应用、不等式组的应用,关键在于理解题意列出方程.21、(1)证明见解析;(2)证明见解析.【分析】(1)连接OD ,根据等腰三角形的性质结合角平分线的性质可得出∠CAD=∠ODA ,利用“内错角相等,两直线平行”可得出AE//OD ,结合切线的性质即可证出DE ⊥AE ;(2)过点D 作DM ⊥AB 于点M ,连接CD 、DB ,根据角平分线的性质可得出DE=DM ,结合AD=AD 、∠AED=∠AMD=90°即可证出△DAE ≌△DAM(SAS),根据全等三角形的性质可得出AE=AM ,由∠EAD=∠MAD 可得出CD BD =,进而可得出CD=BD ,结合DE=DM 可证出Rt △DEC ≌Rt △DMB(HL),根据全等三角形的性质可得出CE=BM ,结合AB=AM+BM 即可证出AE+CE=AB .【详解】()1连接OD ,如图1所示,OA OD =,AD 平分BAC ∠,OAD ODA ∠∠∴=,CAD OAD ∠∠=,CAD ODA ∠∠∴=,AE //OD ∴,DE 是O 的切线,ODE 90∠∴=,OD DE ∴⊥,DE AE ∴⊥;()2过点D 作DM AB ⊥于点M ,连接CD 、DB ,如图2所示,AD 平分BAC ∠,DE AE ⊥,DM AB ⊥,DE DM ∴=,在DAE 和DAM 中,90DE DM AED AMD AD AD =⎧⎪∠=∠=⎨⎪=⎩,DAE ∴≌()DAM SAS ,AE AM ∴=,EAD MAD ∠∠=,CD BD ∴=,CD BD ∴=,在Rt DEC 和Rt DMB 中,{DE DMCD BD ==, Rt DEC ∴≌()Rt DMB HL ,CE BM ∴=,AE CE AM BM AB ∴+=+=.【点睛】本题考查了全等三角形的判定与性质、切线的性质、角平分线的性质、等腰三角形的性质、平行线的判定与性质以及圆周角定理,解题的关键是:(1)利用平行线的判定定理找出AE//OD ;(2)利用全等三角形的性质找出AE=AM 、CE=BM .22、(1)24233y x x =--+,13x <- 或21>x ;(2)P 35,22⎛⎫- ⎪⎝⎭;(3)1234(5,0),(1,0),(27,0),(27,0)--Q Q Q Q 【分析】(1)将点A (﹣3,0),B (1,0)带入y =ax 2+bx +2得到二元一次方程组,解得即可得出函数解析式;又从图像可以看出x 满足什么值时 y ﹤0;(2)设出P 点坐标224233m m m ⎛⎫--+ ⎪⎝⎭,,利用割补法将△ACP 面积转化为PAC PAO PCO ACO S S S S =+-,带入各个三角形面积算法可得出PAC S 与m 之间的函数关系,分析即可得出面积的最大值;(3)分两种情况讨论,一种是CM 平行于x 轴,另一种是CM 不平行于x 轴,画出点Q 大概位置,利用平行四边形性质即可得出关于点Q 坐标的方程,解出即可得到Q 点坐标.【详解】解:(1)将A (﹣3,0),B (1,0)两点带入y =ax 2+bx +2可得: 093202a b a b =-+⎧⎨=++⎩ 解得:2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴二次函数解析式为24233y x x =--+. 由图像可知,当x 3<-或x 1>时y ﹤0; 综上:二次函数解析式为24233y x x =--+,当x 3<-或x 1>时y ﹤0; (2)设点P 坐标为224233m m m ⎛⎫--+ ⎪⎝⎭,,如图连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N.PM=224233m m --+,PN=m -,AO=3. 当x 0=时,24y 002233=-⨯-⨯+=,所以OC=2 111222PAC PAO PCO ACO S S S S AO PM CO PN AO CO =+-=+- ()221241132232323322m m m m m ⎛⎫=⨯--++⨯--⨯⨯=-- ⎪⎝⎭, ∵a 10=-<∴函数23PAC Sm m =--有最大值, 当()33m 212-=-=-⨯-时,PACS 有最大值, 此时35P ,22⎛⎫- ⎪⎝⎭; 所以存在点35P ,22⎛⎫-⎪⎝⎭,使△ACP 面积最大. (3)存在,1234(5,0),(1,0),(27,0),(27,0)--+-Q Q Q Q假设存在点Q 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形①若CM 平行于x 轴,如下图,有符合要求的两个点12Q Q 、,此时1Q A =2.Q A CM =∵CM ∥x 轴,∴点M 、点C (0,2)关于对称轴x 1=-对称,∴M (﹣2,2),∴CM=2.由1Q A =22Q A CM ==,得到12(5,0),(1,0)--Q Q ;②若CM 不平行于x 轴,如下图,过点M 作MG ⊥x 轴于点G ,易证△MGQ ≌△COA ,得QG=OA=3,MG=OC=2,即2M y =-.设M (x ,﹣2),则有242=233--+-x x ,解得:x 1=-±又QG=3,∴32Q G x x =+=∴34(2(2Q Q综上所述,存在点P 使以 A 、C 、M 、Q 为顶点的四边形是平行四边形,Q 点坐标为:1234(5,0),(1,0),(2(2--Q Q Q Q .【点睛】本题考查二次函数与几何综合题目,涉及到用待定系数法求二次函数解析式,通过函数图像得出关于二次函数不等式的解集,平面直角坐标系中三角形面积的计算通常利用割补法,并且将所要求得点的坐标设出来,得出相关方程;在解答(3)的时候注意先画出大概图像再利用平行四边形性质进行计算和分析.23、教学楼DF 的高度为9+【分析】延长AB 交CF 于E ,先证明四边形AMFE 是矩形,求出EF=AM=3,再设DE=x 米,利用Rt △BCE 得到AE=x+12,再根据Rt △ADE 得到tan30DE AE =⋅,即可得到x 的值,由此根据DF=DE+EF 求出结果.【详解】如图,延长AB 交CF 于E ,由题意知:∠DAE=30︒,∠CBE=45︒,AB=9米,四边形ABNM 是矩形,∵四边形ABNM 是矩形,∴AB ∥MN,∵CF ⊥MN,∴∠AEC=∠MFC=90︒,∵∠AMF=∠MFC=∠AEF=90︒,∴四边形AMFE 是矩形,∴EF=AM=3,设DE=x 米,在Rt △BCE 中, ∠CBE=45︒,∴BE=CE=x+3,∵AB=9,∴AE=x+12,在Rt △ADE 中,∠DAE=30︒,∴tan30DE AE =⋅,∴12)3x x =+,解得:636x=+,∴DF=DE+EF=963+(米).【点睛】此题考查利用三角函数解决实际问题,解题中注意线段之间的关系,设未知数很主要,通常是设所求的量,利用图中所给的直角三角形,表示出两条边的长度,根据度数即可列得三角函数关系式,由此解决问题.24、(1)点A的坐标为(1,0)时,AB=AC=2﹣1,点C的坐标为(1,2﹣1)或(1,1﹣2);(2)见解析;(3)S==32﹣2x,其中﹣1≤x≤1.【分析】(1)A点坐标为(1,0),根据AB=AC,分两种情形求出C点坐标;(2)根据题意过点O作OM⊥BC于点M,求出OM的长,与半径比较得出位置关系;(3)过点A作AE⊥OB于点E,在Rt△OAE中求AE的长,然后再在Rt△BAE中求出AB的长,进而求出面积的表达式;【详解】(1)点A的坐标为(1,0)时,21AB AC==-,点C的坐标为()1,21-或()1,12-;(2)如图1中,结论:直线BC与⊙O相切.理由如下:过点O作OM⊥BC于点M,∴∠OBM=∠BOM=45°,∴OM=OB•sin45°=1∴直线BC与⊙O相切;(3)过点A作AE⊥OB于点E.在Rt △OAE 中,AE 2=OA 2﹣OE 2=1﹣x 2,在Rt △BAE 中,AB 2=AE 2+BE 2())2212322xx x =-+=-, ∴()2111332222222S AB AC AB x x =⋅==-=, 其中﹣1≤x≤1. 【点睛】属于圆的综合题,考查直线和圆的位置关系,勾股定理,三角形的面积公式等,注意数形结合思想在解题中的应用.25、BH=18450丈,AH=753丈.【分析】根据“平行线法”证得△BCF ∽△HAF 、△DEG ∽△HAG ,然后由相似三角形的对应边成比例即可求解.【详解】∵AH ∥BC ,∴△BCF ∽△HAF , ∴BF BC HF AH=, 又∵DE ∥AH ,∴△DEG ∽△HAG , ∴DG DE HG AH=, 又∵BC=DE , ∴BF DG HF HG=, 即1231271231271000HB HB =+++, ∴BH=30750(步),30750步=18450丈,BH=18450丈, 又∵BF BC HF AH=,35BC ==丈步, ∴AH=()()3075012353087351255123123BH BF BC HF BC BF BF ++⨯⨯====(步),1255步=753丈, AH=753丈.【点睛】本题主要考查了相似三角形的应用,得出△FCB∽△FAH,△EDG∽△AHG是解题关键.26、(1)k<2且k≠0;(2)x1=,x2=2.【解析】(1)利用一元二次方程的定义和判别式的意义得到k≠0且△=42﹣4k•2>0,然后求出两不等式的公共部分即可;(2)先确定k的最大整数值得到方程x2﹣4x+2=0,然后利用因式分解法解方程即可.【详解】解:(1)由题意得,b2﹣4ac>0即42﹣4k•2>0k<2,又∵一元二次方程k≠0∴k<2且k≠0;(2)∵k<2且k取最大整数∴k=1,当k=1时,x2﹣4x+2=0解得,x1=,x2=2.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了一元二次方程的定义.。
2023届浙江省嘉兴市九年级数学第一学期期末经典模拟试题含解析
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下图中①表示的是组合在一起的模块,在②③④⑤四个图形中,是这个模块的俯视图的是()A.②B.③C.④D.⑤2.已知四边形ABCD是平行四边形,下列结论中正确的有()①当AB=BC时,四边形ABCD是菱形;②当AC⊥BD时,四边形ABCD是菱形;③当∠ABC=90°时,四边形ABCD是菱形:④当AC=BD时,四边形ABCD是菱形;A.3个B.4个C.1个D.2个3.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1) 4.抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.05.已知3sinα=,且α是锐角,则α的度数是()A.30°B.45°C.60°D.不确定6.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为()A .B .C .D .7.某经济技术开发区今年一月份工业产值达50亿元,且第一季度的产值为175亿元.若设平均每月的增长率为x,根据题意可列方程为()A.50(1+x)2=175 B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175 D.50+50(1+x)+50(1+x)2=1758.若将半径为6cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.1cm B.2cm C.3cm D.4cm9.已知关于x的分式方程23(3)(6)36mxx x x x+=----无解,关于y的不等式组21(42)44y yy m≥⎧⎪⎨--<⎪⎩的整数解之和恰好为10,则符合条件的所有m的和为()A.92B.72C.52D.3210.如图,直径为10的⊙A山经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为( )A.12B.34C3D.45二、填空题(每小题3分,共24分)11.已知x=2y﹣3,则代数式4x﹣8y+9的值是_____.12.一定质量的二氧化碳,其体积V(m3)是密度ρ(kg/m3)的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式,当V=1.9m3时,ρ=________.13.在平面直角坐标系xOy 中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2),延长CB 交x 轴于点1A ,作正方形111A B C C ,延长11C B 交x 轴于点2A ,作正方形2221A B C C ,…按这样的规律进行下去,第n 个正方形的面积为_____________.14.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,若开口∠1=60°,半径为6,则这个“吃豆小人”(阴影图形)的面积为_____.15.如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形.当水面触到杯口边缘时,边CD 恰有一半露出水面,那么此时水面高度是______厘米.16.点P (3,﹣4)关于原点对称的点的坐标是_____.17.设m ,n 分别为一元二次方程x 2+2x ﹣2018=0的两个实数根,则m 2+3m+n=______.18.小明练习射击,共射击300次,其中有270次击中靶子,由此可估计,小明射击一次击中靶子的概率约为__________.三、解答题(共66分)19.(10分)如图,P 是平面直角坐标系中第四象限内一点,过点P 作PA ⊥x 轴于点A ,以AP 为斜边在右侧作等腰Rt △APQ ,已知直角顶点Q 的纵坐标为﹣2,连结OQ 交AP 于B ,BQ =2OB .(1)求点P 的坐标;(2)连结OP ,求△OPQ 的面积与△OAQ 的面积之比.20.(6分)小晗家客厅装有一种三位单极开关,分别控制着A (楼梯)、B (客厅)、C (走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.(1)若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?(2)若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.21.(6分)如图,BD 是△ABC 的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.(1)求证:∠CDE=12∠ABC ; (2)求证:AD•CD=AB•CE .22.(8分)解方程(1)x 2-6x -7=0;(2) (2x -1)2=1.23.(8分)如图,AB 是O 的直径,弦EF AB ⊥于点C ;点D 是AB 延长线上一点,30A ∠=︒,30D ∠=︒.(1)求证:FD 是O 的切线;(2)取BE 的中点AM ,连接MF ,若O 的半径为2,求MF 的长. 24.(8分)如图是由两个长方体组成的几何体,这两个长方体的底面都是正方形,画出图中几何体的主视图、左视图和俯视图.25.(10分)(1)解方程:2510x x -+=(配方法)(2)已知二次函数:21218y mx x =-+与x 轴只有一个交点,求此交点坐标.26.(10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x 元(x 为偶数),每周销售量为y 个. (1)直接写出销售量y 个与降价x 元之间的函数关系式;(2)设商户每周获得的利润为W 元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?参考答案一、选择题(每小题3分,共30分)1、A【详解】②是该几何体的俯视图;③是该几何体的左视图和主视图;④、⑤不是该几何体的三视图.故选A.【点睛】从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.2、D【分析】根据菱形的判定定理判断即可.【详解】解:∵四边形ABCD是平行四边形,∴①当AB=BC时,四边形ABCD是菱形;故符合题意;②当AC⊥BD时,四边形ABCD是菱形;故符合题意;③当∠ABC=90°时,四边形ABCD是矩形;故不符合题意;④当AC=BD时,四边形ABCD是矩形;故不符合题意;故选:D.【点睛】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.3、A【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是13,根据已知数据可以求出点C的坐标.【详解】由题意得,△ODC∽△OBA,相似比是13,∴OD DC OB AB,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选A.【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.4、D【分析】把x=0代入抛物线y=﹣2(x﹣1)2﹣3,即得抛物线y=﹣2(x﹣1)2﹣3与y轴的交点.【详解】当x=0时,抛物线y=﹣2(x﹣1)2﹣3与y轴相交,把x=0代入y=﹣2(x﹣1)2﹣3,求得y=-5,∴抛物线y=﹣2(x﹣1)2﹣3与y轴的交点坐标为(0,-5).故选:D.【点睛】此题考查了二次函数的性质,二次函数与y轴的交点坐标,解题关键在于掌握当x=0时,即可求得二次函数与y轴的交点.5、C【分析】根据sin60°【详解】解:∵α为锐角,sinα=2,sin60°=2, ∴α=60°.故选:C .【点睛】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.6、C【解析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可.【详解】由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8),故选:C.【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.7、D【分析】增长率问题,一般为:增长后的量=增长前的量×(1+增长率),本题可先用x 表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【详解】解:二月份的产值为:50(1+x ),三月份的产值为:50(1+x )(1+x )=50(1+x )2,故根据题意可列方程为:50+50(1+x )+50(1+x )2=1.故选D .【点睛】本题考查的是一元二次方程的运用,解此类题目时常常要按顺序列出接下来几年的产值,再根据题意列出方程即可. 8、C【分析】根据圆锥的底面圆周长是扇形的弧长列式求解即可.【详解】设圆锥的底面半径是r ,由题意得,12262r ππ=⨯⨯, ∴r = 3cm.故选C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9、C【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程无解确定出m 的值,不等式组整理后表示出解集,由整数解之和恰好为10确定出m 的范围,进而求出符合条件的所有m 的和即可. 【详解】解:23(3)(6)36mx x x x x +=----, 分式方程去分母得:mx+2x-12=3x-9,移项合并得:(m-1)x=3,当m-1=0,即m=1时,方程无解;当m-1≠0,即m≠1时,解得:x=31m -, 由分式方程无解,得到:331m =-或361m =-, 解得:m=2或m=32, 不等式组整理得:072y y m ≥⎧⎪⎨<+⎪⎩, 即0≤x <72m +, 由整数解之和恰好为10,得到整数解为0,1,2,3,4, 可得4<72m +≤5, 即1322m <≤, 则符合题意m 的值为1和32,之和为52. 故选:C .【点睛】 此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.10、C【分析】连接CD ,由直径所对的圆周角是直角,可得CD 是直径;由同弧所对的圆周角相等可得∠OBC =∠ODC ,在Rt△OCD中,由OC和CD的长可求出sin∠ODC. 【详解】设⊙A交x轴于另一点D,连接CD,∵∠COD=90°,∴CD为直径,∵直径为10,∴CD=10,∵点C(0,5)和点O(0,0),∴OC=5,∴sin∠ODC= OCCD=12,∴∠ODC=30°,∴∠OBC=∠ODC=30°,∴cos∠OBC=cos30°= 3.故选C.【点睛】此题考查了圆周角定理、锐角三角函数的知识.注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、填空题(每小题3分,共24分)11、-1.【分析】根据x=2y﹣1,可得:x﹣2y=﹣1,据此求出代数式4x﹣8y+9的值是多少即可.【详解】∵x=2y﹣1,∴x﹣2y=﹣1,∴4x﹣8y+9=4(x﹣2y)+9=4×(﹣1)+9=﹣12+9=﹣1故答案为:﹣1.【点睛】本题考查的是求代数式的值,解题关键是由x =2y ﹣1得出x ﹣2y =﹣1.12、35/kg m【解析】由图象可得k=9.5,进而得出V=1.9m 1时,ρ的值.【详解】解:设函数关系式为:V=k ρ,由图象可得:V=5,ρ=1.9,代入得: k=5×1.9=9.5,故V=9.5ρ,当V=1.9时,ρ=5kg/m 1.故答案为5kg/m 1.【点睛】本题考查的是反比例函数的应用,正确得出k 的值是解题关键.13、2235()2n -⨯【分析】推出AD=AB ,∠DAB=∠ABC=∠ABA 1=90°=∠DOA ,求出∠ADO=∠BAA 1,证△DOA ∽△ABA 1,得出1012BA A AB OD ,求出AB ,BA 1,求出边长A 1,求出面积即可;求出第2个正方形的边长是,求出面积,再求出第3个正方形的面积;依此类推得出第n 个正方形的边长,求出面积即可.【详解】∵四边形ABCD 是正方形,∴AD=AB ,∠DAB=∠ABC=∠ABA 1=90°=∠DOA , ∴∠ADO+∠DAO=90°,∠DAO+∠BAA 1=90°,∴∠ADO=∠BAA 1,∵∠DOA=∠ABA 1,∴△DOA ∽△ABA 1,∴1012BA A AB OD ,∵=∴BA 1∴第2个正方形A 1B 1C 1C 的边长A 1C=A 153522, 面积是22353522; 同理第3232⎛⎫==⎪⎝⎭面积是22433522⎡⎛⎫⎛⎫=⨯⎢ ⎪ ⎪⎝⎭⎝⎭⎢⎣; 第4个正方形的边长是3352 ,面积是6352…, 第n 个正方形的边长是1352n ,面积是2235()2n -⨯ 故答案为: 2235()2n -⨯【点睛】 本题考查了正方形的性质,相似三角形的性质和判定,勾股定理的应用,解此题的关键是根据计算的结果得出规律,题目比较好,但是一道比较容易出错的题目14、5π【解析】∵∠1=60°, ∴图中扇形的圆心角为300°,,∴S 阴影=23005360ππ⋅=. 故答案为5π.15、485【分析】先由勾股定理求出BE ,再过点B 作BF AF ⊥于F ,由CBE FBA ∆∆∽的比例线段求得结果即可.【详解】解:过点B 作BF AF ⊥于F ,如图所示:∵BC=6厘米,CD=16厘米,1 CE2=CD8∴=CE厘米,90C∠=︒,由勾股定理得:22226810BE BC CE=++=,90BCE FBE∠=∠=︒,EBC ABF∴∠=∠,90BCE BFA∠=∠=︒,CBE FBA∴∆∆∽,BE BCAB BF∴=,即10616BF=,485 BF∴=.故答案为:485.【点睛】此题主要考查了勾股定理的应用以及相似三角形的判定与性质,正确把握相关性质是解题关键.16、(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【详解】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.17、2016【解析】由题意可得,2220180x x +-=,222018x x +=,∵m ,n 为方程的2个根,∴222018m m +=,2m n +=-,∴223(2)()m m n m m m n ++=+++2016=.18、0.9【分析】根据频率=频数÷数据总数计算即可得答案.【详解】∵共射击300次,其中有270次击中靶子, ∴射中靶子的频率为270300=0.9, ∴小明射击一次击中靶子的概率约为0.9,故答案为:0.9【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、(1)点P 的坐标(1,﹣4);(2)△OPQ 的面积与△OAQ 的面积之比为1.【分析】(1)过Q 作QC ⊥x 轴于C ,先求得AC =QC =2、AQ =22、AP =4,然后再由AB ∥CQ ,运营平行线等分线段定理求得OA 的长,最后结合AP=4即可解答;(2)先说明△OAB ∽△OCQ ,再根据相似三角形的性质求得AB 和PB 的长,然后再求出△OPQ 和△OAQ 的面积,最后作比即可.【详解】解:(1)过Q 作QC ⊥x 轴于C ,∵△APQ是等腰直角三角形,∴∠PAQ=∠CAQ=41°,∴AC=QC=2,AQ=22,AP=4,∵AB∥CQ,∴12 OA OBAC BQ==,∴OA=12AC=1,∴点P的坐标(1,﹣4);(2)∵AB∥CQ,∴△OAB∽△OCQ,∴13 AB OBCQ OQ==,∴AB=13CQ=23,∴PB=103,∴S△OAQ=12OA•CQ=12×1×2=1,S△OPQ=12PB•OA+12PB•AC=1,∴△OPQ的面积与△OAQ的面积之比=1.【点睛】本题考查了一次函数的图像、相似三角形的判定与性质、平行线等分线段定理以及三角形的面积,掌握相似三角形的判定和性质是解答本题的关键.20、(1)13;(2)13.【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:1 3(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13.考点:概率的计算.21、 (1)证明见解析;(2)证明见解析;【解析】试题分析:(1)根据BD是AB与BE的比例中项可得BA BDBD BE=, BD是∠ABC的平分线,则∠ABD=∠DBE,可证△ABD∽△DBE,∠A=∠BDE. 又因为∠BDC=∠A+∠ABD,即可证明∠CDE=∠ABD=12∠ABC,(2)先根据∠CDE=∠CBD,∠C=∠C,可判定△CDE∽△CBD,可得CE DECD DB=.又△ABD∽△DBE,所以DE ADDB AB=,CE ADCD AB=,所以AD CD AB CE⋅=⋅.试题解析:(1)∵BD是AB与BE的比例中项,∴BA BD BD BE=,又BD是∠ABC的平分线,则∠ABD=∠DBE, ∴△ABD∽△DBE,∴∠A=∠BDE.又∠BDC=∠A+∠ABD,∴∠CDE=∠ABD=12∠ABC,即证.(2)∵∠CDE=∠CBD,∠C=∠C, ∴△CDE∽△CBD,∴CE DE CD DB=.又△ABD∽△DBE,∴DE AD DB AB=,∴CE AD CD AB=,∴AD CD AB CE⋅=⋅.22、(1)x1=7,x2=-1;(2)x1=2,x2=-1 【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+1-1-7=0(x-3) 2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.23、(1)见解析(2)7【分析】(1)连接OE,OF,由垂径定理和圆周角定理得到∠DOF=∠DOE.而∠DOE=2∠A,得出∠DOF=2∠A,证出∠OFD=90°.即可得出结论;(2)连接OM,由垂径定理和勾股定理进行计算即可.【详解】(1)连接OE,OF,如图1所示:∵EF⊥AB,AB是⊙O的直径,∴BE BF,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD为⊙O的切线;(2)连接OM.如图2所示:∵O 是AB 中点,M 是BE 中点,∴OM ∥AE .∴∠MOB =∠A =30°.∵OM 过圆心,M 是BE 中点,∴OM ⊥BE .∴MB =12OB =1,OM =22OB MB -=22213-=.∵∠DOF =60°,∴∠MOF =90°.∴MF =()2222327OM OF +=+=.【点睛】本题考查了切线的判定、圆周角定理、勾股定理、直角三角形的性质、垂径定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.24、如图所示见解析.【分析】从正面看,下面一个长方形,上面左边一个长方形;从左面看,下面一个长方形,上面左边一个长方形;从上面看,一个正方形左上角一个小正方形,依此画出图形即可.【详解】如图所示.【点睛】此题考查了三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.25、(1)12521521,22x x +==(2)2m =,交点坐标为(3,0). 【分析】(1)把常数项移到方程的右边,两边加上一次项系数的一半的平方,进行配方,再用直接开平方的方法解方程即可,(2)由二次函数的定义得到:0,m ≠再利用0∆=求解m 的值,最后求解交点的坐标即可.【详解】解:(1) 2510x x -+=,251,x x ∴-=-222555()1(),22x x ∴-+=-+ 2521(),24x ∴-=52x ∴-=1255,22x x +-∴== (2)二次函数:21218y mx x =-+与x 轴只有一个交点, 2040m b ac ≠⎧∴⎨∆=-=⎩2(12)4180,m ∴--⨯=2,m ∴=∴ 22212182(3),y x x x =-+=-∴ 这个交点为抛物线的顶点,顶点坐标为:(3,0).即此交点的坐标为:(3,0).【点睛】本题考查了解一元二次方程的配方法,二次函数与x 轴的交点坐标问题,掌握相关知识是解题的关键.26、(1)10160y x =+;(2)当销售单价定为74元或72元时,每周销售利润最大,最大利润是5280元;【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y 个与降价x 元之间的函数关系式;(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;【详解】解:(1)依题意有:16020101602x y x =+⨯=+ ; (2)依题意有:W=(80-50-x )(10x+160)=2300480010160x x x +--=2101404800x x -++=-10(x-7)2+5290,因为x为偶数,所以当销售单价定为80-6=74元或80-8=72时,每周销售利润最大,最大利润是5280元;【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.。
2022-2023年北师大版九年级数学第一学期期末模拟试卷含答案
2022-2023学年第一学期期末模拟试题九年级数学一、选择题(本部分共10小题,每小题3分,共30分)1.如图所示的工件,其俯视图是()A.B.C.D.2.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数3.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2 4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC =4,CE=6,BD=3,DF=()A.7B.7.5C.8D.4.55.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个7.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形8.如图,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC 平行于x轴,△ABC的面积为S,则()A.S=1B.S=2C.1<S<2D.S>29.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4B.1:4:16C.1:3:12D.1:3:710.如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD;②AG>AE;③AF⊥DE;④DF=4EF.正确的是()A.①②B.①③C.①③④D.③④二、填空题(本部分共5小题,每小题3分,共15分)11.一元二次方程x2﹣16=0的解是.12.已知=,则=.13.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.小智和小慧被分到同一个项目组进行志愿服务的概率14.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x <0)上,D点在双曲线y=(x>0)上,则k的值为6.三、解答题(第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)解一元二次方程:2x2﹣5x+3=0.17.如图,已知A(﹣4,2),B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的函数值小于反比例函数的函数值的x的取值范围.18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=;(2)补全条形统计图;(3)这次调查结果的众数是;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?19.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨0.1元,月销售量就减少1kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.21.如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.(1)求证:CE⊥DE;(2)若AB=6,求CF•DF的值;(3)当△BCE与△DFG相似时,的值是.22.如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.2022-2023学年第一学期期末模拟试题九年级数学一、选择题(本部分共10小题,每小题3分,共30分)1.如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.2.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数【分析】根据分式有意义可得中x≠0.【解答】解:函数y=中,自变量x的取值范围是x≠0,故选:C.3.一元二次方程(x﹣2)2=0的根是()A.x=2B.x1=x2=2C.x1=﹣2,x2=2D.x1=0,x2=2【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣2)2=0,则x1=x2=2,故选:B.4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC =4,CE=6,BD=3,DF=()A.7B.7.5C.8D.4.5【分析】根据平行线分线段成比例定理得到=,即=,然后利用比例性质求DF的长.【解答】解:∵直线a∥b∥c,∴=,即=,∴DF=.故选:D.5.已知反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,6)C.(﹣2,﹣6)D.(﹣3,﹣4)【分析】依次把各个选项的横坐标代入反比例函数y=的解析式中,得到纵坐标的值,即可得到答案.【解答】解:A.把x=3代入y=得:y==﹣4,即A项错误,B.把x=﹣2代入y=得:y==6,即B项正确,C.把x=﹣2代入y=得:y==6,即C项错误,D.把x=﹣3代入y=得:y==4,即D项错误,故选:B.6.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A.5个B.15个C.20个D.35个【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.7.下列命题中,不正确的是()A.对角线相等的矩形是正方形B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等D.顺次连结菱形各边中点所得的四边形是矩形【分析】根据矩形的性质和正方形的判定方法对A进行判断;根据菱形的判定方法对B 进行判断;根据矩形的性质对C进行判断;根据三角形中位线的性质和矩形的判定方法对D进行判断.【解答】解:A、对角线垂直的矩形是正方形,所以A选项为假命题;B、对角线垂直平分的四边形是菱形,所以B选项为真命题;C、矩形的对角线平分且相等,所以C选项为真命题;D、顺次连结菱形各边中点所得的四边形是矩形,所以D选项为真命题.故选:A.8.如图,A,B是函数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC 平行于x轴,△ABC的面积为S,则()A.S=1B.S=2C.1<S<2D.S>2【分析】设出点A的坐标,可得点B的坐标.易得△ABC为直角三角形,面积等于×AC×BC,把相关数值代入求值即可.【解答】解:设点A的坐标为(x,y),点A在反比例函数解析式上,∴点B的坐标为(﹣x,﹣y),k=xy=1∵AC平行于y轴,BC平行于x轴,∴△ABC的直角三角形,∴AC=2y,BC=2x,∴S=×2y×2x=2xy=2.故选:B.9.如图,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,则S△ADE:S四边形DFGE:S四边形FBCG等于()A.1:2:4B.1:4:16C.1:3:12D.1:3:7【分析】由于DE∥FG∥BC,那么△ADE∽△AFG∽△ABC,根据AD:AF:AB=1:2:4,可求出三个相似三角形的面积比.进而可求出△ADE、四边形DFGE、四边形FBCG 的面积比.【解答】解:∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD:AF:AB=1:2:4,∴S△ADE:S△AFG:S△ABC=1:4:16,设△ADE的面积是a,则△AFG和△ABC的面积分别是4a,16a,则S四边形DFGE和S四边形FBCG分别是3a,12a,∴S△ADE:S四边形DFGE:S四边形FBCG=1:3:12.故选:C.10.如图,在正方形ABCD中,点E为AB边的中点,点F在DE上,CF=CD,过点F作FG⊥FC交AD于点G.下列结论:①GF=GD;②AG>AE;③AF⊥DE;④DF=4EF.正确的是()A.①②B.①③C.①③④D.③④【分析】证明Rt△CFG≌Rt△CDG,得出①正确;在证明△ADE≌△DCG得出AE=DG,得出AE=AG,②不正确;证出GH是△AFD的中位线,得出GH∥AF,证出∠AFD=90°,即AF⊥DE,③正确;证明△ADE∽△F AE,得出===2,得出DE=2AE,AE=2EF,因此DF=4EF,④正确;即可得出答案.【解答】解:连接CG交ED于点H.如图所示:∵四边形ABCD是正方形,∴∠ADC=90°,∵FG⊥FC,∴∠GFC=90°,在Rt△CFG与Rt△CDG中,,∴Rt△CFG≌Rt△CDG(HL),∴GF=GD,①正确.∵CF=CD,GF=GD,∴点G、C在线段FD的中垂线上,∴FH=HD,GC⊥DE,∴∠EDC+∠DCH=90°,∵∠ADE+∠EDC=90°,∴∠ADE=∠DCH,∵四边形ABCD是正方形,∴AD=DC=AB,∠DAE=∠CDG=90°,在△ADE和△DCG中,,∴△ADE≌△DCG(ASA),∴AE=DG,∵点E是边AB的中点,∴点G是边AD的中点,∴AE=AG,②不正确;∵点H是边FD的中点,∴GH是△AFD的中位线,∴GH∥AF,∴∠AFD=∠GHD,∵GH⊥FD,∴∠GHD=90°,∴∠AFD=90°,即AF⊥DE,③正确;∵AD=AB,AB=2AE,∴AD=2AE,∵∠AFE=90°=∠DAE,∠AEF=∠DEA,∴△ADE∽△F AE,∴===2,∴DE=2AE,AE=2EF,∴DF=4EF,④正确;故选:C.二、填空题(本部分共5小题,每小题3分,共15分)11.一元二次方程x2﹣16=0的解是x1=﹣4,x2=4.【分析】方程变形后,开方即可求出解.【解答】解:方程变形得:x2=16,开方得:x=±4,解得:x1=﹣4,x2=4.故答案为:x1=﹣4,x2=412.已知=,则=.【分析】依据比例的性质,即可得到=.【解答】解:∵=,∴7a﹣7b=3a+3b,∴4a=10b,∴=,故答案为:.13.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.小智和小慧被分到同一个项目组进行志愿服务的概率【分析】先画树状图展示所有9种等可能的结果数,再找出其中小智和小慧被分到同一个项目标组进行志愿服务的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有9种等可能的结果数,其中小智和小慧被分到同一个项目标组进行志愿服务的结果数为3,所以小智和小慧被分到同一个项目标组进行志愿服务的概率为=.14.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是【解答】解:过D作DE⊥AB交AB的延长线于E,∴∠E=∠CAB=90°,∵斜边BC绕点B逆时针方向旋转90°至BD的位置,∴BD=BC,∠CBD=90°,∴∠DBE+∠CBA=∠CBA+∠C=90°,∴∠DBE=∠C,∴△ABC≌△EDB(AAS),∴DE=AB=2,BE=AC=3,∴AE=2+3=5,∴AD===,15.如图,直线y=mx﹣1交y轴于点B,交x轴于点C,以BC为边的正方形ABCD的顶点A(﹣1,a)在双曲线y=﹣(x<0)上,D点在双曲线y=(x>0)上,则k的值为6.【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【解答】解:∵A(﹣1,a)在双曲线y=﹣(x<0)上,∴a=2,∴A(﹣1,2),∵点B在直线y=mx﹣1上,∴B(0,﹣1),∴AB==,∵四边形ABCD是正方形,∴BC=AB=,设C(n,0),∴=,∴n=﹣3(舍)或n=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),∵D点在双曲线y=(x>0)上,∴k=2×3=6,故答案为:6.三、解答题(第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)解一元二次方程:2x2﹣5x+3=0.【分析】利用因式分解法求解可得.【解答】解:∵2x2﹣5x+3=0,∴(x﹣1)(2x﹣3)=0,则x﹣1=0或2x﹣3=0,解得x=1或x=1.5.17.如图,已知A(﹣4,2),B(n,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出使一次函数的函数值小于反比例函数的函数值的x的取值范围.【分析】(1)利用待定系数法即可求得函数的解析式;(2)一次函数的值大于反比例函数的值的x的取值范围,就是对应的一次函数的图象在反比例函数的图象的上边的自变量的取值范围.【解答】解:(1)把A(﹣4,2)代入y=得:m=﹣8,则反比例函数的解析式是:y=﹣;把y=﹣4代入y=﹣,得:x=n=2,则B的坐标是(2,﹣4).根据题意得:,解得:,则一次函数的解析式是:y=﹣x﹣2;(2)使一次函数的函数值小于反比例函数的函数值的x的取值范围是:﹣4<x<0或x >2.18.“低碳生活,绿色出行”是我们倡导的一种生活方式,某校为了解学生对共享单车的使用情况,随机抽取部分学生进行问卷调查,并将这次调查的结果绘制了以下两幅不完整的统计图.根据所给信息,解答下列问题:(1)m=15%;(2)补全条形统计图;(3)这次调查结果的众数是偶尔使用;(4)已知全校共3000名学生,请估计“经常使用”共享单车的学生大约有多少名?【分析】(1)由“从不使用”的人数及其对应百分比求得总人数,继而用“经常使用”的人数除以总人数可得m的值;(2)根据各类别人数之和等于总人数求得“偶尔使用”的人数即可补全条形图;(3)根据众数的定义求解可得;(4)用总人数乘以样本中“经常使用”的人数对应的百分比可得.【解答】解:(1)∵被调查的学生总人数为25÷25%=100(人),∴经常使用的人数对应的百分比m=×100%=15%,故答案为:15%;(2)偶尔使用的人数为100﹣(25+15)=60(人),补全条形统计图如下:(3)∵偶尔使用的人数最多,∴这次调查结果的众数是偶尔使用,故答案为:偶尔使用;(4)估计“经常使用”共享单车的学生大约有3000×15%=450(人).19.某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨0.1元,月销售量就减少1kg,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?【分析】先根据销售利润=每件利润×数量,再设出单价应定为x元,再根据这个等式列出方程,即可求出答案.【解答】解:设销售单价定为x元,根据题意得:(x﹣40)[500﹣(x﹣50)÷0.1]=8000.解得:x1=60,x2=80当售价为60时,月成本[500﹣(60﹣50)÷0.1]×40=16000>10000,所以舍去.当售价为80时,月成本[500﹣(80﹣50)÷0.1]×40=8000<10000.答:销售单价定为80元.20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.【分析】(1)利用相似三角形的判定得出△ABE∽△ACB,进而求出答案;(2)首先证明AD=BF,进而得出AD∥BF,即可得出四边形ABFD是平行四边形,再利用AD=AB,得出四边形ABFD是菱形.【解答】证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,即AB2=x•3x∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,连接AF,则AF=BF=CF,∠ACB=30°,∠ABC=60°,又∵∠ABD=∠ADB=30°,∴∠CBD=30°,∴∠ADB=∠CBD=∠ACB=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.21.如图,已知四边形ABCD中,AB⊥AD,BC∥AD,E为AB的中点,且EC、ED分别为∠BCD、∠ADC的角平分线,EF⊥CD交BC的延长线于点G,连接DG.(1)求证:CE⊥DE;(2)若AB=6,求CF•DF的值;(3)当△BCE与△DFG相似时,的值是或.【分析】(1)证明∠ECD+∠EDC=90°即可解决问题.(2)由△CFE∽△EFD,得,由此即可解决问题.(3)分两种情形,当△BCE∽△FGD时,当△BCE∽△FDG时,分别计算即可.【解答】(1)证明:∵EC、ED分别为∠BCD、∠ADC的角平分线,∴∠BCE=∠DCE,∠ADE=∠CDE,∵BC∥AD,∴∠BCD+∠ADC=180°,∴2∠ECD+2∠EDC=180°,∴∠ECD+∠EDC=90°,22.如图1,在菱形ABCD中,AB=,∠BCD=120°,M为对角线BD上一点(M不与点B、D重合),过点MN∥CD,使得MN=CD,连接CM、AM、BN.(1)当∠DCM=30°时,求DM的长度;(2)如图2,延长BN、DC交于点E,求证:AM•DE=BE•CD;(3)如图3,连接AN,则AM+AN的最小值是3.【分析】(1)先根据菱形的性质求出BC=3,再利用含30度角的直角三角形的性质求出BM,即可得出结论;(2)先判断出四边形ABNM是平行四边形,得出∠AMB=∠EBD,进而判断出△ABM ∽△EDB,即可得出结论;(3)先判断出AM+AN=BN+AN,再判断出点N的运动轨迹是线段CP,进而判断出再CP上取一点N使AN+BN最小,最后利用轴对称构造出图形,计算即可得出结论.【解答】解:(1)如图1,连接AC交BD于O,∵四边形ABCD是菱形,∴AC⊥BD,BD=2OB,CD=BC=AB=,∵∠BCD=120°,∴∠CBD=30°,∴OC=BC=,∴OB=OC=,∴BD=3,∵∠BCD=120°,∠DCM=30°,∴∠BCM=90°,∴CM=BC=1,∴BM=2CM=2,∴DM=BD﹣BM=1;(2)∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵MN∥CD,MN=CD,∴AB∥MN,AB=MN,∴四边形ABNM是平行四边形,∴AM∥BN,∴∠AMB=∠EBD,∵AB∥CD,∴∠ABM=∠EDB,∴△ABM∽△EDB,∴,∴AM•DE=BE•AB,∵AB=CD,∴AM•DE=BE•CD;(3)如图2,∵四边形ABCD是菱形,∴∠ABD=∠ABC,CD∥AB,∵∠BCD=120°,∴∠ABC=60°,∴∠ABD=30°,连接CN并延长交AB的延长线于P,∵CD∥MN,CD=MN,∴四边形CDMN是平行四边形,∴当点M从点D向B运动时,点N从点C向点P运动(点N的运动轨迹是线段CP),∠APC=∠ABD=30°,由(2)知,四边形ABNM是平行四边形,∴AM=BN,∴AM+AN=AN+BN,而AM+AN最小,即:AN+BN最小,作点B关于CP的对称点B',当点A,N,B'在同一条线上时,AN+BN最小,即:AM+AN的最小值为AB',连接BB',B'P,由对称得,BP=B'P=AB=,∠BPB'=2∠APC=60°,∴△BB'P是等边三角形,B'P过点B'作B'Q⊥BP于Q,∴BQ=B'P=,∴B'Q=BQ=,∴AQ=AB+BQ=,在Rt△AQB'中,根据勾股定理得,AB'==3,即:AM+AN的最小值为3,故答案为3.∴∠CED=90°.即CE⊥DE;(2)解:∵∠EAD=∠EFD,∠ADE=∠FDE,DE=DE,∴△EAD≌△EFD(AAS),∴EF=EA,∵E为AB的中点,∴AE=EF=3∵∠CED=90°,∴∠CEF+∠FED=90°,∵EF⊥CD,∴∠FED+∠EDF=90°,∴∠CEF=∠EDF,∴△CFE∽△EFD,∴,即CF•DF=EF•EF,∴CF•DF=9.(3)解:①当△BCE∽△FGD时,∵∠BCE=∠AED,∴∠FED=∠FGD,∴ED=DG,∴∠EDF=∠GDF,∴△EDC≌△GDC(SAS),∴∠ECD=∠GCD,∵∠BCE+∠ECD+∠DCG=180°,∴∠BCE=∠AED=60°,设BC=x,则BE=x,∴AE=x,∴AD=3x,∴.②当△BCE∽△FDG时,∠BCE=∠FDG,∵∠BCE=∠ECF,∴∠ECF=∠FDG,∴EC∥DG,∴∠BCE=∠CGD,∴∠CGD=∠FDG,∴CD=CG.∵S△CDG=,∴FG=AB.∵EC∥DG,∴=,∴.综合以上可得的值为或.故答案为:或.。
华东师大版数学九年级上册期末模拟试题50题含答案
华东师大版数学九年级上册期末模拟试题50题含答案(填空题+解答题)一、填空题1_______.2.3.若方程2410x x --=的两个根为1x ,2x ,则12x x +的值为_____.4.如图,CD =3BD ,AF =FD ,则AE :AC =_____.5.经过两年的连续治理,三台县城市的大气环境有了明显改善,降尘量从50吨下降到40.5吨,则平均每年下降的百分率是_____________________. 【答案】10%【详解】设平均每年下降的百分率为x ,根据题意可得: 250(1)40.5x -=解此方程得:120.1 1.9x x ==,(不合题意,舍去), 即平均每年下降的百分率为10%.6.如图,ABC 中,CD AB ⊥于D ,E 是AC 的中点.若6AD =,DE =CD 的长等于______.7.计算:202120212)2)的结果是_______.8.Rt∵ABC中,∵C=90°,点D是斜边AB的中点,若CD=2,则AB=___.【答案】4【分析】根据直角三角形斜边的中线等于斜边的一半解题.【详解】解:在Rt∵ABC中,点D是斜边AB的中点,CD=2,∵AB=2CD=2×2=4,故答案为:4.【点睛】本题考查直角三角形斜边中线的性质,是重要考点,掌握相关知识是解题关键.9.“……日啖荔枝三百颗,不辞长作岭南人”.是荔枝在运输、储存中会有损坏,下表是销售人员随机抽取若干荔枝,进行荔枝损坏率的统计的一组数据.估计荔枝损坏的概率是 _______________ 【答案】0.1 答案不唯一【详解】由表格中的荔枝损坏的频率可得为0.1; 故答案是0.1;10.已知n n 的最小值为___.11.方程()()2222x x -=-的根是__. 【答案】2x =或4x =【分析】将方程右边整体移至左边,再将左边因式分解即可得. 【详解】解:移项,得:()()22220x x ---=, 将左边因式分解,得:()()2220x x ---=, 即()()240x x --=, ∵20x -=或40x -=, 解得:2x =或4x =, 故答案为:2x =或4x =.【点睛】本题主要考查用因式分解法解方程的能力,只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.12.在比例尺为1:2000的地图上测得AB 两地间的图上距离为18cm ,则AB 两地间的实际距离为________m . 【答案】360【分析】首先设它的实际长度为x cm ,再根据比例尺的定义,列出比例式,解方程即可求得答案.注意单位换算.【详解】解:设它的实际长度为xcm ,由题意, 得:1:200018:x =, 解得:36000x =, ∵36000cm 360m.= 故答案为360.【点睛】比例尺=图上距离:实际距离,按照题目要求列出比例式进行计算即可. 13.在ABC 中,90C ∠=,6BC cm =,8CA cm =,动点P 从C 点出发沿C A B →→的路线以每秒2cm 的速度运动到点B ,则点P 出发________秒时,BCP 的面积是ABC 的面积的一半.S ABC ,此时面积的一半,此时【点睛】找出关键点是解题的关键14.若两个相似多边形的对应边的比是5∵4,则这两个多边形的周长比是______. 【答案】5∵4【分析】根据相似多角形性质:相似多角形对应边的比等于相似比,周长比等于相似比,面积比等于相似比的平方.【详解】根据相似多角形性质:若两个相似多边形的对应边的比是5∵4,则这两个多边形的周长比是5∵4, 故答案为:5∵4.15.如图,将矩形纸片ABCD 分别沿着AE ,CF 折叠,若B ,D 两点恰好都落在对角线的交点O 上,下列说法:①四边形AECF 为菱形;120AEC ∠=︒②;③若2AB =,则矩形ABCD ;AB ④:BC =:3,其中正确的说法是______.(填写序号)16.如图,在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,90OAB ∠=︒,直角边AO 在x 轴上,且1AO =.将Rt ∵AOB 绕原点O 顺时针旋转90°得到等腰直角三角形1A OB ,且12AO AO ,再将11Rt A OB △,绕原点O 顺时针旋转90°得到等腰直角三角形22A OB ,且212A O AO =……,依此规律,得到等腰直角三角形20212021A OB ,则点2022B 的坐标是______.【答案】()202220222,2--【分析】根据题意得出B 点坐标变化规律,进而得出点2022B 的坐标位置,进而得出答案.【详解】解:AOB ∆是等腰直角三角形,1OA =,1ABOA ,(1,1)B ,将Rt AOB ∆绕原点O 顺时针旋转90︒得到等腰直角三角形11AOB ,且12AO AO ,再将Rt △11AOB 绕原点O 顺时针旋转90︒得到等腰三角形22A OB ,且212A O AO ,依此规律,∴每4次循环一周,1(2,2)B -,2(4,4)B ,3(8,8)B ,4(16,16)B ,202245052÷=⋯⋯,∴点2022B 与2B 同在一个象限内,∴点20222022(2B -,20222)-.故答案为:2022(2-,20222)-.【点睛】此题主要考查了点的坐标变化规律及等腰直角三角形的性质,得出B 点坐标变化规律是解题关键.17=x 的取值范围是______.18.如图,点A ,B 分别在x 轴正半轴、y 轴正半轴上,点C ,D 为线段AB 的三等分点,点D 在等腰Rt OAE △的斜边OE 上,反比例函数ky x=过点C ,D ,交AE 于点F .若53DEF S =△,则k =______.19.计算2________.【答案】52x-.【分析】利用二次根式有意义的条件得到x≤2,再利用二次根式的性质化简得到原式=2﹣x+|x﹣3|,然后去绝对值后合并即可.20.如图,在ABC 中,90A ∠=︒,4AC =,5BC =.请用尺规作图法,求作ABD ∠,使得3tan 4ABD ∠=,且点D 在边AC 上.(保留作图痕迹,不写作法)21.在数1-、1、2中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数2y x =-图象的概率是________________.所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则16P =故答案为:16 【点睛】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.22.如果m 、n 是两个不相等的实数,且满足m 2-2m =1,n 2-2n =1,那么代数式2m 2+4n 2-4n +2015= ______ . 【答案】2029【详解】试题解析:,m n 满足2221,2 1.m m n n -=-= ,,m n ∴为方程2210x x --=的两个实数根,2212,12m m n n =+=+,2, 1.m n mn ∴+==-∵2224420152(12)4(12)42015m n n m n n +-+=+++-+,244842015,m n n =+++-+4420212029.m n =++=故答案为2029.点睛:一元二次方程20(0)ax bx c a ++=≠根与系数的关系满足:23______.24.如图,在∵ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∵ADE=∵B=α,DE交AC于点E,若∵DCE为直角三角形,则BD的值为_____.25.在平面直角坐标系中,(1,0),A B ,过点B 作直线BC∵x 轴,点P 是直线BC上的一个动点以AP 为边在AP 右侧作Rt APQ ,使90APQ ︒∠=,且:AP PQ =连结AB 、BQ ,则ABQ 周长的最小值为___________.ABQ C =OP =O 'P 得到答案.t R APQ 中,1:3PQ =2AQ AP =Rt OAB ∆中,~AOB APQ ∴OA AB AP AQ∴=,∵OAB OAP BAQ ∴∠=∠OAP BAQ ∴21BQ AQ OP AP ∴== 2BQ OP ∴=.∵OA =1.OB =3,ABQ C AB AQ ∴=+P 为直线作O 关于直线)min ABQ C 即ABQ 的最小值为故答案为:26=________.27.如图:正方形ABCD 、正方形BEFG 和正方形DMNK 的位置如图所示,点A 在线段NF 上,6AE =,则NFP △的面积为________.【答案】18【分析】先由条件可以证明△KNA ∽△EAF ,从而得出NK :EA =KA :EF ,设BE =x ,则AB =8﹣x ,NK =y ,KA =y ﹣(8﹣x )=x +y ﹣8,可以求出y 的值,进而证明△KNA ≌△EAF ,利用平行线等分线段定理就可以得出FP =PM ,得出S △MNP =S △NPF ,进而利用正方形DMNK 求出△NFP 的面积.【详解】解:∵四边形BEFG 、DMNK 、ABCD 是正方形,∴∠E =∠EFG =90°,AE ∥MC ,MC ∥NK ,∴AE ∥NK ,∴∠KNA =∠EAF ,∴△KNA ∽△EAF ,∴NK :EA =KA :EF ,设BE =x ,则AB =6﹣x ,NK =y ,KA =y ﹣(6﹣x )=x +y ﹣6,28.如图,在∵ABC 中,AB AC =,AD 平分BAC ∠,点E 在AB 上,连结CE 交AD 于点F ,且AE AF =.以下命题:∵4BCE BAC ∠=∠;∵AE DF CF EF ⋅=⋅;∵AE EF AB CF=;∵1()2AD AE AC =+;正确的序号为______.【答案】∵∵∵【分析】设BCE x ∠=,根据等腰三角形角平分线的性质可求出=90DFC x ∠︒-,根据对顶角的性质可表示出EFA ,即可表示出EAF ∠,从而判断出∵;作AM EF ⊥于M ,证明AFM CFD △∽△,根据相似的性质即可判断∵; 过E 作EG AD ⊥于G ,证明AEG ABD △∽△,EFG CFD △∽△,根据相似的性质即可判断出∵;AB AC=∴⊥AD BC∴△Rt DFCAE AF=∴∠=AEF在∵AEF中,∠=EAFBAC∴∠故∵对;又=AE AF2=EF FM∠=AMF∴△∽△AFMAF FM∴=CF DF∴⋅AF DF又2=EF FM⋅=AF DF∵错;过E作EG易证AEG△∽△AE EG=又BD CDAE EF=AB CF延长AD使易证ABD△≌△== CN AB又=AE AF AEF ∴∠=∠CN FN =12AD AN =∵对;29.如图,在矩形ABCD 中,AB =6,AD =10,点E 在边AD 上运动,将∵DEC 沿EC 翻折,使点D 落在点D '处,若∵DEC 有两条边存在2倍的数量关系,则点D '到AD 的距离是_______.Rt D HE '中可解得,由D HE CFD ''∽,得,则2D F x '=,2CF y =DE HE +,可得2623x y y x +⎧⎨+⎩==,可得60DED '∠=︒,Rt ED H '中,解得2Rt DCE 中,2262DE +=(23DE =,12DE CE =,DCE =30°,∵DEC 沿EC ∵∵D 'EC =∵∵∵D 'EH =180°-∵Rt D HE '中,3D H D E sin D EH '''=∠;当12DE DC =时,作,延长HD 'Rt DCE 中,13DE =,CE ∵DEC 沿EC ∵∵ED 'C =∵D ∵∵HD 'E =90°-∵且∵D 'HE =∵∵D HE CFD ''∽,HE D H D E D F CF CD =''''=,12DE DC =, 12DE DC =, HE D H D E ''===Rt DCE 中,1CE =12,DE 63DE =12CD CE =,∵∵DEC =30°∵DEC 沿EC DEC ∠=∠DED '∠=Rt ED H '中,综上所述,DEC 有两条边存在故答案为:3或125或9. 【点睛】本题考查矩形性质及应用,涉及翻折、相似三角形判定与性质、勾股定理、解直角三角形等知识,解题的关键是分类画出图形,综合应用相关知识解决问题.二、解答题30.计算:(1(2)0-1(3-2π31.计算:(π﹣1)2+(﹣13)﹣13tan60°.32.小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?(精确到0.1)【答案】(1)汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)他向前行驶了18.3米.【分析】1)连接FC并延长到BA上一点E,即为所求答案;(2)利用解Rt∵AEC求AE,解Rt∵ACM,求AM,利用ME=AM-AE求出他行驶的距离.33.如图,已知AB DC ∥,点E 、F 在线段BD 上,2AB DC =,2BE DF =,求证:A C ∠=∠.34.(1)153417311684⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)2223113(2)32⎛⎫⎛⎫-⨯---÷- ⎪ ⎪⎝⎭⎝⎭(3(4)292)⎡⎤⨯+⎣⎦35.计算2(2)(3)(2√3−1)2−(√3+√2)(√3−√2)36.计算(1)tan30cos45sin 45sin60︒⋅︒+︒⋅︒(2)201()(2021)sin 3022cos302π----︒-+︒ (3)解方程:222(3)9x x -=-()()390x x --=∵123,9x x == 【点睛】本题考查了一元二次方程的解法,特殊角的三角函数值的运算,含零次幂、负整数指数幂的运算,掌握运算法则是解题的关键.37.如图,在平面直角坐标系中,已知点(),0A m ,(),0B n ,且m ,n 满足()2130m n ++-=,将线段AB 先向右平移1个单位长度,再向上平移3个单位长度,得到线段DC ,其中点D 与点A 对应,点C 与点B 对应,连接AD ,BC ,CD ,得到平行四边形ABCD ,连接BD .(1)补全图形,并写出平行四边形ABCD 各顶点坐标;(2)平行四边形ABCD 的面积是多少?(3)在x 轴上是否存在点M ,使∵MBD 的面积等于平行四边形ABCD 的面积?若存在,求出点M 坐标;若不存在,请说明理由. 解:()21m ++解:()1,0A -()31AB =--则平行四边形)解:如图,设点MBD 的面积等于平行四边形12OD BM ∴⋅解得11a =或所以存在这样的点形,熟练掌握平移作图是解题关键.38.如图,在平面直角坐标系中,ABC 如图所示,(1)写出ABC 的三个顶点坐标;(2)画出将ABC 向右平移6个单位长度,再向上平移3个单位长度后的111A B C △,并写出1B 的坐标. 【答案】(1)()5,1A --,()4,4B --,()1,3C --(2)图见解析,()12,1B -【分析】(1)根据图象即可求解;(2)根据平移的性质作图,再根据图象写出坐标即可.(1)由图得:()5,1A --,()4,4B --,()1,3C --;(2)111A B C △如图所示:由图得,()12,1B -.【点睛】本题考查了作图-平移作图,坐标与图形,熟练掌握知识点并运用数形结合的思想是解题的关键.39.解方程:(1)()2316x -=(2)2240x x +-=(3)()()21321x x x -=-40.已知关于x的方程x2﹣(m+2)x+2m=0.(1)若该方程的一个根为x=1,求m的值;(2)求证:不论m取何实数,该方程总有两个实数根.【答案】(1)1;(2)见解析【分析】(1)将x=1代入方程中即可求出答案.(2)根据根的判别式即可求出答案.【详解】(1)将x=1代入原方程可得1﹣(m+2)+2m=0,解得:m=1.(2)由题意可知:∵=(m+2)2﹣4×2m=(m﹣2)2≥0,不论m取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用根的判别式,本题属于基础题型.41.已知1<x<45x-.【答案】2x﹣6.【详解】试题分析:先将原式化简为:|1-x|-(5-x),继而求得答案.试题解析:解:∵1<x<4,∵原式=|1﹣x|﹣(5﹣x)=x﹣1﹣5+x=2x﹣6.故答案为2x ﹣6.42.如图,△ABC和△ADE都是等腰直角三角形,∵BAC=∵DAE=90°,四边形ACDE是平行四边形,CE交AD于点F,交BD于点G.甲,乙两位同学对条件进行分折后,甲得到结论:“CE=BD”.乙得到结论:“CD•AE=EF•CG”请判断甲,乙两位同学的结论是否正确,并说明理由.【答案】甲,乙两位同学的结论正确.理由见解析.【分析】利用SAS证明∵BAD∵∵CAE,可得到CE=BD;利用已知得出∵GFD=∵AFE,以及∵GDF+∵GFD=90°,得出∵GCD=∵AEF,进而得出∵CGD∵∵EAF,得出比例式;即可得出结论.【详解】甲,乙两位同学的结论正确.理由:∵∵BAC=∵DAE=90°,∵∵BAC+∵DAC=∵DAE+∵DAC,即:∵BAD=∵CAE,∵∵ABC和△ADE都是等腰直角三角形,∵AB=AC,AE=AD,∵∵BAD∵∵CAE(SAS),∵CE=BD,故甲正确∵∵BAD∵∵CAE,△BAE∵∵BAD,∵∵CAE∵∵BAE,∵∵BEA=∵CEA=∵BDA,∵∵AEF+∵AFE=90°,∵∵AFE+∵BEA=90°,∵∵GFD=∵AFE,∵ADB=∵AEB,∵∵ADB+∵GFD=90°,∵∵CGD=90°,∵∵FAE=90°,∵GCD=∵AEF,∵∵CGD∵∵EAF,43.如图,在ABC 中,D 为AC 的中点,DE AB ⊥,DF BC ⊥,垂足分别为点E ,F ,且DE DF =.(1)求证:ADE CDF ≌.(2)若AB AC =,DE =AB 的长. 【答案】(1)见解析;(2)4【分析】(1)根据HL 即可证明;(2)先证明ABC 是等边三角形,60A ∠=︒,再解直角三角形即可求得AB 的长度.【详解】(1)证明:∵DE AB ⊥,DF BC ⊥∵90DEA DFC ∠=∠=︒∵D 为AC 的中点∵AD CD =在Rt ADE △和Rt CDF △中AD CD DE DF =⎧⎨=⎩∵Rt Rt ADE CDF ≌△△(HL )(2)解:∵Rt Rt ADE CDF ≌△△∵A C ∠=∠∵AB AC =∵A B C ∠=∠=∠∵ABC 是等边三角形即60A ∠=︒,AB AC =44.如图,在Rt ABC 中,90B ,BC =30C ∠=︒.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E ,运动的时间是t 秒()0t >.过点D 作DF BC ⊥于点F ,连接DE ,EF .(1)求AB AC ,的长;(2)求证:AE DF =;(3)当t 为何值时,DEF 为直角三角形?请说明理由. 秒时,DEF 为直角三角形,理由见解析)由直角三角形的性质和勾股定理得出方程,解方程即可;)利用已知用未知数表示出DF 90=︒时;90B ∠=2AC ∴=由勾股定理得,又AE t=,AE DF=;3)解:当52t=秒时,DEF为直角三角形,理由如下:分情况讨论:时,则DE BC∥=∵C=30°,2AE DF.AE=DF,四边形AEFDAD EF,ADE=∵DEFAED=30°,1 2AE=,秒时,DEF 为直角三角形.【点睛】本题是四边形综合题目,考查了平行四边形的判定、菱形的判定与性质、勾股定理、直角三角形的性质等知识.理解相关知识是解答关键.45.感知:数学课上,老师给出了一个模型:如图1,点A 在直线DE 上,且90BDA BAC AEC ∠=∠=∠=︒,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角”模型.(1)如图2,Rt ABC △中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ≌;(2)如图3,在ABC 中,D 是BC 上一点,90CAD ∠=︒,AC AD =,DBA DAB ∠=∠,AB =C 到AB 边的距离;(3)如图4,在ABCD 中,E 为边BC 上的一点,F 为边AB 上的一点.若DEF B ∠=∠,10AB =,6BE =,求EF DE 的值. 证明BEC CDA ≌即可;,过C 作CE AB ⊥≌CAE ADF 即可求解;,故BFE MED ∽,由相似三角形的性质可求.90︒,BCE ACB ∠+∠90BCE +∠=︒,∵()BEC CDA AAS ≌(2)解:如图,过D1在CAE 和△===CEA AFD CAE AC AD ∠∠∠∠∵()CAE ADF AAS ≌3CE AF ==,即点(3)解:如图,过D∵BFE MED ∽,. 【点睛】本题考查了全等三角形的判定与性质,平行四边形的性质,相似三角形的判定与性质,熟练运用全等三角形的判定与性质、相似三角形的判定与性质是解题的关46.解方程:x 2-6x -7=0.【答案】1x =7 2x =-1.【详解】试题分析:首先将方程进行因式分解,然后进行求解.试题解析:方程可变形为:(x -7)(x+1)=0 解得:1x =7 2x =-1.考点:解一元二次方程.47.如图,已知Rt △ABC ,∵C =90°;求作:一个面积最大的等腰直角△CDE ,使等腰直角三角形的斜边CE 在边BC 上.【答案】作图见解析 【分析】当B 点与E 点重合时,等腰直角△CDE 面积最大.由此即可作线段BC 的垂直平分线与BC 交于点O ,再以O 为圆心,OC 长为半径作弧,与线段BC 的垂直平分线的交点即为点D (或D ),最后连接CD (或CD ')、BD (或BD ')即可.【详解】如图,ADE (或AD E ')即为所作.【点睛】本题考查作图—等腰直角三角形,线段垂直平分线的性质,等腰直角三角形的性质.掌握作线段垂直平分线的方法和等腰直角三角形的性质是解题关键.48.毕业晚会上有一个“砸蛋”节目,讲台桌上放了三枚形状、大小、颜色完全相同的彩蛋,其中两枚会砸出“金花四溅”.现从甲、乙、丙三位幸运同学中随机挑选一位砸蛋,且只能砸一次.求甲被选中且第一次能砸出“金花四溅”的概率.(用列表法或树状图法求解,能砸出“金花四溅”的彩蛋记为“金”,不能砸出“金花四溅”的彩蛋记为“空”)因此甲被选中且第一次能砸出“金花四溅”的概率为.49.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,…,按此规律,求图8、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是616⨯=个;图2中黑点个数是6212⨯=个;图3中黑点个数是6318⨯=个;…,所以容易求出图8、图n 中黑点的个数分别是______、_________.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第6个点阵中有______个圆圈;第n个点阵中有______个圆圈.(2)小圆圈的个数会等于331吗?请求出是第几个点阵.【答案】48;6n;(1)91;2-+;(2)会;第11个点阵n n331【分析】根据规律可求得图8中黑点个数和图n中黑点个数;(1)第2个图中2为一块,分为3块,余1,第3个图中3为一块,分为6块,余1;按此规律得:第6个点阵中6为一块,分为15块,余1,得第n个点阵中有:n×3(n-1)+1=3n2-3n+1;(2)令3n2-3n+1=331,方程有解则存在这样的点阵,据此解答.【详解】解:图8中黑点个数是6×8=48个;图n中黑点个数是6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=19个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=61个,第6个点阵中有:6×15+1=91个,…第n个点阵中有:n×3(n-1)+1=3n2-3n+1,故答案为:91,3n2-3n+1;(2)3n2-3n+1=331,n2-n-110=0,(n-11)(n+10)=0,n1=11,n2=-10(舍),∵小圆圈的个数会等于331,它是第11个点阵.【点睛】本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.。
华东师大版数学九年级上册期末模拟试题50题-含答案
华东师大版数学九年级上册期末模拟试题50题含答案(填空题+解答题)一、填空题1.方程220x x c -+=有一个根为1,则实数c 的值是________.2.在Rt △ABC 中,∠C =90°,AC =3,BC =4,则sin B 的值是_______. 3.用配方法解方程2610x x -+=,则方程可配方为__________.4m 的取值范围是___________.51=_______.6.如图,在一块边长为30cm 的正方形飞镖游戏板上,有一个半径为10cm 的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为________(结果保留π).7.农机厂计划用两年时间把产量提高44%,如果每年比上一年提高的百分数相同,这个百分数为 ______.8.若ABC ∽DEF 的相似比为3:2,6AB =,则DE =______;若8EF =,则BC =______;若80A ∠=︒,=60B ∠︒,则F ∠=_____°.9.如图,点D 在ABC 的边AC 上,要判定ADB 与ABC 相似,则需要添加一个条件是_______.10.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,E 为AD 的中点,OE =3,∽ABC =60°,则BD =___.11.如图,将45︒的∽AOB 按图摆放在一把刻度尺上,顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数为2cm ,若按相同的方式将37︒的∽AOC 放置在该尺上,则OC 与尺上沿的交点C 在尺上的读数约为____cm (结果精确到0.1 cm ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)12.一只不透明袋子中有五个球面上分别标有数字1,2,3,4,5的小球,它们除所标数字不同外,其余全部相同,现搅匀后从中任意摸出两个小球,则两个小球上的数字和为偶数的概率为___________.13.sin60°的相反数是________.14.若0x >,0y >,50x y --=,则x y=__________. 15.总结:(1)可以通过多次试验,用一个事件发生的____来估计这一事件发生的_______. (2)当实验次数很大时,____比较稳定,稳定在相应的______附近.(3)(在一定合理性条件下)假设试验频率=理论概率,列出方程求解得要求的未知数值.16.在Rt ABC △中,90C ∠=︒,3sin 5A =,10AB =,,则AC 的长为_________. 17.如图,在ABC 中,D 、E 分别是AB 、AC 边上的点,且//DE BC ,若AD=5,DB=3,DE=4,则BC 等于____________.18.如图,ABC 中,6AB =,8BC =,点D ,E 分别是AB ,AC 的中点,点F 在DE 上,且90AFB ∠=︒,则EF =________.19.若关于x 的一元二次方程2(0)ax b ab =>的两个根分别是1m -和24m +,则b a=__________. 20.已知在平面直角坐标系中,点A 的坐标为(0,2),点B (m ,4-m )与点C 分别是直线l 及x 轴上的动点,则∽ABC 周长的最小值为________21.已知如图,DE 是ABC ∆的中位线,点P 是DE 的中点,CP 的延长线交AB 于点A Q ,那么:CPE ABC S S ∆∆=__________.22.如图,已知∽ABC ,∽DCE ,∽FEG ,∽HGI 是4个全等的等腰三角形,底边BC ,CE ,EG ,GI 在同一条直线上,且AB=2,BC=1,连接AI ,交FG 于点Q ,求QI 的长.23.有 6 张卡片,上面分别标有 0,1,2,3,4,5 这 6 个数字,将它们背面洗匀后,任意抽出一张,记卡片上的数字为 a ,若数 a 使关于 x 的分式方程2211a x x +=--的解为正数,且使关于 y 的不等式组2132y y y a +⎧->⎪⎨⎪≤⎩的解集为y < −2,则抽到符合条件的 a 的概率为_________;24是同类二次根式,则x =__________. 25.在实数范围内因式分解:22322x xy y --=________.26.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.现再将n 个白球放入布袋,搅匀后,使摸出1个红球的概率为29,则n 的值为_____.27.一元二次方程()3133x x x +=+的两个实数根中较大的根为________.28.已知两个相似三角形的相似比为2:3,其中较小三角形的面积是36,那么较大三角形的面积为_______.29.如图,ACB 90∠=︒,AC 2=,AB 4=,点P 为AB 上一点,连接PC ,则12PC PB +的最小值为________.二、解答题30.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)若111A B C △与ABC 关于y 轴成轴对称,请画出图形并写出顶点1A ,1B ,1C 的坐标;(2)已知点()3,0P ,判断PAB 的形状,并说明理由.31.如图,在∽ABC 中,AB =8cm ,BC =16cm ,点P 从点A 开始沿AB 向点B 以2m/s 的速度运动,点Q 从点B 开始沿BC 边向点C 以4cm/s 的速度运动,如果P 、Q 分别从A 、B 同时出发,4秒后停止运动.则在开始运动后第几秒,∽BPQ 与∽BAC 相似?32.如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,CD AB ⊥于D ,点E 在AB 的延长线上,45E ∠=︒,8AB =,求:(1)BD 的长.(2)BE 的长.33.某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集数据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是______________.34.如图,某河的两岸PQ、MN互相平行,河岸PQ上的点A处和点B处各有一棵大树,AB=30米,某人在河岸MN上选一点C,AC∽MN,在直线MN上从点C前进一段路程到达点D,测得∽ADC=30°,∽BDC=60°,求这条河的宽度.(3≈1.732,结果保留三个有效数字).35.如图在Rt∽ABC中, ∽ACB=90°,CD∽AB于D.(1)请直接写出图中所有的相似三角形(2)你能得出CD2=AD·DB吗?为什么?36.今年5月份,十八中九年级学生参加了中考体育模拟考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表和扇形统计图,根据图表中的信息解答下列问题:(1)求全班学生人数和m 的值.(2)求扇形统计图中的E 对应的扇形圆心角的度数;(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.37.已知1<x <5-|x -5|.38.先化简,再求值:22(2)(2)a a b a b +-+,其中1a =-,b =39.若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为a 、十位上的数字为b ,三位数t 是“差数”,我们就记:()()F t b a b =⨯-,其中,19a ≤≤,09b ≤≤.例如三位数514.∽514-=,∽514是“差数”,∽()()5141514F =⨯-=.(1)已知一个三位数m 的百位上的数字是6,若m 是“差数”,()9F m =,求m 的值; (2)求出小于300的所有“差数”的和,若这个和为n ,请判断n 是不是“差数”,若是,请求出()F n ;若不是,请说明理由.40.计算:(1(2).41.已知:如图,∽ABC 中,AB =4,D 是AB 边上的一个动点,DE∽BC ,连结DC ,设∽ABC 的面积为S ,∽DCE 的面积为S′.(1)当D 为AB 边的中点时,求S′∽S 的值;(2)若设,,S AD x y S'==试求y 与x 之间的函数关系式及x 的取值范围.42.如图,在ABC 中,点D 在BC 上,,AD AE BAD CAE AB AC∠∠==. (1)求证:BAC DAE △△;(2)当∽B =40°时,求∽ACE 的大小.43.(1)如图1,已知△ABC 是等边三角形,D ,E 分别为边AB ,AC 的中点,连接BE ,CD ,BE 与CD 交于点P .试判断:∽∽BPD 的度数为______;∽线段PB ,PD ,PE 之间的数量关系:PB ______PD +PE .(填写“>”或“<”或“=”)(2)若点E 是边AC 所在射线AC 上一动点(102CE AC <<). 按下列步骤画图: (∽)连接BE ,作点A 关于BE 所在直线的对称点D ,连接BD ;(∽)作射线DC ,交BE 所在直线于点P .小明所做的图形如图2所示,他猜想:PB PD PC =+.下面是小明的思考过程:如图2,延长PD 到F ,使得DF PC =,连接BF .发现BPC BFD △△≌,从而得到BP BF =,又因为60ABC ∠=︒所以可得60PBF ∠=︒,进而得到PBF △为等边三角形,从而得到线段PB ,PC ,PD 之间关系是PB PD PC =+.小华同学画图时,把点E 标在了边AC 的延长线上,请就图3按要求画出图形,猜想线段PB ,PC ,PD 之间的数量关系,并说明理由.(3)如图4,在ABC 中,若90ABC ∠=︒,AB BC =,点E 是射线AC 上一动点(102CE AC <<),连接BE ,作点A 关于直线BE 的对称点D ,连接DC ,射线DC 与射线BE 交于点P ,若PC m =,PB n =,请直接用m ,n 表示PD 的长.44.已知关于x 的一元二次方程()22210k x x -++=有两个实数根.(1)求k 的取值范围;(2)k 取最大整数时求方程的根.45.已知x 1,x 2是一元二次方程(a ﹣6)x 2+2ax +a =0的两个实数根.(1)是否存在实数a ,使﹣x 1+x 1x 2=4+x 2成立?若存在,求出a 的值;若不存在,请你说明理由;(2)求使(x 1+1)(x 2+1)为正整数的实数a 的整数值.46.设a ,b ,c 是∽ABC 的三条边,关于x 的方程12x 212a=0有两个相等的实数根,方程3cx+2b=2a 的根为x=0.(1)试判断∽ABC 的形状;(2)若a ,b 为方程x 2+mx-3m=0的两个根,求m 的值.47.在菱形ABCD 中,∽DCB =120°,E 为CD 上一点.图1 图2 图3(1)如图1,若∽DAE =30°,求证:BC =2CE .(2)F 为CB 上一点,∽EAF =30°.∽ 如图2,连接EF ,求证:EA 平分∽DEF .∽ 如图3,若BF =2FC ,求DE CE的值.48.一副直角三角板由一块含30°的直角三角板与一块等腰直角三角板组成,且含30°角的三角板的较长直角边与另一三角板的斜边相等(如图1)(1)如图1,这副三角板中,已知AB=2,AC=,A′D=(2)这副三角板如图1放置,将∽A′DC′固定不动,将∽ABC通过旋转或者平移变换可使∽ABC的斜边BC经过∽A′DC′′的直角顶点D.方法一:如图2,将∽ABC绕点C按顺时针方向旋转角度α(0°<α<180°)方法二:如图3,将∽ABC沿射线A′C′方向平移m个单位长度方法三:如图4,将∽ABC绕点A按逆时针方向旋转角度β(0°<β<180°)请你解决下列问题:∽根据方法一,直接写出α的值为:;∽根据方法二,计算m的值;∽根据方法三,求β的值.(3)若将∽ABC从图1位置开始沿射线A′C′平移,设AA′=x,两三角形重叠部分的面积为y,请直接写出y与x之间的函数关系式和相应的自变量x的取值范围.参考答案:1.1【分析】将1x =代入方程,求解即可.【详解】解:∽方程220x x c -+=有一个根为1,∽21210c -⨯+=,解得:1c =;故答案为:1.【点睛】本题考查一元二次方程的解.熟练掌握方程的解,是使等式成立的未知数的值,是解题的关键.2.35##0.6 【分析】先根据勾股定理求出AB 的长,再运用锐角三角函数的定义解答.【详解】解:∽在∽ABC 中,∽C =90°,AC =3,BC =4,∽AB ==5, ∽sin B =35AC AB =. 故答案为:35. 【点睛】本题考查了锐角三角函数的定义,勾股定理.正确记忆定义是解题关键. 3.(x -3)2=8【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∽x 2-6x +1=0,∽x 2-6x =-1,则x 2-6x +9=-1+9,即(x -3)2=8,故答案为:(x -3)2=8.【点睛】本题主要考查解一元二次方程的配方法,熟练掌握配方法的形式是解题的关键. 4.3m >【分析】利用二次根式有意义的条件得到m -3>0,然后解不等式即可.【详解】解:根据题意得m -3>0,解得m >3,即m 的取值范围为m >3.故答案为:m >3.【点睛】本题考查了分式及二次根式有意义的条件,解决本题的关键是熟练掌握二次根式有意义的条件.5.7【分析】先计算算术平方根,然后再计算减法运算,即可得到答案.1817=-=;故答案为:7.【点睛】本题考查了二次根式的加减运算,以及有理数的加减运算,解题的关键是掌握运算法则进行解题.6.9π##1π9 【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解 【详解】解:根据题意得:飞镖落在阴影区域内的概率为2210309ππ⨯= 故答案为:9π 【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数;P (必然事件)=1;P (不可能事件)=0是解题的关键.7.20%【分析】设每年比上一年提高的百分数为x ,根据农机厂计划用两年时间把产量提高44%,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年比上一年提高的百分数为x ,依题意得:(1+x )2=1+44%,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意).故答案为:20%.【点睛】此题考查了一元二次方程的实际应用—增长率问题,熟记增长率问题的计算公式是解题的关键.8. 4 12 40【分析】根据相似三角形的对应角相等,对应边的比等于相似比,即可得到答案.【详解】解:∽ABC ∽DEF 的相似比为3:2,∽32AB BC DE EF ==,C F ∠=∠, ∽AB=6,EF=8, ∽6382BC DE ==, ∽4DE =,12BC =;∽180A B C ∠+∠+∠=︒,∽180806040C ∠=︒-︒-︒=︒,∽40F ∠=︒.故答案为:4;12;40.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键. 9.ABD ACB ∠=∠(答案不唯一)【分析】根据相似三角形的判定定理,已知BAD BAC ∠=∠,进而再找一对相等的角即可 【详解】BAD BAC ∠=∠,ABD ACB ∠=∠ADB ABC ∴∽故答案为:ABD ACB ∠=∠(答案不唯一)【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定定理解题的关键.10.【分析】先求出菱形的边长为6,利用三角函数可求出BO ,易得BD .【详解】解:O 为AC 的中点,E 为AD 的中点,OE =3,∽CD =6,∽∽ABC =60°,∽∽OBC =30°,∽BD ∽AC ,∽BO =BC =∽BD =【点睛】本题考查了菱形的性质以及解直角三角形,解题关键是求出菱形的边长为6. 11.2.7.【详解】解直角三角形的应用,等腰直角三角形的性质,矩形的性质,锐角三角函数定义,特殊角的三角函数值.过点B 作BD∽OA 于D ,过点C 作CE∽OA 于E .在∽BOD 中,∽BDO=90°,∽DOB=45°,∽BD=OD=2cm .∽CE=BD=2cm .在∽COE 中,∽CEO=90°,∽COE=37°, ∽tan 370.75CE OE︒=≈,∽OE≈2.7cm . ∽OC 与尺上沿的交点C 在尺上的读数约为2.7cm .12.25【分析】分别算出从5个小球中任意取出2个小球的可能性和两个小球上的数字和为偶数的可能性,然后根据概率的定义即可得到解答.【详解】解:从5个小球中任意取出2个小球有10种可能性:1和2、1和3、1和4、1和5、2和3、2和4、2和5、3和4、3和5、4和5,其中和为偶数的情况有4种:1和3、1和5、2和4、3和5,∽两个小球上的数字和为偶数的概率为42105=, 故答案为25 . 【点睛】本题考查概率的应用,算出总的可能性和某特殊情况的可能性是解题关键.13.【详解】∽sin60的相反数是故答案为 14.25【分析】根据题意原方程可变形为2250-=,再利用因式分解法解答,即可求解.【详解】解:∽0x >,0y >,50x y --=,∽2250-=,∽0=,∽0x >,0y >0≠,05=, ∽25x y =. 故答案为:25【点睛】本题主要考查了解一元二次方程,二次根式的性质,熟练掌握一元二次方程的解法是解题的关键.15. 频率 概率 频率 概率【解析】略16.8.【分析】根据题意,利用锐角三角函数可以求得BC 的长,然后根据勾股定理即可求得AC 的长. 【详解】解:在Rt ABC ∆中,90C ∠=︒,3sin 5A =, sin BCA AB ∴=,10AB =,6BC ∴=,8AC ∴=,故答案是:8.【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答.17.325【详解】试题分析:由题意知AB=AD+DB=8,根据相似三角形的平行判定可得∽ADE∽∽ABC ,根据相似三角形的性质得AD DE AB BC=,即548BC =,因此可得BC=325. 考点:相似三角形的判定与性质18.1 【分析】首先根据三角形中位线的定理,得出DE 的长,再根据直角三角形斜边的中线等于斜边的一半,得出DF 的长,最后根据EF DE DF =-,即可算出答案.【详解】∽点D ,F 分别是AB ,AC 的中点∽DE 为ABC 的中位线 ∽12DE BC = 又∽8BC =∽4DE =又∽90AFB ∠=︒∽在Rt ABF点D 是AB 的中点 ∽12DF AB = 又∽6AB =∽3DF =又∽EF DE DF =-∽431EF =-=故答案为:1.【点睛】本题考查三角形中位线定理即应用,直角三角形的性质,本题解题的关键在熟练掌握直角三角形斜边的中线等于斜边的一半.19.4【分析】利用直接开平方法得到x =1240m m -++=,解得1m =-,则方程的两个根分别是2-与22=,然后两边平方得到b a=4.【详解】由2(0)ax b ab =>得2b x a =,解得x = ∽一元二次方程()20ax b ab =>的两个根分别是1m -和24m +,∽1240m m -++=,解得1m =-,∽一元二次方程()20ax b ab =>的两个根分别是2-与2,2=, ∽b a=4. 【点睛】本题考查直接开方法解一元二次方程方程,正数的平方根互为相反数等知识,掌握正数的平方根互为相反数是解题的关键.20.【分析】作点A 关于x 轴的对称点A ',关于直线l 的对称点A '',连接A A ''',交直线l 于点B ,交x 轴于点C .则AC A C '=,AB A B ''=,所以ABC ∆周长的最小值为A A '''的长.根据(,4)B m m -,可知点B 在直线4y x =-+上运动,据此解答即可.【详解】解:作点A 关于x 轴的对称点A ',关于直线l 的对称点A '',连接A A ''',交直线l 于点B ,交x 轴于点C .则AC A C '=,AB A B ''=,ABC ∴∆周长的最小值为A A '''的长.(,4)B m m -,∴点B 在直线4y x =-+上运动,∴直线l 与x 、y 轴的交点坐标分别为()()4,0,0,4E D ,∽45ADB ∠=︒,连接A D '',则根据轴对称图形的性质可知,90A DO ''∴∠=︒, A 的坐标为(0,2),(0,2)A '∴-,(2,4)A '',2A D ''∴=,6A D '=,A A '''∴=故答案为:【点睛】本题考查点、直线关于直线对称知识的应用,三角形的周长的最小值,点到直线的距离公式的应用,考查转化思想以及计算能力.21.1:8【分析】连结AP并延长交BC于点F,则S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得∽ADE∽∽ABC,可得S△ADE:S△ABC=1:4,则S△CPE:S△ABC=1:8.【详解】解:连结AP并延长交BC于点F,∽DE∽ABC的中位线,∽E是AC的中点,∽S△CPE=S△AEP,∽点P是DE的中点,∽S△AEP=S△ADP,∽S△CPE:S△ADE=1:2,∽DE是∽ABC的中位线,∽DE∽BC,DE:BC=1:2,∽∽ADE∽∽ABC,∽S△ADE:S△ABC=1:4,∽S△CPE:S△ABC=1:8.故答案为1:8.【点睛】本题考查三角形的中位线定理,相似三角形的判定和性质,三角形的面积等知识,解题的关键是熟练掌握基本知识.22.43【分析】由题意得出BC=1,BI=4,则AB BC BI AB=,再由∽ABI=∽ABC ,得∽ABI∽∽CBA ,根据相似三角形的性质得∽BAI=∽ACB ,从而∽ABC=∽BAI ,求出AI ,根据全等三角形性质得到∽ACB=∽FGE ,于是得到AC∽FG ,得到比例式QI GI AI CI ==13,即可得到结果. 【详解】解:∽∽ABC 、∽DCE 、∽FEG 是三个全等的等腰三角形,∽HI=AB=2,GI=BC=1,BI=4BC=4,∽ABC=∽ACB , ∽AB BI =12,12BC AB =, ∽AB BC BI AB=, ∽∽ABI=∽ABC ,∽∽ABI∽∽CBA ,∽∽BAI=∽ACB ,∽∽ABC=∽BAI ,∽AB=AC ,∽AI=BI=4;∽∽ACB=∽FGE ,∽AC∽FG , ∽AC AB AI BI=, ∽QI=13AI=43. 故答案为:43. 【点睛】本题主要考查了平行线分线段成比例定理,全等三角形的性质,等腰三角形的性质,平行线的判定,以及三角形相似的判定与性质,正确理解AB∽CD∽EF ,AC∽DE∽FG 是解题的关键.23.23【分析】根据分式方程和不等式组解的情况求出a 的取值范围是24a -≤<,再确定符合条件的a 的值即可求出概率.【详解】解:关于 x 的分式方程2211a x x +=--的解为:122x a =-∽1202x a =->,解得:4a <, 又∽不等式组2132y y y a +⎧->⎪⎨⎪≤⎩的解集为:∽ < −2, 不等式2132y y +->的解集为:∽ < −2, ∽2a ≥-,∽24a -≤<∽0,1,2,3,4,5中符合条件的a 的值有0,1,2,3,∽抽到符合条件的 a 的概率为4263=, 故答案为:23.【点睛】本题考查了根据分式方程、不等式组解的情况求参数的取值范围,以及概率的求解,解题的关键是根据分式方程、不等式组解的情况求出a 的取值范围.24.7-【分析】由同类二次根式的定义,得到2521x x x +=+,解方程,然后结合最简二次根式的定义,即可得到答案.【详解】解:∽∽2521x x x +=+,整理得:24210x x +-=,∽(7)(3)0x x +-=,∽17x =-,23x =;当23x =∽7x =-;故答案为:7-.【点睛】本题考查了同类二次根式的定义和最简二次根式的定义,以及解一元二次方程,解题的关键是熟练掌握定义,正确求出一元二次方程的解.25.3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【分析】首先求出22322x xy y --=0的根,进而分解因式得出即可.【详解】当22322x xy y --=0,解得:x 1y ,x 2y ,∽22322x xy y --=3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭.故答案为:3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】此题主要考查了实属范围内分解因式,求出方程的根是解题关键.26.6【分析】根据概率的意义列方程求解即可.【详解】解:由题意得,221n ++=29, 解得,n =6,经检验,n =6是原方程的解,所以原方程的解为n =6,故答案为:6.【点睛】考查概率的意义,用频率估计概率,利用概率的意义列方程是正确解答的关键. 27.x =1.【分析】因式分解法解方程即可得.【详解】∽3x (x +1)−3(x +1)=0,∽3(x +1)(x −1)=0,则x +1=0或x −1=0,解得:x =−1或x =1,即两个实数根中较大的根为1,故答案为x =1.【点睛】考查一元二次方程的解法—因式分解法,熟练掌握提取公因式法是解题的关键. 28.81【分析】由相似三角形的面积比等于相似比的平方,得出两个三角形的面积比,即可得出较大三角形的面积. 【详解】相似三角形的面积比等于相似比的平方,∴:4:936:81S S ==较小三角形较大三角形,∴较大三角形的面积是81.故答案为:81.【点睛】本题主要考查相似三角形的面积比与相似比的关系,熟记相似三角形面积比是相似比的平方是解题关键.29.3【分析】过P 点作PM ∽BC 于点M ,将∽ACB 沿AB 向上翻折得到∽ADB ,过P 点作PN ∽BD 于点N ,先证得PM =12PB ,即有PC +12PB =PC +PM ,根据翻折的性质可知PN =PM ,即PC +12PB =PC +PM =PC +PN ,当P 、N 、C 三点共线时根据垂线段最短的原理即可求解.【详解】过P 点作PM ∽BC 于点M ,将∽ACB 沿AB 向上翻折得到∽ADB ,且∽ACB ∽∽ADB ,过P 点作PN ∽BD 于点N ,如图,∽在Rt ∽ACB 中,AC =2,AB =4,∽∽ABC =30°,∽BC=∽PM ∽BC ,∽在Rt ∽PMB 中,有PM =12PB , ∽PC +12PB =PC +PM , ∽∽ACB ∽∽ADB ,∽∽ABD =∽ABC =30°,∽PN ∽BD ,PB =PB ,∽∽PMB =∽PNB =90°,∽Rt ∽PNB ∽Rt ∽PMB ,∽PN =PM ,∽PC +12PB =PC +PM =PC +PN , ∽要求PN +PC 的最小值,∽可知当P 、N 、C 三点共线,根据垂线段最短可知,当CN ∽BD 时,CN 最小, 如图,∽CN ∽BD ,∽CBD =∽ABC +∽ABD =60°,BC =∽在Rt ∽ABN 中,CN =3, 则PC +12PB =PC +PM =PC +PN 的最小值是3, 即PC +12PB 最小为3, 故答案为:3.【点睛】本题考查了翻折的性质、接含特殊角的直角三角形、全等三角形的判定与性质以及垂线段最短的知识,构造出PC +12PB =PC +PM =PC +PN 是解答本题的关键. 30.(1)画图见解析;()11,1A -,()14,2B -,()13,4C -(2)PAB 是等腰直角三角形,理由见解析【分析】(1)根据111A B C △与ABC 关于y 轴成轴对称,可得()11,1A -,()14,2B -,()13,4C -,再顺次连接,即可求解;(2)利用勾股定理分别求出AP 、BP 、AB ,再根据勾股定理的逆定理,即可求解. (1)解:∽111A B C △与ABC 关于y 轴成轴对称,∽()11,1A -,()14,2B -,()13,4C -,如图所示,111A B C △即为所求;(2)解:PAB 是等腰直角三角形,理由如下:∽AP BP AB ===∽AP BP =,且222AP BP AB +=,∽PAB 是等腰直角三角形.【点睛】本题主要考查了图形的变换——轴对称,勾股定理及其逆定理,熟练掌握轴对称图形的性质,勾股定理及其逆定理是解题的关键.31.当x =0.8秒或2秒时,∽BPQ 与∽BAC 相似.【分析】设在开始运动后第x 秒,∽BPQ 与∽BAC 相似,由题意表示出AP ,PB ,BQ ,分两种情况考虑:当∽BPQ =∽C ,∽B =∽B 时,∽PBQ ∽∽CBA ;当∽BPQ =∽A ,∽B =∽B 时,∽BPQ ∽∽BAC ,分别由相似得比例,列出关于x 的方程,求出方程的解得到x 的值,即可得到结果.【详解】解:设在开始运动后第x 秒,∽BPQ 与∽BAC 相似,由题意得:AP =2x cm ,PB =(8-2x )cm ,BQ =4x ,分两种情况考虑:当∽BPQ=∽C,∽B=∽B时,∽PBQ∽∽CBA,∽BP BQBC AB=,即824168x x-=,解得:x=0.8,当x=0.8秒时,∽BPQ与∽BAC相似;当∽BPQ=∽A,∽B=∽B时,∽BPQ∽∽BAC,∽BP BQBA BC=,即824816x x-=,解得:x=2,当x=2秒时,∽BPQ与∽BAC相似.综上,当x=0.8秒或2秒时,∽BPQ与∽BAC相似.【点睛】此题考查了相似三角形的性质与判定,熟练掌握相似三角形的判定方法是解本题的关键.32.(1)2;(2)2【分析】(1)根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再根据同角的余角相等求出∽BCD=30°,即可求出BD的长;(2)根据勾股定理列式求出CD的长,根据等角对等边求出DE=CD,再根据BE=DE-BD 进行计算即可得解.【详解】解:(1)∽∽ACB=90°,∽A=30°,AB=8,∽118422BC AB==⨯=,∽CD∽AB,∽∽BCD+∽ABC=90°,又∽∽A+∽ABC=90°,∽∽BCD=∽A=30°,∽114222BD BC==⨯=,(2)在Rt∽BCD中,∽CDB=90°,∽CD=∽∽E=45°,∽∽DCE=90°-45°=45°,∽∽DCE=∽E,∽DE CD==∽2BE DE BD=-=【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,同角的余角相等的性质,等角对等边的性质,熟记各性质是解题的关键.33.(1)见解析;(2)120人;(3)12.【分析】(1)根据频数分布表中的数据补全图形即可;(2)根据样本90分以上的百分率估计总体即可;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【详解】(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为1036012030⨯=(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为12,故答案为:12.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.34.26.0米【分析】过点B 作BE∽MN 于点E ,则CE=AB=30米,CD=CE+ED ,AC=BE ,在Rt∽ACD 中,由锐角三角函数的定义可知,AC CE DE +=tan∽ADC ,在Rt∽BED 中,BE ED =tan∽BDC ,两式联立即可得出AC 的值,即这条河的宽度.【详解】解:过点B 作BE∽MN 于点E ,则CE=AB=30米,CD=CE+ED ,AC=BE .设河的宽度为x ,在Rt∽ACD 中,∽AC∽MN ,CE=AB=30米,∽ADC=30°,∽AC CE DE +=tan∽ADC ,即x 30DE +,即30-.在Rt∽BED 中,BE ED =tan∽BDC ,即x ED .-,解得26.0≈. 答:这条河的宽度为26.0米.35.详见解析.【详解】试题分析:(1)由已知条件易证:∽ADC=∽BDC=∽ACB=90°,∽B=∽ACD ,∽A=∽BCD ,因此可得:∽ABC∽∽ACD , ∽ABC∽∽CBD ,∽ACD∽∽CBD ;(2)由∽ACD∽∽CBD 可得:AD:CD=CD:BD ,即CD 2=AD ⋅BD.试题解析:(1)∽Rt∽ABC 中, ∽ACB =90°,CD∽AB 于D ,∽∽ADC=∽BDC=∽ACB=90°,∽∽ACD+∽A=90°,∽A+∽B=90°,∽ACD+∽BCD=90°,∽∽ACD=∽B ,∽A=∽BCD ,∽∽ABC∽∽ACD , ∽ABC∽∽CBD ,∽ACD∽∽CBD ;(2)能得出CD 2=AD·DB ,理由如下:∽∽ACD∽∽CBD ,∽AD:CD=CD:BD,∽CD2=AD⋅BD.点睛:(1)由直角三角形斜边上的高把这个直角三角形分成的两个小直角三角形都和原直角三角形相似;(2)直角三角形斜边上的高是高把斜边分成的两条线段的比例中项. 36.(1)50,m=18;(2)72°;(3)23.【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)用360°乘以E所占的百分比即可得出答案;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【详解】(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)扇形统计图中的E对应的扇形圆心角的度数是:360°×1050=72°;(3)画树状图:,共有6种结果,其中一男一女的结果有4种,所以P(一男一女)=42 63 =.【点睛】此题主要考查了频数分布,扇形图表和概率的求法.关键是掌握概率=所求情况数与总情况数之比,能正确从统计图中得到信息.37.2x-6【分析】直接利用x的取值范围,进而化简二次根式以及去绝对值进而得出答案.【详解】∽1<x<5,∽原式=|x﹣1|﹣|x﹣5|=(x﹣1)﹣(5﹣x)=x﹣1﹣5+x=2x﹣6.【点睛】本题考查了二次根式的性质与化简,正确化简二次根式是解题的关键.38.2a-42b;-11.【详解】试题分析:原式第一项利用单项式乘以多项式法则计算,第二项利用完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.试题解析:原式=2222444a ab a ab b+---=224a b-,当1a=-,b==1﹣12=﹣11.考点:整式的混合运算—化简求值.39.(1)633m =;(2)小于300的“差数”有101,110,202,211,220,n 是“差数”,()16F n =【分析】(1)设三位数m 的十位上的数字是x ,根据()=(6)F m x x -进行求解; (2)根据“差数”的定义列出小于300的所有“差数”,进而求解.【详解】解:(1)设三位数m 的十位上的数字是x ,∽()=(6)9F m x x -=,解得,3x =,∽个位上的数字为:633-=,∽633m =;(2)小于300的“差数”有101,110,202,211,220,∽101110202211220844n =++++=,显然n 是“差数”,()()8444(84)16F n F ==⨯-=.【点睛】本题是新定义问题,考查了解一元二次方程,理解新的定义是解题的关键.40.(1)(2)6.【分析】(1)将二次根式化简,再合并计算即可;(2)利用平方差公式计算即可.【详解】(15352555 35255=(2)623622236 126=-6=【点睛】本题考查了二次根式的混合运算和平方差公式,熟练运用相关性质是解题的关键.。
【浙教版】九年级数学上期末模拟试卷(含答案)
一、选择题1.下列事件中,是随机事件的是()A.明天河南有新冠肺炎输入病例B.十三个人中,有人出生在同一个月C.地球绕着太阳转D.掷一次骰子,向上一面的点数是7 2.如图,正方形ABCD内接于⊙O,⊙O的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是()A.2πB.2πC.12πD.2π3.在1,2,3,4四个数中,随机抽取两个不同的数,其乘积大于4的概率为()A.12B.13C.23D.164.有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a,b 为实数,那么a+b=b+a.其中是必然事件的有( )A.1个B.2个C.3个D.4个5.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m,底面圆周长为8mπ,则1个屋顶的侧面积等于()2m.(结果保留π)A.40πB.20πC.16πD.80π6.如图,正六边形ABCDEF内接于O,过点O作OM⊥弦BC于点M,若O的半径为4,则弦心距OM的长为()A .23B .3C .2D .227.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( ) A .点P 在O 内B .点P 在O 上C .点P 在O 外 D .无法判断8.如图,点M 是矩形ABCD 的边BC 、CD 上的点,过点B 作BN ⊥AM 于点P ,交矩形ABCD 的边于点N ,连接DP ,若AB=6,AD=4,则DP 的长的最小值为( )A .2B .1213C .4D .59.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( ) A .戴口罩讲卫生B .勤洗手勤通风C .有症状早就医D .少出门少聚集10.如图,在Rt △ABC 中,AB=AC ,D ,E 是斜边BC 上两点,且∠DAE=45°,将△ABE 绕点A 顺时针旋转90°后,得到△ACF ,连接DF ,则下列结论中有( )个是正确的. ①∠DAF=45° ②△ABE ≌△ACD ③AD 平分∠EDF ④222BE DC DE +=A .4B .3C .2D .111.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---12.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( ) A .2B .1C .−1D .−2二、填空题13.有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④正八边形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取,经过大量重复实验摸到白色小球的频率稳定在0.2,据此估计该口袋中原有红色小球个数为_________ . 15.某种油菜籽在相同条件下的发芽试验结果如下表: 每批粒数n 5 10 70 130 310 700 1500 2000 3000 发芽粒数m4960116282639133918062715请用频率估计概率的方法来估计这批油菜籽在相同条件下的发芽概率是_______(精确到0.01).16.如图,30ACB ∠=︒,点O 是CB 上的一点,且6OC =,则以4为半径的O 与直线CA 的公共点的个数______.17.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若以C 为圆心,r 为半径所作的圆与斜边AB 相切,则r 的值是________18.如图,正方形ABCD 的边长为6,点E 在边CD 上.以点A 为中心,把ADE 顺时针旋转90︒至ABF 的位置,若2DE =,则FC =________.19.已知点()1,A a m y -、()2,B a n y -、()3,C a b y +都在二次函数221y x ax =-+的图象上,若0m b n <<<,则1y 、2y 、3y 的大小关系是_________. 20.方程230x -=的解为___________.三、解答题21.20届年级组董老师为学校联欢会设计了一个“配紫色”游戏:如图是两个可以自由转动的转盘,A 盘被分成面积相等的几个扇形,B 盘中蓝色扇形区域所占的圆心角是120°.同学们同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色,赢得游戏.(1)若小蕊同学转动一次A 盘,求出她转出红色的概率;(2)若小津同学同时转动A 盘和B 盘,请通过列表或者树状图的方式,求出她赢得游戏的概率.22.某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题: 测试成绩(分) 23 25 2628 30人数(人)4181585(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答) 23.如图,已知圆内接四边形ABDC 中,∠BAC =60°,AB =AC ,AD 为它的对角线. 求证:AD =BD+CD .24.阅读理解并解决问题:一般地,如果把一个图形绕着一个定点旋转一定角度α(α小于360°)后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个定点叫做旋转对称中心,α叫做这个旋转对称图形的一个旋转角.请依据上述定义解答下列问题: (1)请写出一个旋转对称图形,这个图形有一个旋转角是90°,这个图形可以是______;(2)为了美化环境,某中学需要在一块正六边形空地上分别种植六种不同的花草,现将这块空地按下列要求分成六块:①分割后的整个图形必须既是轴对称图形又是旋转对称图形;②六块图形的面积相同;请你按上述两个要求,分别在图中的两个正六边形中画出两种不同的分割方法(只要求画图正确,不写作法).25.愤怒的小鸟——为了打击偷走鸟蛋的捣蛋猪,鸟儿以自己的身体为武器,在空中画出完美的抛物线,像炮弹一样去攻击捣蛋猪的堡垒.而捣蛋猪为了躲避打击,将自己藏在各种障碍物后面,自此,双方展开了一番斗智斗勇的较量.(1)如图1,愤怒的小鸟调整好位置后,恰好可以越过2m高的箱子(箱子宽度不计),射中6m外的捣蛋猪,最高点距离地面3m,问出发时小鸟与箱子的距离?(2)如图2,箱子的长宽不断发生变化,愤怒的小鸟按照原弹射轨迹(射中6m外的捣蛋猪,最高点距离地面3m),当轨迹恰好经过B、C两点时,则AB+BC+CD的最大值是多少?26.解方程:212270-+=x x【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意.B、是必然事件,故B不符合题意.C、是必然事件,故C不符合题意.D、是不可能事件,故D不符合题意.故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件指在一定条件下,可能发生也可能不发生的事件.2.A解析:A 【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可. 【详解】因为⊙O 的直径为2分米,则半径为22分米,⊙O 的面积为222ππ⎛⎫= ⎪ ⎪⎝⎭平方分米; 正方形的边长为2222122⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭分米,面积为1平方分米;因为豆子落在圆内每一个地方是均等的, 所以P (豆子落在正方形ABCD 内)122ππ==.故答案为A . 【点睛】此题主要考查几何概率的意义:一般地,如果试验的基本事件为m ,随机事件A 所包含的基本事件数为n ,我们就用来描述事件A 出现的可能性大小,称它为事件A 的概率,记作P (A ),即有 P (A )=n m. 3.A解析:A 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积大于4的情况,再利用概率公式即可求得答案. 【详解】 画树状图得:∵共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∴从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:61=122.故答案为:12.故选:A.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4.C解析:C【分析】必然事件指的是一定发生的事件,据此分别判断即可.【详解】①中,一年最多366天,则367人中,必有2人生日相同,是必然事件;②中,骰子朝上面最小为1,两次之和最小为2,即一定不小于2,是必然事件;③中,标准大气压下,低于0℃,冰不会融化,不是必然事件;④中,根据加法交换律,a+b=b+a一定成立,是必然事件故选:C【点睛】本题考查必然事件的判定,注意事件可分为3类:随机事件,必然事件,不可能事件.5.B解析:B【分析】先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl=π×4×5=20π.故选:B.【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.6.A解析:A【分析】如图,连接OB、OC.首先证明△OBC是等边三角形,求出BC、BM,根据勾股定理即可求出OM.【详解】解:如图,连接OB、OC.∵ABCDEF是正六边形,∴∠BOC=60°,OB=OC=4,∴△OBC是等边三角形,∴BC=OB=OC=4,∵OM⊥BC,∴BM=CM=2,在Rt△OBM中,2222OM OB BM-=-=,4223故选:A.【点睛】本题考查正多边形与圆、等边三角形的性质、勾股定理、弧长公式等知识,解题的关键是记住等边三角形的性质,弧长公式,属于基础题,中考常考题型.7.A解析:A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d 时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.8.A解析:A【分析】易证∠APB=90°,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP的长的最小值时的位置,OP′=OA=12AB=3,OD=5,DP′=OD−OP′=2,即可得出结果.【详解】解:∵BN⊥AM,∴∠APB=90°,∵AB=6为定长,则P点的运动轨迹是以AB为直径,在AB上方的半圆,取AB的中点为O,连接OD,OD与半圆的交点P′就是DP长的最小值时的位置,如图所示:∵AB=6,AD=4,∴OP′=OA=12AB=3,OD22AD+OA224+3=5,∴DP′=OD−OP′=5−3=2,∴DP的长的最小值为2,故选:A.【点睛】本题考查了矩形的性质、勾股定理、轨迹等知识;判断出P点的运动轨迹,找出DP长的最小值时的位置是解题的关键.9.C解析:C【分析】直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、既是中心对称图形也是轴对称图形,故此选项符合题意;D、不是轴对称图形,也不是中心对称图形,故此选项不合题意;故选:C.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.10.B解析:B 【分析】①根据旋转的性质可得出∠BAE=∠CAF ,由∠BAC=90°、∠DAE=45°可得出∠CAD+∠CAF=45°,即可判断①;②根据旋转的性质可得出△BAE ≌△CAF ,不能推出△BAE ≌△CAD ,即可判断②;③根据∠DAE=∠DAF=45°,根据角平分线定义即可判断③;④根据全等三角形的判定求出△AED ≌△AFD ,推出DE=DF ,求出∠DCF=90°,根据勾股定理推出即可. 【详解】∵在Rt △ABC 中,AB=AC , ∴∠B=∠ACB=45°,①由旋转,可知:∠CAF=∠BAE , ∵∠BAD=90°,∠DAE=45°, ∴∠CAD+∠BAE=45°,∴∠CAF+∠BAE=∠DAF=45°,故①正确;②由旋转,可知:△ABE ≌△ACF ,不能推出△ABE ≌△ACD ,故②错误; ③∵∠EAD=∠DAF=45°, ∴AD 平分∠EAF ,故③正确;④由旋转可知:AE=AF ,∠ACF=∠B=45°, ∵∠ACB=45°, ∴∠DCF=90°,由勾股定理得:CF 2+CD 2=DF 2, 即BE 2+DC 2=DF 2, 在△AED 和△AFD 中,AD AD EAD DAF AE AF =⎧⎪∠=∠⎨⎪=⎩, ∴△AED ≌△AFD (SAS ), ∴DE=DF ,∴BE 2+DC 2=DE 2,故④正确. 故选B. 【点睛】本题考查了全等三角形的判定与性质、勾股定理、等腰直角三角形以及旋转的性质,逐一分析四条结论的正误是解题的关键.11.B解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,抛物线25y x =-的图象向右平移1个单位所得函数图象的关系式是:()251y x =--; 由“上加下减”的原则可知,抛物线()251y x =--的图象向上平移3个单位长度所得函数图象的关系式是()2513y x =--+.故选:B .【点睛】本题考查了二次函数的图象平移,熟知函数图象平移的法则是解答此题的关键. 12.B解析:B【分析】设方程的另一个根为x 1,根据根与系数的关系可得出关于x 1的一元一次方程,解之即可得出结论.【详解】设方程的另一个根为x 1,根据题意得:2+x 1=3,∴x 1=1.故选:B .【点睛】本题考查了根与系数的关系,牢记两根之和与系数的关系是解题的关键.二、填空题13.【分析】由五张卡片①线段;②正三角形;③平行四边形;④正八边形;⑤圆中既是轴对称图形又是中心对称图形的①④⑤直接利用概率公式求解即可求得答案【详解】解:∵五张卡片①线段;②正三角形;③平行四边形;④ 解析:35【分析】由五张卡片①线段;②正三角形;③平行四边形;④正八边形;⑤圆中,既是轴对称图形,又是中心对称图形的①④⑤,直接利用概率公式求解即可求得答案.【详解】解:∵五张卡片①线段;②正三角形;③平行四边形;④正八边形;⑤圆中,既是轴对称图形,又是中心对称图形的①④⑤,∴从中抽取一张,正面图形一定满足既是轴对称图形,又是中心对称图形的概率是:35.故填:35.【点睛】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.40【分析】利用频率估计概率设原来红球个数为x个现放入10个仅颜色不同的白色小球均匀混合后有放回的随机摸取经过大量重复实验摸到白色小球的频率稳定在02根据概率公式可得关于x的方程解方程即可得【详解】解析:40【分析】利用频率估计概率,设原来红球个数为x个,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取,经过大量重复实验摸到白色小球的频率稳定在0.2,根据概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有100.2 10x=+,解得:x=40,经检验x=40是原方程的根.故答案为40.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15.090【分析】对于不同批次的某种菜籽的发芽率往往误差会比较大为了减少误差我们经常采用多批次计算求平均数的方法【详解】解:=(4+9+60+116+282+639+1339+1806+2715)÷(5解析:0.90【分析】对于不同批次的某种菜籽的发芽率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.【详解】解:x =(4+9+60+116+282+639+1339+1806+2715)÷(5+10+70+130+310+700+1500+2000+3000)=6970÷7725≈0.90.当n 足够大时,发芽的频率逐渐稳定于0.90,故用频率估计概率,这批油菜籽在相同条件下的发芽概率是0.90.故答案为0.90.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.16.2个【分析】如图(见解析)先利用直角三角形的性质可得再根据直线与圆的位置关系即可得【详解】如图过O 作于点D ∵∴∴以4为半径的与直线CA 相交公共点的个数为2个故答案为:2个【点睛】本题考查了直角三角形 解析:2个【分析】 如图(见解析),先利用直角三角形的性质可得132OD OC ==,再根据直线与圆的位置关系即可得.【详解】如图,过O 作OD OA ⊥于点D ,∵30,6ACB OC ∠=︒=,∴1342OD OC ==<, ∴以4为半径的O 与直线CA 相交,∴公共点的个数为2个, 故答案为:2个.【点睛】本题考查了直角三角形的性质、直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题关键.17.【分析】根据相切的定义可得利用等面积法即可求解【详解】解:∵∠C =90°AC =3cmBC =4cm ∴由题意可得∴即故答案为:【点睛】本题考查直线与圆的位置关系勾股定理掌握相切的定义是解题的关键解析:125【分析】根据相切的定义可得CD AB ⊥,利用等面积法即可求解.【详解】解:∵∠C =90°,AC =3cm ,BC =4cm , ∴5cm AB ==,由题意可得CD AB ⊥, ∴1122AC BC AB CD ⋅=⋅,即125CD =, 故答案为:125. 【点睛】本题考查直线与圆的位置关系、勾股定理,掌握相切的定义是解题的关键.18.8【分析】先根据旋转的性质和正方形的性质证明CBF 三点在一条直线上又知BF =DE =2可得FC 的长【详解】∵四边形ABCD 是正方形∴∠ABC =∠D =90°AD =AB 由旋转得:∠ABF =∠D =90°BF解析:8【分析】先根据旋转的性质和正方形的性质证明C 、B 、F 三点在一条直线上,又知BF =DE =2,可得FC 的长.【详解】∵四边形ABCD 是正方形,∴∠ABC =∠D =90°,AD =AB ,由旋转得:∠ABF =∠D =90°,BF =DE =2,∴∠ABF +∠ABC =180°,∴C 、B 、F 三点在一条直线上,∴CF =BC +BF =6+2=8,故答案为:8.【点睛】本题主要考查了正方形的性质、旋转变换的性质,难度适中.由旋转的性质得出BF =DE 是解答本题的关键.19.【分析】先根据二次函数解析式找出开口方向与对称轴再根据ABC 点与对称轴的距离判断y 值得大小即可【详解】∵二次函数∴对称轴方程为且抛物线开口向上∴横坐标离对称轴x=a 越远y 越大a-m 离x=a 有m 个单位解析:231y y y >>【分析】先根据二次函数解析式找出开口方向与对称轴,再根据A 、B 、C 点与对称轴的距离判断y 值得大小即可.【详解】∵二次函数221y x ax =-+∴对称轴方程为22a x a -=-=,且抛物线开口向上,∴横坐标离对称轴x=a 越远,y 越大,a-m 离x=a 有m 个单位长度,a-n 离x=a 有n 个单位长度,a+b 离x=a 有b 个单位长度,又∵0m b n <<<,∴231y y y >>,故答案为:231y y y >>.【点睛】本题考查二次函数的对称性和增减性,根据二次函数解析式确定函数图像的对称轴是解答本题的关键 .20.【分析】先移项然后利用数的开方直接求出即可【详解】移项得解得:故答案为:【点睛】此题主要考查了直接开平方法解一元二次方程用直接开方法求一元二次方程的解要仔细观察方程的特点解析:x =【分析】先移项,然后利用数的开方直接求出即可.【详解】移项得,23x =,解得:x =故答案为:x =【点睛】此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解,要仔细观察方程的特点.三、解答题21.(1)13;(2)13. 【分析】(1)根据概率公式直接求解即可;(2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果,由表格求得她赢的情况,然后利用概率公式求解即可求得答案.【详解】解:(1)∵A 盘被分成面积相等的3个扇形,分别是红、黄、蓝,∴小蕊转出红色的概率是13; (2)∵B 盘中蓝色扇形区域所占的圆角是120°,∴蓝色区域占整体的12013603︒=︒, ∴红色区域占整体的23, 根据题意列表如下: 红红 蓝 红 (红,红)(红,红) (红,蓝) 黄 (黄,红)(黄,红) (黄,蓝) 蓝(蓝,红) (蓝,红) (蓝,蓝) 则她赢得游戏的概率是3193=. 【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(1)162; (2)16 【分析】(1)由总人数乘以25分的学生所占的比例即可;(2)画树状图可知:共有12个等可能的结果,甲和乙恰好分在同一组的结果有2个,由概率公式即可得出结果.【详解】解:(1)1845016250⨯=(人), 答:该校九年级有450名学生,估计体育测试成绩为25分的学生人数为162人; (2)画树状图如图:共有12个等可能的结果,甲和乙恰好分在同一组的结果有2个,∴甲和乙恰好分在同一组的概率为21126=. 【点睛】 本题考查了列表法与树状图法,统计表等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.见解析.【分析】连接BC ,证明∠ADB =∠ADC =60°,在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,证明△BDE 、△CDF 为正三角形,再证明∠AEB =∠CFA =120°,∠EAB =∠FCA ,证明△ABE ≌△CAF ,可得AE =CF ,从而可得结论.【详解】解:连接BC , ∠BAC =60°,AB =AC ,∴ △ABC 为等边三角形,∴ ∠ABC =∠ACB =60°,,,AC AC AB AB ==∴ ∠ADC =∠ABC 60,=︒ ∠ADB =∠ACB 60,=︒在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,∴△BDE 、△CDF 为等边三角形,∴∠DEB =∠DFC =60°,,,DE BD CF DC ==∴∠AEB =∠CFA =120°,又∠FAC+∠FCA =∠DFC =60°、∠FAC+∠EAB =∠BAC =60°,∴∠EAB =∠FCA ,在△ABE 和△CAF 中,∵EAB FCA AEB CFA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF (AAS ),∴AE =CF ,∴AD =DE+AE =BD+FC =BD+CD .【点睛】本题考查的是等边三角形的性质与判定,全等三角形的判定与性质,圆周角定理,掌握以上知识是解题的关键.24.(1)正方形(答案不唯一,例如正八边形、圆等);(2)见解析【分析】(1)根据旋转对称图形的定义解答即可;(2)先作出正六边形的旋转中心,再根据图形既是轴对称图形又是旋转对称图形进行作图即可.【详解】解:(1) 正方形(答案不唯一,例如正八边形、圆等);故答案为:正方形(答案不唯一,例如正八边形、圆等);(2)如图所示:【点睛】本题考查了轴对称图形和旋转对称图形的定义及作图,正确理解题意、熟练掌握基本知识是解题的关键.25.(1)出发时小鸟与箱子的距离为(33;(2)AB BC CD ++的最大值为152m . 【分析】(1)根据题意知顶点坐标为(3,3),且经过原点,利用待定系数法可求得抛物线的解析式,再求得当2y =时,x 的值,结合题意可得答案;(2)设B 点坐标为(x ,2123x x -+),则C 点坐标为(6x -,2123x x -+),根据题意得到AB+BC+CD 的二次函数,根据二次函数的性质即可求解.【详解】(1)根据题意知顶点坐标为(3,3),且经过原点, 设抛物线的解析式为:()233y a x =-+,把(0,0)代入得:()20330a -+=, 解得:13a =-, ∴抛物线的解析式为()221133233y x x x =--+=-+, 令2y =,则()213323x --+=,即()233x -=, 解得:123333x x ==,不合题意,舍去),答:出发时小鸟与箱子的距离为(33) m ;(2)设B 点坐标为(x ,2123x x -+),则C 点坐标为(6x -,2123x x -+), ∵B 点、C 点都在第一象限, ∴21AB CD 23x x ==-+,BC 662x x x =--=-, ∴21AB BC CD 22623x x x ⎛⎫++=-++- ⎪⎝⎭22263x x =-++ 22315322x ⎛⎫=--+ ⎪⎝⎭, ∴当32x =时,AB BC CD ++的最大值为152m . 【点睛】 本题考查了二次函数的实际应用,解此类题的关键是通过题意,确定出二次函数的解析式,实际问题中自变量x 的取值要使实际问题有意义.26.13x =,29x =.【分析】利用因式分解法解此一元二次方程,即可求解.【详解】解:212270x x -+=分解因式,得(3)(9)0x x --=,则30x -=或90x -=,∴13x =,29x =.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法并能结合方程特点选择适当的解法是解题的关键.。
青岛版2022-2023学年九年级数学上册期末模拟测试题(附答案)
2022-2023学年九年级数学上册期末模拟测试题(附答案)一、选择题(本题满分24分)1.|﹣2022|的相反数是()A.2022B.C.﹣D.﹣20222.如图所示,该几何体的俯视图是()A.B.C.D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13 5.下面计算错误的是()A.(﹣2a2b)3=﹣8a6b3B.a2+a﹣1=aC.(﹣a﹣b)2=a2+2ab+b2D.(a+2b)(a﹣2b)=a2﹣4b26.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(1,0)B.(5,2)C.(3,﹣2)D.(﹣3,2)7.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为6,sin B=,则线段AC的长是()A.3B.4C.5D.68.已知反比例函数y=的图象如图所示,则二次函数y=2kx2﹣x+k2的图象大致为()A.B.C.D.二、填空题(本题满分18分)9.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为.10.计算:cos245°﹣tan60°•cos30°=.11.二次函数y=ax2+bx的图象如图所示,若关于x的一元二次方程ax2+bx+m=0有实数根,则m的最大值为.12.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为.13.在△ABC中,已知∠ABC=90°,∠BAC=30°,BC=1.如图所示,将△ABC绕点A 按逆时针方向旋转90°后得到△AB'C'.则图中阴影部分的面积为.14.已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.当P在AB上运动时,矩形PNDM的最大面积为.三、作图题(本题满分4分)15.用圆规、直尺作图.不写作法.但要保留作图痕迹.已知:△ABC求作菱形ADEF使顶点D、E、F分别在AB、BC、AC上.四、解答题(本题满分68,共有9道小题)16.(1).(2)解不等式组,并写出不等式组的最大整数解.17.国家“十四五”规划明确强化实施“健康中国”战略.为了引导学生积极参与体育运动,增强身体素质,某校举办了一分钟跳绳比赛,随机抽取了m名学生一分钟跳绳的次数x 进行调查统计,按照以下标准划分为四档:不合格合格良好优秀100≤x<120120≤x<140140≤x<160160≤x<180并根据统计结果绘制了如下条形统计图和扇形统计图:请结合上述信息完成下列问题:(1)m=,a=;(2)在扇形统计图中,“良好”等级对应的圆心角的度数是;(3)若该校有2400名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.18.某中学举行“中国梦•我的梦”演讲比赛.九年级(1)班的小明和小刚都想参加.现设计了如下游戏规则:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去,这个游戏规则是否公平?并说明理由.19.小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD 的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).20.在我市“青山绿水”行动中,某社区计划对面积为3600m2的区域进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为600m2区域的绿化时,甲队比乙队少用6天.(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,社区要使这次绿化的总费用不超过40万元,则至少应安排乙工程队绿化多少天?21.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C 到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D 的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为多少米?(参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)22.某宾馆客房部有50个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.每个房间每天的定价每增加10元时,就会有一个房间空闲.设每个房间每天的定价增加x元.(1)求房间每天的入住量y(间)关于x(元)的函数关系式;(2)某一天,该宾馆客房部的总收入为12000元,问这天每个房间的定价是多少元?(3)若对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.求该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?23.几何模型条件:如图1,A、B是直线l同侧的两个定点.问题:在直线l上确定一点P,使P A+PB的值最小.方法:作点B关于直线l的对称点B’,连接AB’交l于点P,则P A+PB=AB’的值最小(不必证明).直接应用如图2,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN 的最小值为.变式练习如图3,点A是半圆上(半径为1)的三等分点,B是()的中点,P是直径MN上一动点,求P A+PB的最小值.深化拓展(1)如图4,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,求BM+MN的最小值.(2)如图5,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.(要求:保留作图痕迹,并简述作法.)24.已知:如图,菱形ABCD中,AB=5cm,AC=6cm,动点P从点B出发,沿BA方向匀速运动;同时,动点Q从点C出发,沿CB方向匀速运动,它们的运动速度均为1cm/s.过点P作PM∥BC,过点B作BM⊥PM,垂足为M,连接QP.设运动时间为t(s)(0<t <5).解答下列问题:(1)菱形ABCD的高为cm,cos∠ABC的值为;(2)在运动过程中,是否存在某一时刻t,使四边形MPQB为平行四边形?若存在,求出t的值;若不存在,请说明理由.(3)是否存在某一时刻t,使四边形MPQB的面积是菱形ABCD面积的?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使点M在∠PQB的角平分线上?若存在,求出t的值;若不存在,请说明理由.参考答案一、选择题(本题满分24分)1.解:|﹣2022|=2022,故|﹣2022|的相反数是:﹣2022.故选:D.2.解:从上往下看,可以看到选项C所示的图形.故选:C.3.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.4.解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.5.解:A.(﹣2a2b)3=﹣8a6b3,因此选项A不符合题意;B.a2×a﹣1=a,因此选项B符合题意;C.(﹣a﹣b)2=a2+2ab+b2,因此选项C不符合题意;D.(a+2b)(a﹣2b)=a2﹣4b2,因此选项D不符合题意;故选:B.6.解:如图:观察图象可得:点A的对应点A2的坐标是(5,2),故选:B.7.解:连接CD,则∠DCA=90°.Rt△ACD中,sin D=sin B=,AD=12.则AC=AD•sin D=12×=4.故选:B.8.解:∵函数y=的图象经过二、四象限,∴k<0,∴抛物线开口向下,对称轴x=﹣=<0,即对称轴在y轴的左边.故选:D.二、填空题(本题满分18分)9.解:439000用科学记数法表示为:4.39×105.故答案为:4.39×105.10.解:原式=()2﹣×=﹣=﹣1.故答案为:﹣1.11.解:一元二次方程ax2+bx+m=0有实数根,则二次函数y=ax2+bx的图象与直线y=﹣m有交点,由图象得,﹣m≥﹣7,解得m≤7,∴m的最大值为7,故答案为:7.12.解:连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°﹣2×28°=124°;而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;故答案是:62°.13.解:∵∠ABC=90°,∠BAC=30°,BC=1,∴AB=BC=,AC=2BC=2,∴图中阴影部分面积=S扇形ACC′﹣S扇形ADB′﹣S△AB′C′=﹣﹣×1×=,故答案为:;14.解:设矩形PNDM的边DN=x,NP=y,则矩形PNDM的面积S=xy(2≤x≤4),易知CN=4﹣x,EM=4﹣y,且有=,即=,∴y=﹣x+5,S=xy=﹣x2+5x(2≤x≤4),此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值是随x的增大而增大,对2≤x≤4来说,当x=4,即PM=4时,S有最大值,S最大=﹣×42+5×4=12,故答案为:12.三、作图题(本题满分4分)15.解:如图:四边形AEDF即为所求.四、解答题(本题满分68/分)16.解:(1)原式=(+)•=•=;(2)解不等式3(x﹣2)+1≥5x+2得:x≤﹣3.5,解不等式1﹣<得:x<1,∴不等式组的解集是x≤﹣3.5,∴该不等式组的最大整数解为﹣4.17.解:(1)m=10÷25%=40,a=40﹣4﹣12﹣10=14;故答案为:40,14;(2)在扇形统计图中,“良好”等级对应的圆心角的度数是360°×=108°;故答案为:108°;(3)估计该校一分钟跳绳次数达到合格及以上的人数为2400×=2160(人).18.解:这个游戏规则不公平,理由:由题意可得,树状图如右图所示,共有12种等可能的结果数,摸出的两个球上的数字和为奇数占8种,摸出的两个球上的数字和为偶数的占4种,所以P(奇数)==,P(偶数)==,因为,所以这个游戏规则不公平.19.解:连接P A、PB,过点P作PM⊥AD于点M;延长BC,交PM于点N 则∠APM=45°,∠BPM=60°,NM=10米设PM=x米在Rt△PMA中,AM=PM×tan∠APM=x tan45°=x(米)在Rt△PNB中,BN=PN×tan∠BPM=(x﹣10)tan60°=(x﹣10)(米)由AM+BN=46米,得x+(x﹣10)=46解得,=18﹣8,∴点P到AD的距离为米.20.解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=6,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设甲工程队施工a天,乙工程队施工b天刚好完成绿化任务,由题意得:100a+50b=3600,则a==﹣b+36,根据题意得:1.2×+0.5b≤40,解得:b≥32,答:至少应安排乙工程队绿化32天.21.解:延长DC交EA的延长线于点F,则CF⊥EF,∵山坡AC上坡度i=1:2.4,∴令CF=km,则AF=2.4km,在Rt△ACF中,由勾股定理得,CF2+AF2=AC2,∴k2+(2.4k)2=262,解得k=10,∴AF=24m,CF=10m,∴EF=30m,在Rt△DEF中,tan E=,∴DF=EF•tan E=30×tan48°=30×1.11=33.3(m),∴CD=DF﹣CF=23.3m,因此,古树CD的高度约为23.3m.22.解:(1)∵宾馆客房部有50个房间供游客居住,每个房间每天的定价每增加10元时,就会有一个房间空闲,∴房间每天的入住量y关于x的函数关系式为y=50﹣;(2)当客房部的总收入为12000元时,有(50﹣)(200+x)=12000,解得:x1=100,x2=200,200+100=300(元),200+200=400(元),∴每个房间的定价是300元或400元;(3)根据题意,得w=(200+x﹣20)(50﹣)=﹣+32x+9000=﹣+11560,∵﹣<0,∴当x=160时,w max=11560,此时定价为160+200=360(元),∴当每个房间定价为每天360元时,w有最大值,最大值是11560元.23.解:直接应用,如图2,连接BM,则BM的长就是DN+NM的最小值.在直角△BCM中,BC=8,CM=8﹣2=6,则BM===10;变式练习:如图3,作B关于MN的对称点C,则C在圆上,且∠AOC=90°,连接AC,则AC的长就是AP+BP的最小值.△AOC是等腰直角三角形,则AC=OA=,即AP+BP的最小值是;深化拓展:(1)图4.作出N关于AM的对称点N′,作BH⊥AC于H.∵BM+MN=BM+MN′,又∵BM+MN′≥BH,∴BH的长就是BM+MN的最小值,∵∠BAC=45°,∴△ABH是等腰直角三角形,∴BH=×4=4.(2)作点B关于直线AC的对称点B',连接DB'交AC于点P,即为所求.24.解:(1)如图1,连接BD交AC于点O,作AE⊥BC于点E,则∠AEB=90°,∵四边形ABCD是菱形,AB=5cm,AC=6cm,∴BC=AB=5cm,BD⊥AC,OA=OC=AC=3cm,∴∠AOB=90°,∴OD=OB===4(cm),∴S菱形ABCD=AC•OD+AC•OB=×6×4+×6×4=24(cm2),∴5AE=24,∴AE=(cm),∴菱形ABCD的高为cm;∵BE===(cm),∴BE:AE:AB=7:24:25,∴cos∠ABC==,∴cos∠ABC的值为,故答案为:,.(2)存在,如图2,∵四边形MPQB为平行四边形,且∠M=90°,∴四边形MPQB是矩形,∴∠PQB=90°,∴=cos∠ABC=,∴BQ=BP,∵BP=CQ=t,∴BQ=5﹣t,∴5﹣t=t,解得t=,∴t的值为.(3)存在,如图1,∵PM∥BC,∴∠BPM=∠ABC,∴=cos∠BPM=cos∠ABC=,=sin∠BPM=sin∠ABC=,∴PM=t,BM=t,∵S四边形MPQB=S菱形ABCD,∴×t(t+5﹣t)=×24,整理得18t2﹣125t+100=0,解得t1=,t2=(不符合题意,舍去).∴t的值为.(4)不存在,理由:如图3,作MR⊥QP交直线QP于点R,∵∠MBQ=180°﹣∠PMB=90°,∴MB⊥QB,∵=tan∠BPM=tan∠ABC=,∴MP=MB,∴MP<MB,∵MR≤MP,∴MR<MB,∴点M不可能在∠PQB的平分线上,∴不存在某一时刻t,使点M在∠PQB的角平分线上.。
华东师大版数学九年级上册期末模拟试题50题(含答案)
华东师大版数学九年级上册期末模拟试题50题含答案(填空题+解答题)一、填空题1.如图,梯形ABCD 中,AD∥BC ,∥A =90°,它恰好能按图示方式被分割成四个全等的直角梯形,则AB :BC =_____.2.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启17秒,按此规律选一下去.如果不考虑其他因素,一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是__.3.已知1<a <2_____. 4.在Rt ABC 中,190,cos 2C A ︒∠==,那么A ∠的度数是___________. 5.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长边的长为52,那么此三角形的周长为___,面积为___.6.计算的结果是_____.7=___________. 8.若两个三角形是相似形,其中一个三角形的两个角分别是60°、50°.则另一个三角形的最小的内角为_________. 9.已知654a b c==,且26a b c +-=,则a 的值为__________. 10.如图是用计算机模拟抛掷一枚啤酒瓶盖试验的结果,由此可以推断,抛掷该啤酒瓶盖一次,“凸面向上”的概率是___________. (精确到 0.001).11.下列事件是必然事件的是________.∥射击一次,中靶;∥100件某种产品中有2件次品,从中任取1件恰好是次品; ∥太阳从东方升起;∥一只不透明的袋子中有10个红球,从中任意摸出一个球是红球.12.计算:13.书架上有2本英语书,3本数学书,4本语文书,从中任意取出一本是数学书的概率是________.14.已知x m =是方程²230x x --=的一个解,则代数式22m m -的值为______. 15.已知1x ,2x 是方程230x x +-=的二根,则2112239x x x +++=________. 16.设α、β是方程220220x x +-=的两个实数根,则22a αβ++的值为 ___________.17.如图,已知矩形ABCD 与矩形EFGO 是位似图形,点P 是位似中心,若点B 、F 的坐标分别为()4,3、()2,1-,则点P 的坐标为______.18.若357a b c ==,且3249a b c +-=,则a b c ++=_________. 19.如图,在ABC 在,//DE BC ,23AD DB =,8ADE S =△,则四边形BDEC 的面积为_____.20.关于x 的方程kx 2+3x +1=0有实数根,则实数k 的取值范围是_____. 21.方程x 3-9x =0的解是_____.22.如图,四边形ABCD 是矩形,对角线相交于点O ,点E 为线段AO 上一点(不含端点),点F 是点E 关于AD 的对称点,连接CF 与BD 相交于点G .若2OG =,4OE =,则BD 的长________.23.若a 是方程2310x x -+=的解,计算:22331aa a a -++=______. 24.班里有18名男生,15名女生,从中任意抽取a 人打扫卫生,若女生被抽到是必然事件,则a 的取值范围是_____.25.如果关于x 的方程x 2+kx+9=0(k 为常数)有两个相等的实数根,则k=_____. 26.如图,在ABCD 中,ABC ∠的平分线BE 与AD 交于点,E BED ∠的平分线EF与DC 交于点F ,若8,2,2AB DE DF FC ===,则BE =______.27.如图,在直角坐标系中,点 E (-4, 2), F (-2, -2 ),以 O 为位似中心,按 2:1 的相似比把∆EFO 缩小为∆E 'F 'O ,则点 E 的对应点 E ' 的坐标为______________.28.设a 、b 为x 2+x ﹣2011=0的两个实根,则a 3+a 2+3a+2014b=________ . 29.如图,在平面直角坐标系中,已知点A 、B 、C 的坐标分别为()1,0-,()5,0,()0,2.若点P 从A 点出发,沿x 轴正方向以每秒1个单位长度的速度向B 点移动,连接PC 并延长到点E ,使CE PC =,将线段PE 绕点P 顺时针旋转90︒得到线段PF ,连接FB .若点P 在移动的过程中,使PBF ∆成为直角三角形,则点F 的坐标是__________.二、解答题30.∥ABC 在平面直角坐标系中的位置如图所示.将∥ABC 向右平移5个单位长度,再向下平移4个单位长度得到∥111A B C , ∥ABC 内部有一点D (m ,n )平移后的对应点为1D .(图中每个小方格边长均为1个单位长度) .(1)在图中画出平移后的∥111A B C ;(2)直接写出下列各点的坐标: 1C ___________,1D _____________; (3)求出∥A 1B 1C 1的面积.31.先化简,再求值:224431(1)1a a a a a a a++÷--+++,其中a 是方程228=0x x --的根.32.如图,平行四边形ABCD ,对角线,AC BD 交于点O ,点,E F 分别是,AB BC 的中点,连接EF 交BD 于G ,连接OE(1)证明:四边形COEF 是平行四边形(2)点G 是哪些线段的中点,写出结论,并选择一组给出证明. 33.计算:(1(2)32(1)(3)⎤--⎦34.在四边形ABCD 中,对角线AC ,BD 交于点O ,AC 平分∥BAD ,∥BAC =∥CBD ,AC =AD .(1)求证:∥ABC AOD ≌△△; ∥2DO OC AC =⋅; (2)当∥BAD =90°时,求ABAD的值. 35.如图,甲、乙为两座建筑物,它们之间的水平距离BC 为30m ,在A 点测得D 点的仰角∥EAD 为45°,在B 点测得D 点的仰角∥CBD 为60°,则乙建筑物的高度为多少米?36.如图,海中有一个小岛B ,它的周围14海里内有暗礁,在小岛正西方有一点A 测得在北偏东60°方向上有一灯塔C ,灯塔C 在小岛B 北偏东15°方向上20海里处,渔船跟踪鱼群沿AC 方向航行,每小时航行(1)如果渔船不改变航向继续航行,有没有触礁危险?请说明理由. (2)求渔船从A 点处航行到灯塔C ,需要多少小时?37.(1)解方程:23720x x ++=;(2)计算:2cos45sin30cos60︒+︒⋅︒+︒.38.(1)计算:2102331)2sin 30---⨯++︒(2)先化简,再求值:211()2x x x x x++÷-,其中.39.如图,在ABC 中,30B ∠=︒,6AB AD BC =⊥,于点D 且2tan 3CAD ∠=,求BC 的长.40.如图,已知ABC .(1)画出ABC 关于y 轴对称的图形111A B C △; (2)求111A B C △的面积.41.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒.42.在平面直角坐标系xOy 中,对于点P(x ,y),若点Q 的坐标为(ax+y ,x+ay),其中a 为常数,则称点Q 是点P 的“a 级关联点”例如,点P(1,4)的“3级美联点”为Q(31x +4,1+34x ),即Q(7,13).(1)已知点A(一2,6)的“12级关联点”是点1A ,求点1A 的坐标.(2)已知点M(m 一1,2m)的“一3级关联点”M’位于y 轴上.求点M’的坐标. 43.解方程:(1)2x 3x 10+-= (2) ()()x x 37x 3+=+ (3)2631x 1x 1-=-- 44.如图,有四张背面完全相同的卡片A B C D ,,,,小伟将这四张卡片背面朝上洗匀后摸出一张,放回洗匀后再摸一张.()1用树状图(或列表法)表示两次摸出卡片所有可能出现的结果(卡片可用A B C D ,,,表示);()2求摸出两张卡片所表示的几何图形是轴对称图形而不是中心对称图形的概率.45.某商场根据第二季度某品牌运动服装的S 号、M 号、L 号、XL 号、XXL 号销售情况绘制了如图所示的不完整的两幅统计图.根据图中信息解答下列问题:(1)第二季度该品牌运动服装的销售总量是 件,扇形统计图中XXL 号服装销量占总量的百分比是 ,XL 号所对应的圆心角度数是 ; (2)请补全条形统计图;(3)从M 号、XL 号运动服装中按照M 号,XL 号运动服装的销量比,分别取出一定数量的运动服,再取3件XXL 号运动服装,将它们放在一起,现从这些运动服装中,随机取出1件,取得M号运动服装的概率为35,求取出了M号、XL号运动服装各多少件?46.2021年秋学期泰兴市某初中举办“请党放心,强国有我”主题运动会,张同学报名参加运动会,有以下4个项目可供选择:田赛项目:铅球,跳远;径赛项目:100m,800m.(1)张同学从4个项目中任选一个,恰好是田赛项目的概率为______;(2)张同学从4个项目中任选两个,利用树状图或表格列举出所有可能的结果,并求恰好选的是一个田赛项目和一个径赛项目的概率.47.在▱ABCD中,∥C=45°,AD=BD,点P为射线CD上的动点(点P不与点D重合),连接AP,过点P作EP∥AP交直线BD于点E.(1)如图∥,当点P为线段CD的中点时,请直接写出P A,PE的数量关系;(2)如图∥,当点P在线段CD上时,求证:DA=DE;(3)点P在射线CD上运动,若AD=,AP=5,请直接写出线段BE的长.48.如图,四边形ABCD是矩形,点E在AD边上,点F在AD的延长线上,且BE=CF.(1)求证:四边形EBCF是平行四边形.(2)若∠BEC=90°,∠ABE=30°,ED的长.49.阅读下面材料:有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE 于点N.(1)【猜想】线段DE 与AM 之间的数量关系是___________,位置关系是__________; (2)【探究】将图1中的正方形AEGF 绕点A 顺时针旋转,使点G 恰好落在边AB 上,如图2,其他条件不变,线段DE 与AM 之间的关系是否仍然成立?请说明理由. (3)【应用】在(2)的条件下,若4AE =,15MAB ∠=︒,请直接写出线段AM 的长.答案第1页,共32页参考答案:1【分析】如图连接EC ,设AB =a ,BC =b 则CD =2b .只要证明∥D =60°,根据sin 60CECD,即可解决问题. 【详解】解:如图连接EC ,设AB =a ,BC =b 则CD =2b .由题意四边形ABCE 是矩形,∥CE =AB =a ,∥A =∥AEC =∥CED =90°, ∥∥BCF =∥DCF =∥D , 又∥∥BCF+∥DCF+∥D =180°, ∥∥D =60°, ∥3sin 2CE D CD, ∥322a b , ∥3AB aBCb, ∥:3:1ABBC.【点睛】本题考查直角梯形的性质,锐角三角函数等知识,解题的关键是理解题意,利用角相等这个信息解决问题,发现特殊角是解题的突破口,属于中考常考题型.2.35##0.6【分析】直接根据概率公式计算即可.【详解】解:红灯亮30秒,黄灯亮3秒,绿灯亮17秒,P ∴(红灯亮)303303175==++,故答案为:35【点睛】此题考查了概率的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.3.2a﹣2【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:∥1<a<2,(2)22a a a--=-故答案为:2a﹣2.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键. 4.60【分析】直接利用特殊角的三角函数值得出答案.【详解】∥∥C=90°,cos A12=,∥∥A=60°.故答案为:60°.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解题的关键.5.120,480.【分析】由相似三角形的对应边比相等,可设其他两边长为a,b,求出a和b,进而可求周长和面积.【详解】设较大三角形的其他两边长为a,b.∥由相似三角形的对应边比相等,∥52 51213a b==,解得:a=20,b=48,又∥202+482=522,∥三角形为直角三角形,∥三角形的周长为:20+48+52=120,三角形的面积为:12×20×48=480.故此三角形的周长为120,面积为:480.【点睛】相似三角形的对应边比相等是本题的考点,根据题意求出其他两边并证明三角形是直角三角形是解题的关键.6【分析】化简成最简二次根式,后合同类二次根式即可.【详解】解:原式=4×2﹣=【点睛】本题考查了二次根式的化简,同类二次根式,熟练进行化简,灵活进行合并同类二次根式是解题的关键.7.2x >##2x <【分析】根据分式和二次根式有意义的条件进行求解即可.【详解】解:∥∥102020x x x -≥⎧⎪-≥⎨⎪-≠⎩,∥2x >,故答案为:2x >.【点睛】本题主要考查了二次根式和分式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零,分式有意义的条件是分母不为零是解题的关键.8.50°【分析】先求出三角形的另一个角,比较后得出三角形的最小的内角为50°.再根据相似三角形的性质得出结论.【详解】解:∥一个三角形的两个角分别为60°、50°,∥另一个角为180°-(60°+50°)=70°,∥三角形的最小的内角为50°.∥两个三角形相似,∥相似的另一个三角形的最小的内角为50°.故答案为:50°.【点睛】本题主要考查了相似三角形的性质,解题的关键是掌握三角形的内角和定理及相似三角形的性质.9.12【分析】直接利用已知比例式假设出a ,b ,c 的值,进而利用a +b -2c =6,得出答案.【详解】解:∥654a b c ==, ∥设a =6x ,b =5x ,c =4x ,∥a +b -2c =6,∥6x +5x -8x =6,解得:x =2,故a =12.故答案为12.【点睛】此题主要考查了比例的性质,正确表示出各数是解题关键.10.0.440【分析】根据大量反复试验下,频率的稳定值即为概率值求解即可.【详解】解:∥大量反复试验下,频率的稳定值即为概率值,∥抛掷该啤酒瓶盖一次,“凸面向上”的概率是0.440,故答案为:0.440.【点睛】本题主要考查了用频率值估计概率,解题的关键在于熟知大量反复试验下,频率的稳定值即为概率值.11.∥∥##∥∥【分析】根据必然事件与随机事件的定义,即可一一判定【详解】解:∥射击一次,中靶,属于随机事件;∥100件某种产品中有2件次品,从中任取1件恰好是次品,属于随机事件;∥太阳从东方升起,属于必然事件;∥一只不透明的袋子中有10个红球,从中任意摸出一个球是红球,属于必然事件. 故答案为:∥∥.【点睛】本题考查了必然事件与随机事件的定义,熟练掌握和运用必然事件与随机事件的定义是解决本题的关键.12.【分析】运用二次根式加减法则进行运算即可.【详解】解:【点睛】本题考查了二次根式的加减法则,即二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.13.13【分析】直接根据概率公式,计算即可得出答案. 【详解】解:从中任意取出一本是数学书的概率31==2+3+43. 故答案为:13 【点睛】本题考查了概率公式,熟练掌握概率公式是解本题的关键.概率公式=所求情况数与总情况数之比.14.3.【分析】把x 的值代入方程中,变形即可.【详解】把x m =代入原方程²230x x --=,可得223m m --=0,即22m m -=3. 【点睛】本题考查了一元二次方程的解,求代数式的值,利用整体思想求值较简. 15.11【分析】把x =x 1 代入方程求得x 1 2 +x 1 =3,利用根与系数的关系得到x 1 +x 2 =-1,所以将其整体代入整理后的代数式进行求值.【详解】∥x 1 ,x 2 是方程x 2 +x -3=0的二根,∥x 1 2 +x 1 -3=0,x 1 +x 2 =-1,∥x 1 2 +x 1 =3,∥2x 1 2 +3x 1 +x 2 +9=2(x 1 2 +x 1 )+(x 1 +x 2 )+9=3-1+9=11.故答案为11.【点睛】本题考查了根与系数的关系,一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.16.2021【分析】利用一元二次方程的解的定义得到220220αα+-=,再根据根与系数的关系得到1αβ+=-,然后利用整体代入的方法计算.【详解】解:∥α是方程220220x x +-=的根,∥220220αα+-=,即22022αα+=∥α、β是方程220220x x +-=的两个实数根,∥1αβ+=-,∥()222202212021a a αβααβ++=++-=+=+.故答案为:2021.【点睛】本题主要考查一元二次方程的解和一元二次方程根与系数关系,解决本题的关键是要熟练掌握一元二次方程根与系数关系.17.(0,53) 【分析】根据题意求出EF 、AB 、AE ,根据位似图形的概念得到EF ∥AB ,证明△EPF ∥∥APB ,根据相似三角形的性质计算即可.【详解】解:∥点B 、F 的坐标分别为(4,3)、(-2,1),∥EF =2,AB =4,AE =3-1=2,∥矩形ABCD 与矩形EFGO 是位似图形,∥EF ∥AB ,∥∥EPF ∥∥APB , ∥EP EF AP AB =,即224EP EP =-, 解得,EP =23,∥OP =1+23=53, 则点P 的坐标为(0,53), 故答案为:(0,53). 【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,掌握位似图形的概念是解题的关键.18.-15【分析】先设比例系数为k ,代入3a+2b-4c=9,转化为关于k 的一元一次方程解答. 【详解】解:设357a b c k ===,则a=3k ,b=5k ,c=7k ,代入3a+2b-4c=9,得9k+10k-28k=9,解得:k=-1,∥a=-3,b=-5,c=-7,于是a+b+c=-3-5-7=-15.故答案为:-15.【点睛】本题主要考查比例的性质,解答此类题关键是灵活运用设“k”法求解代数式的值. 19.42.【详解】∥23AD DB =,∥22325AD AB ==+,∥DE∥BC ,∥∥ADE∥∥ABC , ∥2()ADEABC S AD S AB ∆∆=,即8425ABC S ∆=,∥S △ABC =50, ∥四边形BDEC 的面积=S △ABC -S △ADE =50-8=42.考点:相似三角形的判定与性质.20.k 94≤ 【分析】分类讨论,当k ≠0时与当k =0时即可.【详解】解:当k ≠0时,∥=9﹣4k ≥0,∥k 94≤, ∥k 94≤且k ≠0, 当k =0时,此时方程为3x +1=0,满足题意,故答案为:k 94≤. 【点睛】本题考查方程有根的情况,关键在于分类讨论.21.x 1=0,x 2=3,x 3=-3.【分析】根据x 3-9x =0将原式分解为x (x +3)(x -3)=0,即可得出答案.【详解】解:∥x 3-9x =0,∥x (x +3)(x -3)=0,∥x 1=0,x 2=3,x 3=-3,故答案为:x 1=0,x 2=3,x 3=-3.【点睛】此题主要考查了因式分解法解一元二次方程,将方程分解为两式相乘等于0的形式是解决问题的关键.22.16【分析】根据矩形的性质和翻折的性质得到AF BD ∥,根据O 是AC 的中点,利用中位线性质求出AF ,再求出OA 即可.【详解】解:∥点F 是点E 关于AD 的对称点,∥∥EAD =∥F AD ,AE =AF ,∥四边形ABCD 是矩形,∥∥OAD =∥ODA ,∥∥F AD =∥ODA ,∥AF BD ∥,∥O 是矩形ABCD 的对角线的交点,∥O 是AC 的中点,∥O 、G 两点在线段BD 上,且AF BD ∥,AF OG ∴∥,由平行线分线段成比例定理可知,“A 字形”中有CG CO GF OA =, 前面已证明O 是AC 的中点, ∴1CG CO GF OA==,即CG GF =, ∥G 为CF 的中点,∥OG 是∥CAF 的中位线,∥AF =2OG =2×2=4,∥AE =4,∥OE =4,∥OA =AE +EO =8,∥AC =2OA =16,∥BD =AC =16,故答案为:16.【点睛】本题考查矩形的性质、翻折的性质以及三角形中位线的性质,关键是利用中位线性质得出AF 的长.23.0【分析】根据一元二次方程的解的定义得a 2﹣3a +1=0,即a 2﹣3a =﹣1,再代入22331a a a a -++,然后利用整体思想进行计算即可. 【详解】∥a 是方程x 2﹣3x +1=0的一根,∥a 2﹣3a +1=0,即a 2﹣3a =﹣1,a 2+1=3a ∥2233=11=01-+-++a a a a 故答案为0.【点睛】本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解.也考查了整体思想的运用.24.18<a≤33【分析】利用随机事件的定义进而得出答案.【详解】∥班里有18个男生15个女生,从中任意抽取a 人打扫卫生,女生被抽到的是必然事件,∥18<a≤33.【点睛】本题考查的知识点是随机事件的定义,解题关键是正确把握定义.25.±6【分析】先根据关于x 的方程x2+kx+9=0(k 为常数)有两个相等的实数根可得出△=0,据此求出k 的值即可.【详解】∥关于x 的方程x2+kx+9=0(k 为常数)有两个相等的实数根,∥∥=k2-4×9=k2-36=0,解得k=±6.故答案为:±6.【点睛】本题考查的是根的判别式,根据题意得出关于k 的一元二次方程是解答此题的关键.26.11【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰三角形,并求AE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据∥EFD ∥∥GFC 得出CG 与DE 的倍数关系,并根据BE =BG =BC +CG 进行计算即可.【详解】解:如图,延长EF 和BC ,交于点G ,∥在ABCD 中,∥B 的角平分线BE 与AD 交于点E ,∥∥ABE=∥CBE,∥BEG=∥DEG,∥AD∥BC,∥∥AEB=∥CBE,∥∥AEB=∥ABE,∥AB=AE,∥ AB=AE=8,又∥BED∠的平分线EF与DC交于点F,∥∥BEG=∥DEG,∥AD∥BC,∥∥DEG=∥G,∥∥BEG=∥G,∥BE=BG=BC+CG,∥AD//BC,∥∥DEF=∥G,∥EFD=∥GFC,∥∥EFD∥∥GFC,∥122 CG CF CFDE DF CF===,∥1 22 CG=,∥1CG=,∥四边形ABCD为平行四边形,∥BC=AD=AE+ED=8+2=10,∥BE=BG=BC+CG=10+1=11.故答案为:11.【点睛】本题主要考查了平行四边形性质、相似三角形判断与性质,以及等腰三角形判断与性质,解决问题的关键是掌握平行四边形性质、相似三角形判断与性质,以及等腰三角形判断与性质,解题时注意:有两个角对应相等的两个三角形相似.27.(2,-1)或(-2,1).【分析】由在直角坐标系中,点E (-4,2),F (-2,-2),以O 为位似中心,按2:1的相似比把△EFO 缩小为△E′F′O ,利用位似图形的性质,即可求得点E 的对应点E′的坐标.【详解】解:∥点E (-4,2),以O 为位似中心,按2:1的相似比把△EFO 缩小为△E′F′O ,∥点E 的对应点E′的坐标为:(2,-1)或(-2,1).故答案为(2,-1)或(-2,1).【点睛】此题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解此题的关键.28.﹣2014【详解】试题分析:∥a 为x 2+x -2011=0的根,∥a 2+a -2011=0,∥a 2+a =2011,∥a 3+a 2+3a +2014b =a (a 2+a )+3a +2014b=2011a +3a +2014b=2014(a +b ),∥a 、b 为x 2+x -2011=0的两个实根,∥a +b =-1,∥a 3+a 2+3a +2014b=2014(a +b )=-2014.故答案为:-2014.点睛:本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a.也考查了一元二次方程的解的定义.29.(5,2),) 【分析】当P 位于线段OA 上时,显然∥PFB 不可能是直角三角形;由于∥BPF <∥CPF=90°,所以P 不可能是直角顶点,可分两种情况进行讨论:∥F 为直角顶点,过F 作FD∥x 轴于D ,BP=6-t ,DP=2OC=4,在Rt∥OCP 中,OP=t-1,由勾股定理易求得CP=t 2-2t+5,那么PF 2=(2CP )2=4(t 2-2t+5);在Rt∥PFB 中,FD∥PB ,由射影定理可求得PB=PF2÷PD=t2-2t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t2-2t+5=6-t,即;2∥B为直角顶点,得到∥PFB∥∥CPO,且相似比为2,那么BP=2OC=4,即OP=OB-BP=1,此时t=2.【详解】解:能;∥若F为直角顶点,过F作FD∥x轴于D,则BP=6-t,DP=2OC=4,在Rt∥OCP中,OP=t-1,由勾股定理易求得CP2=t2-2t+5,那么PF2=(2CP)2=4(t2-2t+5);在Rt∥PFB中,FD∥PB,由射影定理可求得PB=PF2÷PD=t2-2t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t2-2t+5=6-t,即2P0),−1);则F点坐标为:∥B为直角顶点,得到∥PFB∥∥CPO,且相似比为2,那么BP=2OC=4,即OP=OB-BP=1,此时t=2,P点坐标为(1,0).FD=2(t-1)=2,则F点坐标为(5,2).).故答案是:(5,2),【点睛】此题考查直角三角形的判定、相似三角形的判定和性质,解题关键在于求有关动点问题时要注意分析题意分情况讨论结果.30.(1)见解析(2)(5,-3),(m +5,n -4)(3)4【分析】(1)根据图形平移的性质画出图形即可;(2)根据各点在坐标系中的位置写出各点坐标;(3)利用正方形的面积减去三个顶点上三角形的面积即可.(1)解:如图所示;(2)解:1C (5,-3),1D (m +5,n -4)(3) 解:11111133131322222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯△=4 所以111A B C △的面积为4.【点睛】本题考查作图-平移变换,熟知图形平移不变性的性质是解题的关键. 31.1.【详解】试题分析:先将分式的分子和分母分别分解因式,约分化简,再解一元二次方程,然后将a 的值代入化简后的代数式即可求值.试题解析:原式=22(2)131(1)1a a a a a a+--÷+++22(2)(2)a a a a a a +-=+-- 2=2a - ∥a 是方程228=0x x --的根∥a =4或a =-2∥a +2≠0∥a =4∥原式=2142=- 考点: 1.分式的化简求值;2.一元二次方程的解法.32.(1)见解析;(2)G 是线段OB 的中点,也是EF 的中点,证明见解析【分析】(1)根据三角形的中位线定理可得EF 与AC 的数量关系和位置关系,再由平行四边形的性质即可证得EF 与CO 的关系,进一步即可证得结论;(2)根据三角形中位线定理即可得出结论.【详解】(1)证明:∥,E F 分别是,AB BC 中点,∥EF ∥AC 且12EF AC =, ∥四边形ABCD 是平行四边形,∥AO CO =,∥CO EF =,∥四边形COEF 是平行四边形.(2)解:G 是线段OB 的中点,也是EF 的中点.证明:∥EF ∥AC ,E 为AB 中点,∥G 为OB 中点.∥FG 、GE 分别是∥BCO 、∥BAO 的中位线, ∥11,22FG CO GE AO ==, ∥AO =CO ,∥FG GE =,即G 为EF 的中点.【点睛】本题考查了平行四边形的判定和三角形的中位线定理,熟练掌握平行四边形的判定方法和三角形的中位线定理是解题的关键.33.(1)(2)13【分析】(1)先利用二次根式的除法法则计算,再把各二次根式化为最简二次根式,然后合并即可.(2)先算乘方和开方,再算括号内的,然后计算乘法,最后计算加减.【详解】解:(1=4==(2)32(1)(3)⎤--⎦=()1229--⨯-=114-+=13【点睛】本题考查了二次根式的混合运算,实数的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.34.(1)∥见解析;∥见解析(2)1AB AD【分析】(1)∥根据ASA 证明ABC AOD ≌△△即可;∥证明BCO ACB ∽△△,得BC CO AC BC=,由∥得OD =BC ,从而可得结论; (2)分别证明AOD BOC ∽和AOB DOC ∽△△,可证明BCD △是等腰直角三角形,得BD =,知1BO OD=,最后证明1AB BO AF OD ==即可得到结论. (1)∥∥AC 平分∥BAD ,∥∥BAC =∥DAC ,又∥∥BAC =∥CBD ,∥∥CBD =∥DAC ,又∥∥AOD =∥BOC ,∥∥ADO =∥ACB ,又∥AC =AD ,∥ABC AOD ≌△△;∥∥BAC =∥CBD ,∥BCA =∥AC B .∥BCO ACB ∽△△, ∥BC CO AC BC=, ∥2BC OC AC =由∥知ABC AOD ≌△△, ∥OD =BC ,∥2DO OC AC =⋅.(2)当∥BAD =90°时,AC 平分∥BAD ,∥∥BAC =∥DAC =45°,∥∥BAC =∥CB D ,∥CBD =∥DAC =45°,∥AOD =∥BO C .∥AOD BOC ∽, ∥OA OD OB OC =, ∥OA OB OD OC=, ∥∥AOB =∥COD .∥AOB DOC ∽△△,∥∥BAC =∥CDO =45°∥BCD △是等腰直角三角形, ∥BD =,∥BD =,∥1BO BD OD OD OD-==, 过点D 作DF AC ∥交BA 的延长线与F ,∥AC 平分∥BAD ,∥,,F BAC ADF DAC ∠=∠∠=∠∥,BAC DAC ∠=∠∥AF =AD ,1AB BO AF OD ==.∥1AB AD=. 【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定与性质,等腰直角三角形的判定与性质以及勾股定理等知识,正确作出辅助线是解答本题的关键.35.30【分析】在Rt∥BCD 中可求得CD 的长,即求得甲的高度,过A 作AF∥CD 于点F,在Rt∥ADF 中可求得DF,则可求得CF 的长,即可求得乙的高度.【详解】过A 点向CD 做垂线,垂足为F ,在Rt∥BCD 中:∥∥DBC=60°,BC=30mtan 60CD BC ︒=⋅==由图可知,AF=BC,在Rt∥ADF 中F tan 45tan 4530D AF BC BC ︒︒=⋅=⋅==m30)AB CD DE ∴=-=m所以乙的高度为(30)m.【点睛】本题考查了解直角三角形的应用,解决本题的关键是做出辅助线,构建直角三角形,熟练掌握直角三角形中边角关系.36.(1)渔船不改变航向继续航行,没有触礁危险,理由见解析;(2)渔船从A 点处航行到灯塔C ,需要(1小时.【分析】(1)作BH∥AC 于H ,根据余弦的概念求出BH ,比较即可判断;(2)根据正切的概念求出AH ,求出AC 的长,根据渔船的速度计算即可.【详解】解:(1)渔船不改变航向继续航行,没有触礁危险.作BH∥AC 于H ,由题意得,∥CAB=30°,∥ABC=105°,则∥ABH=60°,∥HBC=45°,cos BH BC HBC ∴=⨯∠= 10214>,∥渔船不改变航向继续航行,没有触礁危险;(2)HC BH ==tan BH AH CAB==∠AC AH HC ∴=+=则渔船从A 点处航行到灯塔C ,需要的时间为:1÷=+答:渔船从A 点处航行到灯塔C ,需要(1小时.【点睛】本题考查的是解直角三角形的应用-方向角问题.正确标注方向角、熟记锐角三角函数的定义是解题的关键.37.(1)12x =-,213x =-;(274【分析】(1)根据因式分解法解一元二次方程即可求解;(2)根据特殊角的三角函数值进行计算即可求解.【详解】解:(1)解:23720x x ++=,()()2310x x ++=,20x +=或310x +=,12x =-,213x =-;(2)原式11222=⨯1342+ 74. 【点睛】本题考查了解一元二次方程,特殊角的三角函数值的混合运算,掌握一元二次方程的解法以及特殊角的三角函数值是解题的关键.38.(1)-3;(2) 21x - 【分析】(1)根据有理数的乘方运算、负指数幂的性质、0指数幂的性质以及特殊角的锐角三角函数值依次进行计算后,再合并即可;(2)首先根据分式的四则混合运算顺序进行计算化简,然后代值计算.【详解】(1)原式=﹣4﹣1+1+2×12=﹣3;(2)原式=221212x x x x x +--÷ =2112x x x x+-÷ =12(1)(1)x x x x x +⋅+- =21x -,当x +1时,【点睛】本题考查了幂运算的性质、特殊角的锐角三角函数值、分式的混合运算.在求分式的值时,要把分式化到最简,然后代值计算.39.2【分析】先在Rt ABC 中根据30︒角的三角函数值求出AD 和BD 的长,再在Rt ADC △中根据2tan 3DC CAD AD ∠==求出DC 的长,即可得到BC 的长. 【详解】解:∥AD BC ⊥于点D ,∥90ADB ADC ∠=∠=︒,ABD ∴,ADC △为直角三角形,∥Rt ADB 中,30B ∠=︒,6AB =,∥3AD =,tan AD B BD ==,∥BD =∥Rt ADC △中,2tan 33CD CAD AD AD ∠===,, ∥2CD =,∥2BC =.【点睛】本题主要考查了解直角三角形,掌握特殊角的三角函数值是解题的关键. 40.(1)见解析(2)5【分析】(1)先确定()()()3,4,1,2,5,1A B C ,再确定对称点坐标,画图即可.(2) 111A B C △的面积就是ABC 的面积.【详解】(1)∥()()()3,4,1,2,5,1A B C ,∥关于y 轴对称的对称点坐标为()()()1113,4,1,2,5,1A B C ---,画图如下:则111A B C △即为所求.(2)∥111A B C △的面积就是ABC 的面积,()()()3,4,1,2,5,1A B C ,∥111A B C △的面积为:111343222415222.【点睛】本题考查了坐标的对称,三角形面积的计算,熟练掌握对称点坐标计算方法是解题的关键.41.12- 【分析】根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.42.(1) 1A (5,1); (2)M '(0,-16).【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义和点M (m-1,2m )的“-3级关联点”M′位于y 轴上,即可求出M′的坐标.【详解】解(1)因为点A (-2,6)的“12级关联点”是点1A ,所以∥A 1(-2×12+6,-2+12×6),即1A 为1A (5,1);(2)因为点M (m- 1,2m )的“一3级关联点”为M’(-3m (m-1)+2m·m-1+(-3)·2m ).又因为点M’位于y 轴上,所以-3(m-1)+2m=0, 解得m=3. 所以m-1+(-3)·2m=-16,所以M’(0,-16)【点睛】本题考查一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.43.(1)1x =,2x =;(2)1x 3=-,2x 7=;(3)x 4=-. 【分析】()1先求出2b 4ac -的值,再代入公式求出即可;()2移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;()3先把分式方程变成整式方程,求出方程的解,再进行检验即可.【详解】()21x 3x 10+-=,()22b 4ac 341113-=-⨯⨯-=,x =1x =,2x =; ()()()2x x 37x 3+=+,()()x x 37x 30+-+=,()()x 3x 70+-=,x 30+=,x 70-=,1x 3=-,2x 7=;()26331x 1x 1-=--, 方程两边都乘以()()x 1x 1+-得:()()()63x 1x 1x 1-+=+-,解得:1x 4=-,2x 1=,经检验:x 1=是增根,x 4=-是原方程的解,。
浙教版2022-2023学年九年级上学期期末数学模拟测试卷(四)(解析版)
浙教版2022-2023学年九年级上学期期末数学模拟测试卷(四)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.将抛物线y=x2﹣2x﹣3沿x轴折得到的新抛物线的解析式为()A.y=﹣x2+2x+3B.y=﹣x2﹣2x﹣3C.y=x2+2x﹣3D.y=x2﹣2x+3【答案】A【解析】抛物线y=x2﹣2x﹣3关于x轴对称的抛物线的解析式为:﹣y=x2﹣2x﹣3,即y=﹣x2+2x+3,故答案为:A。
2.如图,点A,B,C,D,E在⊙O上,AÊ的度数为60°,则∠B+∠D的度数是()A.180°B.120°C.100°D.150°【答案】D【解析】如图,连接AB,⌢为60°∵AE∴∠ABE=30°∵点A,B,C,D在⊙O上∴四边形ABCD是圆内接四边形∴∠ABC+∠ADC=180°∴∠ABE+∠EBC+∠ADC=180°∴∠EBC+∠D=180°-∠ABE=180°-30°=150°故答案为:D.3.如图,正方形ABCD中,E是CD的中点,P是BC边上的一点,下列条件中,不能推出ΔABP 与ΔECP相似的是()A.∠APB=∠EPC B.∠APE=90∘C.P是BC的中点D.BP:BC=2:3【答案】C【解析】A. ∠APB=∠EPC,根据正方形性质得到∠B=∠C,可以得到ΔABP∽ΔECP,不合题意;B. ∠APE=90∘,根据正方形性质得到∠B=∠C,根据同角的余角相等,得到∠APB=∠PEC,可以得到 ΔABP ∽ ΔPCE ,不合题意;C. P 是 BC 的中点,无法判断 ΔABP 与 ΔECP 相似,符合题意;D. BP:BC =2:3 ,根据正方形性质得到 AB:BP =EC:PC =3:2 ,又∵∠B=∠C ,可以得到 ΔABP ∽ ΔECP ,不合题意. 故答案为:C.4A .2700B .2780C .2880D .2940 【答案】C【解析】∵96100×100%=96%,287300×100%≈96%,770800×100%≈96%,9581000×100%≈96%,19232000×100%≈96%, ∴3000×96%=2880, 故答案为:C .5.如图,△ABC 内接于⊙O ,OD ⊥AB 于D ,OE ⊥AC 于E ,连结DE .且DE = 3√22,则弦BC 的长为( )A .√2B .2 √2C .3 √2D .√6 【答案】C【解析】∵OD ⊥AB ,OE ⊥AC , ∴AD =BD ,AE =CE ,∴BC =2DE =2× 3√22=3 √2 故答案为:C .6.已知二次函数y =﹣2ax 2+ax ﹣4(a >0)图象上三点A (﹣1,y 1)、B (1,y 2)、C (2,y 3),则y 1,y 2,y 3的大小关系为( ) A .y 1<y 3<y 2 B .y 3<y 1<y 2 C .y 1<y 2<y 3 D .y 2<y 1<y 3 【答案】B【解析】∵y =﹣2ax 2+ax ﹣4(a >0),∴抛物线的开口向下,对称轴为直线x =﹣a 2×(−2a)=14, ∴当x >14时,y 随x 的增大而减小,∵点A (﹣1,y 1)关于对称轴的对称点是(32,y 1),而1<32<2,∴y 3<y 1<y 2. 故答案为:B.7.如图,扇形AOB 圆心角为直角,OA =10,点C 在AB⌢上,以OA ,CA 为邻边构造▱ACDO ,边CD 交OB 于点E ,若OE =8,则图中两块阴影部分的面积和为( )A .10π﹣8B .5π﹣8C .25π﹣64D .50π﹣64【答案】C【解析】连接OC .∵四边形OACD 是平行四边形, ∴OA ∥CD ,∴∠OEC+∠EOA =180°, ∵∠AOB =90°, ∴∠OEC =90°,∴EC =√OC 2−OE 2=√102−62 =8,∴S 阴=S 扇形AOB ﹣S 梯形OECA = 90π×102360−12×(6+10)×8=25π﹣64. 故答案为:C.8.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则sinB 的值为( )A .45B .35C .43D .23【答案】B【解析】过点C 作CD ⊥AB 于点D ,AB= √22+42= 2 √5 ,BC= √22+12=√5 ,∵S △ABC = 12 ×3×2= 12 ×2 √5 ×CD , ∴CD= 3√55,∴sinB= CD BC =3√55√5=35 . 故答案为:B.9.已知二次函数y =ax 2+bx +c −2(a ≠0)的图像如图所示,顶点为(−1,0)则下列结论: ①abc <0;②b 2−4ac =0; ③a <−2;④4a −2b +c <0. 其中正确结论的个数是( )A .1B .2C .3D .4 【答案】C【解析】∵二次函数y =ax 2+bx +c −2开口向下,顶点坐标(−1,0)∴a <0 ,−b2a=−1;∴b =2a <0当x =0时,由图像可知:y =c −2<−2 故c <0∴abc <0 ;①符合题意;∵该抛物线的图像与x 轴仅有一个交点(−1,0)∴关于x 的方程ax 2+bx +c −2=0有两个相等的实数根; ∴b 2−4a(c −2)=0;②不符合题意;由图像可知:关于x 的方程ax 2+bx +c −2=0的实数根为:x 1=x 2=−1 ∴a −b +c −2=0将b =2a 代入得:a =c −2<−2 ;③符合题意; 当x =−2时,y =4a −2b +c −2由图像对称性可知:4a −2b +c −2=c −2<−2 ∴4a −2b +c <0;④符合题意; 故答案为:C . 10.如图,点 A 1、A 2、A 3、A 4 在射线 OA 上,点 B 1、B 2、B 3 在射线 OB 上,且 A 1B 1//A 2B 2//A 3B 3 , A 2B 1//A 3B 2//A 4B 3 .若 △A 2B 1B 2、△A 3B 2B 3 的面积分别为1,4,则图中三个阴影三角形面积之和为 ( )A .8B .9C .10D .10.5【答案】D【解析】由已知得: △B 1A 2B 2~△B 2A 3B 3,S △B 1A 2B 2S △B 2A 3B 3=14 ,∴B 1B 2B 2B 3=12,∴A 1B 1A 2B 2=A 1A 2A 2A 3=B 1B 2B 2B 3=12 ,设 A 1B 1,A 2B 2 之间的距离为h ,则: 12A 2B 2·ℎ=1 ,∴A 2B 2=2ℎ,∴A 1B 1=12A 2B 2=1ℎ,∴S △A 1B 1A 2=12A 1B 1·ℎ=12×1ℎ×ℎ=12,∴S △A 2B 2A 3=S △A 1B 1A 2÷(A 1A 2A 2A 3)2=12÷14=2 ,同理有 S △A 3B 3A 4=S △A 2B 2A 3÷14=2×4=8 ,∴图中三个阴影三角形面积之和为:S△A1B1A2+S△A2B2A3+S△A3B3A4=12+2+8=10.5,故答案为:D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.若扇形的弧长为34π,圆心角为45°,则该扇形的半径为.【答案】3【解析】设扇形所对应圆的半径为R,由扇形的面积公式,有:12×34πR=45°πR2360°解得R=3.故答案为:3.12.如图,甲,乙两个转盘分别被三等分、四等分,各转动一次,停止转动后,将指针指向的数字分别记为a,b,使抛物线y=ax2−2x+b与x轴有公共点的概率为.【答案】112【解析】若抛物线y=ax2−2x+b与x轴有公共点,则令y=0,得到抛物线对应的一元二次方程ax2−2x+b=0有实根,∴Δ=(−2)2−4ab≥0,解得ab≤1,画树状图得:由树状图知:一共有12种等可能的结果,其中满足ab≤1的有1种结果,∴使抛物线y=ax2−2x+b与x轴有公共点的概率为:112,故答案为:112.13.如图,将三角形纸片ABC折叠,使点B、C都与点A重合,折痕分别为DE、FG.已知∠ACB=15°,AE=EF,DE=√3,则BC的长为.【答案】4+2√3【解析】∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AF=FC,∠FAC=∠C=15°,∴∠AFE=30°,又AE=EF,∴∠EAF=∠AFE=30°,∴∠AEB=60°,∴△ABE是等边三角形,∠AED=∠BED=30°,∴∠BAE=60°,∵DE= √3,∴AE=BE=AB=DEcos30°=2,∴BF=BE+EF=4,∠BAF=60°+30°=90°,∴FC=AF= √BF 2−AB 2 = 2√3 , ∴BC=BF+FC= 4+2√3 , 故答案为: 4+2√3 .14.在半径为5的圆内放置正方形ABCD ,E 为AB 的中点,EF ⊥AB 交圆于点F ,直线DC 分别交圆于点G ,H ,如图所示.若AB =4,EF =DG =CH ,则GH 的长为 .【答案】4√2+4【解析】∵四边形ABCD 是正方形, ∴AB ∥CD ,∠BCD =90°, ∴∠FBE =∠H ,∠BCH =180°﹣90°=90°, ∵EF ⊥AB , ∴∠FEB =90°, ∴∠FEB =∠BCH , ∴△FEB ∽△BCH , ∴EF BC =BE CH∵AB =4,E 为AB 的中点, ∴BE =2, ∴EF 4=2CH ∴EF•CH =8, ∵EF =CH , ∴EF 2=8,∴EF =2 √2 或EF =﹣2 √2 (舍去), ∴EF =DG =CH =2 √2 ,∴GH =DG+DC+CH =2 √2 +4+2 √2 =4 √2 +4. 故答案为:4√2+4.15.如图1,一张矩形纸片ABCD ,点E 、F 分别在AB ,CD 上,点G ,H 分别在AF 、EC 上,现将该纸片沿AF ,GH ,EC 剪开,拼成如图2所示的矩形,已知DF :AD =5:12,GH =6,则AD 的长是 .【答案】10【解析】如图,设DF =5x ,依题意得AD =12x ,AF =√AD 2+DF 2=13x ,在图2中∵∠CHA =∠FDA =90°,∠CAH =∠FAD ∴△ADF ∽△AHC ∴AD AH =DF HC =AF AC ,∴12x 6+12x =5x HC =13xFC+13x, ∴HC =5x +52,FC =132,∴拼成如图2所示的矩形面积=AH ×HC =(12x +6)(5x +52)=60(x +12)2,在图1中CD =DF +FC =5x +132,原矩形面积=AD ×DC =12x(5x +132)∴60(x +12)2=12x(5x +132)解得x =56∴AD =12x =12×56=10 故答案为:10.16.如图,在Rt △ABC 中,∠ACB=90°,AC<BC ,CD 平分∠ACB 交AB 于点D ,以DB 为直径作⊙O ,分别交CD ,BC 于点E ,F ,连结BE ,EF .则∠EBF= 度;若DE=DC , BC=8,则EF 的长为【答案】45;2√5【解析】连接DF ,过点E 作EG ⊥BC 于点G ,∵BD 是直径, ∴∠CEB=90°, ∵∠ACB=90°,CD 平分∠ACD , ∴∠DCF=12∠ACB=45°,∴∠EBF=90°-∠DCF=90°-45°=45°;∵BD 是直径, ∴∠DFG=90°, ∴DF ⊥BC , ∴DF ∥FG , ∵DE=DC , ∴CF=FG ,∵∠FCG=∠EBC=45°, ∴EC=BE ,在Rt △CEB 中,∠EBC=45°,BC=8,∴BE=CBsin ∠EBC=8sin45°=8×√22=4√2; 在Rt △EBG 中EG=CG=BEsin ∠EBC=4√2sin45°=4√2×√22=4,∴FG=CG-4, ∴FG=2在Rt △EFG 中EF =√FG 2+EG 2=√22+42=2√5. 故答案为:45,,2√5三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.一个袋中装有3个红球,5个白球,7个黑球,每个球除颜色外其余完全相同. (1)求从袋中随机摸出一个球是白球的概率;(2)从袋中摸出3个白球和a 个红球,再从剩下的球中摸出一个黑球的概率为710,求a 的值.【答案】(1)解:由题意,袋中球的总数为:3+5+7=15(个),其中5个白球,因此从袋中随机摸出一个球是白球的概率为:515=13.(2)解:摸出3个白球和a 个红球后,袋中球的总数为:15−a −3=12−a (个),其中7个黑球,∵从剩下的球中摸出一个黑球的概率为710,∴712−a =710,去分母,化为整式方程得 :10=12−a ,解得a =2.经检验,a =2是原方程的解.故a 的值为2.18.如图, AB 是 ⊙O 的直径,点 C 为圆上一点,点 D 为 CAB ⌢ 的中点,连结 AD ,作 DE ⊥AB交 BC 的延长线于点 E .(1)求证: DE =EB .(2)连结 DO 并延长交 BC 于点 F ,若 CF =2CE , BD =5 ,求 ⊙O 的半径.【答案】(1)证明:∵点D 为 CAB⌢ 的中点, ∴DC⌢=DB ⌢ , ∴∠DBC=∠A , ∵AB 为直径, ∴∠ADB=90°, ∵DE ⊥AB ,∴∠A+∠DBA=∠EDB+∠DBA=90°, ∴∠A=∠EDB , ∴∠DBC=∠EDB , ∴DE=EB ;(2)解:如图:∵D 为 CAB⌢ 的中点, ∴DF ⊥BC ,CF=BF , ∵CF=2CE ,设CE=x ,CF=BF=2x ,则DE=EB=5x ,DF=4x , 在Rt △DFB 中, DF 2+BF 2=BD 2,即16x 2+4x 2=52,解得:x= √52,∴BF= √5 ,DF=2 √5 , DF BD =2√55,∵∠A=∠EDB=∠DBF ,∴sinA=sin ∠DBF =DF DB =2√55,∴DB 2r =2√55, ∴r =5√54.答:半径是 5√54.19.已知:如图,在梯形ABCD 中,AD//BC ,∠BCD=90º,对角线AC 、BD 相交于点E ,且AC ⊥BD .(1)求证: ;(2)点F 是边BC 上一点,联结AF ,与BD 相交于点G .如果∠BAF=∠DBF ,求证:.【答案】(1)证明:∵AD//BC ,∠BCD=90º,∴∠ADC=∠BCD=90º.又∵AC ⊥BD ,∴∠ACD+∠ACB=∠CBD+∠ACB=90º.∴∠ACD=∠CBD .∴△ACD ∽△DBC .∴AD CD =CD BC,即CD 2=BC ×AD (2)证明:∵AD//BC ,∴∠ADB=∠DBF .∵∠BAF=∠DBF ,∴∠ADB=∠BAF .∵∠ABG=∠DBA ,∴△ABG ∽△DBA .∴AG AD =AB BD .两边同时平方得: AG 2AD 2=AB 2BD2 .又由于△ABG ∽△DBA ,∴BG AB =AB BD.∴AB 2=BG ×BD .∴AG 2AD 2=AB 2BD 2=BG×BD BD2=BG BD 20.如图,一个书架上放着8个完全一样的长方体档案盒,其中左边7个档案盒紧贴书架内侧竖放,右边一个档案盒自然向左斜放,档案盒的顶点 D 在书架底部,顶点 F 靠在书架右侧,顶点 C 靠在档案盒上,若书架内侧长为 60cm , ∠CDE =53° ,档案盒长度 AB =35cm .(参考数据:sin53°≈0.80 , cos53°≈0.60 , tan53°≈0.75 )(1)求点 C 到书架底部距离 CE 的长度; (2)求 ED 长度;(3)求出该书架中最多能放几个这样的档案盒. 【答案】(1)解:∵∠CED=90°,∠CDE=53°,CD=AB=35cm ,∴sin53°=CE CD, ∴CE≈35×0.80=28cm ; (2)解:∵∠CED=90°,∠CDE=53°,CD=AB=35cm ,∴cos53°=DE CD, ∴DE≈35×0.60=21cm ; (3)解:如图,∵BG=60cm ,BE=AB=35cm ,DE=21cm , ∴DG=4cm , ∵∠CDE=53°, ∴∠FDG=37°, ∴∠DFG=53°,∴DF=DG sin53°≈40.8sin53°=5cm , ∴60÷5=12, ∴该书架中最多能放12个这样的档案盒.21.如图,抛物线y =x 2+bx +c 与x 轴交于A (-1,0)和B (3,0)两点,交y 轴于点E .(1)求此抛物线的解析式;(2)若直线y =x +1与抛物线交于A ,D 两点,求点A ,D 的坐标; (3)请直接写出当一次函数值小于二次函数值时,x 的取值范围. 【答案】(1)解:∵ 抛物线y =x 2+bx +c 与x 轴交于A (-1,0)和B (3,0)两点,∴{1−b +c =09+3b +c =0,整理得{−b +c =−13b +c =−9 解得:{b =−2c =−3所以抛物线为:y =x 2−2x −3(2)解:由题意得:{y =x +1y =x 2−2x −3∴x 2−2x −3=x +1,整理得:x 2−3x −4=0, 解得:x 1=−1,x 2=4, 当x 1=−1, 则y 1=0,当x 2=4, 则y 2=5,所以方程组的解为:{x =−1y =0或{x =4y =5,所以两个函数的交点坐标为:A(−1,0),D(4,5), (3)x <−1或x >4 【解析】(3)当一次函数值小于二次函数值时, 则一次函数的图象在二次函数的图象的下方, 此时:x <−1或x >4. 22.问题探究(1)如图1,已知锐角△ABC 中,点D 在BC 边上,当线段AD 最短时,请你在图中画出点D 的位置.(2)若一个四边形的四个顶点分别在一个三角形的三条边上,则称这个四边形为该三角形的内接四边形.如图2,在Rt △ABC 中,AB =6,BC =8,∠B =90°.矩形BEFG 是△ABC 的内接矩形,若EF =2,则矩形BEFG 的面积为 . 如图3,在△ABC 中,AB =6 √2 ,BC =8,∠B =45°,矩形DEFG 是△ABC 的一个内接矩形且D 、E 在边BC 上.若EF =2,求矩形DEFG 的面积; 问题解决:(3)如图4,△ABC 是一块三角形木板余料,AB =6,BC =8,∠B =30°,木匠师傅想利用它裁下一块矩形DEFG 木块,矩形DEFG 是△ABC 的一个内接矩形且D 、E 在边BC 上,请在图4中画出对角线DF 最短的矩形DEFG ,请说明理由,并求出此时DF 的长度. 【答案】(1)解:在图1中,过点A 作AD ⊥BC 于点D(2)解:在图2中,∵四边形BEFG 为矩形, ∴EF ∥AB , ∴△CEF ∽△CBA , ∴ = ,即=, ∴CE =, ∴BE =BC ﹣CE =, ∴S 矩形BEFG =BE•EF =×2=. 故答案为: . 在图3中,过点A 作AM ⊥BC 于点M ,则AM = AB =6, 同理可得出:△BDG ∽△BMA ,△CEF ∽△CMA , ∴ = , = ,即 = ,=, ∴BD =BM ,CE =CM , ∴DE =BC ﹣BD ﹣CE =BC =,∴S 矩形BEFG =DE•EF =×2=(3)解:在图4中,过点A 作AN ⊥BC 于点N ,则AN = 12AB =3.设EF =x (0<x <3),由(2)可知:DE =BC ﹣ EF AN •BC =8﹣ 8x 3 = 83(3﹣x),∴DF 2=DE 2+EF 2, = 649 (3﹣x )2+x 2,= 739 x 2﹣ 1283x+64,= 739 (x ﹣ 19273 )2+ 57673 .∵739>0, ∴当x = 19273 时,DF 2取最小值,最小值为 57673,∴DF 的最小值为 24√7373.23.如图,已知抛物线与x 轴交于A 、B 两点,其中A (﹣1,0),顶点C (1,﹣1),点E 为对称轴上点,D 、F 为抛物线上点(点D 位于对称轴左侧),且四边形CDEF 为正方形.(1)求该抛物线的解析式; (2)求正方形CDEF 面积;(3)如图2、图3,连接DF ,且与CE 交于点M ,与y 轴交于点N ,点P 为抛物线上位于DF 下方的点,点Q 为直线BN 上点,当△MPQ 是以点M 为直角顶点的等腰直角三角形时,求点P 坐标. 【答案】(1)解:∵抛物线的顶点为C(1,−1),设该抛物线的解析式为y =a(x −1)2−1,将A(−1,0)代入y =a(x −1)2−1中,解得a =14,∴该抛物线的解析式为y =14(x −1)2−1,即y =14x 2−12x −34.(2)解:如图1,过点F作FR⊥EC,垂足为R,设F点的坐标为(t,14t2−12t−34),则R点的坐标为(1,14t2−12t−34),∴RC=14t2−12t+14,RF= t−1.∵四边形CDEF是正方形,∴RF=RC,∴14t2−12t+14=t−1,解得t=1(舍去)或t=5,∴F(5,3),RF=5−1=4,∴CF2=2RF2=32,∴正方形CDEF的面积是32.(3)解:由题可知,B(3,0),N(0,3),M(1,3),∴直线BN的解析式为y=﹣x+3,设Q点的坐标为(m,3﹣m),①如图2,当Q点在直线DF下方时,过点Q作QG⊥DF交于点G,作PT⊥DF交于点T,∴∠MTP=∠QGM= 90°.∵△PQM是等腰直角三角形,∴∠TMP+∠GMQ=90°,∠TMP+∠MPT=90°,∴∠MPT=∠GMQ,∵MP=MQ,∴△MTP≌△QGM(AAS),∴MG=PT,MT=GQ,∴PT=MG=m﹣1,MT=GQ=m,∴P(1﹣m,4﹣m),∵P点在抛物线上,∴4﹣m=14(1﹣m)2﹣12(1﹣m)﹣34,解得m=﹣2±2√6,∵m>0,∴m=﹣2+2√6,∴P(3﹣2√6,6﹣2√6);②如图3,当Q点在直线DF上方时,过点Q作QS⊥ME交于S点,过点P作PK⊥ME交于K点,∴∠QSM=∠MKP=90°.∵△PQM是等腰直角三角形,∴∠QMS+∠MQS=90°,∠QMS+∠PMK=90°,∴∠MQS =∠PMK.∵MQ=MP,∴△QMS≌△MPK(AAS),∴QS=MK,MS=PK,∵QS=1﹣m=MK,SM=PK=﹣m,∴P(m+1,m+2),∵P点在抛物线上,∴2+m=14(1+m)2﹣12(1+m)﹣34,解得m=﹣2或m=6,∵m<0,∴m=﹣2,∴P(﹣1,0);综上所述:当△MPQ是以点M为直角顶点的等腰直角三角形时,点P坐标为(﹣1,0)或(3﹣2√6,6﹣2√6).24.如图,在⊙O中,AB为直径,P为AB上一点,PA=1,PB=m(m为常数,且m>0).过点P的弦CD⊥AB,Q为BC⌢上一动点(与点B不重合),AH⊥QD,垂足为H.连接AD、BQ.(1)若m=3.①求证:∠OAD=60°;②求BQDH的值;(2)用含m的代数式表示BQDH,请直接写出结果;(3)存在一个大小确定的⊙O,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值,求此时∠Q的度数.【答案】(1)解:①如图,连接OD,则OA=OD∵AB=PA+PB=1+3=4∴OA= 12AB=2∴OP=AP=1即点P是线段OA的中点∵CD⊥AB∴CD垂直平分线段OA∴OD=AD∴OA=OD=AD即△OAD是等边三角形∴∠OAD=60°②连接AQ∵AB是直径∴AQ⊥BQ根据圆周角定理得:∠ABQ=∠ADH,∴cos∠ABQ=cos∠ADH∵AH⊥DQ在Rt△ABQ和Rt△ADH中cos∠ABQ=BQAB=cos∠ADH=DHAD∴BQDH=ABAD∵AD=OA=2,AB=4∴BQDH=ABAD=42=2(2)解:连接AQ、BD与(1)中的②相同,有BQDH=ABAD∵AB是直径∴AD⊥BD∴∠DAB+∠ADP=∠DAB+∠ABD=90°∴∠ADP=∠ABD∴Rt△APD∽Rt△ADB∴PAAD=ADAB∵AB=PA+PB=1+m∴AD=√PA·AB=√1+m∴BQDH=ABAD=1+m√1+m=√1+m(3)解:由(2)知,BQDH=√1+m∴BQ= √1+m·DH即BQ2=(1+m)DH2∴BQ2﹣2DH2+PB2= (1+m)DH2−2DH2+m2=(m−1)DH2+m2当m=1时,BQ2﹣2DH2+PB2是一个定值,且这个定值为1,此时PA=PB=1,即点P与圆心O重合∵CD⊥AB,OA=OD=1∴△AOD是等腰直角三角形∴∠OAD=45°∵∠OAD与∠Q对着同一条弧∴∠Q=∠OAD=45°故存在半径为1的圆,对于点Q的任意位置,都有BQ2﹣2DH2+PB2的值是一个定值1,此时∠Q的度数为45.。
2025届上海市徐汇区名校九年级数学第一学期期末达标检测模拟试题含解析
2025届上海市徐汇区名校九年级数学第一学期期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.如图,AD是半圆的直径,点C是弧BD的中点,∠BAD=70°,则∠ADC等于()A.50°B.55°C.65°D.70°2.如图,数轴上的点可近似表示(3630)6+÷的值是()A.点A B.点B C.点C D.点D3.全等图形是相似比为1的相似图形,因此全等是特殊的相似,我们可以由研究全等三角形的思路,提出相似三角形的问题和研究方法.这种其中主要利用的数学方法是()A.代入法B.列举法C.从特殊到一般D.反证法4.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为()A.2B.3C.6 D.85.下列方程是一元二次方程的是()A.2x﹣3y+1 B.3x+y=z C.x2﹣5x=1 D.x2﹣1x+2=06.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴正半轴上,点A与原点重合,点D的坐标是(3,4),反比例函数y=kx(k≠0)经过点C,则k的值为()A .12B .15C .20D .32 7.如图,已知,点是的中点,,则的长为( )A .2B .4C .D .8.下列说法错误的是( ) A .必然事件的概率为1B .心想事成,万事如意是不可能事件C .平分弦(非直径)的直径垂直弦D .16的平方根是2±9.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .410.某超市花费1140元购进苹果100千克,销售中有5%的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为x 元/千克,根据题意所列不等式正确的是( ) A .()10015%1140x -B .()10015%1140x ->C .()10015%1140x -<D .()10015%1140x -11.已知,8,6ABC A B C AB A B ∆∆'''=''=∽,则BCB C =''( ) A .2B .43C .3D .16912.已知四边形ABCD 中,对角线AC ,BD 相交于点O ,且OA OB OC OD ===,则下列关于四边形ABCD 的结论一定成立的是( ) A .四边形ABCD 是正方形 B .四边形ABCD 是菱形 C .四边形ABCD 是矩形D .12ABCD S AC BD =⋅四边形 二、填空题(每题4分,共24分)13.已知y 是x 的反比例函数,当x >0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式 .14.已知()213A a +,,()533B b --,关于原点对称,则a b +=__________. 15.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________. 16.方程x 2=1的解是_____.17.如果关于x 的方程2690kx x -+=有两个相等的实数根,那么k 的值为________,此时方程的根为_______. 18.如图,反比例函数ky x=的图象位于第一、三象限,且图象上的点与坐标轴围成的矩形面积为2,请你在第三象限的图象上取一个符合题意的点,并写出它的坐标______________.三、解答题(共78分)19.(8分)用一段长为30m 的篱笆围成一个边靠墙的矩形菜园,墙长为18m (1)若围成的面积为72m 2,球矩形的长与宽; (2)菜园的面积能否为120m 2,为什么?20.(8分)如图,为了测量上坡上一棵树PQ 的高度,小明在点A 利用测角仪测得树顶P 的仰角为45︒,然后他沿着正对树PQ 的方向前进10m 到达点B 处,此时测得树顶P 和树底Q 的仰角分别是60︒和30.设PQ AB ⊥,且垂足为C .求树PQ 的高度(结果精确到0.1m 3 1.7≈).21.(8分)某水产品养殖企业为指导该企业某种产品的养殖和销售,对历年市场行情和水产品的养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式138y x =-+36,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示:(1)试确定b 、c 的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式; (3)几月份出售这种水产品每千克利润最大?最大利润是多少?22.(10分)如图,AB 是⊙O 的直径,P 、C 是圆周上的点,PA PC =,弦PC 交AB 于点D .(1)求证:A C ∠=∠; (2)若OD DC =,求A ∠的度数.23.(10分)一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x ,小颖在剩下的3个球中随机摸出一个小球记下数为y ,这样确定了点P 的坐标(x ,y ).(1)小红摸出标有数3的小球的概率是 .(2)请你用列表法或画树状图法表示出由x ,y 确定的点P (x ,y )所有可能的结果. (3)求点P (x ,y )在函数y =﹣x+5图象上的概率.24.(10分)(1)已知关于x 的一元二次方程x 2+(a +3)x +a +1=1.求证:无论a 取何值,原方程总有两个不相等的实数根:(2)已知:二次函数y =ax 2+bx +c (a ≠1)中的x 和y 满足下表: x … ﹣1 1 1 2 3 … y…31﹣11m…①观察上表可求得m 的值为 ; ②试求出这个二次函数的解析式.25.(12分)如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,点O 是边AC 的中点. (1)在图1中,将△ABC 绕点O 逆时针旋转n °得到△A 1B 1C 1,使边A 1B 1经过点C .求n 的值. (2)将图1向右平移到图2位置,在图2中,连结AA 1、AC 1、CC 1.求证:四边形AA 1CC 1是矩形;(3)在图3中,将△ABC 绕点O 顺时针旋转m °得到△A 2B 2C 2,使边A 2B 2经过点A ,连结AC 2、A 2C 、CC 2. ①请你直接写出m 的值和四边形AA 2CC 2的形状; ②若AB =,请直接写出AA 2的长.26.ABC 在平面直角坐标系中的位置如图所示.()1在图中画出ABC 关于y 轴对称的图形111A B C △,并写出顶点111A B C 、、的坐标;()2将111A B C △向下平移3个单位长度,再向左平移1个单位长度得到222A B C△,画出平移后的222A B C △,并写出顶点2C 的坐标.参考答案一、选择题(每题4分,共48分)1、B【解析】连接BD,根据直径所对的圆周角为直角可得∠ABD=90°,即可求得∠ADB=20°,再由圆内接四边形的对角互补可得∠C=110°,因BC CD=,即可得BC=DC,根据等腰三角形的性质及三角形的内角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.【详解】解:连接BD,∵AD是半圆O的直径,∴∠ABD=90°,∵∠BAD=70°,∴∠C=110°,∠ADB=20°,∵BC CD=,∴BC=DC,∴∠BDC=∠DBC=35°,∴∠ADC=∠ADB+∠BDC=55°.故选B.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、等腰三角形的性质及三角形的内角和定理等知识,熟练运用相关知识是解决问题的关键.2、C【分析】先把代数式进行化简,然后进行无理数的估算,即可得到答案.=+,【详解】解:(3630)635<<,∵253<+<,∴5356∴点C符合题意;故选:C.【点睛】本题考查了二次根式的化简,无理数的估算,解题的关键是掌握运算法则,正确的进行化简.3、C【分析】根据全等是特殊的相似,即可得到“提出相似三角形的问题和研究方法”是从特殊到一般.【详解】∵全等图形是相似比为1的相似图形,全等是特殊的相似,∴由研究全等三角形的思路,提出相似三角形的问题和研究方法,是从特殊到一般的数学方法.故选C.【点睛】本题主要考查研究相似三角形的数学方法,理解相似三角形和全等三角形的联系,是解题的关键.4、B【分析】连接OA,OC,利用内接四边形的性质得出∠D=60°,进而得出∠AOC=120°,利用含30°的直角三角形的性质解答即可.【详解】连接OA,OC,过O作OE⊥AC,∵四边形ABCD是⊙O的内接四边形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=3∴AC=3故选:B.【点睛】此题考查内接四边形的性质,关键是利用内接四边形的性质得出∠D=60°.5、C【分析】根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.逐一判断即可.【详解】解:A、它不是方程,故此选项不符合题意;B、该方程是三元一次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;D、该方程不是整式方程,故此选项不符合题意;故选:C.【点睛】此题主要考查了一元二次方程定义,一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.6、D【分析】分别过点D,C作x轴的垂线,垂足为M,N,先利用勾股定理求出菱形的边长,再利用Rt△ODM≌Rt△BCN 得出BN=OM,则可确定点C的坐标,将C点坐标代入反比例函数解析式中即可求出k的值.【详解】如图,分别过点D,C作x轴的垂线,垂足为M,N,∵点D的坐标是(3,4),∴OM=3,DM=4,在Rt△OMD中,OD2222345OM DM+=+=∵四边形ABCD为菱形,∴OD=CB=OB=5,DM=CN=4,∴Rt△ODM≌Rt△BCN(HL),∴BN=OM=3,∴ON=OB+BN=5+3=8,又∵CN=4,∴C(8,4),将C(8,4)代入k yx =得,k=8×4=32,故选:D.【点睛】本题主要考查勾股定理,全等三角形的性质,待定系数法求反比例函数的解析式,掌握全等三角形的性质及待定系数法是解题的关键.7、C【分析】根据相似三角形的性质列出比例式求解即可.【详解】解:∵点是的中点,,,∴AD=2,∵,∴∴∴AB=,故选C.【点睛】本题考查了相似三角形的性质,能够根据相似三角形列出比例式是解答本题的关键,难度不大.8、B【分析】逐一对选项进行分析即可.【详解】A. 必然事件的概率为1,该选项说法正确,不符合题意;B. 心想事成,万事如意是随机事件,该选项说法错误,符合题意;C. 平分弦(非直径)的直径垂直弦,该选项说法正确,不符合题意;D. 162 ,该选项说法正确,不符合题意;故选:B.【点睛】本题主要考查命题的真假,掌握随机事件,垂径定理,平方根的概念是解题的关键.9、B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0), ∴A (3,0),故当y >0时,﹣1<x <3,故④正确. 故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键. 10、A【分析】根据“为避免亏本”可知,总售价≥总成本,列出不等式即可. 【详解】解:由题意可知:()10015%1140x - 故选:A. 【点睛】此题考查的是一元一次不等式的应用,掌握实际问题中的不等关系是解决此题的关键. 11、B【解析】直接利用相似三角形的性质求解. 【详解】∵△ABC ∽△A′B′C′, ∴````AB BCA B B C = 又∵AB =8,A ’B ’=6, ∴BC B C ''=43. 故选B. 【点睛】此题考查相似三角形的性质,难度不大 12、C【分析】根据OA=OB=OC=OD ,判断四边形ABCD 是平行四边形.然后根据AC=BD ,判定四边形ABCD 是矩形. 【详解】OA OB OC OD ===,∴四边形ABCD 是平行四边形且AC BD =,ABCD ∴是矩形,题目没有条件说明对角线相互垂直, ∴A 、B 、D 都不正确; 故选:C 【点睛】本题是考查矩形的判定方法,常见的又3种:①一个角是直角的四边形是矩形;②三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.二、填空题(每题4分,共24分)13、y=(x >0)【解析】试题解析:只要使反比例系数大于0即可.如y=1x(x >0),答案不唯一. 考点:反比例函数的性质.14、1【分析】根据点(x ,y )关于原点对称的点是(-x ,-y )列出方程,解出a ,b 的值代入+a b 计算即可. 【详解】解:∵()213A a +,,()533B b --,关于原点对称 ∴215a +=,333b -=-解得2a =,0b =∴2a b +=,故答案为:1.【点睛】本题考查了关于原点对称的点的坐标的特点,熟知点(x ,y )关于原点对称的点是(-x ,-y )是解题的关键. 15、1【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=1故答案为1.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键.16、±1 【解析】方程利用平方根定义开方求出解即可.【详解】∵x 2=1∴x =±1. 【点睛】本题考查直接开平方法解一元二次方程,解题关键是熟练掌握一元二次方程的解法.17、1 123x x ==【分析】根据题意,讨论当k=0时,符合题意,当0k ≠时,一元二次方程有两个相等的实数根即240b ac -=,据此代入系数,结合完全平方公式解题即可.【详解】当k=0,方程为一元一次方程,没有两个实数根,故0k ≠关于x 的方程2690kx x -+=有两个相等的实数根,240∴-=b ac即364901k k -⨯=∴=,2690x x ∴-+=即2(3)0x -= 123x x ∴==故答案为:1;123x x ==.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.18、满足2y x=的第三象限点均可,如(-1,-2) 【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值,即S=|k|.【详解】解:∵图象上的点与坐标轴围成的矩形面积为2,∴|k|=2,∴反比例函数y=k x的图象在一、三象限,k >0,∴k=2, ∴此反比例函数的解析式为2y x=. ∴第三象限点均可,可取:当x=-1时,y=-2 综上所述,答案为:满足2y x=的第三象限点均可,如(-1,-2) 【点睛】本题考查的是反比例函数系数k 的几何意义,即过反比例函数图象上任意一点向两坐标轴引垂线,所得矩形的面积为|k|.三、解答题(共78分)19、(1)矩形的长为12米,宽为6米;(2)面积不能为120平方米,理由见解析【分析】(1)设垂直于墙的一边长为x 米,则矩形的另一边长为(30﹣2x )米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【详解】解:(1)设垂直于墙的一边长为x 米,则x (30﹣2x )=72,解方程得:x 1=3,x 2=12.当x =3时,长=30﹣2×3=24>18,故舍去,所以x =12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则x (30﹣2x )=120,整理得即x 2﹣15x +60=0,△=b 2﹣4ac =152﹣4×60=﹣15<0,方程无实数解,故面积不能为120平方米.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程求解.20、15.7米【分析】设CQ x =,在Rt △BCQ 中可得3BC x =,然后在Rt △PBC 中得3=PC x ,进而得到PQ=2x ,3AC x =,然后利用AC AB BC =+建立方程即可求出x ,得到PQ 的高度.【详解】解:设CQ x =,∵在Rt △BCQ 中,30∠=︒QBC , ∴3tan30==︒CQ BC x 又∵在Rt △PBC 中,60PBC ∠=︒, ∴tan 60333=︒⋅==PC BC x x∴2=-=PQ PC CQ x ,又∵45A ∠=︒,∴3==AC PC x∵10AC AB BC =+=+∴103x +=,解得:(533x +=∴(103215.73+==≈PQ x m【点睛】 本题考查了解直角三角形的应用,熟练利用三角函数解直角三角形是解题的关键.21、(1)158=-b ,592=c ;(2)21313822y x x =++;(3)6月份出售这种水产品每千克利润最大,最大利润是每千克11元.【分析】(1)把图中的已知坐标代入解析式,解方程组求出b ,c 即可;(2)由题意得12y y y =-,化简函数关系式即可;(3)已知y 与x 的函数关系式,用配方法化为顶点式,根据抛物线的性质即可求出最大值.【详解】解:(1)根据图象,将(3,25)和(4,24)分别代入解析式2218=++y x bx c 得: 932582424b c b c ⎧++=⎪⎨⎪++=⎩ 解得:158=-b ,592=c ; (2)由题意得:12y y y =-, ∴223115591313368882822y x x x x ⎛⎫⎛⎫=-+--+=++ ⎪ ⎪⎝⎭⎝⎭ (3)将21313822y x x =++化为顶点式得:21(6)118=--+y x , ∵108=-<a , ∴抛物线开口向下,∴当6x =时,二次函数取得最大值,此时y =11,所以6月份出售这种水产品每千克利润最大,最大利润是每千克11元。
九年级数学上期末模拟试题(一)及答案
九年级数学上学期期末模拟测试题(一)班级 姓名 得分一、选择题(每小题3分,共30分)1.下列关于x 的方程中,是一元二次方程的为( ) A .221xx +B .02=++c bx ax C .()()121=+-x x D .052322=--y xy x2.下列几个图形是国际通用的交通标志,其中不是中心对称图形的是( )A B C D3.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A.23(1)2y x =-- B. 23(1)2y x =+- C. 23(1)2y x =++ D. 23(1)2y x =-+4.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如下图),从中 任意一张是数字3的概率是( ) A 、61 B 、31 C 、21 D 、325.⊙O 的半径r =5 cm ,圆心到直线l 的距离OM =4 cm ,在直线l 有一点P ,且PM =3 cm ,则点P ( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .可能在⊙O 上或在⊙O 内 6.反比例函数xky =的图象如下图所示,点M 是该函数图象上一点,MN 垂直于x 轴, 垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-47. 图甲是某零件的直观图,则它的主视图为( )BC8.如下图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )9.小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( ) A .9米 B .28米 C .()37+米 D.()3214+米 10.函数y=与y=﹣kx 2+k (k≠0)在同一直角坐标系中的图象可能是B二、填空题(每小题3分,共30分)11.方程(2x-1)(3x+1)=x 2+2化为一般形式为____________ ,其中a =__ _,b =__ __, c =____.12.方程 x 2= x 的解是______________________13.若点A (-2,a )关于y 轴的对称点是B (b ,-3),则b a的值是________.14.如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为15.正六边形的外接圆的半径与内切圆的半径之比为 .16.若方程kx 2–6x+1=0有两个实数根,则k 的取值范围是 .17.已知一条弧的长是3π厘米, 弧的半径是6厘米,则这条弧所对的圆心角是 度. 18.如上图(右),在Rt △ABC 中,∠C=90°,CA=CB=2。
2022-2023学年广东省汕头市潮阳区数学九年级第一学期期末经典模拟试题含解析
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,以点O 为位似中心,把ABC 放大为原图形的2倍得到A B C ''',则下列说法错误的是( )A .ABC ABC '''∽△△B .:1:2CO CA '=C .A ,O ,A '三点在同一直线上D .//AC A C ''2.用配方法解方程x 2+4x+1=0时,方程可变形为 ( )A .()22=5x -B .()22=5x +C .()22=3x +D .()22=3x -51a =+3.如图,将Rt ABC ∆(其中∠B =33°,∠C =90°)绕点A 按顺时针方向旋转到11AB C ∆的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A .22x =-B .66C .114D .1234.下列命题错误的是( )A .对角线互相垂直平分的四边形是菱形B .一组对边平行,一组对角相等的四边形是平行四边形C .矩形的对角线相等D .对角线相等的四边形是矩形5.下列事件中,属于必然事件的是()A.小明买彩票中奖B.投掷一枚质地均匀的骰子,掷得的点数是奇数C.等腰三角形的两个底角相等D.a是实数,0a<6.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B,②AE DEAB BC=,③AD AEAC AB=,使△ADE与△ACB一定相似()A.①②B.②C.①③D.①②③7.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6 B.8 C.10 D.128.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米B.1130米C.1330米D.0.4米9.下列说法正确的是()A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.投掷一枚硬币正面朝上是随机事件D.明天太阳从东方升起是随机事件10.如图,在Rt △ABC 中,∠C =90°,点P 是边AC 上一点,过点P 作PQ ∥AB 交BC 于点Q ,D 为线段PQ 的中点,BD 平分∠ABC ,以下四个结论①△BQD 是等腰三角形;②BQ =DP ;③PA =12QP ;④ABC PCQ S S =(1+CD CQ)2;其中正确的结论的个数( )A .1个B .2个C .3个D .4个 11.在二次函数2y x 2x 1=-++的图像中,若y 随x 的增大而增大,则x 的取值范围是A .x 1<B .x 1>C .x 1<-D .x 1>-12.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC 平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确的是( )A .△AOD ∽△BOCB .△AOB ∽△DOC C .CD =BCD .BC •CD =AC •OA二、填空题(每题4分,共24分) 13.如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC ﹙假定AC >AB ﹚,影长的最大值为m ,最小值为n ,那么下列结论中:①m >AC ;②m =AC ;③n =AB ;④影子的长度先增大后减小.正确的结论序号是_____.﹙直角填写正确的结论的序号﹚.14.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.15.抛物线y =x 2+2x ﹣3的对称轴是_____.16.若1x ,2x 分别是一元二次方程2210x x +-=的两个实数根,则1212x x x x ++=__________.17.如图,已知∠AOB =30°,在射线OA 上取点O 1,以点O 1为圆心的圆与OB 相切;在射线O 1A 上取点O 2,以点O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以点O 3为圆心,O 3O 2为半径的圆与OB 相切……,若⊙O 1的半径为1,则⊙O n 的半径是______________.18.某圆锥的底面半径是2,母线长是6,则该圆锥的侧面积等于________.三、解答题(共78分)19.(8分)如图,在菱形ABCD 中,对角线AC 与BD 相交于点M ,已知BC =5,点E 在射线BC 上,tan ∠DCE =43,点P 从点B 出发,以每秒25个单位沿BD 方向向终点D 匀速运动,过点P 作PQ ⊥BD 交射线BC 于点O ,以BP 、BQ 为邻边构造▱PBQF ,设点P 的运动时间为t (t >0).(1)tan ∠DBE = ;(2)求点F 落在CD 上时t 的值;(3)求▱PBQF 与△BCD 重叠部分面积S 与t 之间的函数关系式;(4)连接▱PBQF 的对角线BF ,设BF 与PQ 交于点N ,连接MN ,当MN 与△ABC 的边平行(不重合)或垂直时,直接写出t 的值.20.(8分)如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数;(2)求证:AE 2=EF•ED ;(3)求证:AD 是⊙O 的切线.21.(8分)如图1,已知抛物线y =﹣x 2+bx +c 交y 轴于点A (0,4),交x 轴于点B (4,0),点P 是抛物线上一动点,试过点P 作x 轴的垂线1,再过点A 作1的垂线,垂足为Q ,连接AP .(1)求抛物线的函数表达式和点C 的坐标;(2)若△AQP ∽△AOC ,求点P 的横坐标;(3)如图2,当点P 位于抛物线的对称轴的右侧时,若将△APQ 沿AP 对折,点Q 的对应点为点Q ′,请直接写出当点Q ′落在坐标轴上时点P 的坐标.22.(10分)已知关于x 的一元二次方程x 2+(2m +3)x +m 2=1有两根α,β(1)求m 的取值范围;(2)若α+β+αβ=1.求m 的值.23.(10分)如图,抛物线与x 轴交于点A 和点()10B ,,与y 轴交于点()0,3C ,其对称轴l 为1x =-,P 为抛物线上第二象限的一个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)当点P 在运动过程中,求四边形PABC 面积最大时的值及此时点P 的坐标.24.(10分)数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为3.3米,宽度均为3.5米.求大树的高度AB.25.(12分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.26.如图,等边三角形ABC放置在平面直角坐标系中,已知A(0,0),B(4,0),反比例函数的图象经过点C.求点C的坐标及反比例函数的解析式.参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用位似图形的性质进而得出答案.【详解】∵以点O 为位似中心,把△ABC 放大为原图形的2倍得到△ABC ,∴△ABC ∽△A′B′C′,A ,O ,A′三点在同一直线上,AC ∥A′C′,无法得到CO :CA′=1:2,故选:B .【点睛】此题考查了位似变换,正确掌握位似图形的性质是解题关键.2、C【解析】根据配方法的定义即可得到答案.【详解】将原式变形可得:x 2+4x +4-3=0,即(x +2)2=3,故答案选C.【点睛】本题主要考查了配方法解一元二次方程,解本题的要点在于将左边配成完全平方式,右边化为常数.3、D【解析】根据直角三角形两锐角互余求出BAC ∠,然后求出1BAB ∠,再根据旋转的性质对应边的夹角1BAB ∠即为旋转角.【详解】解:33∠=︒B ,90C ∠=︒,90903357∴∠=︒-∠=︒-︒=︒BAC B , 点C 、A 、1B 在同一条直线上,180********∴∠'=︒-∠=︒-︒=︒BAB BAC ,∴旋转角等于123︒.故选:D .【点睛】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键.4、D【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【详解】A 、对角线互相垂直平分的四边形是菱形,命题正确,不符合题意;B 、一组对边平行,一组对角相等的四边形是平行四边形,命题正确,不符合题意;C 、矩形的对角线相等,命题正确,不符合题意;D 、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项符合题意.故选:D .【点睛】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.5、C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项.【详解】解:A. 小明买彩票中奖,是随机事件;B. 投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C. 等腰三角形的两个底角相等,是必然事件;D. a是实数,0a<,是不可能事件;故选C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、C【分析】根据相似三角形的判定方法即可一一判断;【详解】解:∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,故①正确,∵∠A=∠A,AD AE AC AB=,∴△AED∽△ABC,故③正确,由②无法判定△ADE与△ACB相似,故选C.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.7、D【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.8、B【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=54,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=54,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴9305240.8a b cbac++=⎧⎪⎪-=⎨⎪=⎪⎩,解得:8154345abc⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,所以解析式为:y=815-x2+43x+45,当x=2.75时,y=13 30,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣1330=1130,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键9、C【解析】试题解析:A. “经过有交通信号的路口遇到红灯”是随机事件, 说法错误.B. 已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误.C. 投掷一枚硬币正面朝上是随机事件,说法正确.D. 明天太阳从东方升起是必然事件.说法错误.故选C.10、C【分析】利用平行线的性质角、平分线的定义、相似三角形的判定和性质一一判断即可.【详解】解:∵PQ∥AB,∴∠ABD=∠BDQ,又∠ABD=∠QBD,∴∠QBD=∠BDQ,∴QB=QD,∴△BQD是等腰三角形,故①正确,∵QD=DF,∴BQ=PD,故②正确,∵PQ∥AB,∴BQBC=PAAC,∵AC与BC不相等,∴BQ与PA不一定相等,故③错误,∵∠PCQ=90°,QD=PD,∴CD=QD=DP,∵△ABC∽△PQC,∴ABC PQC S S =(BC CQ )2=(CQ BQ CQ+)2=(1+CD CQ )2,故④正确, 故选:C .【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.11、A【解析】∵二次函数2y x 2x 1=-++的开口向下,∴所以在对称轴的左侧y 随x 的增大而增大.∵二次函数2y x 2x 1=-++的对称轴是b 2x 12a 2(1)=-=-=⨯-, ∴x 1<.故选A .12、D【分析】直接利用相似三角形的判定方法分别分析得出答案.【详解】解:∵∠DAC=∠DBC ,∠AOD=∠BOC ,∴AOD ∆∽BOC ∆ ,故A 不符合题意;∵AOD ∆∽BOC ∆ ,∴AO :OD=OB :OC ,∵∠AOB=∠DOC ,∴AOB ∆∽DOC ∆,故B 不符合题意; ∵AOB ∆∽DOC ∆,∴∠CDB=∠CAB,∵∠CAD=∠CAB,∠DAC =∠DBC,∴∠CDB=∠DBC,∴CD=BC;没有条件可以证明BC CD AC OA ⋅=⋅,故选D.【点睛】本题考查了相似三角形的判定与性质,解题关键在于熟练掌握相似三角形的判定方法①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.二、填空题(每题4分,共24分)13、①③④【分析】由当AB 与光线BC 垂直时,m 最大即可判断①②,由最小值为AB 与底面重合可判断③,点光源固定,当线段AB 旋转时,影长将随物高挡住光线的不同位置发生变化过程可判断④.【详解】当木杆绕点A 按逆时针方向旋转时,如图所示当AB 与光线BC 垂直时,m 最大,则m >AC ,①成立;①成立,那么②不成立;最小值为AB 与底面重合,故n=AB ,故③成立;由上可知,影子的长度先增大后减小,④成立.故答案为:①③④.14、0.8【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.15、x =﹣1【分析】直接利用二次函数对称轴公式求出答案.【详解】抛物线y =x 2+2x ﹣3的对称轴是:直线x =﹣2b a =﹣22=﹣1. 故答案为:直线x =﹣1.【点睛】此题主要考查了二次函数的性质,正确记忆二次函数对称轴公式是解题关键.16、-3【分析】根据一元二次方程根与系数的关系的公式,代入所求式即可得解.【详解】由题意,得 122b x x a +=-=-,121c x x a==- ∴1212213x x x x ++=--=-故答案为:-3.【点睛】此题主要考查一元二次方程根与系数的关系,熟练掌握,即可解题17、2n−1【分析】作O 1C 、O 2D 、O 3E 分别⊥OB ,易找出圆半径的规律,即可解题.【详解】解:作O 1C 、O 2D 、O 3E 分别⊥OB ,∵∠AOB =30°,∴OO 1=2CO 1,OO 2=2DO 2,OO 3=2EO 3,∵O 1O 2=DO 2,O 2O 3=EO 3,∴圆的半径呈2倍递增,∴⊙On 的半径为2n−1 CO 1,∵⊙O 1的半径为1,∴⊙O 10的半径长=2n−1,故答案为:2n−1.【点睛】本题考查了圆切线的性质,考查了30°角所对直角边是斜边一半的性质,本题中找出圆半径的规律是解题的关键. 18、12π【分析】根据圆锥的侧面积公式即可得.【详解】圆锥的侧面积公式:S rl π=圆锥侧,其中r 为底面半径,l 为圆锥母线则该圆锥的侧面积为2612ππ⨯⨯=故答案为:12π.【点睛】本题考查了圆锥的侧面积公式,熟记公式是解题关键.三、解答题(共78分)19、(1)12;(1)t=23;(3)见解析;(4)t的值为23或89或87或1.【分析】(1)如图1中,作DH⊥BE于H.解直角三角形求出BH,DH即可解决问题.(1)如图1中,由PF∥CB,可得PF DPBC DB=,由此构建方程即可解决问题.(3)分三种情形:如图3-1中,当23t<时,重叠部分是平行四边形PBQF.如图3-1中,当213t<时,重叠部分是五边形PBQRT.如图3-3中,当1<t≤1时,重叠部分是四边形PBCT,分别求解即可解决问题.(4)分四种情形:如图4-1中,当MN∥AB时,设CM交BF于T.如图4-1中,当MN⊥BC时.如图4-3中,当MN⊥AB时.当点P与点D重合时,MN∥BC,分别求解即可.【详解】解:(1)如图1中,作DH⊥BE于H.在Rt△BCD中,∵∠DHC=90°,CD=5,tan∠DCH=43,∴DH=4,CH=3,∴BH=BC+CH=5+3=8,∴tan∠DBE=DHBH=48=12.故答案为12.(1)如图1中,∵四边形ABCD是菱形,∴AC⊥BD,∵BC=5,tan∠CBM=CMBM=12,∴CM=5,BM=DM=15,∵PF∥CB,∴PFBC=DPDB,∴55t=452545t,解得t=23.(3)如图3﹣1中,当0<t≤23时,重叠部分是平行四边形PBQF,S=PB•P Q=15t•5t=10t1.如图3﹣1中,当23<t≤1时,重叠部分是五边形PBQRT,S=S平行四边形PBQF﹣S△TRF=10t1﹣12•[15t﹣(5﹣5t)]•45[15t﹣(5﹣5t)]=﹣55t1+(105+50)t﹣15.如图3﹣3中,当1<t≤1时,重叠部分是四边形PBCT,S=S△BCD﹣S△PDT=12×5×4﹣12•(5﹣52t)•(4﹣1t)=﹣52t1+10t.(4)如图4﹣1中,当MN∥AB时,设CM交BF于T.∵PN∥MT,∴PNMT=BPBM,∴52MT2525t∴MT5,∵MN∥AB,∴MTAM=TNBN=PBPM=1,∴PB=23 BM,∴5=23×5∴t=23.如图4﹣1中,当MN⊥BC时,易知点F落在DH时,∵PF ∥BH , ∴PF BH =DP DB , ∴58t =452545t -, 解得t =89. 如图4﹣3中,当MN ⊥AB 时,易知∠PNM =∠ABD ,可得tan ∠PNM =PM PN =12, 252552t t 12, 解得t =87, 当点P 与点D 重合时,MN ∥BC ,此时t =1, 综上所述,满足条件的t 的值为23或89或87或1. 【点睛】本题属于四边形综合题,考查了菱形的性质,平行四边形的性质,平行线分线段成比例定理,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.20、 (1)∠DAF =36°;(2)证明见解析;(3)证明见解析.【解析】(1)求出∠ABC 、∠ABD 、∠CBD 的度数,求出∠D 度数,根据三角形内角和定理求出∠BAF 和∠BAD 度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC=12×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴AE ED EF AE,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=12×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【点睛】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.21、(1)y=﹣x2+3x+4;(﹣1,0);(2)P的横坐标为134或114.(3)点P的坐标为(4,0)或(5,﹣6)或(2,6).【分析】(1)利用待定系数法求抛物线解析式,然后利用抛物线解析式得到一元二次方程,通过解一元二次方程得到C 点坐标;(2)利用△AQP∽△AOC得到AQ=4PQ,设P(m,﹣m2+3m+4),所以m=4|4﹣(﹣m2+3m+4|,然后解方程4(m2﹣3m)=m和方程4(m2﹣3m)=﹣m得P点坐标;(3)设P(m,﹣m2+3m+4)(m>32),当点Q′落在x轴上,延长QP交x轴于H,如图2,则PQ=m2﹣3m,证明Rt△AOQ′∽Rt△Q′HP,利用相似比得到Q′B=4m﹣12,则OQ′=12﹣3m,在Rt△AOQ′中,利用勾股定理得到方程42+(12﹣3m)2=m2,然后解方程求出m得到此时P点坐标;当点Q′落在y轴上,易得点A、Q′、P、Q所组成的四边形为正方形,利用PQ=PQ′得到|m2﹣3m|=m,然后解方程m2﹣3m=m和方程m2﹣3m=﹣m得此时P点坐标.【详解】解:(1)把A(0,4),B(4,0)分别代入y=﹣x2+bx+c得41640cb c=⎧⎨-++=⎩,解得34bc=⎧⎨=⎩,∴抛物线解析式为y=﹣x2+3x+4,当y=0时,﹣x2+3x+4=0,解得x1=﹣1,x2=4,∴C(﹣1,0);故答案为y=﹣x2+3x+4;(﹣1,0);(2)∵△AQP∽△AOC,∴AQ PQAO CO ∴=,∴441AQ AOPQ CO===,即AQ=4PQ,设P(m,﹣m2+3m+4),∴m=4|4﹣(﹣m2+3m+4|,即4|m2﹣3m|=m,解方程4(m 2﹣3m )=m 得m 1=0(舍去),m 2=134,此时P 点横坐标为134; 解方程4(m 2﹣3m )=﹣m 得m 1=0(舍去),m 2=114,此时P 点坐标为1175,416⎛⎫ ⎪⎝⎭; 综上所述,点P 的坐标为(134,5116)或(114,7516);(3)设()23,342P m m m m ⎛⎫-++> ⎪⎝⎭,当点Q ′落在x 轴上,延长QP 交x 轴于H ,如图2,则PQ =4﹣(﹣m 2+3m +4)=m 2﹣3m ,∵△APQ 沿AP 对折,点Q 的对应点为点Q ',∴∠AQ ′P =∠AQP =90°,AQ ′=AQ =m ,PQ ′=PQ =m 2﹣3m , ∵∠AQ ′O =∠Q ′PH ,∴Rt △AOQ ′∽Rt △Q ′HP ,∴AO AQ Q H PQ '''=,即243mQ H m m '=-,解得Q ′H =4m ﹣12, ∴OQ ′=m ﹣(4m ﹣12)=12﹣3m ,在Rt △AOQ ′中,42+(12﹣3m )2=m 2,整理得m 2﹣9m +20=0,解得m 1=4,m 2=5,此时P 点坐标为(4,0)或(5,﹣6); 当点Q ′落在y 轴上,则点A 、Q ′、P 、Q 所组成的四边形为正方形, ∴PQ =AQ ′,即|m 2﹣3m |=m ,解方程m 2﹣3m =m 得m 1=0(舍去),m 2=4,此时P 点坐标为(4,0); 解方程m 2﹣3m =﹣m 得m 1=0(舍去),m 2=2,此时P 点坐标为(2,6), 综上所述,点P 的坐标为(4,0)或(5,﹣6)或(2,6)【点睛】本题考查了待定系数法,相似三角形的性质,解一元二次方程,三角形折叠,题目综合性较强,解决本题的关键是:①熟练掌握待定系数法求函数解析式;②能够熟练掌握相似三角形的判定和性质;③能够熟练掌握一元二次方程的解法;④理解折叠的性质.22、 (1)m ≥﹣;(2)m 的值为2.【解析】(1)根据方程有两个相等的实数根可知△>1,求出m 的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m +2)2﹣4×1×m 2≥1,解得:m ≥﹣;(2)由根与系数的关系得:α+β=﹣(2m +2),αβ=m 2,∵α+β+αβ=1,∴﹣(2m +2)+m 2=1,解得:m 1=﹣1,m 1=2,由(1)知m ≥﹣,所以m 1=﹣1应舍去,m 的值为2.【点睛】本题考查的是根与系数的关系,熟知x 1,x 2是一元二次方程ax 2+bx +c =1(a ≠1)的两根时,x 1+x 2=﹣,x 1x 2=是解答此题的关键.23、(1)223y x x =--+,(-1,4);(2)758,P(32-,154) 【解析】(1)根据题意将已知点的坐标代入已知的抛物线的解析式,利用待定系数法确定抛物线的解析式并写出其顶点坐标即可;(2)根据题意设P 点的坐标为(t ,223t t --+)(-3<t <0),并用分割法将四边形的面积S 四边形BCPA= S △OBC +S △OAP +S △OPC ,得到二次函数运用配方法求得最值即可.【详解】解:(1)∵该抛物线过点C(0,3),∴可设该抛物线的解析式为23y ax bx =++,∵与x 轴交于点A 和点B (1,0),其对称轴l 为x=-1,∴3012a b b a++=⎧⎪⎨-=-⎪⎩ ∴12a b =-⎧⎨=-⎩ ∴此抛物线的解析式为223y x x =--+,其顶点坐标为(-1,4);(2)如图:可知A (-3,0),∴OA =3,OB =1,OC =3设P 点的坐标为(t ,223t t --+)(-3<t <0)∴S 四边形BCPA =S △OBC +S △OAP +S △OPC =12×OB×OC +12×OA×y P +12×x C ×OC =12×1×3+12×3×(223t t --+)+12×|t|×3 =2339332222t t t --+- =239622t t --+ =23375()228t -++ ∴当t =32-时,四边形PABC 的面积有最大值758 ∴P (32-,154). 【点睛】本题考查二次函数综合题.用待定系数法求函数的解析式时要灵活地根据已知条件选择配方法和公式法,注意求抛物线的最值的方法是配方法.24、3.45米【分析】根据平行投影性质可得:1.50.92MN =;1.52 4.6AB =. 【详解】解:延长DH 交BC 于点M ,延长AD 交BC 于N .可求 3.4BM =,0.9DM =.由1.50.92MN=,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=. 由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为4.45米.【点睛】考核知识点:平行投影.弄清平行投影的特点是关键.25、(1)坡底C 点到大楼距离AC 的值为203米;(2)斜坡CD 的长度为803-120米.【解析】分析:(1)在直角三角形ABC 中,利用锐角三角函数定义求出AC 的长即可;(2)过点D 作DF ⊥AB 于点F ,则四边形AEDF 为矩形,得AF=DE ,DF=AE.利用DF=AE=AC+CE 求解即可.详解:(1)在直角△ABC 中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=60203603AB tan ==︒(米) 答:坡底C 点到大楼距离AC 的值是203米.(2)过点D 作DF ⊥AB 于点F ,则四边形AEDF 为矩形,∴AF=DE ,DF=AE.设CD=x 米,在Rt △CDE 中,DE=12x 米,3米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-12x(米)∵DF=AE=AC+CE,∴203+32x=60-12x解得:x=803-120(米)故斜坡CD的长度为(803-120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.26、点C坐标为(2,23),y=43 x【分析】过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=kx,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.【详解】解:过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=kx,∵△ABC是等边三角形,∴AC=AB=4,∠CAB=60°,∴AD=3,CD=sin60°×4=34=3∴点C坐标为(2,3,∵反比例函数的图象经过点C,∴k=3∴反比例函数的解析式:y 43;【点睛】考查了待定系数法确定反比例函数的解析式的知识,解题的关键是根据题意求得点C的坐标,难度不大.。
2022-2023学年河南省新乡市长垣市九年级数学第一学期期末考试模拟试题含解析
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)1.若反比例函数y=k x 的图象经过点(2,3),则它的图象也一定经过的点是( ) A .()3,2-- B .()2,3- C .()3,2- D .()2,3-2.截止到2018年底,过去五年我国农村贫困人口脱贫人数约为7 000万,脱贫攻坚取得阶段性胜利,这里“7 000万”用科学记数法表示为( )A .7×103B .7×108C .7×107D .0.7×1083.在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosA 的值是( ) A .45 B .35 C .43 D .344.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=05.如图,正方形ABCD 中,点EF 分别在BC 、CD 上,△AEF 是等边三角形,连AC 交EF 于G ,下列结论:①∠BAE=∠DAF=15°;②AG=3GC ;③BE+DF=EF ;④S △CEF =2S △ABE ,其中正确的个数为( )A .1B .2C .3D .46.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.方程(2)x x x -=的根是( )A .2B .0C .0或2D .0或38.方程230x x -+=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根9.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( )A .1B .0,1C .1,2D .1,2,310.一元二次方程23210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .只有一个实数根11.如图,保持△ABC 的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是( )A .关于x 轴对称B .关于y 轴对称C .将原图形沿x 轴的负方向平移了1个单位D .将原图形沿y 轴的负方向平移了1个单位12.如图,在△ABC 中,∠A =90°.若AB =12,AC =5,则cos C 的值为( )A .513B .1213C .512D .125二、填空题(每题4分,共24分)13.动手操作:在矩形纸片ABCD 中,AB=3,AD=5.如图所示,折叠纸片,使点A 落在BC 边上的A’处,折痕为PQ ,当点A’在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P 、Q 分别在AB 、AD 边上移动,则点A’在BC 边上可移动的最大距离为 .14.如图,内接于⊙O ,,是⊙O 上与点关于圆心成中心对称的点,是边上一点,连结.已知,,是线段上一动点,连结并延长交四边形的一边于点,且满足,则的值为_______________.15.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是16.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),若圆锥的底面圆的直径是80cm ,则这块扇形铁皮的半径是_____cm .17.菱形ABCD 边长为4,60ABC ∠=︒,点E 为边AB 的中点,点F 为AD 上一动点,连接EF 、BF ,并将BEF ∆沿BF 翻折得BE F ∆',连接E C ',取E C '的中点为G ,连接DG ,则122DG E C +'的最小值为_____.18.如图,把△ABC 绕点C 顺时针旋转得到△A 'B 'C ',此时A ′B ′⊥AC 于D ,已知∠A =50°,则∠B ′CB 的度数是_____°.三、解答题(共78分)19.(8分)如图,一位同学想利用树影测量树高AB ,他在某一时刻测得高为0.8m 的竹竿影长为1m ,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高 1.2CD m =,又测得地面部分的影长 4.5BD m =,则他测得的树高应为多少米20.(8分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G 等为代表的战略性新兴产业,据统计,目前广东5G 基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座.(1)计划到2020年底,全省5G 基站的数量是多少万座?;(2)按照计划,求2020年底到2022年底,全省5G 基站数量的年平均增长率.21.(8分)如图,在平面直角坐标系中,抛物线2323333y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点()4,E n 在抛物线上.(1)求直线AE 的解析式.(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当PCE ∆的面积最大时,连接CD ,CB ,点K 是线段CB的中点,点M 是线段CP 上的一点,点N 是线段CD 上的一点,求KM MN NK ++的最小值.(3)点G 是线段CE 的中点,将抛物线2323333y x x =--与x 轴正方向平移得到新抛物线y ',y '经过点D ,y '的顶点为点F ,在新抛物线y '的对称轴上,是否存在点Q ,使得FGQ ∆为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.22.(10分)已知二次函数21(0)y ax bx c a =++≠的图象经过三点(1,0),(-6,0)(0,-3).(1)求该二次函数的解析式.(2)若反比例函数24(0)y x x=>的图象与二次函数21(0)y ax bx c a =++≠的图象在第一象限内交于点A(00,x y ),0x 落在两个相邻的正整数之间,请求出这两个相邻的正整数.(3)若反比例函数2(0,0)k y k x x=>>的图象与二次函数21(0)y ax bx c a =++≠的图象在第一象限内的交点为B ,点B 的横坐标为m,且满足3<m<4,求实数k 的取值范围.23.(10分)如图,在矩形ABCD 中,6AB =,P 为边CD 上一点,把BCP 沿直线BP 折叠,顶点C 折叠到C ',连接BC '与AD 交于点E ,连接CE 与BP 交于点Q ,若CE BE ⊥.(1)求证:ABE DEC △∽△;(2)当13AD =时,AE DE <,求CE 的长;(3)连接C Q ',直接写出四边形C QCP '的形状: .当4CP =时,并求CE EQ ⋅的值.24.(10分)如图,二次函数y =﹣2x 2+x+m 的图象与x 轴的一个交点为A (1,0),另一个交点为B ,且与y 轴交于点C .(1)求m 的值;(2)求点B 的坐标;(3)该二次函数图象上是否有一点D (x ,y )使S △ABD =S △ABC ,求点D 的坐标.25.(12分)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,则抽到数字“2”的概率是___________;(2)从四张卡片中随机抽取2张卡片,请用列表或画树状图的方法求抽到“数字和为5”的概率.26.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)参考答案一、选择题(每题4分,共48分)1、A【详解】解:根据题意得k=2×3=6,所以反比例函数解析式为y=6x,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=6x的图象上.故选A.【点睛】本题考查反比例函数图象上点的坐标特征.2、C【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】将数据7 000万70000000=用科学记数法表示为7710⨯.故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.3、B【解析】根据勾股定理,可得AB 的长,根据锐角的余弦等于邻边比斜边,可得答案.【详解】解:在Rt △ABC 中,∠C=90°,AC=3,BC=4,由勾股定理,得 cosA=AC AB =35故选:B .【点睛】本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. 4、C【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0, 所以方程没有实数根,故本选项不符合题意;B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0, 所以方程有两个不相等的实数根,故本选项不符合题意;C 、x 2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0, 所以方程有两个相等的实数根,故本选项符合题意;D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C .【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.5、C【解析】通过条件可以得出△ABE ≌△ADF 而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,设EC=x ,用含x 的式子表示的BE 、 EF ,利用三角形的面积公式分别表示出S △CEF 和2S △ABE 再通过比较大小就可以得出结论.【详解】①∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°. ∵△AEF 等边三角形,∴AE=AF ,∠EAF=60°. ∴∠BAE+∠DAF=30°. 在Rt △ABE 和Rt △ADF 中AF AF AB AD=⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,∵BC=CD ,∴BC ﹣BE=CD ﹣DF ,即CE=CF ,∴AC 是EF 的垂直平分线,∴AC 平分∠EAF ,∴∠EAC=∠FAC=12×60°=30°, ∵∠BAC=∠DAC=45°, ∴∠BAE=∠DAF=15°,故①正确;②设EC=x ,则FC=x ,由勾股定理,得,CG=12x ,AG=AEsin60°=EFsin60°=2×CGsin60°=2×2CG ,∴,故②正确;③由②知:设EC=x ,EF=2x ,AC=CG+AG=CG+3CG=()262x+,∴AB=2AC =()132x +, ∴BE=AB ﹣CE=()132x +﹣x=()312x -, ∴BE+DF=2×()312x-=(3﹣1)x≠2x ,故③错误;④S △CEF =22111·222CE CF CE x ==, S △ABE =12BE•AB=()()2313111··2224x x x -+=, ∴S △CEF =2S △ABE ,故④正确,所以本题正确的个数有3个,分别是①②④,故选C .【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.6、C【解析】一次函数y 1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求. 【详解】∵一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y 1>y 2的解集是﹣3<x <0或x >2,故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.7、D【分析】先把右边的x 移到左边,然后再利用因式分解法解出x 即可.【详解】解:22x x x -=230x x -=()30x x -=120,3x x ==故选D.【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法是解决本题的关键. 8、C【分析】把a=1,b=-1,c=3代入△=b 2-4ac 进行计算,然后根据计算结果判断方程根的情况.【详解】∵a=1,b=-1,c=3,∴△=b 2-4ac=(-1)2-4×1×3=-11<0, 所以方程没有实数根.故选C .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根. 9、A【详解】由题意得,根的判别式为△=(-4)2-4×3k , 由方程有实数根,得(-4)2-4×3k≥0,解得k≤43, 由于一元二次方程的二次项系数不为零,所以k≠0, 所以k 的取值范围为k≤43且k≠0, 即k 的非负整数值为1,故选A .10、B【分析】直接利用判别式△判断即可.【详解】∵△=()()22431160---=>∴一元二次方程有两个不等的实根故选:B.【点睛】本题考查一元二次方程根的情况,注意在求解判别式△时,正负号不要弄错了.11、A【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,可知所得的三角形与原三角形关于x轴对称.【详解】解:∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.【点睛】本题考查平面直角坐标系中对称点的规律.解题关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12、A【解析】∵∠A=90°,AC=5,AB=12,∴BC=22AC AB+=13,∴cosC=513 ACBC=,故选A.二、填空题(每题4分,共24分)13、2【解析】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3-1=2.14、1或【详解】解:因为内接于圆,,D是⊙O上与点B关于圆心O成中心对称的点,∴AB=BC=CD=AD,是正方形①点R在线段AD上,∵AD∥BC,∴∠ARB=∠PBR,∠RAQ=∠APB,∵AP=BR,∴△BAP≌ABR,∴AR=BP,在△AQR与△PQB中,,②点R在线段CD上,此时△ABP≌△BCR,∴∠BAP=∠CBR.∵∠CBR+∠ABR=90°,∴∠BAP+∠ABR=90°,∴BQ是直角△ABP斜边上的高,∴QR=BR-BQ=5-2.4=2.6,.故答案为:1或.【点睛】本题考查正方形的性质和判定,全等三角形的性质和判定,勾股定理,中心对称的性质.解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15、14.【解析】试题分析:能构成三角形的情况为:3,4,5;3,4,6;3,5,6;4,5,6这四种情况.直角三角形只有3,4,5一种情况.故能够成直角三角形的概率是14.故答案为14.考点:1.勾股定理的逆定理;2.概率公式.16、1【解析】利用底面周长=展开图的弧长可得.【详解】解:设这个扇形铁皮的半径为rcm,由题意得300180r=π×80,解得r=1.故这个扇形铁皮的半径为1cm,故答案为1.【点睛】本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.1797【分析】取BC 的中点为H ,在HC 上取一点I 使~HIG HGC ,相似比为12,由相似三角形的性质可得12222()2DG CE DG GI DG GI '+=+=+,即当点D 、G 、I 三点共线时,DG GI +最小,由点D 作BC 的垂线交BC 延长线于点P ,由锐角三角函数和勾股定理求得DI 的长度,即可根据122()222DH CE DG GI DI '+=+≥==【详解】取BC 的中点为H ,在HC 上取一点I 使~HIG HGC ,相似比为12∵G 为CE '的中点 ∴12CG CE '=∵~HIG HGC 且相似比为122CG GI ∴=,1122HI HG == 得122CE GI '= 12222()2DG CE DG GI DG GI '∴+=+=+当点D 、G 、I 三点共线时,DG GI +最小1,22HI CH ==13222CI CH HI ∴=-=-= 由点D 作BC 的垂线交BC 延长线于点P60ABC ︒∠= 60DCP ︒∴∠=即sin 604DP DC ︒=⋅==1cos60422CP DC ︒=⋅=⨯=72PI PC CI ∴=+=由勾股定理得2249971242DI DP PI =+=+=19722()229722DH CE DG GI DI '∴+=+≥=⨯=故答案为:97.【点睛】本题考查了线段长度的最值问题,掌握相似三角形的性质以及判定定理、锐角三角函数、勾股定理是解题的关键. 18、1【分析】由旋转的性质可得∠A =∠A '=50°,∠BCB '=∠ACA ',由直角三角形的性质可求∠ACA '=1°=∠B ′CB . 【详解】解:∵把△ABC 绕点C 顺时针旋转得到△A 'B 'C ', ∴∠A =∠A '=50°,∠BCB '=∠ACA ' ∵A 'B '⊥AC∴∠A '+∠ACA '=90° ∴∠ACA '=1° ∴∠BCB '=1° 故答案为1. 【点睛】本题考查了旋转的性质,熟练运用旋转的性质是本题的关键.三、解答题(共78分) 19、树高为4.8米.【分析】延长AC 交BD 延长线于点E ,根据同一时刻,物体与影长成正比可得0.81AB BE =,根据AB//CD 可得△AEB ∽△CED ,可得CD AB DE BE =,即可得出0.81CD DE =,可求出DE 的长,由BE=BD+DE 可求出BE 的长,根据0.81AB BE =求出AB 的长即可. 【详解】延长AC 和BD 相交于点E ,则DE 就是树影长的一部分, ∵某一时刻测得高为0.8m 的竹竿影长为1m , ∴0.81AB BE =, ∵AB//CD , ∴△AEB ∽△CED ,∴CD ABDE BE =, ∴0.81CD DE =, ∴ 1.21.50.80.8CD DE ===, ∴ 4.5 1.56BE BD DE =+=+=, ∴0.80.86 4.8AB BE =⨯=⨯=, ∴即树高为4.8米.【点睛】本题考查相似三角形的应用,熟练掌握同一时刻,物体与影长成正比及相似三角形判定定理是解题关键.20、(1)到2020年底,全省5G 基站的数量是6万座;(2)2020年底到2022年底,全省5G 基站数量的年平均增长率为70%.【分析】(1)2020年全省5G 基站的数量=目前广东5G 基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G 基站数量的年平均增长率为x ,根据2020年底及2022年底全省5G 基站数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)由题意可得:到2020年底,全省5G 基站的数量是1.546⨯=(万座). 答:到2020年底,全省5G 基站的数量是6万座. (2)设年平均增长率为x ,由题意可得:()26117.34x +=,解得:10.7=70%x =,2 2.7x =-(不符合,舍去)答:2020年底到2022年底,全省5G 基站数量的年平均增长率为70%. 【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 21、(1)33y x =+;(2)3;(3)存在,点Q的坐标为或或(3,或(3,5-. 【解析】 【分析】(1)求出点A 、B 、 E 的坐标,设直线AE 的解析式为y kx b =+ ,将点A 和点E 的坐标代入即可; (2)先求出直线CE 解析式,过点P 作//yPF轴,交CE 与点F ,设点P 的坐标为(,3322333)xxx--,则点F 3(,x x - ,从而可表示出△E PC 的面积,利用二次函数性质可求出x 的值,从而得到点 P 的坐标,作点K 关于CD 和CP 的对称点G 、H ,连接G 、 H 交CD 和CP 与N 、M ,当点O 、N 、 M 、H 在一条直线上时,KM+MN+NK 有最小值,最小值= GH ,利用勾股定理求出GH 即可;(3)由平移后的抛物线经过点D ,可得到点F 的坐标,利用中点坐标公式可求得点 G 的坐标,然后分为FG FQ GF GQ QG QF =、=、= 三种情况讨论求解即可.【详解】解:(1)22323)1)(3)3y x x x x xx ==--=+-(1,0),(3,0)A B ∴-当4x =时,164y ==E ∴ 设直线AE 的解析式为y kx b =+ ,将点A 和点E 的坐标代入得04k b k b -+=⎧⎪⎨+=⎪⎩解得3333k b ⎧=⎪⎪⎨⎪=⎪⎩所以直线AE 的解析式为3333y x =+. (2)设直线CE 的解析式为3y mx =- ,将点E 的坐标代入得:53433m -=解得:233m =∴直线CE 的解析式为2333y x =-如图,过点P 作//y PF 轴,交 CE 与点F设点P 的坐标为2(3323x x x ,则点F 233(x x 则FP =22233233433(33333)3x x x x x --+=- 2234323831)2(4EPCx x x Sx ∴=⨯⨯= ∴当8332232()x ===⨯- 时,△EPC 的面积最大, 23234343333x x -=-= (2,3)P ∴如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、MK 是CB 的中点,33(,2K ∴3tan KCP ∴∠=OD =1, OC =333tan OCD ∴∠=30OCD KCP ∴∠∠︒== 30KCD ∴∠︒=K 是BC 的中点,∠OCB =60°OC CK ∴=∴点O 与点K 关于CD 对称 ∴点G 与点O 重合∴点G(0,0)点H 与点K 关于CP 对称 ∴点H 的坐标为333(,22-KM MN NK MH MN GN +----∴当点O 、N 、 M 、H 在条直线上时,KM+MN+NK 有最小值,最小值=GH22333()()322GH ∴=+=KM MN NK ∴++的最小值为 3.(3)如图'y 经过点D ,'y 的顶点为点F∴点43(3,)F 点G 为 CE 的中点,3)G ∴ 22532211()33FG ∴=+-=当FG =FQ 时,点 (3,432213)Q-+或'43221Q --当GF =GQ 时,点 F 与点''Q 关于直线3y =对称 ∴点''(3,23)Q当QG =QF 时,设点1Q 的坐标为(3)a ,由两点间的距离公式可得:224331()3a a =+- ,解得235a =- ∴点1Q 的坐标为23(3,综上所述,点Q 的坐标为43221)-+ 或43221-- 或(3,23) 或23(3,)【点睛】本题考查了二次函数的图像与性质的应用,涉及的知识点主要有待定系数法求一次函数的解析式、三角函数、勾股定理、对称的坐标变换、两点间的距离公式、等腰三角形的性质及判定,综合性较强,灵活利用点坐标表示线段长是解题的关键.22、(1)2115=322y x x +-;(2)1与2;(3)2760k << 【分析】(1)已知了抛物线与x 轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式;(2)可根据(1)的抛物线的解析式和反比例函数的解析式来联立方程组,求出的方程组的解就是两函数的交点坐标,然后找出第一象限内交点的坐标,即可得出符合条件的0x 的值,进而可写出所求的两个正整数即可;(3)点B 的横坐标为m ,满足3<m<4,可通过m=3,m=4两个点上抛物线与反比例函数的大小关系即可求出k 的取值范围.【详解】解:(1)∵二次函数图像经过(1,0),(-6,0),(0,-3),∴设二次函数解析式为()()116y a x x =-+,将点(0,3)代入解析式得()()30106a -=-+,∴12a =; ∴()()2111516=3222y x x x x =-++-, 即二次函数解析式为2115=322y x x +-; (2)如图,根据二次函数与反比例函数在第一象限的图像可知,当1x =时,有12y y <;当2x =时,有12y y >,故两函数交点的横坐标0x 落在1和2之间,从而得出这两个相邻的正整数为1与2.(3)根据函数图像性质可知:当34m <<时,对2115=322y x x +-,1y 随着x 的增大而增大, 对24y x=,2y 随着x 的增大而减小,∵点B 为二次函数与反比例函数交点,∴当3m =时,12y y <, 即215333223k ⨯+⨯-<,解得27k >, 同理,当4m =时,12y y >, 即215443224k ⨯+⨯->,解得60k <, ∴k 的取值范围为2760k <<;【点睛】本题主要考查了二次函数和反比例函数综合应用,掌握二次函数,反比例函数是解题的关键.23、(1)见解析;(2);(3)菱形,24【分析】(1)由题意可得∠AEB+∠CED=90°,且∠ECD+∠CED=90°,可得∠AEB=∠ECD ,且∠A=∠D=90°,则可证△ABE ∽△DEC ;(2)设AE=x ,则DE=13-x ,由相似三角形的性质可得AE AB DC DE =,即:6613x x =-,可求x 的值,即可得DE=9,根据勾股定理可求CE 的长;(3)由折叠的性质可得CP=C'P ,CQ=C'Q ,∠C'PQ=∠CPQ ,∠BC'P=∠BCP=90°,由平行线的性质可得∠C'PQ=∠CQP=∠CPQ ,即可得CQ=CP=C'Q=C'P ,则四边形C'QCP 是菱形,通过证△C'EQ ∽△EDC ,可得EQ C Q DC EC'=,即可求CE •EQ 的值. 【详解】证明:(1)∵CE ⊥BE ,∴∠BEC=90°,∴∠AEB+∠CED=90°,又∵∠ECD+∠CED=90°,∴∠AEB=∠ECD ,又∵∠A=∠D=90°,∴△ABE ∽△DEC(2)设AE=x ,则DE=13-x ,由(1)知:△ABE ∽△DEC , ∴AE AB DC DE=,即:6613x x =- ∴x 2-13x+36=0,∴x 1=4,x 2=9,又∵AE<DE∴AE=4,DE=9,在Rt△CDE中,由勾股定理得:2269313CE=+=(3)如图,∵折叠,∴CP=C'P,CQ=C'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP=90°,∵CE⊥BC',∠BC'P=90°,∴CE∥C'P,∴∠C'PQ=∠CQP,∴∠CQP=∠CPQ,∴CQ=CP,∴CQ=CP=C'Q=C'P,∴四边形C'QCP是菱形,故答案为:菱形∵四边形C'QCP是菱形,∴C'Q∥CP,C'Q=CP,∠EQC'=∠ECD又∵∠C'EQ=∠D=90°∴△C'EQ∽△EDC∴EQ C Q DC EC'=即:CE•EQ=DC•C'Q=6×4=24【点睛】本题是相似形综合题,考查了矩形的性质,菱形的判定和性质,折叠的性质,相似三角形的判定和性质,勾股定理等性质,灵活运用相关的性质定理、综合运用知识是解题的关键.24、(1)1;(2)B(﹣12,0);(3)D的坐标是(12,1117+1117-,﹣1)【分析】(1)把点A 的坐标代入函数解析式,利用方程来求m 的值;(2)令y =0,则通过解方程来求点B 的横坐标;(3)利用三角形的面积公式进行解答.【详解】解:(1)把A (1,0)代入y =﹣2x 2+x+m ,得﹣2×12+1+m =0,解得 m =1;(2)由(1)知,抛物线的解析式为y =﹣2x 2+x+1.令y =0,则﹣2x 2+x+1=0,故x 134-±-,解得 x 1=﹣12,x 2=1.故该抛物线与x 轴的交点是(﹣12,0)和(1,0).∵点为A (1,0),∴另一个交点为B 是(﹣12,0);(3)∵抛物线解析式为y =﹣2x 2+x+1,∴C (0,1),∴OC =1.∵S △ABD =S △ABC ,∴点D 与点C 的纵坐标的绝对值相等,∴当y =1时,﹣2x 2+x+1=1,即x (﹣2x+1)=0解得 x =0或x =12.即(0,1)(与点C 重合,舍去)和D (12,1)符合题意.当y =﹣1时,﹣2x 2+x+1=﹣1,即2x 2﹣x ﹣2=0解得x .1,﹣1)符合题意.综上所述,满足条件的点D 的坐标是(12,1,﹣1,﹣1).【点睛】本题考查了抛物线的图象和性质,解答(3)题时,注意满足条件的点D还可以在x轴的下方是解题关键.25、(1)14;(2)P=13.【解析】(1)根据概率公式直接解答;(2)画出树状图,找到所有可能的结果,再找到抽到“数字和为5”的情况,即可求出其概率.【详解】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,抽到数字“2”的概率=14;(2)随机抽取第一张卡片有4种等可能结果,抽取第二张卡片有3种等可能结果,列树状图为:所有可能结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1)(4,2),(4,3),总的结果共12种,数字和为“5”的结果有4种:(1,4), (2,3), (3,2), (4,1)抽到数字和为“5”的概率P=13.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.26、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA122+34534117+=A122即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.。
【人教版】九年级数学上期末第一次模拟试题(含答案)
一、选择题1.下列事件:①打开电视机,正在播广告;②从只装红球的口袋中,任意摸出一个球恰好是白球;③同性电荷,相互排斥;④抛掷硬币1000次,第1000次正面向上.其中为随机事件的是( )A .①②B .①④C .②③D .②④ 2.在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为1P ,摸出的球上的数字小于4的记为2P ,摸出的球上的数字为5的概率记为3P ,则1P ,2P ,3P 的大小关系是( ) A .123P P P << B .321P P P << C .213P P P << D .312P P P << 3.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是( )A .613B .513C .413D .3134.在一个不透明的口袋中装有5个黑棋子和若干个白棋子,它们除颜色外完全相同,小明与他的朋友经过多次摸棋子试验后,发现摸到白色棋子的频率稳定在80%附近,则口袋中白色棋子的个数可能是( )A .25个B .24个C .20个D .16个5.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .5B .15C .16D .8 6.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( )A .B .C .D .7.点A ,B 的坐标分别为A (4,0),B (0,4),点C 为坐标平面内一点,BC ﹦2,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .22+1B .22+2C .42+1D .42-2 8.如图,AB 为⊙O 的直径,,C D 为⊙O 上的两点,若7OB BC ==.则BDC ∠的度数是( )A .15︒B .30C .45︒D .60︒9.如图,将一个含30角的直角三角尺AOB 放在平面直角坐标系中,两条直角边分别与坐标轴重叠.已知30OAB ∠=︒,12AB =,点D 为斜边AB 的中点,现将三角尺AOB 绕点O 顺时针旋转90︒,则点D 的对应点D 的坐标为( )A .(33,3)B .3,6)-C .(3,33)-D .(33,3)-10.如图,正方形OABC 的两边OA ,OC 分别在x 轴、y 轴上,点D(5,3)在边AB 上,以C 为中心,把△CDB 旋转90º,则旋转后点D 的对应点D 的坐标是( )A .(-2,0)B .(-2,10)C .(2,10)或(-2,0)D .(10,2)或( -2,10) 11.已知二次函数2(0)y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②420a b c ++>;③b a c <+;④230c b -<;⑤2(1)a b an bn n +>+≠,其中正确的个数有( )A .1个B .2个C .3个D .4个12.小刚在解关于x 的方程20(a 0)++=≠ax bx c 时,只抄对了1a =,4b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( )A .不存在实数根B .有两个不相等的实数根C .有一个根是xD .有两个相等的实数根 二、填空题13.从﹣8,﹣2,1,4这四个数中任取两个数分别作为二次函数y =ax 2+bx +1中a 、b 的值,恰好使得该二次函数当x >2时,y 随x 的增大而增大的概率是_____.14.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是__________. 15.一个不透明的盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,从该盒子中任意摸出一个球,摸到白球的概率是_________.16.如图,用一张半径为10cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm ,那么这张扇形纸板的弧长是_______cm ,制作这个帽子需要的纸板的面积为_______cm 2.17.一排水管截面如图所示,截面半径13dm OA =,水面宽10dm AB =,则圆心O 到水面的距离OC =______dm .18.如图,在ABC 中,AB AC =,30B ∠=︒,将ABC 绕点A 沿顺时针方向旋转一周,当BC 边的对应边与AC 平行时,旋转角为______度.19.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.20.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________.三、解答题21.我校组织了主题为“抗击新冠疫情”的绘画作品征集活动,现将收到的作品按,,,A B C D 四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次收到的作品的总件数是________.(2)把图2条形统计图补充完整.(3)如果被评为A 级的作品中有4件被评为了最佳作品,其中有1件是来自初三年级的.现在学校打算从这四件最佳作品中随机选择两件进行推送,请用列表或画树状图的方法求出推送的两件最佳作品中有1件是来自初三年级的概率.22.在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n 为何值时,这个事件必然发生?(2)当n 为何值时,这个事件不可能发生?(3)当n 为何值时,这个事件可能发生?23.如图,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且AD CE =.(1)求证:BE =CE ;(2)若∠B =50°,求∠AOC 的度数.24.如图1,在菱形ABCD 和菱形AEFG 中,60DAB GAE ∠=∠=︒,且4AE =,连接DG 和BE .(1)求证:DG BE =;(2)如图2,将菱形AEFG 绕着点A 旋转,当菱形AEFG 旋转到使点C 落在线段AE 上时(AC AE <),求点F 到AB 的距离.25.如图,Rt △OAB 中,∠OAB=90°,O 为坐标原点,边OA 在x 轴上,OA=AB=2个单位长度,把Rt △OAB 沿x 轴正方向平移2个单位长度后得△11AA B .(1)求以A 为顶点,且经过点1B 的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D 、 C 的坐标.26.解方程:(1)()2316x -=(2)22410x x --=(用公式法解)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据随机事件、不可能事件、必然事件的定义逐个判断即可得.①打开电视机,正在播广告,是随机事件;②从只装红球的口袋中,任意摸出一个球恰好是白球,是不可能事件;③同性电荷,相互排斥,是必然事件;④抛掷硬币1000次,第1000次正面向上,是随机事件;综上,为随机事件的是①④,故选:B.【点睛】本题考查了随机事件、不可能事件、必然事件,掌握理解各定义是解题关键.2.D解析:D【分析】由1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,利用概率公式分别计算,再比较大小可得.【详解】解:∵在1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0,∴P1=1、P2=1、P3=0,3则P3<P1<P2,故选:D.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.B解析:B【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有16种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【详解】解:∵由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,∴概率为:5P ;13【点睛】本题考查了求概率的方法:先列表展示所有等可能的结果数n ,再找出某事件发生的结果数m ,然后根据概率的定义计算出这个事件的概率=m n. 4.C解析:C【分析】首先设口袋中白色棋子有x 个,再结合题目已知可得口袋中摸到白色棋子的概率为80%,然后利用白色棋子的个数除以棋子的总个数列方程求解即可,注意分式方程要验根.【详解】解:设口袋中白色棋子有x 个,因为摸到白色棋子的频率稳定在80%附近,所以从口袋中摸到白色棋子的概率为80%,所以,80%5x x =+ 解得:x=20 经检验,x=24是原方程的解,所以口袋中白色棋子的个数可能是20个故选:C【点睛】本题考查的是利用频率估计概率,解答此类题目的关键是熟练掌握利用频率估计概率的知识,由题目信息得到口袋中摸到白色棋子的概率为80%,这是解题的突破口. 5.A解析:A【分析】连接OA ,先根据⊙O 的直径CD =12,CP :PO =1:2求出CO 及OP 的长,再根据勾股定理可求出AP 的长,进而得出结论.【详解】连接OA ,∵⊙O 的直径CD =12,CP :PO =1:2,∴CO =6,PO=4,∵AB⊥CD,∴,∴AB=2AP=2⨯=故选:A.【点睛】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式2222ar d⎛⎫=+⎪⎝⎭成立,知道这三个量中的任意两个,就可以求出另外一个.6.C解析:C【分析】因为⊙O的直径为6,所以圆的半径是3,圆心O到直线l的距离为3即d=3,所以d=r,所以直线l与⊙O的位置关系是相切.【详解】解:∵⊙O的直径为6,∴r=3,∵圆心O到直线l的距离为3即d=3,∴d=r∴直线l与⊙O的位置关系是相切.故选:C.【点睛】本题考查直线与圆的位置关系,若圆的半径为r,圆心到直线的距离为d,d>r时,圆和直线相离;d=r时,圆和直线相切;d<r时,圆和直线相交.7.A解析:A【分析】根据同圆的半径相等可知:点C在半径为2的B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.【详解】解:如图,点C 为坐标平面内一点,2BC =,C ∴在B 上,且半径为2,取4OD OA ,连接CD , AM CM =,OD OA =,OM ∴是ACD ∆的中位线, 12OM CD , 当OM 最大时,即CD 最大,而D ,B ,C 三点共线时,当C 在DB 的延长线上时,OM 最大, 4OB OD ,90BOD ∠=︒,42BD ∴= 422CD , 1142222122OM CD , 即OM 的最大值为221;故选:A .【点睛】本题考查了坐标和图形的性质,三角形的中位线定理等知识,确定OM 为最大值时点C 的位置是解题的关键.8.B解析:B【分析】如图(见解析),先根据圆的性质可得OC OB =,再根据等边三角形的判定与性质可得60BOC ∠=︒,然后根据圆周角定理即可得.【详解】如图,连接OC ,由同圆半径相等得:OC OB =,7OB BC ==,OC OB BC ∴==,BOC ∴是等边三角形,60BOC ∴∠=︒, 由圆周角定理得:1230BOC BDC ∠=︒=∠, 故选:B .【点睛】本题考查了等边三角形的判定与性质、同圆半径相等、圆周角定理,熟练掌握等边三角形的判定与性质是解题关键.9.D解析:D【分析】先利用直角三角形的性质、勾股定理分别求出OB 、OA 的长,再根据旋转的性质可得,OA OB ''的长,从而可得点,A B ''的坐标,然后根据中点坐标公式即可得.【详解】 在Rt AOB 中,30OAB ∠=︒,12AB =,2216,632OB AB OA AB OB ∴===-=, 由旋转的性质得:63,6OA OA OB OB ''====,点D 为斜边A B ''的中点, 将三角尺AOB 绕点O 顺时针旋转90︒,∴点A 的对应点A '落在x 轴正半轴上,点B 的对应点B '落在y 轴负半轴上, (63,0),(0,6)A B ''∴-, 又点D 为斜边A B ''的中点,3006(,)22D -'∴,即(33,3)D '-, 故选:D .【点睛】本题考查了直角三角形的性质、勾股定理、旋转的性质、中点坐标公式,熟练掌握旋转的性质是解题关键.10.C解析:C【分析】根据题意,分顺时针和逆时针旋转两种情况解答即可.【详解】解:由题意,AB=BC=5,BD=5﹣3=2,∠B=90°,若把△CDB 顺时针旋转90º,则点D 在x 轴的负半轴上,O D =BD=2,所以点D 坐标为(﹣2,0);若把△CDB 逆时针旋转90º,则点D 到x 轴的距离是5+5=10,到y 轴的距离是2,∴点D 的坐标为(2,10),综上,旋转后点D 的对应点D 的坐标是(2,10)或(-2,0),故选:C .【点睛】本题考查坐标与图形变化-旋转、正方形的性质,熟练掌握旋转的性质,分顺时针和逆时针旋转两种情况是解答的关键.11.D解析:D【分析】根据抛物线的开口方向、对称轴、顶点坐标、最值、以及不等式的性质进行判断即可.【详解】抛物线开口向下,因此a <0,对称轴为x =−b 2a =1>0,a 、b 异号,因此b >0,且2a +b =0,抛物线与y 轴的交点在正半轴,因此c >0,所以:abc <0,因此①正确;当x =2时,y =4a +2b +c >0,因此②正确;当x =−1时,y =a−b +c <0,即,a +c <b ,因此③不正确;∵a−b +c <0,2a +b =0,∴−12b−b +c <0,即2c−3b <0,因此④正确; 当x =1时,y 最大值=a +b +c ,当x =n (n≠1)时,y =an 2+bn +c <y 最大值,即:a +b+c >an 2+b +c ,也就是2a+b an +bn(n 1)>≠,因此⑤正确,正确的结论有:①②④⑤,故选:D .【点睛】考查二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.12.A解析:A【分析】直接把已知数据代入进而得出c 的值,再利用根的判别式求出答案.【详解】∵小刚在解关于x 的方程20ax bx c ++=(0a ≠)时,只抄对了1a =,4b =,解出其中一个根是1x =-,∴()()21410c -+⨯-+=, 解得:3c =,∵核对时发现所抄的c 比原方程的c 值小2,故原方程中5c =,则224441540b ac =-=-⨯⨯=-<,则原方程的根的情况是不存在实数根.故选:A .【点睛】本题主要考查了根的判别式,正确利用方程的解得出c 的值是解题关键.二、填空题13.0【分析】先画出树状图共有12个等可能的结果恰好使得该二次函数当x >2时y 随x 的增大而增大的结果有0个再由概率公式即可得出答案【详解】解:画树状图如图:共有12个等可能的结果恰好使得该二次函数当x > 解析:0【分析】先画出树状图,共有12个等可能的结果,恰好使得该二次函数当x >2时,y 随x 的增大而增大的结果有0个,再由概率公式即可得出答案.【详解】解:画树状图如图:共有12个等可能的结果,恰好使得该二次函数当x >2时,y 随x 的增大而增大的结果有0个,∴恰好使得该二次函数当x >2时,y 随x 的增大而增大的概率为:012=0, 故答案为:0.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了二次函数的性质.14.【分析】列举出所有等可能的情况数找出能构成三角形的情况数即可求出所求概率【详解】从长为35710的四条线段中任意选取三条作为边所有等可能情况有:357;3510;3710;5710共4种其中能构成三解析:1 2【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【详解】从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=21 42 =,故答案为12.【点睛】此题考查了列表法与树状图法,以及三角形的三边关系,其中概率=所求情况数与总情况数之比.15.【分析】用白球的个数除以球的总个数即可确定摸到白球的概率【详解】解:盒子中装有9个大小相同的乒乓球其中3个是黄球6个是白球则摸到白球的概率是:故答案为【点睛】本题考查概率的求法与运用正确应用概率公式解析:2 3【分析】用白球的个数除以球的总个数,即可确定摸到白球的概率.【详解】解:盒子中装有9个大小相同的乒乓球,其中3个是黄球,6个是白球,则摸到白球的概率是:62 93 =.故答案为23.【点睛】本题考查概率的求法与运用,正确应用概率公式是解答本题的关键.16.12π60π【分析】首先根据底面半径求得圆锥的底面的周长从而求得扇形的弧长和面积;【详解】∵扇形的半径为10cm做成的圆锥形帽子的高为8cm∴圆锥的底面半径为∴底面周长为∴这张扇形纸板的弧长是扇形的解析:12π 60π【分析】首先根据底面半径求得圆锥的底面的周长,从而求得扇形的弧长和面积;【详解】∵扇形的半径为10cm ,做成的圆锥形帽子的高为8cm ,∴6=,∴底面周长为2612cm ππ⨯=,∴这张扇形纸板的弧长是12cm π, 扇形的面积为21110126022lr cm ππ=⨯⨯=. 故答案是:12π;60π.【点睛】本题主要考查了扇形弧长计算和面积计算,准确分析计算是解题的关键.17.12【分析】根据垂径定理求出AC=5dm 再根据勾股定理求出OC 即可【详解】∵OC ⊥AB ∴AC=5dm 在Rt △AOC 中∴OC==12dm 故答案为:12【点睛】此题考查垂径定理勾股定理熟记垂径定理是解题解析:12【分析】根据垂径定理求出AC=5dm ,再根据勾股定理求出OC 即可.【详解】∵OC ⊥AB ,10dm AB =,∴AC=5dm ,在Rt △AOC 中,13dm OA =,∴=,故答案为:12【点睛】此题考查垂径定理,勾股定理,熟记垂径定理是解题的关键.18.或【分析】画出图象共有两种情况利用平行的性质求出旋转角度【详解】解:①如图所示∵∴顺时针旋转;②如图所示∵∴∴顺时针旋转故答案是:或【点睛】本题考查图形的旋转和平行的性质解题的关键是掌握旋转的性质和 解析:30或210︒【分析】画出图象,共有两种情况,利用平行的性质求出旋转角度.【详解】解:①如图所示,∵//B C AC '',∴30CAC C ∠=∠=''︒,顺时针旋转30;②如图所示,∵//B C AC '',∴30CAB AB C '∠=∠='︒,∴30120150CAC ∠=︒+︒='︒,360150210︒-︒=︒,顺时针旋转210︒,故答案是:30或210︒.【点睛】本题考查图形的旋转和平行的性质,解题的关键是掌握旋转的性质和平行的性质. 19.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a<0,c=-3是解题的关键.20.3cm【分析】设横彩条的宽度是xcm竖彩条的宽度是3xcm根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm则(30-3x)(20-2x)=解析:3cm【分析】设横彩条的宽度是xcm,竖彩条的宽度是3xcm,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm,竖彩条的宽度是3xcm,则(30-3x)(20-2x)=20×30×(1-19%),解得x1=1,x2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm.故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.三、解答题21.(1)60;(2)画图见解析;(3)1 2【分析】(1)根据B级的件数及所占的百分比,即可求出作品的总件数;(2)用作品的总件数减去A、B、D级作品的件数,即可得到C级的作品件数,进而补全直方图;(3)利用树状图法列举出所有可能的结果,然后利用概率公式求解即可.【详解】(1)由图1,图2可知:B级有21件,占比为35%,∴总件数为2135%60÷=;(2)C的件数为:60921921---=(件)条形图如下图:(3)设这4件作品分别为A B C D、、、,其中初三年级的作品为A,则树状图为:则含有A的共有6种,一共有12种可能,∴61122P==,即有一件来自初三年级的概率为12.【点睛】本题主要考察列表法与列树状图法:利用列表法或树状图法展示所有可能的结果,再从中选出符合条件A或B的结果数,然后根据概率公式计算出事件A或B的概率.22.(1)n=5或6;(2)n=1或2;(3)n=3或4【分析】(1)利用必然事件的定义确定n的值;(2)利用不可能事件的定义确定n的值;(3)利用随机事件的定义确定n的值.【详解】(1)当n=5或6时,这个事件必然发生;(2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件.【点睛】本题考查了随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.也考查了必然事件和不可能事件.23.(1)见解析;(2)20°【分析】(1)根据∠AOD=∠BOE可知AD BE,再由AD CE=即可得出结论;(2)先根据等腰三角形的性质求出∠BOE的度数,再由BE=CE可得出∠BOE=∠COE,根据补角的定义即可得出结论.【详解】解:(1)证明:∵∠AOD=∠BOE,∴AD BE.∵AD CE=,∴BE CE=,∴BE=CE;(2)∵∠B=50°,OB=OE,∴∠BOE=180°-50°-50°=80°.∵由(1)知,BE=CE,∴∠COE=∠BOE=80°,∴∠AOC=180°-80°-80°=20°.【点睛】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.24.(1)见解析;(2)6.【分析】(1)根据菱形性质,证明△GAD≌△EAB,然后得到边相等;(2)延长FE交AB于点H,根据题意可分析得到△AEH和△AFH均为含30°的直角三角形,然后计算EH即可.【详解】解:(1)∵四边形ABCD和四边形AEFG为菱形∴GA=EA,OA=BA∵∠DAB=∠GAE=60°∴∠GAD+∠DAE=60°∠DAE+∠EAB=60°∴∠GAD=∠EAB∴△GAD≌△EAB(SAS)∴DG=BE(2)延长FE,AB交于点H∵AC 是菱形ABCD 对角线∴∠CAB=12∠DAB=30° ∵∠GAE=60°且四边形AEGF 是菱形 ∴GA ∥FE∴∠FEA=180°-60°=120°∴∠AEH=180°-120°=60°∵∠EAB=30°∴∠H=90°∵AE=4,在Rt △EAH=30°∴EH=2∴F 到AB 的距离为4+2=6【点睛】本题主要考查菱形的性质,结合旋转和三角形相关性质是解题的关键.25.(1)()2122y x =-;(2)()0,2D ,(35,35C - 【分析】(1)根据三角形的边长求出点A 和点1B 的坐标,设抛物线解析式为()22y a x =-,代入点1B 坐标求出解析式;(2)令0x =,求出y 的值,得到点D 的坐标,再求出直线OB 的解析式和抛物线联立求出点C 的坐标.【详解】解:∵2OA =,∴()2,0A ,∵14OA =,112A B =,∴()14,2B ,设抛物线解析式为()22y a x =-,把点()14,2B 代入,得42a =,解得12a =, ∴()2122y x =-; (2)令0x =,得1422y =⨯=, ∴()0,2D ,设直线OB 解析式为y kx =,把点()2,2B 代入,得到22k =,解得1k =,∴直线OB 解析式为y x =,联立直线和抛物线的解析式,得()2122x x -=,解得3x =±根据点C 的位置,取3x =∴(3C .【点睛】本题考查二次函数,解题的关键是掌握求二次函数的解析式的方法,求抛物线和直线交点的方法.26.(1)11x =,21x =-2)11x =+,21x =. 【分析】(1)两边除以3后再开方,即可得出两个一元一次方程,求解即可;(2)求出24b ac -的值,代入公式求出即可.【详解】解:(1)()2316x -=方程两边除以3,得:()212x -=,两边开平方,得:1x -=则:11x =+21x =(2)22410x x --=∵2a =,4b =-,1c =-,∴()()224442124b ac -=--⨯⨯-=∴x ==,∴11x =21x =; 【点睛】 本题考查了解一元二次方程的应用,熟悉相关的解法是解题的关键.。
2023-2024学年湖北省武汉市九年级上学期一月期末数学模拟试题(含答案)
2023-2024学年湖北省武汉市九年级上学期一月期末数学模拟试题亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名座位号.3.答选择题时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答非选择题时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上.答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.两次抛掷一枚质地均匀的硬币,第一次“正面朝上”,第二次“正面朝上”这个事件是()A.随机事件B.确定性事件C.必然事件D.不可能事件2.下列图形是中心对称图形的是()A.B.C.D.3.⊙O的半径是5cm,圆心O到直线a的距离为8cm,直线a与⊙O的公共点个数是()A.0B.1C.2D.1或2 4.解一元二次方程x2-6x-4=0,配方后得到(x-3)2=p,则p的值是()A.13B.9C.5D.45.下列一元二次方程有两个互为倒数的实数根的是( )A .2x 2-3x +1=0B .x 2-x +1=0C .x 2+x -1=0D .x 2-3x +1=06.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在抛物线y =x 2+2x -3上.当x 1<-3,-1<x 2<0, 0<x 3<1时,y 1、y 2、y 3三者之间的大小关系是( )A .y 1<y 2<y 3B . y 2<y 3<y 1C .y 3<y 1<y 2D . y 2<y 1<y 37.下表给出了二次函数y =ax 2+bx +c 的自变量x 与函数值y 的部分对应值:x …1 1.1 1.2 1.3 1.4…y…-1-0.67-0.290.140.62…那么关于x 的方程ax 2+bx +c =0的一个根的近似值可能是( )A .1.07B .1.17C .1.27D .1.378.甲口袋中装有2张卡片,它们分别写有汉字“数”、“学”;乙、丙口袋中各装有3张卡片,它们分别写有汉字“数”、“学”、“美”.从这三个口袋中各随机取出1张卡片,取出的3张卡片恰好有“数”、“学”、“美”三个字的概率是( )A .B .C .D .191629139.如图,在△ABC 中,∠BAC =64°,将△ABC 绕顶点A 顺时针旋转,得到△ADE .若点D恰好落在边BC 上,且AE ∥BC ,则旋转角的大小是()ABC D EA .51°B .52°C .53°D .54°10.如图,从一张圆形纸片上剪出一个小圆形和一个扇形分别作为圆锥的底面和侧面,其中小圆的直径是大圆的半径.下列剪法恰好能配成一个圆锥的是()AB二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.写出一个两根互为相反数的一元二次方程是________.12.如图,阴影部分是分别以正方形ABCD 的顶点和中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.在正方形ABCD 上做随机投针试验,针头落在阴影部分区域内的概率是_________.13.如图是某款“不倒翁”及其轴截面图,PA ,PB 分别与所在圆相切于点A ,B .若该圆 AMB半径是18cm ,∠P =50°,则的长是_____cm .AMB14.《九章算术》第三章“衰分”介绍了比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.例如:已知A ,B ,C 三人分配奖金的衰分比为10%,若A 分得奖金1000元,则B ,C 所分得奖金分别为900元和810元.某科研所三位技术人员甲、乙、丙攻关成功,共获得奖金175万元,甲、乙、丙按照一定的“衰分比”分配奖金,若甲分得奖金100万元,则“衰分比”是________.15.已知抛物线y =ax 2+bx +c (a >0)与x 轴交于点(m ,0),(2,0),其中0<m <1.下列结论:① bc >0;② 2b +3c <0;③ 不等式ax 2+bx +c <-x +c 的解集为0<x <2;④ 若关于x 的方程2ca (x -m )(x -2)=-1有实数根,则b 2-4ac ≥4a .其中正确的是__________.(填写序号)16.如图是某游乐场一个直径为50m 的圆形摩天轮,最高点距离地面55m ,其旋转一周需要12分钟.圆周上座舱P 距离地面50m 处,逆时针旋转5分钟后,距离地面的高度是_________m(结果根据“四舍五入”法精确到0.1).(三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(8分)关于x的一元二次方程x2+bx-12=0有一个根是x=2,求b的值及方程的另一个根.18.(8分)如图,在△ABC中,D是BC的中点.(1)画出△ABD关于点D对称的图形;(2)若AB=6,AD=4,AC=10,求证:∠BAD=90°.ADB C 19.(8分)一个不透明的布袋中装有红、白两种颜色的袜子各一双,它们除颜色外其余都相同.(1)从布袋中随机摸出一只袜子,直接写出颜色是白色的概率;(2)用列表或画树状图法,求从布袋中随机一次摸出两只袜子恰好是同色的概率.20.(8分)如图,A,B,C,D是⊙O上四点,AC=AB.(1)如图(1),∠BAC =60°,BD 是直径,BD 交AC 于点E .若BD =d ,先用含字母d 的式子直接表示CD 和DE 的长,再比较CD +DE 与BE 之间的大小;(2)如图(2),过点A 作AE ⊥BD ,垂足为E .若CD =3,DE =1,求BE 的长.21.(8分)用无刻度的直尺完成下列画图.(1)如图(1),△ACD 的三个顶点在⊙O 上,AC =AD ,∠CAD =36°,F 是AC 的中点.先分别画出CD ,AD 的中点G ,H ,再画⊙O 的内接正五边形ABCDE ;(2)如图(2),正五边形ABCDE 五个顶点在⊙O 上,过点A 画⊙O 的切线AP .22.(10分)某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),(1,),(7,)三点.14323(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m ,顶部宽4m 的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A 处安装一个直角形钢架BAC ,对隧道进行维修.B ,C 两点分别在隔离墙和地面上,且AB 与隔离墙垂直,AC 与地面垂直,求钢架BAC 的最大长度.23.(10分)在四边形ABCD 中,AD ∥BC ,E 是AB 上一动点(不与B 点重合),连接CE ,DE .(1)如图(1),AB =BC ,∠ABC =∠DCE =60°,求证:AD =BE ;(2)如图(2),CD =ED ,∠ABC =∠DCE =45°.①通过特例可以猜想一般结论,请你画出一个符合条件的特殊图形,猜想AD 与BE 的数量关系;②在一般情形下,证明你的猜想.图1EDCBA图2ABCDE24.(12分)如图1,抛物线L 1:y =x 2-6x +c 与x 轴交于A ,B 两点,且AB =4,将抛物线L 1向左平移a (a >0)个单位得到抛物线L 2,C 是抛物线L 2与y 轴的交点.(1)求c 的值;(2)过点C 作射线CD ∥x 轴,交抛物线L 1于点D ,E 两点,点D 在点E 的左侧.若DE =2CD ,直接写出a 的值;(3)如图2,若C 是抛物线L 2的顶点,直线y =mx 与抛物线L 2交于F ,G 两点,直线y =nx 分别交直线CF ,CG 于点M ,N .若OM =ON ,试探究m 与n的数量关系.图1图2数学试题答案及评分标准一、选择题(共10小题,每小题3分,共30分)题号12345678910答案ADAADBCCBD二、填空题(共6小题,每小题3分,共18分)11.x 2-1=0(答案不唯一) 12.13.23π 1214.50%15.②③④16. 20.2三、解答题(共8小题,共72分)17.解:∵x =2是一元二次方程x 2+bx -12=0的根,∴22+2b -12=0.∴b =4. ………………………………4分当b =4时,原方程为x 2+4x -12=0,解得x 1=2,x 2=-6.∴b =4,方程的另一个根为-6.………………………………8分另解:本题也可以利用根与系数的关系求解.18.(1)画出图形如图:……………………………………3分(2)证明:由中心对称图形性质得△ECD ≌△ABD ,……………………5分∴CE =BA =6,DE =DA =4,∠CED =∠BAD ,∴AE =8.在△ACE 中,AE 2+CE 2=82+62=102=AC 2,∴∠CED =90°,∴∠BAD =90°.…………………………………8分19.解:(1). …………………………………3分12(2)将两只白色袜子分别记作白1,白2,两只红色袜子分别记作红1,红2.依题意列表如下:白1白2红1红2白1(白1,白2)(白1,红1)(白1,红2)白2(白2,白1)(白2,红1)(白2,红2)红1(红1,白1)(红1,白2)(红1,红2)红2(红2,白1)(红2,白2)(红2,红1)由上表可知,同时摸出两只袜子,有12种等可能的结果,其中“摸到的同色”的结果有4种.∴P (摸到的同色)=.…………………………8分1420.解:(1)CD =,DE =; ……………………………………2分d 2d 4∵CD +DE =,BE =d -=,3d 4d 43d4∴CD +DE =BE .……………………………………4分(2)在BE 上截取BF =CD ,连接AD ,AF .∵AB =AC ,∠ABF =∠ACD ,∴△ABF ≌△ACD . ………………6分∴AF =AD .∵AE ⊥BD ,∴EF =DE .………………7分∴BE =BF +FE =CD +DE =3+1=4. ……………………………………8分另解:过点A 作CD 的垂线,垂足为F ,连接AD .可证△AFD ≌△AED ,再证△ACF ≌△ABE ,可得,BE =CD +DE .21.(1)画图如图(1) ……………………………………6分(2)画图如图(2).……………………………………8分………5分另解1:如图(3).另解2:分别延长CB ,EA 交于点M ,连接MO 也可以平分AB .22.解:(1)依题意,设抛物线的解析式为y =ax 2+bx +3,将(1,),(7,)分别代入y =ax 2+bx +3,得14323 ,解得.{a +b +3=143,49a +7b +3=23{a =-13,b =2∴该抛物线的解析式为y =-x 2+2x +3. …………………3分13(2)工程车不能正常通过,理由如下:∵抛物线的对称轴为x =3,工程车的顶宽为4 m ,∴当工程车与隔离墙的距离为1 m 时,行驶最安全.当x =1时,y =-x 2+2x +3=.13143∵工程车的高度为5 m ,5>,∴工程车不能安全通过.…………6分143另解:令y =5,则5=-x 2+2x +3,整理得x 2-2x +2=0.1313解得x 1=3-,x 2=3+,∴x 2-x 1=2<4.∴工程车不能正常通过.333(3)设点A (t ,-t 2+2t +3),13在y =-x 2+2x +3中,令y =3,得x 1=0,x 2=6.13∵点B 在隔离墙上,∴t ≥6.………………………………7分设AB +AC =l ,则l =-t 2+2t +3+t =-t 2+3t +3=-(t -)2+.13131392394∵l 关于t 的函数图象开口向下,当t ≥时,函数值l 随t 的增大而减小,92∴当t =6时,l 有最大值,l =9.∴钢架BAC 最大长度为9 m .………………………………10分23.(1)证明:连接AC .∵AB =BC ,∠ABC =60°,∴△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵AD ∥BC ,∴∠DAC =∠ACB =60°,∴∠DAC =∠ABC . ………2分∵∠DCE =∠ACB =60°,∴∠BCE =∠ACD ,∴△ACD≌△BCE,∴AD=BE.…………………………4分2(2)①如图,当点E与A重合时,可以猜想:BE=AD.………………6分②证明:过点D作AD的垂线交BA的延长线于点F.∵AD∥BC,∴∠FAD=∠ABC=45°,∵∠ADF=90°,∴∠F=45°.∴△ADF是等腰直角三角形,2∴AD=FD,AF=AD.…………………………………7分∵ED=CD,∠DCE=45°,∴△CDE是等腰直角三角形,∴∠CDE=90°,∴∠EDF=∠CDA,∴△EDF≌△CDA.………9分∴EF=AC,∠C AD=∠F=45°,∴∠BAC=90°,AB=AC,∴EF=AB,BE=AF.2∴BE=AD.…………………………………10分另解:分别过点E,C作AD的垂线,垂足分别为G,H,直线EG交BC于点F.可证△CDH≌△DEG,得CH=DG,DH=EG,由△AEG是等腰直角三角形,得AG=GE,于是22EF=AD,由△BEF是等腰直角三角形,得BE=EF=AD.24.解:(1)设A (x A ,0),B (x B ,0),则x A ,x B 是方程x 2﹣6x +c =0的两根.∴x A +x B =6,x A x B =c .…………………………………2分∵AB =4,∴x B -x A =4.…………………………………3分解得x A =1,x B =5,∴c =x A x B =5.…………………………………4分(2) 或 . …………………………………8分3292(3)依题意得,抛物线L 2的解析式为y =x 2-4,∴C (0,-4).设点F (x 1,x 12-4),G (x 2,x 22-4).联立,得,整理得:x 2-mx -4=0,{y =x 2-4,y =mx 则x 1+x 2=m . ………………………………9分由点C ,F 的坐标得直线CF 的解析式为:y =x 1x -4,联立,得,解得,∴M (,).{y =x 1x -4,y =nx {x =4x 1-n ,y =4n x 1-n 4x 1-n 4n x 1-n 同理N (,).……………………………10分4x 2-n 4n x 2-n 因为OM =ON ,即M ,N 关于原点对称,∴+ =0,整理得x 1+x 2=2n .4x 1-n 4x 2-n ∵x 1+x 2=m ,∴m =2n . (12)分。
人教版2022-2023学年第一学期九年级数学期末模拟测试题(附答案)
2022-2023学年第一学期九年级数学期末模拟测试题(附答案)一、选择题(共计24分)1.已知sinα=,若α是锐角,则α的度数为()A.30°B.45°C.60°D.90°2.如图所示几何体的主视图是()A.B.C.D.3.圆形物体在阳光下的投影可能是()A.三角形B.圆形C.矩形D.梯形4.如图,l1∥l2∥l3,直线AC和DE分别交l1、l2、l3于点A、B、C和点D、B、E,AB=4,BC=8,DB=3,则DE的长为()A.4B.5C.6D.95.反比例函数y=﹣图象上的两点为(x1,y1),(x2,y2),且x1<x2<0,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定6.如图,图形甲与图形乙是位似图形,点O是位似中心,点A、B的对应点分别为点A′、B′,若OA'=2OA,则图形乙的面积是图形甲的面积的()A.2倍B.3倍C.4倍D.5倍7.如图,四边形ABCD为菱形,若CE为边AB的垂直平分线,则∠ADB的度数为()A.20°B.25°C.30°D.40°8.已知反比例函数的图象在每个象限内y随x的增大而增大,则关于x的一元二次方程的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定二、填空题(共计15分)9.若关于x的方程ax2﹣2ax+1=0的一个根是﹣1,则a的值是.10.如图,在正方形网格中,△AOC的顶点均在格点上,则tan∠CAO的值为.11.在一个不透明的盒子中装有黑球和白球共200个,这些球除颜色外其余均相同,将球搅匀后任意摸出一个球,记下颜色后放回,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,则盒子中白球有个.12.如图,点A为反比例函数的图象上一点,连接AO并延长交反比例函数的图象于另一点B,过点A、B分别作x轴、y轴的平行线,两平行线交于点C,则△ABC的面积为.13.如图,将矩形ABCD放置在平面直角坐标系的第一象限内,使顶点A,B分别在x轴、y轴上滑动,矩形的形状保持不变,若AB=2,BC=1,则顶点C到坐标原点O的最大距离为.三、解答题(计81分)14.解方程:(2x﹣9)2=5(2x﹣9).15.如图,AD是△ABC的高,cos B=,sin C=,AC=10,求AD及AB的长.16.如图,在四边形ABCD中,AD∥BC,点E在BC上,∠C=∠DEA.(1)求证:△DEC∽△ADE;(2)若CE=2,DE=4,求△DEC与△ADE的周长之比.17.已知反比例函数y=(k为常数).(1)若函数图象在第二、四象限,求k的取值范围;(2)若x>0时,y随x的增大而减小,求k的取值范围.18.如图,在正方形ABCD中,E,F分别为AB,AD上的点,且AE=AF,点M是EF的中,点,连接CM、CF、CE.求证:CM⊥EF.19.《城镇污水处理厂污染物排放标准》中硫化物的排放标准为1.0mg/L.某污水处理厂在自查中发现,所排污水中硫化物浓度超标,因此立即整改,并开始实时监测.据监测,整改开始第60小时时,所排污水中硫化物的浓度为5mg/L;从第60小时开始,所排污水中硫化物的浓度y(mg/L)是监测时间x(小时)的反比例函数,其图象如图所示.(1)求y与x之间的函数关系式;(2)按规定所排污水中硫化物的浓度不超过0.8mg/L时,才能解除实时监测,此次整改实时监测的时间至少要多少小时?20.如图,▱ABCD的对角线AC、BD交于点O,点E在边CB的延长线上,连接AE,且∠EAC=90°,AE2=EB•EC.求证:四边形ABCD是矩形.21.2021年是中国共产党建党100周年,全国各地积极开展以“弘扬红色文化,重走长征路”为主题的教育学习活动,郑州市“二七纪念堂“成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万,5月份接待参观人数增加到12.1万.求这两个月参观人数的月平均增长率.22.一个阳光明媚的午后,王婷和李力两个人去公园游玩,看见公园里有一棵古老的大树,于是,他们想运用所学知识测量这棵树的高度,如图,李力站在大树AB的影子BC的末端C处,同一时刻,王婷在李力的影子CE的末端E处做上标记,随后两人找来米尺测得BC=10米,CE=2米.已知李力的身高CD=1.6米,B、C、E在一条直线上,DC⊥BE,AB⊥BE,请你运用所学知识,帮助王婷和李力求出这棵树的高度AB.23.随着信息技术的迅猛发展,移动支付已成为一种常见的支付方式.在一次购物中,陈老师和陆老师都随机从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付.(1)陆老师选择用“微信”支付的概率是;(2)请用画树状图或列表的方法表示所有结果,并求出两位老师恰好一人用“微信”支付,一人用“银行卡”支付的概率.24.晓琳想用所学知识测量塔CD的高度.她找到一栋与塔CD在同一水平面上的楼房,在楼房的A处测得塔CD底部D的俯角为26.6°,测得塔CD顶部C的仰角为45°,AB ⊥BD,CD⊥BD,BD=30m,求塔CD的高度.(参考数据:sin26.6°≈0.45,c0s26.6°≈0.89,tan26.6°≈0.50)25.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)求这两个函数的表达式;(2)一次函数y=k1x+b的图象交y轴于点C,若点P在反比例函数y=的图象上,使得S△COP=9,求点P的坐标.26.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)当点Q在线段CA上时,如图1,求证:△BPE∽△CEQ;(2)当点Q在线段CA的延长线上时,如图2,△BPE和△CEQ是否相似?说明理由;(3)在(2)的条件下,若BP=1,CQ=,求PQ的长.参考答案一、选择题(共计24分)1.解:∵sinα=,α是锐角,∴α的度数为:45°.故选:B.2.解:由题意知,几何体的主视图为,故选:D.3.解:∵同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.∴圆形物体在阳光下的投影可能是圆形、线段和椭圆形,故选:B.4.解:∵l1∥l2∥l3,∴,∵AB=4,BC=8,DB=3,∴,∴BE=6,∴DE=DB+BE=3+6=9,故选:D.5.解:∵反比例函数y=﹣中,k=﹣6<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0,∴(x1,y1)、(x2,y2)两点均位于第二象限,∴y1<y2.故选:B.6.解:由题意可得,甲乙两图形相似,且相似比为,根据相似图形的面积比是相似比的平方可得,图形乙的面积是图形甲的面积的4倍,故选:C.7.解:如图,连接AC,∵四边形ABCD为菱形,∴AB=BC=AD,∵CE为边AB的垂直平分线,∴AC=BC,∴AB=AC=BC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠ABD=30°,∵AB=AD,∴∠ADB=∠ABD=30°,故选:C.8.解:∵在每一个象限内y随着x增大而增大,∴k<0,∴一元二次方程的判别式Δ=b2﹣4ac=(2k−1)2−4(k2+14)=﹣4k>0,∴方程有两个不相等的实数根,故选:C.二、填空题(共计15分)9.解:∵关于x的方程ax2﹣2ax+1=0的一个根是﹣1,∴a+2a+1=0,∴3a+1=0,解得a=﹣,故答案为:﹣.10.解:∵正方形网格中,△AOC的顶点均在格点上,∴∠ACO=90°,∴,故答案为:.11.解:因为通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,所以摸到白球的概率约为0.2,所以白球有200×0.2=40,故答案为:40.12.解:设点A的坐标为(﹣a,),根据中心对称的性质知点B的坐标为(a,﹣),∴点C的坐标为(a,),∴AC=2a,BC=,则△ABC的面积为:×2a×=12.故答案为:12.13.解:如图,取AB的中点E,连接CE,OE,∵∠AOB=90°,在Rt△AOB中,OE=AB=1,∵∠ABC=90°,AE=BE=CB=1,∴在Rt△CBE中,CE==,∵OC≤CE+OE=1+,∴OC的最大值为1+,即点C到原点O距离的最大值是1+,故答案为:1+.三、解答题(共计81分)14.解:方程移项得:(2x﹣9)2﹣5(2x﹣9)=0,分解因式得:(2x﹣9)(2x﹣9﹣5)=0,所以2x﹣9=0或2x﹣14=0,解得:x1=4.5,x2=7.15.解:在Rt△ACD中,,∵,∴,∴AD=6.在Rt△ABD中,,∴∠B=60°,∴∠BAD=90°﹣∠B=30°.∴,∴,∴.16.证明:(1)∵AD∥BC,∴∠DEC=∠ADE.又∵∠C=∠DEA,∴△DEC∽△ADE.解:(2)∵△DEC∽△ADE,∴△DEC与△ADE的周长之比===.17.解:(1)∵函数图象在第二、四象限,∴k﹣5<0,解得:k<5,∴k的取值范围是k<5;(2)∵若x>0时,y随x的增大而减小,∴k﹣5>0,解得:k>5,∴k的取值范围是k>5.18.证明:∵四边形ABCD是正方形∴AB=AD=BC=CD,∠B=∠D=90°∵AE=AF,∴BE=DF.在△BCE和△DCF中,,∴△BCE≌△DCF(SAS),∴CE=CF,∵点M是EF的中点,∴CM⊥EF.19.解:(1)设y与x之间的函数关系式为,根据题意,得:k=xy=60×5=300,∴y与x之间的函数关系式为.(2)当y=0.8时,.20.证明:∵AE2=EB•EC,∴,又∵∠AEB=∠CEA,∴△AEB∽△CEA,∴∠EBA=∠EAC而∠EAC=90°,∴∠EBA=∠EAC=90°,又∵∠EBA+∠CBA=180°,∴∠CBA=90°,而四边形ABCD是平行四边形,∴四边形ABCD是矩形.21.解:设这两个月参观人数的月平均增长率为x,根据题意,得:10(1+x)2=12.1,解得:x1=0.1=10%,x2=﹣2.1(舍去),答:这两个月参观人数的月平均增长率为10%.22.解:根据题意可得,AC∥DE,∴∠DEC=∠ACB.又∵DC⊥BE,AB⊥BE,即∠DCE=∠ABC=90°,∴△ABC∽△DCE,∴.∵BC=10米,CE=2米,CD=1.6米.∴,∴AB=8米,即这棵树的高度AB为8米.23.解:(1)陆老师选择用“微信”支付的概率是,故答案为:;(2)将“微信”、“支付宝”、“银行卡”三种支付方式分别记为:A、B、C,画树状图如下:共有9种等可能的结果,其中两位老师恰好一人用“微信”支付,一人用“银行卡”支付的结果有2种,∴两位老师恰好一人用“微信”支付,一人用“银行卡”支付的概率为.24.解:过A点作AE⊥CD于E点,由题意得,四边形ABDE为矩形,∵∠DAE=26.6°,BD=30m,∴,∴DE=tan26.6°⋅AE≈0.50×30=15m,∵∠CAE=45°,∴∠ACE=45°,∴AE=EC=30m,∴CD=CE+ED=30+15=45(m),∴塔CD的高度是45m.25.解:(1)把点A(﹣1,4)代入反比例函数得,,∴k2=﹣4,∴反比例函数的表达式为,将点B(4,n)代入得,,∴B(4,﹣1),将A、B的坐标代入y=k1x+b得,解得∴一次函数的表达式为y=﹣x+3.(2)在y=﹣x+3中,令x=0,则y=3,∴直线AB与y轴的交点C为(0,3),设P(x,y),由题意得,∴|x|=6,∴x=6或x=﹣6,当x=6时,,此时点P的坐标为;当x=﹣6时,,此时点P的坐标为.∴点P的坐标或.26.(1)证明:如图1中,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∵∠B=∠C,∴△BPE∽△CEQ;(2)解:结论:△BPE∽△CEQ.理由:如图2中,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,又∵∠B=∠C,∴△BPE∽△CEQ;(3)解:∵△BPE∽△CEQ,∴,∵BE=CE,∴,解得:BE=CE=,∴BC=,∴AB=AC=,∴AQ=CQ﹣AC=,AP=AB﹣BP=3﹣1=2,在Rt△APQ中,PQ=.。
浙教版2022-2023学年九年级上学期期末数学模拟卷(2)(九上全册)(解析版)
浙教版2022-2023学年九年级上学期期末数学模拟卷(2)(九上全册)(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的. 1.下列函数中,二次函数是( ) A .y =−4x +5 B .y =x(x −3)C .y =(x +4)2−x 2D .y =1x2【答案】B【解析】A . y =−4x +5是一次函数,不符合题意; B .y =x(x −3)=x 2−3x 是二次函数,符合题意;C .y =(x +4)2−x 2=8x +16是一次函数,不符合题意;D . y =1x2不是二次函数,不符合题意.故答案为:B .2.任意抛掷一枚均匀的骰子, 结果朝上一面的点数为2的倍数的概率是( ) A .16 B .14 C .13 D .12【答案】D 【解析】:∵任意抛掷一枚均匀的骰子,结果朝上一面的点数可能为:1,2,3,4,5,6,6种等可能的结果, 其中结果朝上一面的点数为2的倍数的有3种, ∴满足题意的概率为:36=12,故答案为:D .3.已知二次函数y=mx 2+2mx -1(m >0)的最小值为-5,则m 的值为( ) A .-4 B .-2 C .2 D .4 【答案】D 【解析】:∵y =mx 2+2mx −1−m =m(x +1)2−m −1,m >0, ∴ 抛物线开口向上,函数最小值为−m −1, ∴−m −1=−5, 解得m =4. 故答案为:D .4.如图,l 1∥l 2∥l 3,直线a ,b 与l 1,l 2,l 3分别交于点A ,B ,C 和点D ,E ,F .若AB BC =23,DE =4,则DF 的长是( )A .83B .203C .6D .10【答案】D 【解析】:∵l 1∥l 2∥l 3,∴DE EF =AB BC =23,又DE =4, ∴EF =6,∴DF =DE+EF =10, 故答案为:D .5.从一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边长是( ) A .10 B .5√2 C .5√3 D .10√3 【答案】A【解析】∵圆内接正六边形的边长等于圆的半径,∴一个半径为10的圆形纸片上裁出一个最大的正六边形,此正六边形的边长为10,故答案为:A.6.如图,已知∥O的直径CD=8,AB是∥O的弦,AB⊥CD,垂足为M,OM=2,则AB的长为()A.2B.2√3C.4D.4√3【答案】D【解析】连接OB,∵直径CD=8,AB⊥CD,OM=2∴BM=√OB2−OM2=√42−22=2√3,根据垂径定理,得AB=2BM=4√3,故答案为:D.7.为了解某地区九年级男生的身高情况,随取了该区100名九年级男生,他们的身高x(cm)统计【答案】D【解析】:样本中身高不高于180cm的频率=100−5100=0.95,所以估计他的身高不高于180cm的概率是0.95.故答案为:D.8.如图是二次函数y=ax2+bx+c的图象,则函数y=a(x−b)2+c的图象可能是()A.B.C.D.【答案】B【解析】:由y=ax2+bx+c的图象可知,该抛物线开口向下,对称轴在y轴右侧,与y轴的交点在x轴上方,∴a<0,−b2a>0,c>0,∴b>0,∴函数y=a(x−b)2+c的图象开口向下,顶点坐标为(b,c),且该顶点在第一象限,∴只有B选项符合题意,故答案为:B.9.如图,点P是∥ABC的重心,过点P作DE∥AC交BC,AB于D,E,EF∥BC交AC于点F,若BC=11,则EF的长为()A.114B.3C.113D.4【答案】C【解析】:连接BP并延长交AC于点G,∵ DE∥AC,EF∥BC,∴四边形EFCD是平行四边形,∴EF=CD;∵点P是重心,∴BPPG=2,∵ED∥AC,∴BPPG=BDCD=2,∴BDEF=2∵BD+CD=BC=11即2EF+EF=11解之:EF=11 3故答案为:C10.如图,点C,D是劣弧AB⌢上两点,CD∥AB,∥CAB=45°,若AB=6,CD=2,则AB⌢所在圆的半径长为()A.√17B.165C.2 √3D.√10【答案】D【解析】:过点C作CE∥AB于点E,过点D作DF∥AB于点F,连接BC,如图:则∠CEA=∠CEF=90°,∠DFE=90°,∵CD∥AB,∴∥ECD=∥CEA=90°,∴∥CEF=∥DCE=∥DFE=90°, ∴四边形CDFE 是矩形, ∴EF=CD=2, ∴CD∥AB ,∴∥ABC=∥BCD , ∴AC⌢=BD ⌢ , ∴AC=BD , 又∵CD∥AB ,∴四边形ABDC 是等腰梯形, ∵AB=6,CD=2,根据等腰梯形的对称性可知:AE =BF =AB −EF 2=6−22=2,∴BE=BF+EF=2+2=4,在 Rt △ACE 中,∠AEC =90°,∠CAE =45°,∴∠ACE =90°−∠CAE =90°−45°=45°, ∴∠CAE =∠ACE ,∴CE =AE =2,在 Rt △BCE 中,∠BEC =90°,BE =4,CE =2 , ∴BC =√BE 2+CE 2=√42+22=2√5 ,根据圆周角的性质可知 ∠COB =2∠CAB =2×45°=90° , 在 Rt △BOC 中,∠BOC =90°,BO =CO ,BC =2√5 , ∴BO 2+BO 2=(2√5)2 , ∵BO >0, ∴BO= √10 . 故答案为:D.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.将抛物线y =−3x 2向右平移1个单位,再向上平移2个单位后,得到的新的抛物线的解析式为 . 【答案】y =﹣3(x ﹣1)2+2【解析】将抛物线y =−3x 2向右平移1个单位,再向上平移2个单位后,得到的新的抛物线的解析式为:y =﹣3(x ﹣1)2+2.故答案为:y =﹣3(x ﹣1)2+2.12.已知P 是线段AB 的黄金分割点(AP >PB),且AB =10cm ,则BP 长为 (cm ). 【答案】(15−5√5) 【解析】:∵P 是线段AB 的黄金分割点,且AB =10cm ,∴AP>BP ,AP =√5−12AB =√5−12×10=5√5−5∴BP=AB -AP=15−5√5.故答案为:(15−5√5).13.不透明袋子中装有5个球,其中有2个红球、3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是 .【答案】35【解析】∵共有5个球,其中黑色球3个∴从中任意摸出一球,摸出白色球的概率是35.故答案为:3514.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,连结AD ,若CD =2AD ,AB =BC =6,则⊙O 的半径 .【答案】2√3 【解析】:∵CD 是直径, ∴∥DAC=90°, ∵CD=2AD ,∴∥ACD=30°,∥D=60°,∵AC ⏜=AC ⏜,∴∥D=∥B=60°, ∵AB=BC ,∴∥ABC 是等边三角形, ∴BC=AC=6;∴AD 2+AC 2=CD 2即AD 2+36=4AD 2 解之:AD=2√3. ∴圆的半径为2√3. 故答案为:2√315.已知抛物线 y =x 2+bx +c 的部分图象如图所示,当 y <0 时, x 的取值范围是 .【答案】−1<x <3【解析】由图象可知,抛物线的对称轴为 x =1 ,与x 轴的一个交点坐标为 (−1,0) , 则其与x 轴的另一个交点坐标为 (3,0) ,结合图象得:当 y <0 时, −1<x <3 , 故答案为: −1<x <3 .16.由四个全等的直角三角形和一个小正方形组成的大正方形ABCD 如图所示.将小正方形对角线EF 双向延长,分别交边AB ,和边BC 的延长线于点G ,H .若大正方形与小正方形的面积之比为5,GH =2√5,则大正方形的边长为 .【答案】3√22【解析】:如图:∵大正方形与小正方形的面积之比为5, ∴AD EM=√5,∴AD =√5EM ,设EM =a ,AE =b ,则AD =√5a , 由勾股定理得:AE 2+DE 2=AD 2, ∴b 2+(a+b )2=(√5a )2, ∴2b 2+2ab ﹣4a 2=0, (b ﹣a )(b+2a )=0, ∵b+2a≠0, ∴b ﹣a =0, ∴b =a ,∴AE =DM =a ,如图,延长BF 交CD 于N , ∵BN∥DE ,CF =FM , ∴DN =CN ,∴EN =12DM =12a ,∵PN∥BG ,∴FN BF =PN BG =FP GF =12a 2a =14, 设PN =x ,则BG =4x ,∵DE =BF ,∥BFG =∥DEF ,∥BGF =∥DPE , ∴∥BFG∥∥DEP (AAS ), ∴PD =BG =4x , 同理得:EG =FP , ∴DN =3x =CN , ∴PC =2x , ∵CP∥BG ,∴CP BG =PH GH , 即 2x 4x =PH2√5, ∴PH =PG =√5, ∵FP FG =14, ∴EF =√2a =35GP =35√5,∴a =3√1010,∴AD =√5a =3√22.故答案为:3√22.三、解答题(本题有7小题,第17题6分,第18、19题每题8分,第20、21题每题10分,第22、23题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.已知抛物线的顶点坐标为(-1,2),与y 轴交于点(0, 32) (1)求二次函数的解析式;(2)判断点P (2,- 52)是否落在抛物线上,请说明理由.【答案】(1)解:∵抛物线的顶点坐标为(-1,2), ∴设抛物线的解析式为:y=a (x+1)2+2, 将(0, 32 )代入得,a=- 12,∴抛物线的解析式为y=- 12(x+1)2+2;(2)解:将P 的横坐标x=2代入抛物线,则y=- 52,所以P 点落在抛物线上.18.一个布袋里装有4个只有颜色不同的球,其中3个红球,一个白球.从布袋里摸出一个球,记下颜色后放回,搅匀,再摸出1个球.求下列事件发生的概率:(1)事件A:摸出一个红球,1个白球.(2)事件B:摸出两个红球.【答案】(1)解:画树状图得:∵共有16种等可能的结果,摸出一个红球,1个白球的有6种情况,∴P(事件A)=616=38;(2)解:∵摸出两个红球的有9种情况,∴P(事件B)=9 16.19.如图,已知BD是△ABC的角平分线,E是BD延长线上的一点,且AE=AB.(1)求证:△ADE∽△CDB.(2)若AB=4,DCAD=12,求BC的长.【答案】(1)证明:∵BD是∠ABC的角平分线,∴∠ABD=∠CBD.∵AB=AE,∴∠ABD=∠E.∴∠E=∠CBD.∵∠EDA=∠BDC,∴△ADE∽△CDB;(2)解:∵AE=AB,AB=4,∴AE=4,∵△ADE∽△CDB,∴BCAE=DCAD=12.∴BC=12AE=2.20.如图,AC为⊙O的直径,BD是弦,且AC⊥BD于点E.连接AB、OB、BC.(1)求证:∠CBO=∠ABD;(2)若AE=4cm,CE=16cm,求弦BD的长.【答案】(1)证明:∵AC是直径,AC∥BD∴AB⌢=AD⌢∴∥ABD=∥C又∵OB=OC∴∥OBC=∥C∴∥CBO=∥ABD(2)解:∵AE=4cm,CE=16cm∴直径AC=AE+CE=20cm∴OA=OB=10cm∴OE=OA-AE=10-4=6cm∵AC是直径,AC∥BD∴BE=ED= √BO2−OE2=8cm∴BD=2BE=16cm21.如图,在等腰直角∥ABC中,∥BAC=90°,AB=AC,点D、E分别在边BC、AC上,连接AD、DE,有∥ADE=45°.(1)证明:∥BDA∥∥CED.(2)若BC=6,当AE=ED时,求BD的长.【答案】(1)证明:∵∥BAC=90°,AB=AC,∴∥B=∥C=45°,∵∥ADE=45°,∵∥BAD=180°﹣∥ADB﹣∥B=135°﹣∥ADB,∥CDE=180°﹣∥ADB﹣∥ADE=135°﹣∥ADB,∴∥BAD=∥CDE,∴∥BDA∥∥CED;(2)解:当AE=DE时,∴∥ADE=∥DAE,∵∥ADE=45°,∴∥ADE=∥DAE=45°,∵∥BAC=90°,∴∥BAD=∥EAD=45°,∴AD平分∥BAC,∴AD垂直平分BC,∴BD=3;22.已知二次函数y=x2+bx+2b(b为常数).(1)若图象过(2,8),求函数的表达式.(2)在(1)的条件下,当-2≤x≤2时,求函数的最大值和最小值.(3)若函数图象不经过第三象限,求b的取值范围【答案】(1)解:∵图象经过点(2,8),∴4+2b+2b=8解得b=1.∴此函数解析式为y=x2+x+2.(2)解:y=x2+x+2=(x+ 12)2+ 74.∵抛物线的开口向上,∴当-2≤x≤ −12,y随x的增大而减小,∴当x= −12时,y的最小值为74,当−12<x≤2时,y随x的增大而增大,∴当x=2时y的最大值为(2+ 12)2+ 74=8答:最小值74,最大值8.(3)∵图象不经过第三象限,且开口向上∴2b≥0,即b≥0∴对称轴直线x= −b2≤0,在y轴左侧∴图象必在x轴上方(包括x轴)∴∥= b2-8b≤0∴0≤b≤823.如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.(1)当∥BAC=30º时,求∥ABC的面积;(2)当DE=8时,求线段EF的长;(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与∥ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.【答案】(1)解:∵AB是∥O的直径,∴∥ACB=90°,在Rt∥ABC中,AB=10,∥BAC=30°,∴BC= 12AB=5,∴AC= √AB2−AC2=5√3,∴S∥ABC= 12AC∥BC= 25√32(2)解:连接AD,∵∥ACB=90°,CD=BC,∴AD=AB=10,∵DE∥AB,∴AE= √AD2−DE2=6,∴BE=AB−AE=4,∴DE=2BE,∵∥AFE+∥FAE=90°,∥DBE+∥FAE=90°,∴∥AFE=∥DBE,∵∥AEF=∥DEB=90°,∴∥AEF∥∥DEB,∴AEEF=DEBE=2,∴EF= 12AE=12×6=3(3)解:连接EC,设E(x,0),当BC⌢的度数为60°时,点E恰好与原点O重合;①0°< BC⌢的度数<60°时,点E在O、B之间,∥EOF>∥BAC=∥D,又∵∥OEF=∥ACB=90°,由相似知∥EOF=∥EBD,此时有∥EOF∥∥EBD,∴OEBE=OFBD,∵EC是Rt∥BDE斜边的中线,∴CE=CB,∴∥CEB=∥CBE,∴∥EOF=∥CEB,∴OF∥CE,∴∥AOF∥∥AEC∴AOAE=OFCE=OF12BD,∴AOAE=2OEBE,即55+x=2x5−x,解得x= −15±5√174,因为x>0,∴x= −15+5√174;②60°< BC⌢的度数<90°时,点E在O点的左侧,若∥EOF=∥B,则OF∥BD,∴OF= 12BC=14BD,∴OFBD=OEBE=14即−x5−x=14解得x= −53,若∥EOF=∥BAC,则x=− 5 2,综上点E的坐标为( −15+5√174,0) ;(−53,0);(− 52,0).。
太原市2022-2023学年九年级数学第一学期期末检测模拟试题含解析
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有实数根,则k 的取值范围是( )A .k ≥﹣1且k ≠0B .k ≥﹣1C .k ≤1D .k ≤1且k ≠0 2.下列各点中,在反比例函数3y x =图象上的是( ) A .(3,1) B .(-3,1) C .(3,13) D .(13,3) 3.2的相反数是( )A .12-B .12C .2D .2-4.对于反比例函数y=1x,下列说法正确的是( ) A .图象经过点(1,﹣1) B .图象关于y 轴对称C .图象位于第二、四象限D .当x <0时,y 随x 的增大而减小 5.如图,△ABC 内接于圆O,∠A=50°,∠ABC=60°,BD 是圆O 的直径,BD 交AC 于点E ,连结DC ,则∠AEB 等于( )A .70°B .110°C .90°D .120°6.已知反比例函数6y x=-,下列结论中不正确的是( ) A .图象必经过点 ()1,6- B .y 随x 的增大而增大C .图象在第二,四象限内D .若1x >,则60y -<< 7.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB =120°,半径OA 为3m ,那么花圃的面积为( )A .6πm 2B .3πm 2C .2πm 2D .πm 28.如图所示,河堤横断面迎水坡AB 的坡比是1:3,坡高BC =20,则坡面AB 的长度( )A .60B .1002C .503D .20109.在比例尺为1:1000000的地图上量得A ,B 两地的距离是20cm ,那么A 、B 两地的实际距离是( ) A .2000000cmB .2000mC .200kmD .2000km 10.已知11x y =3,则代数式232x xy y x xy y+---的值是( ) A .72- B .112- C .92 D .3411.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,且将这个四边形分成①②③④四个三角形.若OA OC OB OD =∶∶,则下列结论中一定正确的是( )A .①和②相似B .①和③相似C .①和④相似D .③和④相似12.小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是( )A .8πB .6πC .5πD .4π 二、填空题(每题4分,共24分)13.小莉身高1.50m ,在阳光下的影子长为1.20m ,在同一时刻站在阳光下,小林的影长比小莉长0.2m ,则小林的身高为_________m .14.如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m ,此时小球距离地面的高度为_________m.15.已知圆锥的底面圆的半径是8cm ,母线长是10cm ,则圆锥的侧面积是________2cm .16.如图,⊙O 的半径OA 长为6,BA 与⊙O 相切于点A ,交半径OC 的延长线于点B ,BA 长为63,AH ⊥OC ,垂足为H ,则图中阴影部分面积为_____.(结果保留根号)17.若二次函数25(0)y ax bx a =-+≠的图像经过点(2,2),则242017b a -+的值是_______.18.已知反比例函数m 1y x-=的图象的一支位于第一象限,则常数m 的取值范围是___. 三、解答题(共78分)19.(8分)(1)计算:16﹣|﹣3|+3 cos 60°; (2)化简:()()22-121a a ++20.(8分)如图,已知直线334y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线23y ax bx =++经过B 、C 两点并与x 轴的另一个交点为A ,且3OC OA =.(1)求抛物线的解析式;(2)点R 为直线BC 上方对称轴右侧抛物线上一点,当RBC △的面积为92时,求R 点的坐标; (3)在(2)的条件下,连接CR ,作RH x ⊥轴于H ,连接CH 、AC ,点P 为线段CR 上一点,点Q 为线段CH 上一点,满足2QH CP =,过点P 作PE AC ∥交x 轴于点E ,连接EQ ,当45PEQ ∠=︒时,求CP 的长.21.(8分)如图,小明欲利用测角仪测量树的高度.已知他离树的水平距离BC 为10m ,测角仪的高度CD 为1.5m ,测得树顶A 的仰角为33°.求树的高度AB .(参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)22.(10分)如图,等边△ABC 内接于⊙O ,P 是AB 上任一点(点P 不与点A 、B 重合),连AP 、BP ,过点C 作CM ∥BP 交PA 的延长线于点M .(1)填空:∠APC= 度,∠BPC= 度;(2)求证:△ACM ≌△BCP ;(3)若PA=1,PB=2,求梯形PBCM 的面积.23.(10分)某商场销售一种名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件, (1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)当每件衬衫降价多少元时,商场每天获利最大,每天获利最大是多少元?24.(10分)已知二次函数2y x 4x 3=-+. ()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.25.(12分)在直角坐标平面内,直线122y x =+分别与x 轴、y 轴交于点A ,C .抛物线212y x bx c =-++经过点A 与点C ,且与x 轴的另一个交点为B .点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC ,BD ,且BD 交AC 于点E ,如果ABE ∆的面积与ABC ∆的面积之比为4:5,求DBA ∠的余切值; (3)过点D 作DF AC ⊥,垂足为点F ,联结CD .若CFD ∆与AOC ∆相似,求点D 的坐标.26.在平面直角坐标系中,二次函数y=ax 2+bx+c(a≠0)的顶点A (-3,0),与y 轴交于点B (0,4),在第一象限内有一点P (m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P 为圆心的圆与直线AB 、x 轴相切,求点P 的坐标.(3)若点A 关于y 轴的对称点为点A′,点C 在对称轴上,且2∠CBA+∠PA′O=90◦.求点C 的坐标.参考答案一、选择题(每题4分,共48分)1、A【分析】根据一元二次方程的定义和判别式的意义得到k≠1且△=22-4k×(-1)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得k≠1且△=22-4k×(-1)≥1, 解得k≥-1且k≠1.故选A .【点睛】本题考查了一元二次方程ax 2+bx+c=1(a≠1)的根的判别式△=b 2-4ac :当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.2、A【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3. 【详解】解:A、∵3×1=3,∴此点在反比例函数的图象上,故A正确;B、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B错误;C、∵13=133, ∴此点不在反比例函数的图象上,故C错误;D、∵13=133, ∴此点不在反比例函数的图象上,故D错误;故选A.3、D【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.4、D【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B选项:反比例函数的图象关于原点中心对称,故本选项错误;C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.故选B.5、B【解析】解:由题意得,∠A=∠D=50°,∠DCB=90°,∠DBC=40°,∠ABC=60°,ABD=20°,∠AEB=180°- ∠ABD - ∠D = 110°,故选B.6、B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k,可以判断出A的正误;根据反比例函数的性质:k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大可判断出B、C、D的正误.【详解】A、反比例函数6yx=-,所过的点的横纵坐标之积=−6,此结论正确,故此选项不符合题意;B、反比例函数6yx=-,在每一象限内y随x的增大而增大,此结论不正确,故此选项符合题意;C、反比例函数6yx=-,图象在第二、四象限内,此结论正确,故此选项不合题意;D、反比例函数6yx=-,当x>1时图象在第四象限,y随x的增大而增大,故x>1时,−6<y<0;故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y=kx(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.7、B【分析】利用扇形的面积公式计算即可.【详解】解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为21203360π⨯=3π,故选:B.【点睛】本题考查扇形的面积,解题的关键是记住扇形的面积公式.8、D【分析】在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长.【详解】Rt△ABC中,BC=20,tan A=1:3;∴AC=BC÷tan A=60,∴AB==.故选:D.【点睛】本题考查了学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.9、C【分析】比例尺=图上距离:实际距离,根据比例尺关系可直接得出A、B两地的实际距离.【详解】根据比例尺=图上距离:实际距离,得A、B两地的实际距离为20×1000000=20000000(cm),20000000cm=200km.故A、B两地的实际距离是200km.故选:C.【点睛】本题考查了线段的比,能够根据比例尺正确进行计算,注意单位的转化.10、D【分析】由113x y -=得出3y x xy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得. 【详解】 113x y-=, ∴ 3y x xy-=, ∴ 3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xy xy xy xy -+-+-====-----. 故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.11、B【解析】由题图可知,AOB COD ∠=∠,由OA OC OB OD =∶∶,可得OA OB OC OD= 即可得出 【详解】由题图可知,AOB COD ∠=∠,结合OA OC OB OD =∶∶,可得AOB COD ∽.故选B .【点睛】当题中所给条件中有两个三角形的两边成比例时,通常考虑利用“两边成比例且夹角相等”的判定方法判定两个三角形相似一定要记准相等的角是两边的“夹角”,否则,结论不成立(类似判定三角形全等的方法“SAS "). 12、D【分析】根据几何概型的意义,求出圆的面积,再求出正方形的面积,算出其比值即可.【详解】解:设正方形的边长为2a ,则圆的半径为a ,则圆的面积为:2a π,正方形的面积为:22(2)4a a =, ∴针扎到阴影区域的概率是2244a a ππ=,故选:D .【点睛】 本题考查几何概型的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积和总面积的比,这个比即事件(A )发生的概率.二、填空题(每题4分,共24分)13、1.75【分析】由同一时刻物高与影长成比例,设出小林的身高为x 米,列方程求解即可.【详解】解:由同一时刻物高与影长成比例,设小林的身高为x 米,则 1.50,1.20 1.40x ∴= 1.75.x ∴=即小林的身高为1.75米.故答案为:1.75.【点睛】本题考查的是利用相似三角形的原理:“同一时刻物高与影长成比例”,测量物体的高度,掌握原理是解题的关键. 14、10【详解】如图:Rt △ABC 中,∠C=90°,i=tanA=1:3,AB=1.设BC=x ,则AC=3x ,根据勾股定理,得:222(3)10x x +=, 解得:10(负值舍去)10米.15、80π【解析】先计算出圆锥的底面圆的周长=1π×8cm=16πcm ,而圆锥的侧面展开图为扇形,然后根据扇形的面积公式进行计算.【详解】∵圆锥的底面圆的半径是8cm , ∴圆锥的底面圆的周长=1π×8cm=16πcm,∴圆锥的侧面积=12×10cm×16πcm=80πcm 1. 故答案是:80π.【点睛】考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了扇形的面积公式.16、6π 【分析】由已知条件易求直角三角形AOH 的面积以及扇形AOC 的面积,根据阴影部分的面积=扇形AOC 的面积﹣直角三角形AOH 的面积,计算即可.【详解】∵BA 与⊙O 相切于点A ,∴AB ⊥OA ,∴∠OAB =90°,∵OA =6,AB =∴tan ∠B =OA AB ==, ∴∠B =30°,∴∠O =60°,∴∠OAH =30°,∴OH =12OA =3,∴AH =∴阴影部分的面积=扇形AOC 的面积﹣直角三角形AOH 的面积=2606360π⨯﹣12×3×6π;故答案为:6π. 【点睛】此题考查圆的性质,直角三角形中30°角所对的直角边等于斜边的一半,扇形面积公式,三角函数.17、1【分析】首先根据二次函数25(0)y ax bx a =-+≠的图象经过点(2,2)得到243b a -=,再整体代值计算即可.【详解】解:∵二次函数25(0)y ax bx a =-+≠的图象经过点(2,2),∴4252a b -+=,∴243b a -=,∴242017b a -+=32017+=1,故答案为1.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是利用整体代值计算,此题比较简单.18、m >1【解析】试题分析:∵反比例函数的图象关于原点对称,图象一支位于第一象限,∴图象的另一分支位于第三象限.∴m ﹣1>0,解得m >1.三、解答题(共78分)19、(1)12+;(2)24-23a a+ 【分析】(1)分别计算平方根、绝对值、特殊角的三角函数值,然后根据实数的运算法则计算即可.(2)利用完全平方公式及单项式乘多式展开后,合并同类项即可.【详解】(1|﹣ cos 60° 14-32=+12=+ (2)()()22-121a a ++244122a -a++a+=24-23a a+=【点睛】本题考查了实数的运算,整式的化简,熟练掌握运算法则是解题的关键.20、(3)239344y x x =-++;(3)R (3,3);(3)3或83. 【分析】(3)求出A 、B 、C 的坐标,把A 、B 的坐标代入抛物线解析式,解方程组即可得出结论;(3)设R (t ,239344t t -++).作RK ⊥y 轴于K ,RW ⊥x 轴于W ,连接OR . 根据RBC COB RCO ROB COB RCOB S S S S S S =-=+-△△△△△四边形计算即可;(3)在RH 上截取RM =OA ,连接CM 、AM ,AM 交PE 于G ,作QF ⊥OB 于H .分两种情况讨论:①点E 在F 的左边;②点E 在F 的右边.【详解】(3)当x =0时y =3,∴C (0,3),∴OC =3.∵OC =3OA ,∴OA =3,∴A (-3,0).当y =0时x =4,∴B (4,0).把A 、B 坐标代入得0301643a b a b =-+⎧⎨=++⎩解得:3494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的解析式为239344y x x =-++. (3)设R (t ,239344t t -++). 作RK ⊥y 轴于K ,RW ⊥x 轴于W ,连接OR .∵211391=34(3)3422442RBC COB RCO ROB COB RCOB S S S S S S t t t =-=+-⨯+⨯⨯-++-⨯⨯△△△△△四边形 2362t t =-+ ∵92ROB S =△, ∴239622t t -+=,11t =(舍去),23t =, ∴R (3,3).(3)在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB于H.分两种情况讨论:①当点E在F的左边时,如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥EQ,∴∠MAH=∠QEF.∵∠QFE=∠MHA=90°,∴△QEF∽△MAH,∴QF EF MH AH.∵OA=3,OH=3,MH=RH-RM=3-3=3,∴AH=AO+OH=4,∴EF=3QF.设CP=m,∴QH2CP2m.∵OC=OH,∴QF=FH=m,∴EF=3m,∴EH=3m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴3m=4-m,∴m=3,∴CP=3.②当点E在F的右边时,设AM交QE于N.如图3.∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA,∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°.∵AC∥PE,∴∠CAM=∠AGE=45°.∵∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°.∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴QF EF AH MH,∴QF=3EF.设CP=m,∴QH CP m.∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=12 m,∴EH=12 m.∵ACPE为平行四边形,∴AE=CP=m.∵EH=AH-AE=4-m,∴4-m=12 m,∴m=83,∴CP=83.综上所述:CP的值为3或83.【点睛】本题是二次函数的综合题目,涉及了相似三角形的判定与性质、平行四边形的性质,解答本题需要我们熟练各个知识点的内容,注意要分类讨论.21、8米【详解】解:如图,过点D作DE⊥AB,垂足为E.在Rt△ADE中,DE=BC=10,∠ADE=33°,tan∠ADE=AE DE,∴AE=DE·tan∠ADE≈10×0.65=6.5,∴AB=AE+BE=AE+CD=6.5+1.5=8(m).答:树的高度AB约为8 m.22、(1)60;60;(2)证明见解析;(3153.【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角;(2)利用(1)中得到的相等的角和等边三角形中相等的线段证得两三角形全等即可;(3)利用(2)证得的两三角形全等判定△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°,故答案为60, 60;(2)∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四点共圆,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC,∵AC=BC,∴△ACM ≌△BCP ;(3)作PH ⊥CM 于H ,∵△ACM ≌△BCP ,∴CM=CP AM=BP ,又∠M=60°, ∴△PCM 为等边三角形,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt △PMH 中,∠MPH=30°, ∴PH=332, ∴S 梯形PBCM =12(PB+CM )×PH=12×(2+3)×332=1534.【点睛】本题考查了圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题,解题的关键是熟练掌握和灵活运用相关的性质与判定定理.23、(1)每件应该降价20元;(2)当每件降价15元时,每天获利最大,且获利1250元【分析】(1)设每件应该降价x 元,则每件利润为()40x -元,此时可售出数量为()202x +件,结合盈利1200元进一步列出方程求解即可;(2)设每件降价n 元时,每天获利最大,且获利y 元,然后进一步根据题意得出二者的关系式()()40202y n n =-+,最后进一步配方并加以分析求解即可.【详解】(1)设每件应该降价x 元,则:()()402021200x x -+=,整理可得:22604000x x -+=,解得:120x =,210x =,∵要尽量减少库存,在获利相同的情况下,降价越多,销售越快,∴每件应该降价20元,答:每件应该降价20元;(2)设每件降价n 元时,每天获利最大,且获利y 元,则:()()40202y n n =-+,配方可得:()22151250y n =--+,∵20-<,∴当15n =时,y 取得最大值,且1250y =,即当每件降价15元时,每天获利最大,且获利1250元,答:当每件降价15元时,每天获利最大,且获利1250元.【点睛】本题主要考查了一元二次方程与二次函数的实际应用,根据题意正确找出等量关系是解题关键.24、(1)2(x 2)1--;(2)见解析.【分析】(1)利用配方法把二次函数解析式化成顶点式即可;(2)利用描点法画出二次函数图象即可.【详解】解:()21y x 4x 3=-+ =222x 4x 223-+-+=2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0, ∴其图象为:故答案为(1)2(x 2)1--;(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键.25、(1)213222y x x =--+;(2)9cot 8DBA ∠=;(3)D 的坐标为()3,2-或325,28⎛⎫- ⎪⎝⎭【分析】(1)先根据直线表达式求出A,C 的坐标,再用待定系数法求出抛物线的表达式即可;(2)过点E 作EH AB ⊥于点H ,先求出点B 的坐标,再根据面积之间的关系求出点E 的坐标,然后利用余切的定义即可得出答案;(3)若CFD ∆与AOC ∆相似,分两种情况:若DCF CAO ∠=∠,DCF CAO ;若DCF ACO ∠=∠时,DCF ACO ,分情况进行讨论即可.【详解】(1)当0y =时,1202x += ,解得4x =- ,∴()4,0A - 当0x =时,1222y x =+= ,∴()0,2C 把A ,C 两点的坐标代入212y x bx c =-++, 得2840c b c =⎧⎨--+=⎩,解得322b c ⎧=-⎪⎨⎪=⎩, 213222y x x ∴=--+. (2)过点E 作EH AB ⊥于点H ,当0y =时,213x x 2022--+= 解得124,1x x =-=∴()10B ,, 45ABE ABC S S ∆∆=, 141252AB EH AB OC ∴⋅=⨯⋅, 4855EH OC ∴==, 48,55E ⎛⎫∴- ⎪⎝⎭, 95HB ∴=. 90EHB ∠=︒,995cot 885HB DBA HE ∴∠===. (3)DF AC ⊥,DFC AOC ∴∠=∠90=︒,①若DCF CAO ∠=∠,DCFCAO ,则CD AO ∥∴点D 的纵坐标为2,把2y =代入213222y x x =--+ 得3x =-或0x =(舍去), ()3,2D ∴-.②若DCF ACO ∠=∠时,DCF ACO过点D 作DG y ⊥轴于点G ,过点C 作CQ DC ⊥交x 轴于点Q ,90DCQ AOC ∠=∠=︒,DCF ∴∠+90ACQ ACO CAO ∠=∠+∠=︒,ACQ CAO ∴∠=∠,AQ CQ ∴=,设(),0Q m ,则244m m +=+32m ∴=-, 3,02Q ⎛⎫∴- ⎪⎝⎭. ∵90QCO DCG ∠+∠=︒,90QCO CQO ∠+∠=︒∴DCG CQO ∠=∠∴COQ DGC ∆∆∽,24332DG CO GC QO ∴===,设()4,32D t t -+,代入213222y x x =--+得0t =(舍去)或者38t =, 325,28D ⎛⎫∴- ⎪⎝⎭. 综上所述,D 的坐标为()3,2-或325,28⎛⎫-⎪⎝⎭. 【点睛】本题主要考查相似三角形的判定及性质,待定系数法,三角函数,掌握相似三角形的判定方法和分情况讨论是解题的关键.26、(1)24(3)9y x =+;(2)P(1511,2411);(3)C(-3,-5)或 (-3,2513) 【分析】(1)设顶点式,将B 点代入即可求;(2)根据4m+3n=12确定点P 所在直线的解析式,再根据内切线的性质可知P 点在∠BAO 的角平分线上,求两线交点坐标即为P 点坐标;(3)根据角之间的关系确定C 在∠DBA 的角平分线与对称轴的交点或∠ABO 的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B (0,4)代入得,4=9a∴a=49∴24(3)9y x =+ (2)如图∵P (m,n),且满足4m+3n=12 ∴443n m =-+ ∴点P 在第一象限的443y x =-+上, ∵以点P 为圆心的圆与直线AB 、x 轴相切,∴点P 在∠BAO 的角平分线上,∠BAO 的角平分线:y=1322x +, ∴134=4223x x +-+, ∴x=1511,∴y=2411∴P(1511,2411)(3)C(-3,-5)或(-3,2513)理由如下:如图,A´(3,0),可得直线L A´B的表达式为443y x=-+,∴P点在直线A´B上,∵∠PA´O=∠ABO=∠BAG, 2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE⊥AG于G点, 设D点坐标为(-3,t)则有(4-t)2+32=t2t=25 8,∴D(-3,25 8),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=913x+4,∴C1的坐标为(-3, 2513);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3, 2513)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典型题】九年级数学上期末模拟试题(带答案)一、选择题1.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .42.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤3.如图,Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,分别以A 、C 为圆心,以2AC 的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分面积为( )A .(24−254π)cm 2 B .254πcm 2 C .(24−54π)cm 2D .(24−256π)cm 2 4.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=3005.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( ) A .59B .49C .56D .136.下列诗句所描述的事件中,是不可能事件的是( ) A .黄河入海流 B .锄禾日当午 C .大漠孤烟直 D .手可摘星辰7.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移3个单位8.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )A .AC BCAB AC= B .2·BC AB BC = C .51AC AB -=D .0.618≈BCAC9.下列函数中是二次函数的为( ) A .y =3x -1 B .y =3x 2-1 C .y =(x +1)2-x 2D .y =x 3+2x -310.下列判断中正确的是( ) A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦 11.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 212.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( ) A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150二、填空题13.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.14.抛物线y=2(x−3)2+4的顶点坐标是__________________.15.如图,抛物线y=﹣2x2+2与x轴交于点A、B,其顶点为E.把这条抛物线在x轴及其上方的部分记为C1,将C1向右平移得到C2,C2与x轴交于点B、D,C2的顶点为F,连结EF.则图中阴影部分图形的面积为______.16.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.17.如图,在Rt△ABC中,∠ACB=90°,CB=4,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将»BD绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为_____.18.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.19.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.20.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.三、解答题21.如图,AB 是O e 的直径,AC 是上半圆的弦,过点C 作O e 的切线DE 交AB 的延长线于点E ,过点A 作切线DE 的垂线,垂足为D ,且与O e 交于点F ,设DAC ∠,CEA ∠的度数分别是a β、.()1用含a 的代数式表示β,并直接写出a 的取值范围;()2连接OF 与AC 交于点'O ,当点'O 是AC 的中点时,求a β、的值.22.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题: (1)填空:每天可售出书 本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?23.汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?24.如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作EF ⊥AC 于点E ,交AB 的延长线于点F .(1)判断直线DE 与⊙O 的位置关系,并说明理由; (2)如果AB=5,BC=6,求DE 的长.25.如图,已知AB为⊙O的直径,点C、D在⊙O上,CD=BD,E、F是线段AC、AB 的延长线上的点,并且EF与⊙O相切于点D.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形, ∴MN=CD=4, 设OF=x ,则ON=OF , ∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2, 即:(4-x )2+22=x 2, 解得:x=2.5, 故选B . 【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.2.B解析:B 【解析】 【分析】由抛物线对称轴的位置判断ab 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所给结论进行判断即可. 【详解】Q ①对称轴在y 轴的右侧,ab 0∴<,由图象可知:c 0>,abc 0∴<,故①不正确;②当x 1=-时,y a b c 0=-+<,b ac ∴->,故②正确;③由对称知,当x 2=时,函数值大于0,即y 4a 2b c 0=++>,故③正确;bx 12a=-=Q ④, b 2a ∴=-, a b c 0-+<Q , a 2a c 0∴++<, 3a c <-,故④不正确;⑤当x 1=时,y 的值最大.此时,y a b c =++,而当x m =时,2y am bm c =++, 所以()2a b c am bm c m 1++>++≠,故2a b am bm +>+,即()a b m am b +>+,故⑤正确, 故②③⑤正确, 故选B . 【点睛】本题考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,熟练掌握二次函数的性质是关键.3.A解析:A 【解析】 【分析】利用勾股定理得出AC 的长,再利用图中阴影部分的面积=S △ABC −S 扇形面积求出即可. 【详解】解:在Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,∴10AC ===cm ,则2AC=5 cm , ∴S 阴影部分=S △ABC −S 扇形面积=2190525862423604ππ⨯⨯⨯-=-(cm 2), 故选:A . 【点睛】本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt △ABC 的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.4.A解析:A 【解析】 【分析】设扩大后的正方形绿地边长为xm ,根据“扩大后的绿地面积比原来增加300m 2”建立方程即可. 【详解】设扩大后的正方形绿地边长为xm , 根据题意得x (x-20)=300, 故选A . 【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.5.B解析:B 【解析】 【分析】先画出树状图得出所有等可能的情况的数量和所需要的情况的数量,再计算所需要情况的概率即得. 【详解】解:由题意可画树状图如下:根据树状图可知:两次摸球共有9种等可能情况,其中两次摸出球所标数字之和为奇数的情况有4种,所以两次摸出球所标数字之和为奇数的概率为:49.【点睛】本题考查了概率的求法,能根据题意列出树状图或列表是解题关键.6.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.A解析:A【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选:A.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.B解析:B 【解析】 【详解】 ∵AC >BC , ∴AC 是较长的线段,根据黄金分割的定义可知:AC BC AB AC =≈0.618, 故A 、C 、D 正确,不符合题意; AC 2=AB •BC ,故B 错误,符合题意; 故选B .9.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误; 故选B.10.C解析:C 【解析】 【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析. 【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.11.C解析:C 【解析】【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C12.B解析:B 【解析】 【分析】可设每月营业额平均增长率为x ,则二月份的营业额是100(1+x ),三月份的营业额是100(1+x )(1+x ),则可以得到方程即可. 【详解】设二、三两个月每月的平均增长率是x . 根据题意得:100(1+x )2=150, 故选:B . 【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )2.增长用“+”,下降用“-”. 二、填空题13.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410) (510) (610) (810) (910) (109) (4解析:715. 【解析】 【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可. 【详解】解:从6张牌中任意抽两张可能的情况有: (4,10) (5,10) (6,10) (8,10) (9,10) (10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8)(4,8)(5,8)(6,8)(8,6)(9,6)(10,6) (4,6)(5,6)(6,5)(8,5)(9,5)(10,5) (4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个,∴点数和是偶数的概率是147 3015;故答案为7 15.【点睛】本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.14.(34)【解析】【分析】根据二次函数配方的图像与性质即可以求出答案【详解】在二次函数的配方形式下x-3是抛物线的对称轴取x=3则y=4因此顶点坐标为(34)【点睛】本题主要考查二次函数的图像与性质解析:(3,4)【解析】【分析】根据二次函数配方的图像与性质,即可以求出答案.【详解】在二次函数的配方形式下,x-3是抛物线的对称轴,取x=3,则y=4,因此,顶点坐标为(3,4).【点睛】本题主要考查二次函数的图像与性质.15.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y=0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=解析:4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE,即可求解.【详解】令y=0,则:x=±1,令x=0,则y=2,则:OB=1,BD=2,OB=2,S阴影部分图形=S四边形BDFE=BD×OE=2×2=4.故:答案为4.【点睛】本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.16.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.17.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB=2BC∠ACB=90°弓形BD与弓形AD完全一样则∠A=30°∠B=∠BCD=60°∵CB=4∴AB=8AC=4∴阴影部解析:8833π.【解析】【分析】根据题意,用ABCn的面积减去扇形CBD的面积,即为所求.【详解】由题意可得,AB=2BC,∠ACB=90°,弓形BD与弓形AD完全一样,则∠A=30°,∠B=∠BCD=60°,∵CB=4,∴AB=8,AC=3,∴阴影部分的面积为:24436042360π⨯⨯⨯-=8833π,故答案为:8833π.本题考查不规则图形面积的求法,属中档题.18.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=解析:3【解析】【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵64 180nππ⋅=,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF2263-=3,∴最短路线长为3.故答案为:3【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.19.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1 男2 女1 女2 男1 (男1男2)(男1女1解析:2 3【解析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得. 【详解】解:所有可能的结果如下表:男1 男2女1女2男1(男1,男2)(男1,女1) (男1,女2) 男2 (男2,男1)(男2,女1)(男2,女2) 女1 (女1,男1) (女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23, 故答案为23. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.-1【解析】由题意得ABBC 于DBC 于EBC 交BC 于FAB=勾股定理得AE=AD=1DB=-1解析:2-1 【解析】由题意得, AB ⊥B’C’于D ,BC 'AC ⊥于E ,BC 交B’C’于F .Q AB =2,勾股定理得∴AE =AD=1,∴DB =2-122112122ABE DBF S S S AE BD =-=-=-V V 阴影.三、解答题21.(1)β=90°-2α(0°<α<45°);(2)α=β=30°【分析】(1)首先证明2DAE α∠= ,在t R ADE △ 中,根据两锐角互余,可知()290045αβα+=︒︒︒<< ;(2)连接OF 交AC 于O′,连接CF ,只要证明四边形AFCO 是菱形,推出AFO V 是等边三角形即可解决问题. 【详解】解:(1)连接OC . ∵DE 是⊙O 的切线, ∴OC⊥DE, ∵AD⊥DE, ∴AD∥OC, ∴∠DAC=∠ACO, ∵OA=OC, ∴∠OCA=∠OAC, ∴∠DAE=2α, ∵∠D=90°, ∴∠DAE+∠E=90°, ∴2α+β=90°∴β=90°-2α(0°<α<45°). (2)连接OF 交AC 于O′,连接CF . ∵AO′=CO′, ∴AC⊥OF, ∴FA=FC,∴∠FAC=∠FCA=∠CAO, ∴CF∥OA, ∵AF∥OC,∴四边形AFCO 是平行四边形, ∵O A=OC ,∴四边形AFCO 是菱形, ∴AF=AO=OF,∴△AOF 是等边三角形, ∴∠FAO=2α=60°, ∴α=30°, ∵2α+β=90°, ∴β=30°, ∴α=β=30°.【点睛】本题考查了圆和三角形的问题,掌握圆的切线的性质以及等边三角形的性质和证明是解题的关键.22.(1)(300﹣10x ).(2)每本书应涨价5元. 【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x )本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解. 试题解析:(1)∵每本书上涨了x 元, ∴每天可售出书(300﹣10x )本. 故答案为300﹣10x .(2)设每本书上涨了x 元(x≤10),根据题意得:(40﹣30+x )(300﹣10x )=3750, 整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元. 23.2008年盈利3600万元. 【解析】 【分析】设该公司从2007年到2009年,每年盈利的年增长率是x ,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利. 【详解】解:设每年盈利的年增长率为x ,由题意得: 3000(1+x )2=4320,解得:10.2x =,2 2.2x =-(不合题意,舍去), ∴年增长率20%, ∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元. 【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.24.(1)相切,理由见解析;(2)DE=125. 【解析】 【分析】(1)连接AD ,OD ,根据已知条件证得OD ⊥DE 即可; (2)根据勾股定理计算即可. 【详解】 解:(1)相切, 理由如下: 连接AD ,OD ,∵AB 为⊙O 的直径, ∴∠ADB=90°. ∴AD ⊥BC . ∵AB=AC , ∴CD=BD=12BC . ∵OA=OB , ∴OD ∥AC . ∴∠ODE=∠CED . ∵DE ⊥AC ,∴∠ODE=∠CED=90°. ∴OD ⊥DE . ∴DE 与⊙O 相切.(2)由(1)知∠ADC=90°, ∴在Rt △ADC 中,由勾股定理得, 222211()5(6)22AC BC -=-⨯=4.∵S ACD =12AD•CD=12AC•DE , ∴12×4×3=12×5DE . ∴DE=125. 【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.25.(1)见解析:(2)CE=1.【解析】【分析】(1)连接AD,如图,先证明»»CD BD=得到∠1=∠2,再根据圆周角定理得到∠ADB=90°,根据切线的性质得到OD⊥EF,然后证明∠1=∠4得到结论;(2)连接BC交OD于F,如图,根据圆周角定理得到∠ACB=90°,再根据垂径定理,由»»CD BD=得到OD⊥BC,则CF=BF,所以OF=12AC=32,从而得到DF=1,然后证明四边形CEDF为矩形得CE=1.【详解】(1)证明:连接AD,如图,∵CD=BD,∴»»CD BD=,∴∠1=∠2,∵AB为直径,∴∠ADB=90°,∴∠1+∠ABD=90°,∵EF为切线,∴OD⊥EF,∴∠3+∠4=90°,∵OD=OB,∴∠3=∠OBD,∴∠1=∠4,∴∠A=2∠BDF;(2)解:连接BC交OD于F,如图,∵AB为直径,∴∠ACB=90°,∵»»CD BD=,∴OD⊥BC,∴CF=BF,∴OF=12AC=32,∴DF=52﹣32=1,∵∠ACB=90°,OD⊥BC,OD⊥EF,∴四边形CEDF为矩形,∴CE=DF=1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和勾股定理.。