第十六届“中环杯”中小学生思维能力训练活动三年级决赛试题答案
小学三年级数学思维(奥数)竞赛题
小学三年级数学思维(奥数)竞赛题小学三年级数学思维能力竞赛试题(全卷共4页,完成时间:60分钟,满分100分)题号得分得分评卷人一二一、认真思考我会填。
(4题1分,6题3分,8题和10题4分,其余每题2分,共30分。
)1.两位数乘两位数,积可能是()位数,也可能是()位数。
2.416除以8,商的最高位在( )位,商是( )位数。
3.计算机键盘上小按键的面积大约是1(),成年人一个手掌面的面积大约是1()。
4.用鞭子抽陀螺,陀螺的转动属于()现象。
5.计算□03÷6,要使商是两位数,□里最大填();要使商是三位数,□里最小填()。
6.在1——10中,哪些数是轴对称图形?在下面的相应位置标出来。
7.XXX家住12楼。
一天停电,XXX只好爬楼梯回家。
每相邻两楼层之间的台阶都是14级,他回到家一共要爬( )级台阶。
8.XXX按规律穿了一串手链,但漏了两颗珠子,漏的是()和()两颗珠子。
并在下列图中用箭头标出漏掉珠子的位置。
9.同学们进行广播操比赛,全班正好排成相等的6行。
淘气排在第2行,从头数,他站在第5个位置,从后数,他站在第3个位置。
这个班共有()人。
10.把2、3、6、8填在下面的里,每个里只能填一个数字且不重复。
(1)使它们的商最大。
(2)使它们的商最小。
三四总分总分人我晓得“”是轴对称图形。
11.有一列数1、3、5、7、9、1、3、5、7、9、1、3、5、7、9……前5个数之和是(),前25个数之和是()。
12.XXX在计较一道一名数除三位数的除法度题时,把被除数383错写成338,这样商比原来小5,而余数恰好相同。
这道题的除数是()。
13.用6、7、8、9这四个数构成两个两位数,使它们的积最大。
这两个两位数划分是( )和( )。
二、细心观察巧计算。
(8+2+5+10=25分)1.算式迷。
在方框里填上合适的数。
2.先仔细观察,再算一算。
15cm2()cm23.观察规律,间接写得数。
(1)31×11=341(2)32×11=352(3)1×8+1=941×11=451 42×11=462 12×8+2=9851×11=52×11=123×8+3=×11=62×11=1234×8+4=4.巧妙算一算。
小学三年级数学思维训练题及答案解析
三年级数学思维训练题及答案1、有黑、白棋子一堆,黑子个数是白子个数的2倍.现在从这堆棋子中每次取出黑子4个,白子3个,待到若干次后,白子已经取尽,而黑子还有16个.求黑、白棋子各有多少个?(假设思维)【分析与解答】假设每次取出的黑子不是4个,而是6个(6=3×2),也就是说每次取出的黑子个数也是白子的2倍.由于这堆棋子中黑子个数是白子的2倍,所以,待取到若干次后,黑子、白子应该都取尽.但是实际上当白子取尽时,(留下)黑子还有16个,这是因为实际每次取黑子是4个,和假定每次取黑子6个相比,相差(留下的是)2个.由此可知,一共取的次数是:16÷2=8(次).白棋子的个数为:3×8=24(个).黑棋子的个数为24×2=48(个).2、小华解答数学判断题,答对一题给4分,答错一题扣4分,她答了20道判断题,结果只得56分.小华答对了几题?(假设思维)【分析与解答】假设小华全部答对:该得4×20=80(分),现在实际只得了56分,相差80-56=24(分),因为答对一题得4分,答错一题扣4分,这样,一对一错相比,一题就差8分(4+4=8),根据总共相差的分数以及做错一题相差的分数,就可以求出做错的题数:24÷8=3(题),一共做20题,答错3题,答对的应该是:20-3=17(题)4×17=68(分)(答对的应得分)4×3=12(分)(答错的应扣分)68-12=56(分)(实际得分)3、一个化肥厂计划在50天内生产一批化肥,从前24天的生产情况看,每天实际生产的化肥没有达到原计划每天产量指标,因此工厂决定停产3天进行整顿.整顿之后,每天比整顿前多生产化肥25吨,结果只用了49天(包括停产整顿所用的3天时间)就完成了原计划50天的生产任务.已知整顿后比整顿前一共多生产化肥400吨,问整顿前后各生产化肥多少吨?(因果关系)【分析与解答】我们容易算出整顿后生产的天数是:49-24-3=22(天).由于整顿后每天比整顿前多生产化肥25吨,所以,一共多生产化肥22×25=550(吨).可题目中却说整顿后比整顿前一共多生产化肥400吨,这岂不是“自相矛盾”吗?究竟“矛盾”出在哪里呢?原来,我们刚才算出的“550吨”是整顿后22天比整顿前22天多生产的化肥;而题目中告诉我们的“400吨”是整顿后22天比整顿前24天多生产的化肥.这完全是两码事,所以“550吨”与“400吨”并不矛盾.从上面的比较中,我们看出:“550吨”与“400吨”的差150吨正好是整顿前2天的产量,因此,整顿前每天生产化肥150÷2=75(吨).从而,75×24=1800(吨)就是整顿前产的化肥;1800+400=2200(吨)就是整顿后产的化肥.4、红星机械厂十一月份计划生产一批机器,实际每天比计划多生产80台,结果25天就完成了全月计划.这个厂十一月份计划生产多少台机器?(因果关系)【分析与解答】这道整数应用题,我们无论是从条件想起,还是从问题想起,都不容易找到解决问题的办法.如果抓住题目中的“25天完成全月计划”这一条件深入思考:这个厂为什么用25天就完成了全月的生产任务?这最后5天的生产任务为什么能提前完成?问题就能很快地得到解决了.因为实际每天比原计划多生产80台,这样生产了25天,就比计划25天多生产了:80×25=2000(台)就把原来计划在后5天的生产任务给提前完成了.换句话说,这2000台机器就是原计划后5天的生产任务.那么,原计划每天生产的台数应为2000÷5=400(台)原计划十一月份的生产任务应为400×30=12000(台)5、新光机器厂装配拖拉机,第一天装配50台,第二天比第一天多装配5台,第三、第四两天装配台数是第一天的2倍多3台,平均每天装配多少台?(移多补少)【分析与解答】按惯例,应该用四天装配的总台数除以4,综合算式为:[50+(50+5)+(50×2+3)]÷4=52(台).如果采用移多补少的方法,将会十分简便.假设每天都装配50台,那么四天一共多装配5+3=8(台),把这8台平均分成四份,8÷4=2(台),因此,平均每天装配50+2=52(台),综合算式为:50+(5+3)÷4=52(台),你看,这种解法多么巧妙!6、有6个木工和一个漆工完成了一套家具生产任务.每个木工各得200元,漆工的工资比7个工人的平均工资多30元.漆工得了多少元钱?(移多补少)【分析与解答】根据“移多补少”的原则,漆工比平均工资高出的30元,分别补给6个木工以后,6个木工的平均工资恰好应该是7个人的平均工资:30÷6=5(元)从而,7个人的平均工资应是200+5=205(元)漆工的工资是205+30=235(元)7、百货商店运来300双球鞋,分别装在2个木箱、6个纸箱里.如果2个纸箱同1个木箱装的球鞋一样多,想一想:每个木箱和每个纸箱各装多少双球鞋?(等量代换)【分析与解答】我们根据“2个纸箱同一个木箱装的球鞋一样多”,把木箱换成纸箱,也就是说,把300双球鞋全部用纸箱装,不用木箱装.根据已知条件,2个木箱里的球鞋刚好装满4个纸箱,再加上原来已装好的6个纸箱,一共是10个纸箱.这样,题目就变为“把300双球鞋平均装在10个纸箱里,平均每个纸箱装多少双球鞋?”可以求出每个纸箱装多少双球鞋.也就能求出一个木箱装多少双球鞋.300÷(2×2+6)=30(双)30×2=60(双)8、如图正方形面积是50平方厘米.求阴影部分的面积.(等量代换)【分析与解答】要求阴影部分的面积,必须知道正方形的面积和扇形的面积,然后用正方形的面积减去扇形的面积求得阴影部分的面积.正方形的面积已知道,扇形的面积还不知道.要求出扇形面积必须知道扇形的半径,而扇形的半径就是正方形的边长,从正方形的面积求正方形边长,小学阶段没有学过,怎么办呢?如果把计算扇形面积的公式“S=πr2÷4”认真观察、思考一下,就不难发现这里的r2恰好是正方形边长的平方,就等于正方形的面积50平方厘米.所以,计算扇形面积只要用“50”代换算式中的r2就可以了,没有必要再求出半径r的长度.因此,这道题可列式解答如下:50-3.14×50÷4=10.75(平方厘米)9、“2×3×5×7×11×13×17”的各位数字之和是多少?(整体思维)【分析与解答】解这道题的一般思路是先算出这个连乘式的结果,再把它各位上的数字相加.但这是一道“华杯”赛决赛的一道口试题,要求在1分钟内报出答案.在口试中,规定时间内答不出题是不能得分的.怎么办呢?办法是有的.只要把算式中的每个数都仔细观察一番,抓住这些数字特点,可以绕开“把7个数连乘”这段弯路.你看,式中有2,又有5,2×5=10,10与其它5个数的积相乘,只要在末尾添个0,不影响各位上的数字和.再看看,式中有7,11,13.你如果记得:7×11×13=1001,而1001与位数比它少的自然数相乘,积的各位上除0以外,就是这个数重复一遍,如51×1001=51051.题中7个数除2,5,7,11,13外,还有3×17=51.所以,本题的答案为(5+1)×2=12.10、有甲、乙、丙三种货物.如果买甲3件,乙7件,丙1件,共花去3.15元;如果买甲4件,乙10件,丙1件,共花去4.20元.现在买甲、乙、丙各1件,需要花多少钱?(整体思维)【分析与解答】数学家在分析这个问题时,同一般人不一样.在数学家眼中,“X1+X2+X3”可以看成一个整体,“求X1+X2+X3 =?”与“分别求X1=?,X2=?,X3=?”是两回事.如果用题中的条件直接能求出X1+X2+X3这个“和”,那么,把X1、X2、X3分别求出来再相加,就是“绕弯路”、“自讨苦吃”了.由已知条件可得:买甲3件,乙7件,丙1件,花3.15元①买甲4件,乙10件,丙1件,花4.20元②要想求出买甲1件,乙1件,丙l件,共需花多少钱,必须使上述①与②中对应的“件数”相差1.为此,可转化已知条件:将条件①中的每个量都扩大3倍,得:买甲9件,乙21件,丙3件,花9.45元③将条件②中的每个量都扩大2倍,得:买甲8件,乙20件,丙2件,花8.40元④所以,买甲、乙、丙各一件,共需要花的钱数为:9.45-8.40=1.05(元)。
第十六届“中环杯”中小学生思维能力训练活动
城第十六届“中环杯”中小学生思维能力训练活动思维训练营二年级(王文君老师,李昀城老师出品)王文君老师:小升初数学思维训练师,所教学生多次斩获各大杯赛奖项,小升初成绩喜人。
李昀城老师:小高奥数教练员,专注小学奥数8年之余,横扫小学三、四、五年级的奥数教学工作,拥有丰富的教学经验和小升初指导经验。
例1 <青少年科技报9月30日思维训练营-填数字>三个圆圈两两相交形成七块小区域,分别填上1234567、、、、、、这七个自然数。
在一些小区域中,自然数357、、三个数已填好,请你把其余的数填到空着的小区域中,要求每个圆圈中四个数的和都等于15。
同类型题目拓展:拓展1、将1-9填入下列各图的9个○中,(其中6和1已经填好),使得每个三角形上的数之和都相等。
拓展2、将1—6填入图中三角形的3条边的6个圈内,使每条边上的3个数○内昀城数的和相等,请给出一组答案拓展3、四个圆相互交叉重叠在一起,形成13个区域。
如果在这些区域中分别填上从1开始的13个连续的自然数,然后把每个圆中的数分别相加,得到四个和,最后使这个和最小,请问该怎么填,请给出一种填法!例2 <青少年科技报10月7日思维训练营-趣题> 如下图所示,一只蚂蚁从一个正方体的A点沿着棱爬向B点,如不故意绕远,一共有几种不同的走法?同类型拓展题:拓展4、在正五边形ABCDE上,一只青蛙从A点开始跳动,它每次可以随意的跳到相邻两个顶点中的任意一个上,一旦跳到D点上就停止跳动。
青蛙在5次之内(含5次)跳到D点有()种不同的跳法?MLK JIHGFEDC BA李昀城拓展5、一只甲虫要从A 点沿着线段爬到B 点,在每种走法中,每条线段都不能重复经过。
问这只甲虫最多有几种不同的走法?例3 <青少年科技报10月14日思维训练营-趣题> 两只小熊有一个瓶子,里面装有8千克的蜂蜜。
现在要将这些蜂蜜分成两瓶,每瓶4千克,但是没有秤和其他可以称量的工具,只有一个能装5千克蜂蜜的中等瓶子和一个能装1千克蜂蜜的小瓶子。
第十三届“中环杯”小学生思维能力训练活动三年级决赛答案版
第十三届“中环杯”小学生思维能力训练活动三年级决赛一、填空题(5’×10=50’)1.计算:12345+23451+34512+45123+51234=(166665)。
速算巧算:原式=(1+2+3+4+5)×11111=1666652.水果店原来有156箱苹果和84箱橘子。
苹果和桔子各卖出相等的箱数后,剩下的苹果箱数比橘子箱数多2倍。
苹果和桔子各卖出(48)箱。
和差倍:156-84=72,72÷2=364,84-36=483.在一次学科测试中,小芳的语文、数学、英语、科学4门学科的平均分是88分,前2门的平均分是93分,后3门的平均分为87分,小芳的英语测试成绩是(95)分。
(本题英语成绩无法确定,疑为求数学的成绩)平均数:93×2=186,87×3=261,88×4=352,186+261-352=954.星期天,小军帮助妈妈做一些家务。
各项家务花的时间为:叠被子3分钟,洗碗8分钟,用洗衣机洗衣服30分钟,晾衣服5分钟,拖地板10分钟,削土豆皮12分钟。
经过合理安排,小军至少要用(38)分钟才能完成这些家务。
统筹规划:洗衣机一边洗衣服,小军一边完成其他任务,3+8+5+10+12=385.图中共有16个方格,要把A、B、C、D四个不同的棋子放在四个不同的方格里,并使每行,每列只能出现一个棋子。
共有(576)种不同的放法。
棋盘问题:4!×4!=576或16×9×4×1=5766.如图,正方体的每个角上有一个小圆圈。
请你把2至9这8个数分别填入小圆圈内,使正方体6个面每一面上的4个数之和都相等。
数阵图:2+3+...+9=44,44÷2=22,22=2+3+8+9=2+4+7+9=2+5+7+8=2+5+6+9,结果如图7.如图是某地区所有街道的平面图。
甲、乙两人同时分别从A、B出发,以相同的速度行进。
第十届中环杯决赛题+解析
题型一、填空题二、动手动脑题共计得分第十届“中环杯”小学生思维能力训练活动三年级决赛一、填空题:(每题5分,共50分。
)1.计算:2401-2009+199+1209=()。
2.一堆糖一共15颗,老师拿走一些后,8个学生正好平分了剩下的糖,那么老师拿走了()颗糖。
3.M 是两位数,如果M÷11=A ……B ,当A+B 的和最大时,M=穴雪。
4.20个孩子排成一排,从第1个孩子开始报数,要求每相邻4个孩子报出来的数字和为28。
已知第2个孩子报出的数字为6,第7个孩子报出的数字为8,第12个孩子报出的数字为4,则第5个孩子报出的数字为()。
5.小王和小明出去吃午饭。
小王带了50元,小明带了30元,他们各自买了一份相同的快餐。
已知小王剩下的钱是小明剩下的钱的3倍,则他们午饭一共花了()元。
6.一辆小轿车上还有一只备用轮胎,一次长途旅行中,司机适当地调换轮胎,使每只轮胎的行程相同。
小轿车共行了600千米,那么每只轮胎平均行()千米。
7.小林与小胖比赛爬楼梯,小林跑到第6楼时,小胖恰好跑到第5楼。
以这样的速度,小林跑到第31楼时,小胖跑到第()楼。
8.31个同学要坐船过河,渡口处只有一条能载6人的小船穴无船工雪。
他们要全部渡过河去,至少要使用这条小船渡河()次。
9.有A 、B 、C 三人,一位是导演,一位是编辑,一位是司机。
已知A 的年龄比编辑大,司机的年龄比导演大,编辑的年龄比C 大。
那么,这三人中,导演是(),编辑是(),司机是()。
10.仓库存有一批钢材,由两个汽车队负责运往工地。
已知甲队单独运要29天,乙队每天可运30吨。
现在由甲、乙两队同时运输,运了8天之后,甲队的汽车坏了一辆,每天少运5吨,结果又运了4天才全部运完。
那么这批钢材共有()吨。
二、动手动脑题:(每题10分,共50分。
)1.如图,将两个任意大小的三角形部分重叠,它们的公共部分是由3条线段组成的。
那么经过你的摆放后,它们的公共部分的边数最大可能是多少?请画出示意图。
2016第十六届中环杯五年级决赛详解
第十六届“中环杯”小学生思维能力训练活动 五年级决赛
城隍喵
【第 3 题】 一个超过 20 的自然数 N ,在14 进制与 20 进制中都可以表示为回文数(回文数就是指正读与倒读都一样的 数,比如12321、3443 都是回文数,而12331不是回文数)。N 的最小值为 ________(答案用10 进制表示)。 【分析与解】 数论,进制与位值。 因为 N 20 ; 所以 N 在14 进制与 20 进制中都不是一位数;
我们希望 N 要尽可能小,故设 N aa bb ;
14
20
即 N a 14 a b 20 b ; N 15a 21b ;
则 N 既是15 的倍数又是 21 的倍数;
故 N 是 15, 21 3 5 7 105 的倍数;
而 105 77 55 ,符合题意;
10
14
20
这个父亲的财产有1000 80000 81000 元;
老大分得1000 81000 1000 1 9000 元;
10 即每个孩子都分到了 9000 元; 这位父亲一共有 81000 9000 9 个孩子。 (方法三)
设这位父亲一共有 n 个孩子;
则倒数第二个孩子分得1000n 1 元以及剩余的 1 ;
第十六届“中环杯”中小学生思维能力训练活动 五年级决赛
2016 年 3 月 5 日 12 : 30 ~ 14 : 00 考试时间: 90 分钟 满分:100 分
一、填空题 A :(本大题共 8 小题,每题 6 分,共 48 分)
【第 1 题】
小学三年级数学思维能力竞赛测试题
小学三年级数学思维能力竞赛测试题班级:姓名:分数:一、填空题(每个3分,30分)1、★-▲=24 ★=▲+▲+▲+▲▲= ()★=()2、■+●=42 ■=●+●+●+●+●■= ()●= ()3、有一列数1、3、5、7、9、1、3、5、7、9、1、3、5、7、9……前5个数之和是(),前25个数之和是()。
4、三个人同时吃3个西红柿,用3分钟吃完,六个人同时吃6个西红柿要()分钟。
5、小伟做一道减法题,把被减数十位上的6当作9,把减数个位上的3当成5,结果是217,正确答案是( )6、已知□÷△=14……3。
当△最小时,△=()□=()7、运动场上有一条长45米的跑道,两端已插了二面彩旗,体育老师要求在这条跑道上每5米隔再插一面彩旗,还需要彩旗()面。
8、一条毛毛虫长到成虫,每天长一倍,10天能长到10厘米,长到20厘米时要()天。
9、、小华从三楼到五楼要4分钟,那他从一楼到五楼要()分钟。
10、减数、被减数、差相加的和是100,被减数是()。
二、观察,填数。
(20分)1、先找出规律,再在括号里填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()2、将3、4、5、6、7、8、9分别填在右面的〇里,使每条横线上的三个数的和都是20。
3、下面是有许多数组成的三角形数表,请你试着找一找其中的规律,并按规律填完整。
四、计算题(20分)(1)用竖式计算(2)巧妙计算。
五、解决实际问题(30分)1、王华出去旅游,5月2日出发,5月11日回来,如果将开始和结束的两天计算在内,王华旅游了多少天?2、甲、乙两汽车店共有汽车98辆,如果甲汽车店给乙汽车店12辆,则两汽车店的辆数相等,问两汽车店各有多少辆?3、一根绳子剪去一半,再剪去余下的一半,还剩4米,这根绳子原来长多少米?4、一筐苹果,连筐共重78千克,卖掉一半苹果后,连筐还重40千克,问这筐苹果重多少千克?筐重多少千克?5、有两筐桔子共重120千克,大筐比小筐重30千克,两筐桔子各重多少千克?6、三轮车和自行车共有9辆,有22个轮子,三轮车和自行车各有多少辆?。
16届中环杯二年级决赛试题
相邻冤说假话遥 冶 这 25 个人中袁有 ___________ 人说假话遥 11. 在黑板上写有数 123456789遥 在写的数中选两个相
邻的数码袁如果它们都不为 0袁则每个减 1 且交换数码的位 置袁例如院123456789邛123436789邛噎遥 这样操作若干次后袁 能够得到的最小数是 ___________遥
3. 有一个正方体袁它的六个面分别标上了 1~
6袁图中是从三个角度观察到的图像遥野钥冶处的数字
应该是 ___________遥
4. 哆啦 A 梦和大雄玩野剪刀尧石头尧布冶的游
第2题
戏袁规定每一局的获胜者可以得到两个铜锣烧袁输 的人没有铜锣烧袁 如果是平局就每人各得到一个 铜锣烧遥 大雄知道哆啦 A 梦只能出石头袁但是他 还是想要和哆啦 A 梦分享铜锣烧袁于是他决定每
三尧 动手动脑题渊本大题共 2 小题袁每题 10 分袁共 20 分冤院 13. 哆啦 A 梦和大雄玩猜 4 位数的游戏遥 大雄每猜一个数袁哆啦 A 梦就会告诉他其中有
几个数的数字是对的袁有几个数的数位是对的遥 比如院正确答案是 5678袁大雄如果猜 4687袁那
么袁数字正确的有 3 个渊分别是野6冶尧野7冶尧野8冶冤袁数位正确的是 1 个渊因为野6冶放对位置了袁野7冶尧 野8冶没有对冤遥
二年级第 2 页
第十六届野中环杯冶中小学生思维能力训练活动 二年级决赛
得分院
注意院每小题前的野阴冶由阅卷人员填写袁考生请勿填写遥
一尧 填空题 A院渊本大题共 8 小题袁每题 6 分袁共 48 分冤
1. 计算院3+14+27+32+58+26=___________遥
2016年第16届中环杯3年级决赛模拟卷1_4678
(1)含有 3 个字母的合理字母串有_____个 (2)含有 4 个字母的合理字母串有_____个 【答案】(1)200(2)952 10. 如果一个自然数的连续相邻数码和可以得到 1 到 9 这 9 个自然数(一个加数也能看作 和,比如说 123,所有的连续相邻数码和结果可能是:1、2、3、 5 2 3 、 6 1 2 3 ),这样的自然数称为“中环数”。最小的“中环数”为_____. (学而思供题) 【答案】11题(共 10 题,前 5 题每题 4 分,后 5 题每题 6 分) 1. 计算: 20162016 6930693 99 ________. (新舟教育倪淑娴供题) 【答案】288 2. 小明每周一、四、六说真话,剩下的时间都说谎话。有天,小明说:“我明天要说真 话”,那么那天是星期________. 【答案】二 3. 美国人喜欢用 MM / DD / YYYY (月/日/年)来表示日期,欧洲人喜欢用 DD / MM / YYYY (日/ 月/年)来表示日期,这就会产生一些误会,比如 03 / 04 / 2015 既可以表示 2015 年 3 月 4 日,也可以表示 2015 年 4 月 3 日。但是,有些日期是不会引起误会的,比 如 03 / 17 / 2015 ,只能表示 2015 年 3 月 17 日。在今年 5、6、7、8 月中,有_____天的 日期是不会引起误会的 【答案】79 4. 哆啦 A 梦和大雄玩“剪刀、石头、布”的游戏,规定胜一局可以得三个铜锣烧,平一 局两人各得一个铜锣烧,输的人没有铜锣烧。大雄知道哆啦 A 梦只能出石头,但是他 还是想要和哆啦 A 梦分享铜锣烧,于是他决定每十局出一次剪刀。20 局以后,铜锣 烧都分完了,大雄得到了 30 个铜锣烧,那么哆啦 A 梦得到了______个铜锣烧 (四季教育陈莉供题) 【答案】18 5. 某次联谊活动共有 20 位学生,其中第一位女学生和 7 位男学生握过手;第二位女学 生曾经和 8 位男学生握过手;第三位女学生和 9 位男学生握过手;以此类推,最后一 位女学生和全体男学生都握过手。请问这 20 位学生中,有______位男学生 【答案】13 6. 在 7 7 的正方形中最多能放入______个由 5 个 1 1 的正方形组成的“L 形” (“L 形”可以转动和翻转,但不能一个叠放在另一个上)
第十六届“华杯赛”小学组决赛试题A答案
第十六届华罗庚金杯少年数学邀请赛决赛试题A 参考答案(小学组)一、 填空题 (每小题 10分,共80分)二、解答下列各题 (每题10分,共40分, 要求写出简要过程)9. 答案: 2011平方厘米.解答. 连接FD 的直线与AE 的延长线相交于H . 则△DFG 绕点D 逆时针旋转180o 与△DHE 重合,DF=DH , ADH AFD S S ∆∆=.梯形AEGF 的面积=△AFH 的面积=2×△AFD 的面积=长方形ABCD 的面积 =2011(平方厘米).10. 答案:13种可能.解答. 分几种情形考虑.第一种情形: 线路号的数字中没有荧光管坏了. 只有351一个可能线路号. 第二种情形: 线路号的数字中有1支荧光管坏了.坏在第一位数字上, 可能的数字为9, 线路号可能是951;坏在第二位数字上, 可能的数字为6,9, 线路号可能是361, 391;坏在第三位数字上, 可能的数字为7, 线路号可能是357.第三种情形: 线路号的数字中有2支荧光管坏了.都坏在第一位数字上, 可能的数字为8, 线路号可能是851;都坏在第二位数字上, 可能的数字为8, 线路号可能是381;都坏在第三位数字上, 可能的数字为4, 线路号可能是354;坏在第一、二位数字上, 第一位数字可能的数字为9,第二位数字可能的数字为6,9, 线路号可能是961, 991;坏在第一、三位数字上, 第一位数字可能的数字为9,第三位数字可能的数字为7, 线路号可能是957;坏在第二、三位数字上,第二位数字可能的数字为6,9, 第三位数字可能的数字为7,线路号可能是367, 397.所以可能的线路号有13个:351,354,357,361,367,381,391,397,851,951,957,961,991.11. 答案: 3, 5.解答. 设这个月的第一个星期日是a 日(71≤≤a ), 则这个月内星期日的日期是a k +7, k 是自然数, 317≤+a k . 要求有三个奇数.当a =1时, 要使7k +1是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时,177+=+k a k 分别为1, 15, 29, 这时20号是星期五.当a =2时, 要使7k +2是奇数, k 为奇数, 即k 可取1, 3两个值, 7k +2不可能有三个奇数.当a =3时, 要使7k +3是奇数, k 为偶数, 即k 可取0, 2, 4三个值, 此时377+=+k a k 分别为3, 17, 31, 这时20号是星期三.当74≤≤a 时, a k +7不可能有三个奇数.12. 答案: 253.解:令k m 15=, k 是自然数, 首先考虑满足下式的最大的m ,.201115151153152151≤⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡m m 于是.2011213152)1(1515)1(152151150151511531521512≤-=+-=+⨯-++⨯+⨯+⨯=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡k k k k k kk m m 因此.402213152≤-k k 又40224114171317152>=⨯-⨯, 40223632161316152<=⨯-⨯,得知k 最大可以取16. 当16=k 时, m =240. 注意到这时312161952363220112131520112+⨯==-=--k k . 注意到20112024131618161513151615121516152151615115161515161511516152151>=⨯+=⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡+⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡-⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ 而201120081216181615121516153152151<=⨯+=⎥⎦⎤⎢⎣⎡+⨯++⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡ .所以253 是满足题目要求的n的最小值.三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.答案: 312解答. 由于2+0+1+1=4 且0+1+2+3+4+6+7+8+9=40, 4≡40(mod 9), 所以, 九个不同的汉字代表的数字:0, 1, 2, 3, 4, 6, 7, 8, 9.易知:40-4=36, 36÷9=4(次), 说明此算式共发生四次进位.“4=2+2=1+1+2=1+2+1”显然:①华=1, “4=2+2”无解②华=1, “4=1+1+2”有解A:28+937+1046=2011, 可组成算式36种(6×6×1=36)B:69+738+1204=2011, 可组成算式48种(6×4×2=48)C:79+628+1304=2011, 可组成算式48种(6×4×2=48)③华=1, “4=1+2+1”有解A:46+872+1093=2011, 可组成算式36种(6×6×1=36)B:98+673+1240=2011, 可组成算式72种(6×6×2=72)C:97+684+1230=2011, 可组成算式72种(6×6×2=72)总计:72×3+96=216+96=312(种).14.解答. 如左下图, 设M, N, P分别为棱GC, GF, GH的中点, 'M, 'N, 'P 分别为棱AE, AD, AB的中点, O为正方体的中心(长方形BDHF的中心).(1)第一只蜘蛛甲可以把爬虫控制在右上图所示的范围内.首先蜘蛛甲做与爬虫关于点O的对称方向的移动, 不妨设爬虫由G沿棱GC 向点M移动, 蜘蛛甲由A沿棱AE向点'M移动, 爬虫被限制在GM上. 当爬虫到达点M时, 蜘蛛甲也同时到达点'M. 然后蜘蛛甲改变策略, 做与爬虫关于平面BDHF对称的方向移动.a) 当爬虫到达点B, D, F, H时, 蜘蛛甲捉住爬虫.b) 当爬虫未到达点B, D, F, H时, 爬虫被控制在左上图所示的范围内.(2) 蜘蛛乙先移动到点G, 由于右上图无环路, 蜘蛛乙可以跟在爬虫后面, 总可以捉住爬虫.。
2016年第16届中环杯三年级决赛解析
……
P(901) + P(902) + P(903) + ...+ P(999) = 45×46×9 ;
……
P(91) + P(92) + ......+ P(99) = (1+ 2 + 3+ 4 + ...+ 9)×3 = 45×9 ; 所以, P(1) + P(2) + P(3) + ...+ P(99) = 45×(1+1+ 2 + 3+ ...+ 9) = 45×46 ;
把 1~999 中 10 的倍数的数排出后:
6. 有四头奶牛,每头奶牛要么是正常的。要么是变异的。一头正常的奶牛有 4 条腿,并且永远说假话;一
头变异的奶牛要么有 3 条腿,要么有 5 条腿,并且永远说真话。主人问四头奶牛:“你们一共有多少条
腿?”四头奶牛的回答分别为:13、14、15、16。那么,这四头奶牛一共有(
)条腿。
【解析】考点:计数----逻辑推理.
金金币数量,不符合题意; (2) 假设 n=17,则多出来的 2 只能加到 D、E 上,即 n=1+2+3+4+7=17 或者 n=1+2+3+5+6=17
这样 E 也能猜出其他人人的金金币数量,不符合题意; (3) 假设 n=18,则多出来的 3 只能加到 C、D、E 上,即 n=1+2+3+4+8=16;n=1+2+3+5+7=16
第十届中环杯小学生思维能力训练活动三年级初赛详解
三年级选拔赛一、填空题:1.2009 + 2005 + 2001++1- 2007 - 2003-1999 --3=(1005)。
考点分析:速算与巧算,等差数列。
2009 + 2005 + 2001++1- 2007 - 2003 -1999 -- 3=(2009 - 2007)+(2005 - 2003)++(5 -3)+1= 2⨯⎡⎣(2009 - 5)÷ 4 +1⎤⎦+1= 10052.小张很喜欢看《喜羊羊和灰太狼》,于是他决定去买些喜羊羊和灰太狼的玩具,他买回来很多各种造型的喜羊羊和灰太狼,喜羊羊的个数和灰太狼的个数的平均数为 12,其中喜羊羊比灰太狼多 4 个,小张买了(14)个喜羊羊,(10)个灰太狼。
考点分析:平均数问题,和差问题。
喜羊羊的个数和灰太狼的个数的平均数为 12,那么总数就是12⨯ 2 = 24 ,然后喜羊羊比灰太狼多 4 个,所以喜羊羊有(24 + 4)÷ 2 = 14 个,灰太狼有14 - 4 =10 个。
3.小明和爸爸妈妈去公园游玩,发现草坪上有很多大人和小孩,并且每个小孩都骑在大人身上。
小明数了一下,地上一共有 16 只脚,但是他可以看到 12 张笑脸。
草坪上大人有(8)个,小孩有(4)个。
考点分析:生活中的数学。
地上一共有 16 只脚,那么大人有16 ÷ 2 = 8 个,所以小孩有12 - 8 = 4 个。
4.小亚和小巧各拿出同样多的钱一起去买了若干支同样价钱的铅笔,正好将钱用完。
在分笔时,小亚比小巧少拿 8 支,作为补偿,小巧又给了小亚 20 元。
这种笔每只(5)元。
考点分析:生活中的数学。
小巧又给了小亚 20 元,那么小巧比小亚多出了 40 元,所以 1 支铅笔是40 ÷8 = 5 元。
5.班主任老师拿了 7 种玩具进教室,每种玩具都有足够的数量。
现在他让学生们自己选玩具,规定:(1)每人必须选两个玩具,不能少选或多选;(2)每人必须选两种不同的玩具。
十二届三年级中环杯决赛答案
第十二届“中环杯”中小学生思维能力训练活动三年级决赛答案一、填空题:1. 答:3850()25775514157755711511273571157115233850⨯+⨯+⨯=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=⨯⨯⨯++=2. 答:9,163. 答:如下(3) 9×(1) 83 (1)(2)(3)(9)(7)(0)(2)或(4) 9×(1) 83 (9)(2)(4)(9)(8)(8)(2)4. 答:1×2=6÷3=4+5-75. 答:3,36. 答:264把图形分解开来左图可以构成长方形的个数:15×15=225(个);右图可以构成长方形的个数:3×28=84(个);重复的长方形的个数:3×15=45(个);所以构成长方形的个数是:(225+84)-45=264(个)。
7.答:1362×5×12+2×2×4=136cm2或者(2×2+3×5)×(2×2+3×5)-5×5×9=136cm28.答:540从倒入5杯水,到倒入8杯水,总重量增加了680-470=210(克)。
所以可以求出1杯水的重量是210÷3=70(克)。
由于5杯水连瓶共重470克,所以6杯水连瓶共重470+70=540(克)9.答:154沿与长边平行方向剪两刀,剪成三个小长方形,它们的周长和最大,最大为+⨯+⨯=(厘米)(2017)220415410.答:20一棵树上最多有鹦鹉18-4×2=10(只),此时同一棵树上杜鹃也最多只有10只,所以一棵树上最多可有鸟10+10=20(只)。
二、动手动脑题:1.答:7个四边形,24个三角形最初只有1个四边形。
每操作一次,增加1个四边形、4个三角形。
所以直至第六次,共有四边形1+1×6=7(个),三角形4×6=24(个)。
第十六届野中环杯冶中小学生思维能力训练活动3年级答案
第16届中环杯三年级选拔赛答案1.计算:2015201520142013⨯-⨯=________。
【答案】60432.在下面算式的方框中填入适当的符号(只能填加、减、乘、除这四种符号),使得算式成立。
()()()=62346225【答案】()()()-⨯+-÷=62346225可能不唯一,使等式成立即可。
3.用1~9这九个数字组成三个三位数a、b、c(每个数字能且只能使用一次),则a b c+-的最大值为________。
【答案】17164.甲有一张4030cm cm⨯的小纸片,得到下图。
这10⨯的长方形纸片,他从上面剪下来10张55cm cm张小纸片的边与长方形的对应边互相平行,而且它们之间不会互相重叠。
那么,剩下图形的周长为______厘米【答案】2405.小明在下图中的黑色小方格内,每次走动,小明都进入相邻的小方格(如果两个小方格有公共边,就称它们是相邻的),每个小方格都可以重复进入多次。
经过四次走动后,小明所在的不同小方格有______种。
【答案】256.小胖在编一本书的页码时,一共用了1101个数字。
已知页码是从1开始的连续自然数。
这本书一共有________页。
(学而思供题)【答案】4037.如图是用棋子摆成的“巨”字。
按以下规律继续摆下去,一共摆了16个“巨”字。
那么共需要______枚棋子。
【答案】11208.春天到了,学校组织学生春游。
但是由于某种原因,春游分为室内活动与室外活动。
参加室外活动的人比参加室内活动的人多480人。
现在把室内活动的50人改为室外活动,这样室外活动的人数正好是室内活动人数的5倍。
则参加室内、室外活动的共有________人。
【答案】8709.如图,55⨯的白长方形(不能选已经染黑的⨯的方格中有三个小方格已经染黑。
现在要将一个13方格)染黑,要求其不能与已经染黑的方格产生公共边或者公共点。
有_______种选法。
【答案】810.一次数学竞赛有5道题目,每道题目的分值都是一个不同的自然数。
第16届二年级中环杯决赛真题(2016年)
1、计算:3+14+27+32+58+26=( )2、图中一共有( )个小正方体。
3、有一个正方体,它的六个面分别标上了1~6,图中是从三个角度观察到的图像。
“?”处的数字应该是( )。
4、哆啦A 梦和大雄玩“剪刀、石头、布”的游戏,规定每一局获胜者可以得到两个铜锣烧,输的人没有铜锣烧,如果是平局就每人得到一个铜锣烧。
大雄知道哆啦A梦只能出石头,但是他还是想要和哆啦A 梦分享铜锣烧,于是他决定每十局里面出一次剪刀,再出若干次石头。
20局以后,铜锣烧分完了,大雄得到了30 个铜锣烧。
那么哆啦A 梦得到了( )个铜锣烧。
5、在图中的方格里填上合适的数,使每行、每列及两条对角线上的三个数相加的和都等于42。
(输入0查看答案)6、在图中的棋盘上有很多边长是整数的正方形,其中有的正方形内的黑、白方格数量各占一半。
这样的正方形一共有( )个7、下图中有三台天平,通过观察前两台天平可以发现,5 个“▲”与3 个“●”是一样重的,1 个“●”的重量等于1 个“▲”的重量加上2 个“■”的重量。
由此可知,1 个“▲”加上1 个“●”的重量等于( )个“■”的重量。
8、拼图游戏一直都是小朋友们喜爱的游戏,请你从下面A、B、C 三种图形中只选择一种图形拼成右边的4×4 的格子。
你选择的是( )种图形(填“A”、“B”或“C”)。
(注意:只是规定选一种图形,但没有规定其数量。
)•A、A•B、B•C、C•D、D9、图中包含“★”的长方形共有__________个。
10、25 人排成一列,每个人要么说真话,要么说假话。
排在队伍最前面的人说:“后面的所有人都说假话。
”剩下的所有人都说:“排在我前面的那个人(与说话人相邻)说假话。
”这25 个人中,有__________个人说假话。
11、在黑板上写有数123456789。
在写的数中选两个相邻的数码,如果它们都不为0,则每个减1 且交换数码的位置,例如:123456789→123436789→…。
第十三届中环杯中小学生思维能力训练活动三年级决赛试卷及解析
图1
第十三届“中环杯”中小学生思维能力训练活动三年级决赛答案
第十三届“中环杯”中小学生思维能力训练活动
三年级决赛答案
一、填空题 1. 答:166665
4. 答:本题方法不唯一,但最少要移动 3 根。下图为一种移动方法。
2/3
第十三届“中环杯”中小学生思维能力训练活动三年级决赛答案
5. 答:(1)如图
(2)45 分两种情况。第一种是竖着的,一共有 1+2+3+4+5=15(个);第二种是 横着的,有 2+4+6+8+10=30(个)。所以总共有 15+30=45(个)。 (3)不存在
6. 答:本题填法不唯一,符合题目要求即可。下图为一种填法。
7 4
5 6
2
8
9
3
7. 答:甲 此题为一笔画问题。A、D 是奇点,其他点都是偶点,因此从 A 或 D 出发可完 成一笔画。所以甲能先走遍所有街道,而乙必有重复路线。
8. 答:144,81 因为要构成方阵,所以大方阵和小方阵的人数都是完全平方数。 15 行15 列的方阵由1515 225 (人)组成,则大方阵人数应大于 225÷2=
4. 答:38 晾衣服必须要等洗衣机洗完后才能进行,而在用洗衣机洗衣服的同时。可先 后完成洗碗、拖地板和削土豆皮,正好 8+10+12=30(分钟)。之后再完成 叠被子和晾衣服。所以共用 30+3+5=38(分钟)。
5. 答:576 由于每放入一个棋子就有 1 行 1 列不可以再放入其他棋子,所以第一个棋子 有 4×4=16(格)可以放,第二个棋子有 3×3=9(格)可以放,第三个子只 有 2×2=4(格)可以放,最后一个棋子就只有 1 格可以放。所以共有 16×9× 4×1=576(种)种不同的放法。
第十六届“华杯赛”深圳小学组决赛试题答案
第十六届华罗庚金杯少年数学邀请赛决赛试题与解答(小学组)一、填空(每题 10 分, 共80分)1.11122181819 .2320320192020⎛⎫⎛⎫⎛⎫++++++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭解。
()951932121219921112120192022011918192191434241323121201920181918202322013121=++++⨯=+++++=⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++=+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++ 2.甲车从A 出发驶向B,往返来回;乙车从B 同时出发驶向A,往返来回.两车第一次相遇后, 甲车继续行驶4小时到达B ,乙车继续行驶1小时到达A.若A,B 两地相距100千米,那么 当甲车第一次到达B 时,乙车的位置距离A 千米。
解.设甲车车速为1v ,乙车车速为2v . 如图,第一次相遇在C 点,则1212121221,,4,,42.v v v AC AC v BC v BC v v v v v =====而所以, 当甲车第一次到达B 时,乙车的位置在B 处.距离A100千米。
3.每个铅字上刻有一个数码.如果印刷十二页书,所用的页码铅字要以下15个: 1,2,3,4,5,6,7,8,9,1,0,1,1,1,2。
现要印刷一本新书,从库房领出页码铅字共2011个,排版完成后有剩余.那么,这本书最多有 页.最少剩余 个铅字..99;99,2,99189.999,3,999,189+3(99).1893(99)2011, 3201129718921193706 1.k k k k k≤≤-+-<<+-==⨯+解前页用个铅字从第10页到页每页用个铅字前页共用个铅字从第100页到页每页用个铅字前页,100共用个铅字答。
这本书最多706页. 最少剩余1个铅字.4. 一列数:8,3,1,4,.….., 从第三个开始,每个数都是最靠近它前两个数的和的个位数.那么第2011个数是 .解.写下这列数的前若干个数:8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8,1,9,0,9,9,8,7,5,2,7,9,6,5,1,6,7,3,0,3,3,6,9,5,4,9,3,2,5,7,2,9,1,0,1,1,2,3,5,8,3,…………….第一个数=第61个数, 第二个数=第62个数,…….60为数的出现的周期.2011336031,=⨯+第31个数是2.所以第2011个数 是2.5.编号从1到50的50个球排成一行,现在按照如下方法涂色:1)涂2个球;2)被涂色的2个球的编号之差大于2。
中环杯第11-16届三年级初赛真题
第十一届“中环杯”小学生思维能力训练活动三年级组选拔赛一、填空题1.计算:666×111+222×667 =()。
2.找规律:179,278,377,476,(),(),773,872 。
3.有7个数的平均数是11,前四个数的平均数是8,后四个平均数是13,第四个数是()。
4.把一张长为30厘米,宽为20厘米的长方形纸片,剪成一个面积最大的正方形(不允许拼接),这个正方形的面积是()平方厘米。
5.有甲、乙两支人数相等的运动队,由于训练需要,从甲队调10人到乙队,这时乙队的人数正好是甲队人数的3倍。
甲队原有()人。
6.小巧站在铁路边,一列火车从她身边开过用了3分钟。
已知这列火车长360米,以同样的速度通过一座大桥,用了6分钟。
这座大桥长()米。
7.一条公路全长2010米。
现在公路的两边分别种上一些树,要求从公路一端开始,每相邻两棵树相距3米。
这样共需要植树()棵。
8.小花猫和小白猫一起吃鱼。
小花猫每分钟吃一条鱼,但每吃1分钟要休息3分钟;小白猫每分钟吃2条鱼,但每吃1分钟要休息1分钟。
它们吃完30条鱼需要()分钟。
二、动手动脑题:9.如图,一个牧童从甲地出发,赶着羊群先到河边饮水,再将羊群赶到乙地吃草。
已知从甲地到河边饮水点,以及从饮水点到乙地都是直线路程,请问应该怎么选择河边饮水点的位置,使羊群所走的路程为最短?请在图上表示出来并作文字说明。
甲10.超市向某食品厂订购一批食品,在付款总数和付款时间都相同的情况下,可以有以下两种付款方法:第一种:第一个月付款13万元,以后每月付3万元;第二种:前一半时间每月付6万元,后一半时间每月付2万元。
问超市的付款总数是多少?11.一个四口之家,由爸爸、妈妈、大儿子和小儿子组成,他们的年龄之和为68岁。
爸爸比妈妈大2岁。
3年前,这个家庭成员的年龄之和为57岁。
5年前,这个家庭的成员年龄之和为52岁。
请问这个家庭每个成员现在的年龄是多少?12.有6个边长为2厘米的等边三角形,2个边长同为2厘米的正方形,如图。
第十六届中环杯中小学生思维能力训练活动-五年级决赛
得分院
注意院每小题前的野阴冶由阅卷人员填写袁考生请勿填写遥
一尧 填空题 A院渊本大题共 8 小题袁每题 6 分袁共 48 分冤
1.
计算院2016伊渊
1 21
+
1 42
-
1 27
-
1 54
冤=___________遥
2. 若 E尧U尧L尧S尧R尧T 分别表示 1尧2尧3尧4尧5尧6渊不同的字母表示不同的数字冤袁且满
种渊旋转后相同的染色方法也视为不同的染色方法冤遥 渊请继续完成反面内容冤
PDF created with pdfFactory Pro trial version
三尧 动手动脑题院渊本大题共 2 小题袁每题 10 分袁共 20 分冤 13. 甲尧乙两车分别从 A 尧B 两地同时出发袁相向而行渊乙从 B 地出发冤袁乙车速度是甲车的 k
___________ 个孩子遥 5. 如图袁一个长方形的表格有 8 列袁将数字 1尧2尧噎按
一定顺序填入表格中渊从左往右填袁等一行填满后进入下
2 45 78 9 11 12 13 14 16
一行袁还是从左往右填冤遥 一个学生先将填有数字 1 的格子
涂黑袁接下来跳过 1 个格子袁将填有数字 3 的格子涂黑曰接 下来跳过 2 个格子袁将填有数字 6 的格子涂黑曰接下来跳
设 设 设m>n
设
设
墒设 设m+S渊n冤=n+2S渊m冤
数对<m袁n>共有 ___________ 对遥
11. 如图袁 正方形 A BCD 的边长为 4袁 正方形 CEFG
G
F
的边长为 12袁D尧C尧E 三点在一条直线上遥 联结 DF袁作 I GI//DF 与 DA 的延长线交于点 I遥 作 IH彝DF 与 DF 交于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16 届中环杯三年级决赛
一、填空题A (本大题共8 小题,每题6 分,共48 分):
1. 计算:45⨯21+17 ⨯63 =。
【答案】2016
2. 一个三位数abc 满足a ⨯b⨯c 仍然是一个三位数。
满足条件的最小abc 为。
【答案】269
3. D 老师手里有60 颗红色玻璃珠和50 颗黑色玻璃珠。
一个神奇的机器被使用一次后会
将4 颗红色玻璃珠变成1 颗黑色玻璃珠,或者将5 颗黑色玻璃珠变成2 颗红色玻璃珠。
D 老师使用了30 次这个机器后,红色玻璃珠就全没有了。
这时,黑色玻璃珠有
颗。
【答案】20
4. 下图是一个乘法数字谜,最后的乘积为。
【答案】56500
5. 一个五位数abcde ,从五个数码中任意取出两个数码,构成一个两位数(保持数码在
原先五位数中的前后顺序),这样的两位数有10 个:33、37、37、37、38、73、77、
78、83、87,则abcde =。
【答案】37837
6. 有四头奶牛,每头奶牛要么是正常的,要么是变异的。
一头正常的奶牛有4 条腿,并
且永远说假话;一头变异的奶牛要么有3条腿、要么有5 条腿,并且永远说真话。