七年级数学(上)思维特训(4):绝对值与分类讨论(含答案)

合集下载

人教版七年级数学上册绝对值(含答案)3

人教版七年级数学上册绝对值(含答案)3

绝对值要点一、绝对值1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a与b在数轴上的位置如图所示,则a<b.2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号同为正号:绝对值大的数大同为负号:绝对值大的反而小两数异号正数大于负数-数为0正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;知识点(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反. 5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.类型一、绝对值的概念例1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)| 【答案与解析】运用绝对值意义先求出各个绝对值再计算结果.解:(1) 111444555⎡⎤⎛⎫--=---=- ⎪⎢⎥⎝⎭⎣⎦, (2)|-4|+|3|+|0|=4+3+0=7, (3)-|+(-8)|=-[-(-8)]=-8.【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解,一种是利用绝对值的代数意义求解,后种方法的具体做法:首先判断这个数是正数、负数还是0.再根据绝对值的代数意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是0.从而求出该数的绝对值.例2.若|a ﹣1|=a ﹣1,则a 的取值范围是( )A. a ≥1B. a ≤1C. a <1D. a >1【思路点拨】根据|a|=a 时,a ≥0,因此|a ﹣1|=a ﹣1,则a ﹣1≥0,即可求得a 的取值范围. 【答案】A 【解析】典型例题解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,【总结升华】此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.举一反三:【变式1】(2015•重庆校级模拟)若a>3,则|6﹣2a|= (用含a的代数式表示).【答案】2a-6【变式2】如果数轴上的点A到原点的距离是6,则点A表示的数为.如果|x-2|=1,那么x=;如果|x|>3,那么x的范围是.【答案】6或-6;1或3;x>3或x<-3【变式3】已知| a |=3,| b |=4,若a,b同号,则| a +b |=_________;若a,b异号,则| a+b |=________.据此讨论| a+b |与| a | + | b |的大小关系.【答案】7,1;若a,b同号或至少有一个为零,则|a+b|=|a|+|b|;若a,b异号,则|a+b|<|a|+|b|,由此可得:|a+b|≤|a|+|b| .类型二、比大小例3.比较下列每组数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)45-与34--;(4)π-与| 3.14|--.【思路点拨】先化简符号,去掉绝对值号再分清是“正数与0、负数与0、正数与负数、两个正数还是两个负数”,然后比较.【答案与解析】解: (1)化简得:-(-5)=5,-|-5|=-5.因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:3344--=-.这是两个负数比较大小,因为44165520-==,33154420-==,且16152020>.所以4354-<--.(4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断. 举一反三:【变式1】比大小:(1) -0.3 31-(2)⎪⎭⎫ ⎝⎛--91 101--.【答案】>;>【变式2】比大小:(1) 1.38-______-1.384;(2) -π___-3.14. 【答案】>;<【变式3】若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来. 【答案】解法一:∵ m >0,n <0,∴ m 为正数,-m 为负数,n 为负数,-n 为正数. 又∵ 正数大于一切负数,且|m|>|n|,∴ m>-n>n>-m.解法二:因为m>0,n<0且|m|>|n|,把m,n,-m,-n表示在数轴上,如图所示.∵数轴上的数右边的数总比左边的数大,∴ m>-n>n>-m.类型三、含有字母的绝对值的化简例4.(2016春•都匀市校级月考)若﹣1<x<4,则|x+1|﹣|x﹣4|= .【思路点拨】根据绝对值的性质:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a 的绝对值是它的相反数﹣a,可得|x+1|=x+1,|x﹣4|=﹣x+4,然后再合并同类项即可.【答案】2x﹣3.【解析】解:原式=x+1﹣(﹣x+4),=x+1+x﹣4,=2x﹣3.【总结升华】此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x﹣4的正负性.举一反三:【变式1】已知有理数a,b,c在数轴上对应的点的位置如图所示:化简:.【答案】解:由图所示,可得.∴ 30a c ->,,,∵.∴ 原式.【变式2】求的最小值. 【答案】解法一:当2x <-时,则23(2)[(3)]23215x x x x x x x ++-=-++--=---+=-+>当时,则23(2)[(3)]235x x x x x x ++-=++--=+-+= 当时,则23(2)(3)23215x x x x x x x ++-=++-=++-=->综上:当时,取得最小值为:5.解法二:借助数轴分类讨论: ①2x <-; ②; ③.的几何意义为对应的点到-2对应点的距离与对应点到3对应点的距离和.由图明显看出时取最小值.所以,时,取最小值5.类型四、绝对值非负性的应用例5. 已知a、b为有理数,且满足:12,则a=_______,b=________.【答案与解析】由,,,可得∴【总结升华】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.举一反三:【变式1】已知,则x的取值范围是________.【答案】;提示:将看成整体,即,则,故,.【变式2】已知b为正整数,且a、b满足,求的值.【答案】解:由题意得∴所以,2ba类型五、绝对值的实际应用例6.正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案与解析】解:因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【总结升华】绝对值越小,越接近标准.举一反三:【变式】一只可爱的小虫从点O出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【答案】解:小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)小虫得到的芝麻数为54×2=108(粒)答:小虫一共可以得到108粒芝麻.一、选择题1.以下选项中比|﹣|小的数是()A.1 B.2 C. D.2.如图(一),数O是原点,A、B、C三点所表示的数分别为a、b、c.根据图中各点的位置,下列各数的绝对值的比较何者正确?A.|b|<|c| B.|b|>|c| C.|a|<|b| D.|a|>|c|3.满足|x|=-x的数有( ).A.1个 B.2个 C.3个 D.无数个4.若|x﹣5|=5﹣x,下列不等式成立的是()A. x﹣5>0B. x﹣5<0C. x﹣5≥0D. x﹣5≤0课后练习5.a 、b 为有理数,且a >0、b <0,|b|>a ,则a 、b 、-a 、-b 的大小顺序是( ). A .b <-a <a <-b B .-a <b <a <-b C .-b <a <-a <b D .-a <a <-b <b6.下列推理:①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a|≠|b|;④若|a|≠|b|,则a ≠b .其中正确的个数为( ). A .4个 B .3个 C .2个 D .1个7.设a 是最小的正整数,b 是最大的负整数的相反数,c 是绝对值最小的有理数,则a 、b 、c 的大小关系是( ).A .a <b <cB .a =b >cC .a =b =cD .a >b >c 二、填空题8.如果|a ﹣2|+|b+1|=0,那么a+b 等于 .9.已知|x|=|﹣3|,则x 的值为 . 10.绝对值不大于11的整数有 个.11. 已知a 、b 都是有理数,且|a|=a ,|b|=-b 、,则ab 是 . 12. 式子|2x-1|+2取最小值时,x 等于 .13.数a 在数轴上的位置如图所示,则|a-2|=__________.14.若1aa=-,则a 0;若a a ≥,则a . 三、解答题 15.将2526-,259260-,25992600-按从小到大的顺序排列起来.16.正式的足球比赛对所用足球的质量都有严格的规定,标准质量为400克.下面是5个足球的质量检测结果(超过规定质量的克数记为正数,不足规定质量的克数记为负数):-25,+10,-20,+30,+15.(1)写出每个足球的质量;(2)请指出哪个足球的质量好一些,并用绝对值的知识进行说明.17.定义:数轴上表示数a和数b的两点A和B之间的距离是|a﹣b|.完成下列问题:(1)数轴上表示x和﹣4的两点A和B之间的距离是;如果|AB|=2,那么x为;(2)利用数轴以及已知中的定义,可得式子|x﹣1|+|x﹣2|+|x﹣3|的最小值是.(3)拓展:当x= 时,式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|的值最小,最小值是.【答案与解析】一、选择题1. 【答案】D【解析】解:∵|﹣|=,A 、1>,故本选项错误;B 、2>,故本选项错误;C 、=,故本选项错误;D 、﹣<,故本选项正确;故选D .2. 【答案】A【解析】由图(一)可知,距离原点最远的是点C ,其次是点A ,最近的是点B ,所以他们对应的数的绝对值的大小为:c a b >>或b a c <<,所以A 正确.3.【答案】D【解析】x 为负数或零时都能满足|x|=-x ,故有无数个.4.【答案】D5.【答案】A【解析】画数轴,数形结合.6.【答案】C【解析】①正确;②错误,如|-2|=|2|,但是-2≠2;③错误,如-2≠2,但是|-2|=|2|;④正确.故选C .7.【答案】B【解析】a =1,b =-(-1)=1,c =0,故a =b >c .二、填空题8.【答案】1【解析】解:由题意得,a ﹣2=0,b+1=0,解得,a=2,b=﹣1,则a+b=1,故答案为:1.9. 【答案】±310.【答案】23【解析】要注意考虑负数.绝对值不大于11的数有:-11 、-10……0 、1 ……11共23个.11.【答案】负数或零(或非正数均对)【解析】非负性是绝对值的重要性质.由题意可知≥0,≤0.12.【答案】1 2【解析】因为|2x-1|≥0,所以当2x-1=0,即x=12时,|2x-1|取到最小值0,同时|2x-1|+2也取到最小值2.13.【答案】-a+2【解析】由图可知:a≤2,所以|a-2|=-(a-2)=-a+2.14.【答案】<;任意数.三、解答题15.【解析】解:因为2525250026262600-==,25925925902602602600-==,2599259926002600-=,因为250025902599260026002600<<,即259925925260026026->->-,所以259925925 260026026 -<-<-.16. 【解析】解:(1)每个足球的质量分别为375克,410克,380克,430克,415克;(2)质量为410克(即质量超过+10克)的足球的质量好一些.理由:将检测结果求绝对值,再比较绝对值大小,绝对值最小的质量最好.17. 【解析】解:(1)数轴上表示x和﹣4的两点A和B之间的距离是|x﹣(﹣4)|;如果|AB|=2,那么|x﹣(﹣4)|=2,x+4=±2,解得x=﹣2或﹣6;(2)x=2有最小值,最小值=|2﹣1|+|2﹣2|+|2﹣3|=1+0+1=2;(3)1~2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=1011030.故答案为|x﹣(﹣4)|;﹣2或﹣6;2;1006;1011030.。

七年级数学绝对值分类讨论重点题型

七年级数学绝对值分类讨论重点题型

七年级数学的绝对值,是一种让很多同学感到头疼的数学概念。

在七年级数学课程中,涉及到绝对值的分类讨论也是一个重要的内容,影响着同学们对数学的理解和学习。

今天,我们就来深入探讨七年级数学中关于绝对值分类讨论的重点题型,帮助同学们更好地掌握这一知识点。

1. 绝对值概念的理解我们需要对绝对值的概念进行深入理解。

在七年级数学中,绝对值代表着一个数距离零点的距离,它是一个非负数。

具体地,对于任意实数a,其绝对值记作|a|,如果a大于等于0,则|a|等于a;如果a小于0,则|a|等于-a。

2. 绝对值分类讨论的基本原理在七年级数学中,针对绝对值的讨论通常涉及到正数、负数以及零的情况。

我们需要明确地理解在各种情况下绝对值的计算方法和特点,从而能够准确地解决问题。

3. 绝对值分类讨论的重点题型在七年级数学中,绝对值分类讨论的重点题型包括但不限于以下几种: - 绝对值不等式的求解- 绝对值方程的解法- 含绝对值的复合运算- 实际问题中的应用4. 绝对值不等式的求解对于绝对值不等式的求解,我们需要分情况讨论。

当|a|小于b时,a 和-b之间的数都满足不等式;当|a|大于b时,求解得到两个区间,分别讨论各区间内的情况。

这种分类讨论的方法在解决绝对值不等式时非常重要。

5. 绝对值方程的解法解决绝对值方程时,我们同样需要进行分类讨论。

针对|a|=b和|a|=-b 两种情况,分别求解得到不同的结果。

同学们需要注意分类讨论方法的灵活运用,才能准确地解决绝对值方程的问题。

6. 含绝对值的复合运算在七年级数学中,我们还会遇到含绝对值的复合运算题型,可能涉及加减乘除等多种运算符号。

这时,同学们需要将复合运算的每一步分类讨论,确保在每一种情况下都能准确地应用绝对值的概念和性质。

7. 实际问题中的应用绝对值的分类讨论在解决实际问题时也非常重要。

同学们需要理解绝对值在表示距离、温度差、误差等方面的应用,从而能够准确地将数学知识应用到实际生活中去。

部编数学七年级上册专题04聚焦绝对值(解析版)含答案

部编数学七年级上册专题04聚焦绝对值(解析版)含答案

2022-2023学年人教版数学七年级上册压轴题专题精选汇编专题04 聚焦绝对值考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022七上·汇川期末)已知|a|=8,|b|=3,且|a -b|=b -a ,则a +b 的值为( ) A .5或11B .-5或-11C .-5D .-11【答案】B【完整解答】解: |a|=8,|b|=3, 83a b ∴=±=±,,|a -b|=b -a ,b a ∴≥,83a b ∴=-=, 或 83a b =-=-,,835a b ∴+=-+=- 或 ()8311a b +=-+-=-,故答案为:B【思路引导】由|a|=8,|b|=3,可得83a b =±=±,, 根据|a -b|=b -a 可得b a ≥,从而确定83a b =-=, 或 83a b =-=-,,然后分别代入计算即可.2.(2分)(2022七上·遵义期末)若 a 、 b 为有理数, 0a < , 0b > ,且 a b > ,那么 a , b , a - , b - 的大小关系是( )A .b a b a-<<<-B .b b a a <-<<-C .a b b a<-<<-D .a b b a<<-<-【答案】C【完整解答】解:∵0a < , 0b > ,且 a b > ,∴0a -> , 0b -< , a b -> ,∴a b <- ,∴a b b a <-<<- .故答案为:C.【思路引导】 由0a < , 0b > ,且 a b > ,可得0a -> , 0b -< , a b -> ,从而得出a b<-据此即可得解.3.(2分)(2021七上·洪山期末)已知数a ,b ,c 在数轴上的位置如图所示,化简|a + b| - |a - b| + |a + c|的结果为( )A .-a -cB .-a -b -cC .-a -2b -cD .a -2b +c【答案】C 【完整解答】解:通过数轴得到a <0,c >0,b >0,|a|>|c|>|b|,∴a+b <0,a -b <0,a +c <0∴|a +b| - |a -b| + |a +c|=-a-b +a -b ﹣a-c =-a -2b -c.故答案为:C.【思路引导】根据数轴可得:a<0<b<c 且|a|>|c|>|b|,然后判断出a+b 、a-b 、a+c 的正负,接下来根据绝对值的性质以及合并同类项法则进行化简.4.(2分)(2021七上·宜宾期末)下列说法: ①若 a a =- ,则 0a < ;②若a ,b 互为相反数,且 0ab ≠ ,则1b a =- ;③若 22a b = ,则 a b = ;④若 0a < , 0b < ,则 ab a ab a -=- .其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【完整解答】解:①若 a a =- ,则 0a = 或 a 为负数,错误;②若 a , b 互为相反数,且 0ab ≠ ,则 1b a=- ,正确;③若 22a b = ,则 a b = 或 a b =- ,错误;④若 0a < , 0b < ,所以 0ab a -> ,则 ab a ab a -=- ,正确;故答案为:B.【思路引导】根据绝对值的非负性可判断①;根据a 、b 互为相反数可得a=-b ,据此判断②;根据a 2=b 2可得|a|=|b|,据此判断③;根据a<0、b<0可得ab-a>0,结合绝对值的性质可判断④.5.(2分)(2021七上·遂宁期末)若有理数 m 在数轴上的位置如图所示,则化简 m 3m ++ 结果是( )A .23m +B .3C .23m --D .23m -+【答案】B 【完整解答】解:观察数轴得 0m < 且m >-3(即m+3>0) ∴33m m m m =-+=+,∴m 3(3)3m m m ++=-++= .故答案为:B.【思路引导】根据数轴可得-3<m<-2,则m+3>0,然后根据绝对值的性质以及合并同类项法则进行化简.6.(2分)(2021七上·长沙期末)有理数 a b c ,, 在数轴上对应的点的位置如图所示,则下列各式正确的个数有( )①0abc > ;②a c b +< ;③1a b c a b c++=- ;④a b b c a c ---=- .A .1个B .2个C .3个D .4个【答案】C 【完整解答】解:由数轴可得,b <c <0<a ,且|b|>|c|>|a|,∴abc >0,①正确;a-b+c >0, a c b +> ,②不正确;1111a b c a b c++=--=- ,③正确;()a b b c a b c b a c a c ---=---=-=- ,④正确,故答案为:C.【思路引导】由数轴可得b <c <0<a ,且|b|>|c|>|a|,根据有理数的乘法,有理数的加法,绝对值的性质分别计算,再判断即可.7.(2分)(2021七上·鄞州期中)已知a ,b 为实数,下列说法:①若ab <0,且a ,b 互为相反数,则 1a b=- ;②若a+b <0,ab >0,则|2a+3b|=﹣2a ﹣3b ;③若|a ﹣b|+a ﹣b =0,则b >a ;④若|a|>|b|,则(a+b )×(a ﹣b )是正数;⑤若a <b ,ab <0且|a ﹣3|<|b ﹣3|,则a+b >6,其中正确的说法有( )个.A .2B .3C .4D .5【答案】C【完整解答】解: ①若ab <0,且a ,b 互为相反数,则 1a b=-,正确 ;②∵a+b <0,ab >0,∴a<0,b<0,∴2a+3b<0,∴|2a+3b|=﹣2a ﹣3b ,正确;③∵|a ﹣b|+a ﹣b =0,∴|a ﹣b|=b-a≥0,∴b≥a ,错误;④当a>0, b>0时,则a>b , ∴a-b>0, a+b>0,∴(a+ b). (a- b)为正数;当a>0, b<0时,a-b>0, a+b>0,∴(a+ b).(a- b)为正数;当a<0,b>0时,a-b<0, a+b<0,∴(a+ b). (a- b)为正数;当a<0, b<0时,a-b<0, a+b<0,∴(a+ b).(a- b)为正数;故 ④ 正确;⑤∵a <b ,ab <0,∴b>0,a<0,当0<b<3时,∵|a ﹣3|<|b ﹣3|,∴3-a<3-b ,不符合题意;∴b>3,∵|a ﹣3|<|b ﹣3|,∴3-a<b-3,∴a+b>6,正确.综上,正确的有4项.故答案为:C.【思路引导】因为ab <0,可得a 、b≠0,根据互为相反数的商为- 1,可对①作判断;由两数之和小于0,两数之积大于0,得到a 与b 都为负数,则2a+ 3b 小于0,利用负数的绝对值等于它的相反数去绝对值,对②作判断;由a - b 的绝对值等于它的相反数,得到a -b 为非正数,进而得出a 与b 的大小,即可对③作判断;由a 绝对值大于b 绝对值,分4种情况讨论,即可对④作出判断;先根据a<b ,得a-3<b- 3,再由ab< 0和有理数乘法法则可得a<0, b>0,分情况讨论,可对⑤作判断.8.(2分)(2021七上·苏州月考)若a 表示一个有理数,且有|﹣3﹣a|=3+|a|,则a 应该是( ) A .任意一个有理数B .任意一个正数C .任意一个负数D .任意一个非负数【答案】D【完整解答】解:当a≥0时,得3+a=3+a ,∴a 为可以为一切非负数,当-3≤a <0时,得3+a=3-a ,∴a 为0,不符合题意,舍去,当a <-3时,得3+a=3-a ,∴a 为0,不符合题意,舍去,综上a 为可以为一切非负数,故答案为:D.【思路引导】分当a≥0时、当-3≤a <0时、当a <-3时三种情况,根据绝对值的非负性进行解答.9.(2分)(2021七上·和平月考)已知a ,b ,c 是有理数,且a+b+c=0,abc (乘积)是负数,则 b c a c a b a b c+++++ 的值是( ) A .3B .﹣3C .1D .﹣1【答案】D【完整解答】解:由题意知,a ,b ,c 中只能有一个负数,另两个为正数,不妨设a <0,b >0,c >0.由a+b+c=0得出:a+b=-c ,b+c=-a ,a+c=-b ,代入代数式,原式=a b c 1111a b c---++=--=- ,故答案为:D .【思路引导】根据a ,b ,c 中只能有一个负数,另两个为正数,不妨设a <0,b >0,c >0.再将a+b+c=0变形为a+b=-c ,b+c=-a ,a+c=-b ,再代入计算即可。

七年级上学期数学 绝对值的几何意义题型训练 带答案

七年级上学期数学 绝对值的几何意义题型训练 带答案

绝对值的几何意义训练1、借助数轴理解绝对值的意义,会求实数的绝对值2、会利用绝对值的知识解决简单的化简问题例题精讲板块一:绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例题1】m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.⑴ x 的几何意义是数轴上表示 的点与 之间的距离;0-(>,=,<);⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则2- ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则 x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则 x = .⑸ 当1x =-时,则22x x -++= .【解析】⑴ x ,原点;=;⑵1;⑶x ,3,2或4;⑷x ,-2,0或-4;⑸4.【例题2】已知m 是实数,求12m m m +-+-的最小值【解析】根据绝对值的几何意义,这个问题可以转化为在数轴上找一点m ,使点m 到点o ,点1和点2的距离之和最小,显然当m=1时,原式的最小值为2【例题3】已知m 是实数,求2468m m m m -+-+-+-的最小值【解析】根据绝对值的几何意义,这个问题可以转化为在数轴上找一点m ,使m 到点2,点4,点6和点8的距离和最小,显然当点m 在点4和点6之间(包括点4和点6)时,原式的值最小为8【例题4】设123...n a a a a ,,,是常数(n 是大于1的整数),且123...n a a a a <<<<,m 是任意实数,试探索求123...n m a m a m a m a -+-+-++-的最小值的一般方法【解析】根据题意,结合数轴,不难得到:⑴当n 为奇数时,即当n=2k+1(k 为正整数)时,点m 应取在点a k +1处,原式的值最小,最小值为(a 2k+1-a 1)+(a 2k -a 2)+.......+(a k+2-a k )⑵当n 为偶数2k (k 是正整数)时,m 应取点a k 和点a k+1之间的任意位置,原式的值最小,最小值为(a 2k -a 1)+(a 2k-1-a 2)+.......+(a k+1-a k )【例题5】122009x x x -+-++-的最小值为 .【解析】当x=1005时,∣x-1∣+∣x-2∣+......∣x-2009∣取到最小值:∣x-1∣+∣x-2∣+......∣x-2009∣=∣1005-1∣+∣1005-2∣+......∣1005-2009∣ =1004+1003+.....+1+0+1+.....+1003+1004=1009020【巩固1】试求123...2005x x x x -+-+-++-的值【解析】联想到绝对值的几何意义:∣x-x n ∣即表示数轴上数x 的对应点与数x n 的对应点的距离,把这些绝对值转化为同一数轴上若干条线段之和来研究,发现∣x-1∣+∣x-2∣,当1≤x ≦2时,它有最小值1,对于∣x-1∣+∣x-2∣+∣x-3∣,,当x=2时,最小值为2,…猜想当x=1003时,原式有最小值最小值为∣x-1∣+∣x-2∣+......∣x-2005∣=∣1003-1∣+∣1003-2∣+......∣1003-2005∣ =1002+1001+.....+1+0+1+.....+1001+1002 =1005006【巩固2】设a b c <<,求当x 取何值时x a x b x c -+-+-的最小值.【解析】∣x-a ∣+∣x-b ∣+∣x-c ∣实际表示x 到a,b,c 三点的距离和,画图可知当x=b 时,原式有最小值为c-a .【巩固3】若1x 、2x 、3x 、4x 、5x 、6x 是6个不同的正整数,取值于1,2,3,4,5,6,记122334455661||||||||||S x x x x x x x x x x x x =-+-+-+-+-+-,则S 的最小值是 .【解析】利用此题我们充分展示一下数形结合的优越性:利用绝对值的几何意义∣x 1-x 2∣+∣x 2-x 3∣+∣x 3-x 4∣+∣x 4-x 5∣+∣x 5-x 6∣+∣x 6-x 1∣在数轴上表示出来,从x 1开始又回到x 1,我们可以看成是一个圈,故最小值为10,如下图所示,即使重叠路程最少.【例题6】正数a 使得关于x 的代数式162x x x a ++-+-的最小值是8,那么a 的值为 .【解析】如果a ≦6,那么当x=a 时,∣x+1∣+∣x-6∣+2∣x-a ∣=∣a+1∣+∣a-6∣=(a+1)+(6-a)=7,小于8与已知条件矛盾.所以a>6,那么算式∣x+1∣+∣x-6∣+2∣x-a ∣的几何意义是点x 到-1、6、a 、a 的4个距离之和,当6≦x ≦a 时取最小值,因此令x=6可得7+2∣6-a ∣=8,解得a=13/2.【巩固4】182324x x a x x -+-+-+-的最小值为12,则a 的取值范围是 .【解析】最小值一定能在零点处取到,而零点处代数式值为14+2a 、5+a 、12、19+a ,故12是这四个数中最小的,即14+2a ≧12且5+a ≧12且19+a ≧12,所以a ≧7.【例题7】已知代数式374x x -+-=,则下列三条线段一定能构成三角形的是( ).A . 1,x ,5B . 2,x ,5C . 3,x ,5D . 3,x ,4【解析】根据∣x-3∣+∣x-7∣=4可得3≦x ≦7,所以选择C .【巩固5】⑴是否存在有理数x ,使132x x ++-=?⑵是否存在整数x ,使433414x x x x -+-++++=?如果存在,求出所有整数x ,如果不存在,请说明理由【解析】⑴不存在⑵x=±3,x=±2,x=±1,x=0【巩固6】第17届希望杯培训试题)不等式127x x ++-<的整数解有 个.【解析】可分类讨论来做,也可以利用绝对值的几何意义来解,∣x+1∣+∣x-2∣<7的整数解表示数轴上到-1和2的距离之和小于7的点集合,利用数轴容易找到满足条件的整数有-2、-1、0、1、2、3共六个.【例题8】一共有多少个整数x 适合不等式20009999x x -+≤.【解析】零点为2000和0,可将数轴分成几段去考虑: (1)当x ≧2000时,原不等式变形为:x-2000+x ≦9999,进而得:x ≦5999.5,即2000≦x ≦5999.5,共有4000个整数适合;(2)当0<x<2000时,原不等式变形为:2000-x+x ≦9999,而2000<9999恒成立, 所以又有2000个整数适合.(3)当x<0时,原不等式变形为2000-x+(-x)≦9999,x ≧-3999.5, 即-3999.5<x<0,共有3999个整数适合.综上所得共有9999个整数适合不等式∣x-2000∣+∣x ∣≦9999.【例题9】已知∣x ∣≦1,∣y ∣≦1,设M=∣x+1∣+∣y+1∣+∣2y-x-4∣,求M 的最大值和最小值【解析】由已知首先讨论绝对值符号内的代数式的符号因为∣x ∣≦1,所以-1≦x ≦1,所以0≦x+1≦2,同理可得0≦y+1≦2 因为∣y ∣≦1,所以-1≦x ≦1,所以-2≦2y ≦2⑴因为∣x ∣≦1,,所以-1≦x ≦1,所以-1≦-x ≦1,所以-1-4≦-x-4≦1-4 即-5≦-x-4≦-3⑵⑴与⑵同向相加得-7≦2y-x-4≦-1 化简M 的表达式:M=2x-y+6 求M 的取值范围:因为-1≦x ≦1,所以-2≦2x ≦2 因为-1≦x ≦1,所以-1≦-y ≦1 所以-3≦2x-y ≦3 所以3≦2x-y+6≦9当x=1,y=-1时,M 最大值为9 当x=-1,y=1时,M 最小值为3【例题10】彼此不等的有理数a b c ,,在数轴上的对应点分别为A ,B ,C ,如果a b b c a c -+-=-,那么A ,B ,C 的位置关系是_____.【解析】由绝对值的几何意义知, ∣a-b ∣表示点A 与点B 之间的距离;∣b-c ∣表示点B 与点C 之间的距离;表示点A 与点C 之间的距离;当点B 位于点A 与点C 之间(包括A ,C 两点)时,∣a-b ∣+∣b-c ∣取得最小值,为∣a-c ∣.由题设知,a ,b ,c 相等,以A ,B ,C 不重合,故点B 位于点A 与点C 之间(包括A,C 两点).【巩固7】有理数a 、b 、c 、d 各自对应着数轴上X 、Y 、Z 、R 四个点,且 (1)∣b-d ∣比∣a-b ∣,∣a-c ∣、∣a-d ∣、∣b-c ∣、∣c-d ∣都大; (2)∣d-a ∣+∣a-c ∣=∣d-c ∣;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是 【解析】R 、X 、Z 、Y.【巩固8】如果1a b -=,1b c +=,2a c +=,求2a b c ++的值.【解析】可以去掉绝对值,分类讨论,但非常麻烦,我们仍可采用数形结合的方法,从绝对值的几何意义出发.根据∣a-b ∣=1,∣b+c ∣=∣b-(-c)∣=1,∣a+c ∣=∣a-(-c)∣=2,我们可以得到a 、b 、-c 三点在数轴上从左到右依次是-c 、b 、a 或a 、b 、-c ,我们会发现在这两种情况下,a-(-c),b-(-c)同号,所以∣a+b+2c ∣=∣a-(-c)+b-(-c)∣=∣a-(-c)∣+∣b-(-c)∣=∣a+c ∣+∣b+c ∣=3【巩固9】已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d += .【解析】法1:四个非负整数和为2,∣a+d ∣只可能为0、1或2. 讨论: ① 当a=0,b=0,c=1,d=0,满足条件,∣a+d ∣=0; ② 当a=1,b=0,c=0,d=0,满足条件,∣a+d ∣=1;③ 若∣a+d ∣=2,即a+d ≠0且∣a+b ∣=0,∣b+c ∣=0,∣c+d ∣=0,∴a+b=0, b+c=0,c+d=0,故0=0-0+0=(a+b)-(b+c)+(c+d)=a+d ,这与a+d ≠0矛盾. 所以,∣a+b ∣=0或1.【例题11】在数轴上把坐标为123...2006,,,,的点称为标点,一只青蛙从点1出发,经过2006次跳动,且回到出发点,那么该青蛙所跳过的全部路径的最大长度是多少?请说明理由 【解析】设青蛙依次到达的点为x 1 x 2 x 3 x 4......x 2006 x 1,整个跳过的路径长度为 S=∣x 1-x 2∣+∣x 2-x 3∣+∣x 3-x 4∣+......+∣x 2006-x 1∣≤2(1004+1005+....+2006)-2(1+2+3+...+1003)=2×1003×1003 故青蛙跳过的路径的最大长度为2×1003×1003【例题12】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置城市【解析】因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄BC 之间,7 个村庄依次排列为A B G C D E F .设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:y=∣x-4∣+∣x-10∣+∣x-12∣+∣x-15∣+∣x-17∣+∣x-19∣+∣x-20∣,因为4<10<12<15<17<19<20,所以当x=15时y 有最小值,所以活动中心应当建在c 处.【巩固10】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?F EDCBPA7A6A5A4A3A2A1【解析】每一条小路都是工厂到车站的必经之路,和其他工厂无关.但在公路上,有些路段将是一些工厂重复经过的,应使重复路线越短越好.要使各工厂到车站的距离之和最小,只要各工厂经小路进入公路的入口处(B C D E F)到车站的距离之和最小即可,各路段的弯曲程度是无关紧要的,因此可以把公路看成一条直线,这就和题例题6类似了!即车站设在D点最好.若在P处再建一个工厂,则车站建在D处、E处或它们之间的任何地方都是最佳的.。

七年级数学(上)思维特训(4):绝对值与分类讨论(含答案)

七年级数学(上)思维特训(4):绝对值与分类讨论(含答案)

思维特训(四) 绝对值与分类讨论方法点津 ·1.由于去掉绝对值符号时,要分三种情况:即正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数,所以涉及绝对值的运算往往要分类讨论.用符号表示这一过程为:||a =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).2.由于在数轴上到原点的距离相等的点(非原点)有两个,一个点表示的数是正数,另一个点表示的数是负数,因此知道某个数的绝对值求该数时,往往需要分两种情况讨论. 用符号表示这个过程为:若||x =a (a >0),则x =±a .3.分类讨论的原则是不重不漏,一般步骤为:①分类;②讨论;③归纳.典题精练 ·类型一 以数轴为载体的绝对值的分类讨论1.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB |,定义|AB |=|a -b |.(1)|AB |=________;(2)设点P 在数轴上对应的数是x ,当|P A |-|PB |=2时,求x 的值.2.我们知道:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a -b |,所以式子|x -3|的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.根据上述材料,回答下列问题:(1)|5-(-2)|的值为________;(2)若|x -3|=1,则x 的值为________;(3)若|x -3|=|x +1|,求x 的值;(4)若|x -3|+|x +1|=7,求x 的值.类型二 与绝对值化简有关的分类讨论问题3.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答下列问题:【提出问题】三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c的值. 【解决问题】解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即a >0,b >0,c >0时,则|a|a +|b|b +|c|c =a a +b b +c c=1+1+1 =3;②当a ,b ,c 中有一个为正数,另两个为负数时,设a >0,b <0,c <0,则|a|a +|b|b +|c|c=a a +-b b +-c c=1-1-1=-1. 所以|a|a +|b|b +|c|c的值为3或-1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a ,b ,c 满足abc <0,求|a|a +|b|b +|c|c的值; (2)已知|a |=3,|b |=1,且a <b ,求a +b 的值.4.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7-21|=________;②|-12+0.8|=________; ③⎪⎪⎪⎪717-718=________. (2)用合理的方法计算:|15-12018|+|12018-12|-|-12|+11009.5.探索研究:(1)比较下列各式的大小(填“<”“>”或“=”):①|-2|+|3|________|-2+3|;②|-12|+|-13|________|-12-13|;③|6|+|-3|________|6-3|;④|0|+|-8|________|0-8|.(2)通过以上比较,请你分析、归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(直接写出结论即可)(3)根据(2)中得出的结论,解决以下问题:当|x|+|-2018|=|x-2018|时,求x的取值范围.详解详析1.解:(1)因为|a +4|+(b -1)2=0,所以a =-4,b =1,所以|AB |=|a -b |=5.(2)当点P 在点A 左侧时,|P A |-|PB |=-(|PB |-|P A |)=-|AB |=-5≠2,不符合题意; 当点P 在点B 右侧时,|P A |-|PB |=|AB |=5≠2,不符合题意.当点P 在点A ,B 之间时,|P A |=|x -(-4)|=x +4,|PB |=|x -1|=1-x . 因为|P A |-|PB |=2,所以x +4-(1-x )=2,解得x =-12. 2.解:(1)7(2)因为|x -3|=1,所以x -3=±1,解得x =2或4.故x 的值为2或4.(3)根据绝对值的几何意义可知,x 必在-1与3之间,故x -3<0,x +1>0, 所以原式可化为3-x =x +1,所以x =1.(4)在数轴上表示3和-1的两点之间的距离为4,则满足方程的x 的对应点在-1的对应点的左边或3的对应点的右边.若x 的对应点在-1的对应点的左边,则原式可化为3-x -x -1=7,解得x =-2.5; 若x 的对应点在3的对应点的右边,则原式可化为x -3+x +1=7,解得x =4.5. 综上可得,x 的值为-2.5或4.5.3.解:(1)因为abc <0,所以a ,b ,c 都为负数或其中一个为负数,另两个为正数.①当a ,b ,c 都为负数,即a <0,b <0,c <0时,则|a |a +|b |b +|c |c =-a a +-b b +-c c=-1-1-1=-3; ②当a ,b ,c 中有一个为负数,另两个为正数时,设a <0,b >0,c >0, 则|a |a +|b |b +|c |c =-a a +b b +c c=-1+1+1=1. 综上所述,|a |a +|b |b +|c |c的值为-3或1.(2)因为|a |=3,|b |=1,且a <b ,所以a =-3,b =1或-1,则a +b =-2或-4.4.解:(1)①21-7 ②0.8-12 ③717-718(2)原式=15-12018+12-12018-12+11009=15. 5.解:(1)①因为|-2|+|3|=5,|-2+3|=1,所以|-2|+|3|>|-2+3|.②因为|-12|+|-13|=56,|-12-13|=56,所以|-12|+|-13|=|-12-13|. ③因为|6|+|-3|=6+3=9,|6-3|=3,所以|6|+|-3|>|6-3|.④因为|0|+|-8|=8,|0-8|=8,所以|0|+|-8|=|0-8|.(2)当a ,b 异号时,|a |+|b |>|a +b |;当a ,b 同号或a ,b 中有一个为0或两个同时为0时,|a |+|b |=|a +b |,所以|a |+|b |≥|a +b |.(3)由(2)中得出的结论可知,x 与-2018同号或x 为0,所以当|x |+|-2018|=|x -2018|时,x 的取值范围是x ≤0.。

七年级(上)数学每天一练《绝对值综合分类讨论》习题及解析

七年级(上)数学每天一练《绝对值综合分类讨论》习题及解析

一、 选择题(共3小题)1.(笃学适用)下列说法中,错误的是( ). A .0没有倒数B .绝对值和倒数都是它本身的数是1C .0乘以任何数都得0D .0除以任何数都得02.(笃学适用)已知3a =,||2b =,||a b b a −=−,在数轴上表示a ,b 两数的点之间的距离是( ). A .1 B .5 C .0.5 D .1或53.(睿学适用)若12x <<,则|2||1|||21x x x x x x−−−+−−的值是( ). A .3− B .1−C .2D .1二、 填空题(共6小题)4.(笃学适用)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求3()x a b cd x −++的值是________.七年级数学之绝对值综合分类讨论及几何意义5.(笃学适用)已知a 、b 、0c ≠,且||||||||a b c abca b c abc +++的最大值为m ,最小值为n ,则(1)2013m n ++= .6.(睿学适用)若0abc >,则||||||||a b c abca b c abc +++的值为___________.7.(笃学适用)若a 为有理数,则|3||4|a a −++的最小值是 .8.(睿学A 适用)求|1||2||100||||1||100|x x x x x x −+−+…+−++++…++的最小值_________.9.(创新适用)当x 变化时,|5|||x x t −++有最小值2,则常数t 的值为 .三、解答题(共4小题)10.(睿学适用)点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离||AB a b =−. 利用数形结合思想回答下列问题:①数轴上表示2和6两点之间的距离是 ,数轴上表示1和4−的两点之间的距离是 . ②数轴上表示x 和3−的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .③若x 表示一个有理数,则|1||4|x x −++的最小值= .④若x 表示一个有理数,且|1||3|4x x ++−=,则满足条件的所有整数x 的是 . ⑤若x 表示一个有理数,当x 为 ,式子|2||3||4|x x x ++−+−有最小值为 .11.(睿学适用)已知a 为整数(1)||a 能取最 (填“大”或“小” )值是 .此时a = . (2)||2a +能取最 (填“大”或“小” )值是 .此时a = . (3)2|1|a −−能取最 (填“大”或“小” )值是 .此时a = . (4)|1||2|a a −++能取最 (填“大”或“小” )值是 .此时a = .12.(睿学适用)(1)已知0a ≠,0b ≠,求||||a b a b+的值;(2)已知1||abcabc =,求||||||a b c a b c ++的值.13.(睿学A 适用)如图,在数轴上点A 、B 表示的数分别为2−、4,若点M 从A 点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N 从B 点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M 、N 同时出发,运动时间为t 秒,经过 秒后,M 、N 两点间的距离为12个单位长度.14.(创新适用)如图,已知数轴上点A 表示的数为6,B 是数轴上一点,且10AB =.动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒.(1)写出数轴上点B 表示的数 ,点P 表示的数 用含t 的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;建议用时:100 min一、 选择题(共3小题)1.(笃学适用)下列说法中,错误的是). A .0没有倒数B .绝对值和倒数都是它本身的数是1C .0乘以任何数都得0D.0除以任何数都得0 2.(笃学适用)已知3a =,||2b =,||a b b a −=−,在数轴上表示a ,b A .1 B .5 C .0.5 D .1或5 3.(睿学适用)若12x <<,则|2||1|||21x x x x x x−−−+−−. A .3− B .1−C .2D .1二、 填空题(共6小题)4.(笃学适用)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求3()x a b cd x −++的值是________.七年级数学之绝对值综合分类讨论及几何意义5.(笃学适用)已知a 、b 、0c ≠,且||||||||a b c abca b c abc +++的最大值为m ,最小值为n ,则(1)2013m n ++.6.(睿学适用)若0abc >,则||a a7.(笃学适用)若a 为有理数,则|3||4|a a −++的最小值是 .8.(睿学A 适用)求|1||2||100||||1||100|x x x x x x −+−+…+−++++…++的最小值_________.9.(创新适用)当x 变化时,|5|||x x t −++有最小值2,则常数t 的值为 .三、解答题(共4小题)10.(睿学适用)点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离||AB a b =−. 利用数形结合思想回答下列问题:①数轴上表示2和6两点之间的距离是 ,数轴上表示1和4−的两点之间的距离是 . ②数轴上表示x 和3−的两点之间的距离表示为.数轴上表示x 和6的两点之间的距离表示为 .③若x 表示一个有理数,则|1||4|x x −++的最小值= . ④若x 表示一个有理数,且|1||3|4x x ++−=,则满足条件的所有整数x 的是 .⑤若x 表示一个有理数,当x 为 ,式子|2||3||4|x x x ++−+−有最小值为 .11.(睿学适用)已知a 为整数(1)||a 能取最 (填“大”或“小” )值是 .此时a = . (2)||2a +能取最 (填“大”或“小” )值是 .此时a = .(3)2|1|a −−能取最 (填“大”或“小” )值是 .此时a = . (4)|1||2|a a −++能取最 (填“大”或“小” )值是 .此时a =.12.(睿学适用)(1)已知0a ≠,0b ≠,求||||a b a b+的值;(2)已知1||abcabc =,求||||||a b c a b c ++的值.13.(睿学A 适用)如图,在数轴上点A 、B 表示的数分别为2−、4,若点M 从A 点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N 从B 点出发以每秒4设点M 、N 同时出发,运动时间为t 秒,经过 秒后,M 、N14.(创新适用)如图,已知数轴上点A 表示的数为6,B 是数轴上一点,且10AB =.动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t >秒.(1)写出数轴上点B 表示的数,点P 表示的数 用含t 的代数式表示);(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;。

分类讨论思想(初一)

分类讨论思想(初一)

分类讨论思想分类讨论思想是指当被研究的问题存在一些不确定的因素,无法用统一的方法或结论给出统一的表述时,按可能出现的所有情况来分别讨论,得出各种情况下相应的结论,分类讨论思想有利于学会完整地考虑问题,化整为零地解决问题.一、因绝对值产生的分类讨论1.数轴上的一个点到原点的距离为5,则这个点表示的数为.变式练习:数a+1到原点的距离为5,求a的值.2.点P(a+1,4)到两坐标轴的距离相等,求a的值和点P的坐标.变式练习:点P(a+2,3a-6)到两坐标轴的距离相等,则点P的坐标为.3.已知A(-4,3),AB∥y轴,且AB=3,则点B的坐标为.4.如图,A(-3,0),B(1,0),点C在y轴上,若S△ABC=6,求点C的坐标.二、因平方根产生的分类讨论1.5的平方根为.2解方程:2.(3)36.x2已知,,求的值3.55.x y x y三、因几何图形的不确定产生的分类讨论1.已知线段AB=6cm,点C在直线AB上,BC=2cm,则AC的长为_________________2.已知∠A0B=120º,∠BOC=30º,则∠AOC=_____________________3.平面上,∠AOB=100 º,∠BOC=40 º,若OM平分∠AOB,ON平分∠BOC,求∠MON的度数.四、因问题的多种可能性产生的分类讨论1.暑假期间,两名家长计划带若干名学生去旅游,他们联系了报价均为每人500元的两家旅行社.经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费乙旅行社的优惠条件是:家长学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?。

2024年秋人教版七年级数学上册 《专题:绝对值与分类讨论》精品课件

2024年秋人教版七年级数学上册 《专题:绝对值与分类讨论》精品课件

知识点3 解绝对值方程 【例3】阅读下列材料. 解方程:|x+3|=5,我们可以将x+3视为一个整体,由于绝对值 为5的数有两个,所以x+3=5或x+3=-5,解得x=2或x=-8. 请按照上面的解法解方程:|x-1|=3. 解:由题意,得x-1=3或x-1=-3, 解得x=4或x=-2.
【变式3】 同学们都知道,|3-(-1)|表示3与-1之差的绝对 值,实际上也可理解为3与-1两数在数轴上所对的两点之间的距离, 试探索: (1)求|3-(-1)|= 4 ; (2)找出所有符合条件的整数x,使得|x-3|=4. 解:(2)|x-1.
同学们,再见!
最新人教版七年级数学上册
专题:绝对值与分类讨论
解题思路:需要去绝对值,但无法确定绝对值内的正负时,则需分类 讨论. 知识储备:1.若|x|=3,则x= ±3 . 2.若|-x|=5,则x= ±5 .
知识点1 绝对值与有理数的运算 【例1】已知|a|=4,|b|=5,且ab<0,求a-b的值. 解:因为|a|=4,|b|=5,所以a=±4,b=±5. 因为ab<0,所以a=4时,b=-5;a=-4时,b=5. 所以a-b=4-(-5)=9或a-b=-4-5=-9. 即a-b的值为±9.
【变式1】已知|a|=2,|b|=3,且a>b,求a+b的值. 解:因为|a|=2,|b|=3,所以a=±2,b=±3. 因为a>b, 所以当a=2时,b=-3,则a+b=-1; 当a=-2时,b=-3,则a+b=-5. 即a+b的值为-1或-5.
知识点2 绝对值与约分 【例2】已知ab>0,则|aa|+|bb|= ±2 . 【变式2】已知abc<0,则|aa|+|bb|+|cc|= 1或-3 .

初一数学绝对值含答案

初一数学绝对值含答案

绝对值中考要求重难点1.掌握绝对值的概念与化简2.绝对值的几何意义3.分类讨论思想在绝对值中的应用课前预习外尔斯特拉斯现在通用的绝对值符号“| |”,是德国数学家外尔斯特拉斯在1841年率先引用的,后来为人们所广泛接受。

德国数学家外尔斯特拉斯也算业余高手,后来走上了职业数学家的道路。

他开始是学习法律和财经,一度在在中学任教。

这大概是中学数学教师中最杰出的一位了。

德国是一个多出哲学家的国度,德国人又以严格认真见长,外尔斯特拉斯也是一样,他的品性最能体现德国人对待真理的态度了。

他最大的贡献是在微积分严格化上作出了杰出的贡献。

外尔斯特拉斯还告诉我们,直观有时是靠不住甚至是完全错误的。

从前人们直观上一直认为连续曲线肯定是光滑的,或者大多数点都是光滑的。

用在函数上,就是一直认为连续函数是可导的,或者在多数点是可导的。

可是外尔斯特拉斯却举出一个反例,在每一个点都连续,却有在任何点都不可导。

他举出这个函数是画不出图像的,当时作为一个中学教师,的确令数学家们大跌了眼镜。

例题精讲模块一绝对值的意义及其化简1.绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离。

数a的绝对值记作a2.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.绝对值的性质:①(0)0(0)(0)a aa aa a>⎧⎪==⎨⎪-<⎩,②(0)(0)a aaa a≥⎧=⎨-<⎩或(0)(0)a aaa a>⎧=⎨-≤⎩4.绝对值其他的重要性质:①任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥且a a ≥- ②若a b =,则a b =或a b =- ③a b a b ⋅=⋅,a ab b=(0b ≠) ④222a a a ==☞绝对值的意义【例1】 在数轴上表示数a 的点到原点的距离是13,那么a = 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】13a =±【巩固】绝对值等于2的数有 个,是 【难度】1星【解析】绝对值的代数意义,几何意义 【答案】2个,2±【巩固】绝对值不大于7且大于4的整数有 个,是 【难度】2星【解析】绝对值的代数意义,几何意义 【答案】6个,5±、6±、7±☞绝对值化简【例2】 计算:3π-= ,若23x -=,则x = 【难度】1星 【解析】绝对值化简 【答案】3π-,5x =或1-【巩固】若220x x -+-=,则x 的取值范围是 【难度】2星 【解析】绝对值化简【答案】2x ≤【巩固】已知:①52a b ==,,且a b <;分别求a b ,的值【难度】3星 【解析】绝对值化简【答案】解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±【例3】 如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.【难度】3星 【解析】绝对值化简【答案】解:如图所示,得0a b <<,01c <<∴0a b +<,10b -<,0a c -<,10c ->∴原式=()(1)()(1)a b b a c c -++-+---=11a b b a c c --+-+--+=2-【巩固】已知00x z xy y z x <<>>>,,,那么x z y z x y +++--= 【难度】3星 【解析】绝对值化简【答案】解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y -> ∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=【巩固】数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--【难度】3星 【解析】绝对值化简【答案】解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=【例4】 设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+- 【难度】3星 【解析】绝对值化简【答案】解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b < ∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=【巩固】已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 【难度】3星 【解析】绝对值化简【答案】解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+模块二 绝对值的非负性1. 非负性:若有几个非负数的和为0,那么这几个非负数均为02. 绝对值的非负性;若0a b c ++=,则必有0a =,0b =,0c =【例5】 若42a b -=-+,则_______a b +=【难度】2星【解析】绝对值的非负性【答案】解:∵42a b -=-+ ∴420a b -++=∵40a -≥,20b +≥ ∴40a -=,20b += 则4a =,2b =-【巩固】若7322102m n p ++-+-=,则23_______p n m +=+ 【难度】2星【解析】绝对值的非负性 【答案】解:∵30m +≥,702n -≥,210p -≥ ∴30m +=,702n -=,210p -= 则3m =-,72n =,12p = ∴3232p n m ++=-【例6】 设a 、b 同时满足①2(2)|1|1a b b b -++=+;②|3|0a b +-=.那么ab = 【难度】3星【解析】绝对值化简与非负性【答案】解:∵2(2)0a b -≥,10b +≥,且2(2)|1|1a b b b -++=+∴10b +≥ ∴2(2)11a b b b -++=+ 则2(2)0a b -= ∴2a b =∵30a b +-= ∴230b b +-= 则1b =,2a = ∴2ab =【巩固】已知2()55a b b b +++=+,且210a b --=,那么ab =_______ 【难度】3星【解析】绝对值化简与非负性【答案】解:∵2()0a b +≥,50b +≥,且2()55a b b b +++=+∴50b +≥ ∴2()55a b b b +++=+ 则2()0a b += ∴a b =-∵210a b --= ∴210b b ---= ∴13b =-,13a = 则19ab =-模块三 零点分段法1. 零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.【例7】 阅读下列材料并解决相关问题:我们知道()()()0000x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3中情况:⑴当1x <-时,原式()()1221x x x =-+--=-+ ⑵当12x -<≤时,原式()123x x =+--= ⑶当2x ≥时,原式1221x x x =++-=-综上讨论,原式()()()211312212x x x x x -+<-⎧⎪=-<⎨⎪-⎩≤≥通过阅读上面的文字,请你解决下列的问题: ⑴分别求出2x +和4x -的零点值 ⑵化简代数式24x x ++-【难度】3星 【解析】零点分段法【答案】解:⑴令20x +=,40x -=,则2x =-,4x =⑵零点为2x =-,4x =,则可分三段进行讨论:2x <-,24x -≤<,4x ≥ ①当2x <-时,则20x +<,40x -<∴2(2)2x x x +=-+=--,4(4)4x x x -=--=-+ ∴原式=24x x ---+=22x -+②当24x -≤<时,则20x +≥,40x -< ∴22x x +=+,4(4)4x x x -=--=-+∴原式=24x x +-+=6③当4x ≥时,则20x +>,40x -≥ ∴22x x +=+,44x x -=- ∴原式=24x x ++-=22x -综上所述,当2x <-时,24x x ++-=22x -+当24x -≤<时,24x x ++-=6 当4x ≥时,24x x ++-=22x -【巩固】化简12m m m +-+-的值 【难度】3星 【解析】零点分段法【答案】解:令0m =,10m -=,20m -=,则零点为0m =,1m =,2m =则可分四段进行讨论:0m <,01m ≤<,12m ≤<,2m ≥ ①当0m <时,10m -<,20m -<∴m m =-,11m m -=-+,22m m -=-+ ∴原式=12m m m --+-+=33m -+ ②当01m ≤<时,10m -<,20m -< ∴m m =,11m m -=-+,22m m -=-+ ∴原式=12m m m -+-+=3m -+ ③当12m ≤<时,10m -≥,20m -< ∴m m =,11m m -=-,22m m -=-+ ∴原式=12m m m +--+=1m + ④当2m ≥时,10m -≥,20m -≥ ∴m m =,11m m -=-,22m m -=- ∴原式=12m m m +-+-=33m -综上所述:当0m <时,12m m m +-+-=33m -+当01m ≤<时,12m m m +-+-=3m -+ 当12m ≤<时,12m m m +-+-=1m + 当2m ≥时,12m m m +-+-=33m -【巩固】化简:121x x --++. 【难度】4星 【解析】零点分段法【答案】解:令10x -=,120x --=,10x +=,∴120x --=,则3x =或1x =-∴零点有1x =-,1x =,3x =∴分四段进行讨论1x <-,11x -≤<,13x ≤<,3x ≥ ①当1x <-时,则10x -<,10x +<,10x --> ∴11x x -=-+,11x x +=--,11x x --=--∴原式=121x x -+---=11x x ----=11x x ----=22x -- ②当11x -≤<时,则10x -<,10x +≥,10x --≤ ∴11x x -=-+,11x x +=+,11x x --=+∴原式=121x x -+-++=11x x --++=11x x +++=22x + ③当13x ≤<时,10x -≥,10x +>,30x -< ∴11x x -=-,11x x +=+,33x x -=-+ ∴原式=121x x --++=31x x -++=31x x -+++=4 ④当3x ≥时,10x ->,10x +>,30x -≥ ∴11x x -=-,11x x +=+,33x x -=-∴原式=121x x --++=31x x -++=31x x -++=22x -综上所述,当1x <-时,121x x --++=22x --当11x -≤<时,121x x --++=22x + 当13x ≤<时,121x x --++=4 当3x ≥时,121x x --++=22x -模块四 绝对值的几何意义的拓展1. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.2. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例8】 m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离⑴ x 的几何意义是数轴上表示 的点与 之间的距离;x 0-(>,=,<); ⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则21-= ; ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=, 则x = .⑸ 当1x =-时,则22x x -++=【难度】3星【解析】绝对值的几何意义【答案】解:⑴x 、原点、=;⑵1;⑶x 、3、4或2;⑷x 、2-、4-或0;⑸设2-、2、x 在数轴代表的点为A 、B 、P ,如图P B A 2则2x PA +=,2x PB -=,∴224x x PA PB AB ++-=+==【例9】 已知m 是实数,求12m m m +-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令0m =,10m -=,20m -=,则零点有0m =,1m =,2m =设0、1、2、m 在数轴上分别用A 、B 、C 、P 表示,如图PC B A①当点P 在点A 左侧时,12m m m +-+-=PA PB PC ++=32PA AB BC ++=33PA + ∴当0PA =时,即点P 与点A 重合时,原式取得最小值为3 ∵点P 在点A 左侧 ∴原式3>PC B A②当点P 在线段AB 上时(不包含点B ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+ ∴当0PB =时,原式取得最小值 ∵此时不包含点B ,∴原式2>P CB A③当点P 在线段BC 上时(不包含点C ),12m m m +-+-=PA PB PC ++=2PB AC PB +=+∴当0PB =时,即当点P 与点B 重合时,原式取得最小值,最小值为2C B A④当点P 在点C 及点C 右侧时,12m m m +-+-=PA PB PC ++=32PC BC AB ++=33PC + ∴当0PC =时,即点P 与点C 重合时,原式取得最小值,最小值为3 综上所述,当点P 与点B 重合时,即1m =时,原式取得最小值为2【巩固】已知m 是实数,求2468m m m m -+-+-+-的最小值 【难度】4星【解析】绝对值的几何意义【答案】解:令20m -=,40m -=,60m -=,80m -=则零点有2m =,4m =,6m =,8m =设2、4、6、8、m 在数轴上分别用A 、B 、C 、D 、P ∴2468m m m m PA PB PC PD -+-+-+-=+++①当点P 在点A 左侧时,43241212PA PB PC PD PA AB BC CD PA +++=+++=+> ②当点P 在线段AB 上时,(不包含点B ),2288PA PB PC PD PB BC AD PB +++=++=+> ③当点P 在线段BC 上时(不包含点C ),8PA PB PC PD BC AD +++=+=④当点P 在线段CD 上时(不包含点D ),2288PA PB PC PD PC BC AD PC +++=++=+≥ 当点P 与点C 重合时,取等号⑤当点P 在点D 及点D 右侧时,43241212PA PB PC PD PD CD BC AB PD +++=+++=+≥ 综上所述,当点P 在线段BC 上时,即46m ≤≤时,原式取得最小值为8【例10】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置?【难度】3星【解析】绝对值的几何意义【答案】解:活动中心应该建在村庄C ,使各村到活动中心的路程之和最短【巩固】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P 点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?FED C BP A 7A 6A 5A 4A 3A 2A 1【难度】3星【解析】绝对值的几何意义【答案】解:长途汽车站应该设在点D ,如果在点P 又建了一个工厂,那么此时长途汽车站应该设在DE之间课堂检测1. 4x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若42x -=,则x = .【难度】2星【解析】绝对值的几何意义【答案】x 、4、2或62. 化简:212x x x -++-【难度】4星【解析】零点分段法 【答案】解:令10x -=,20x +=,0x =,∴零点为1x =、2x =-、0x =∴可分四段讨论:2x <-、20x -≤<、01x ≤<、1x ≥①当2x <-时,则10x -<,20x +< ∴11x x -=-+,22x x +=--,x x =-∴原式=2(1)2()222x x x x x x -+----=-+--+=2x -②当20x -≤<时,则10x -<,20x +≥ ∴11x x -=-+,22x x +=+,x x =-∴原式=2(1)2()222x x x x x x -+++--=-++++=4③当01x ≤<时,则10x -<,20x +> ∴11x x -=-+,22x x +=+,x x =∴原式=2(1)2222x x x x x x -+++-=-+++-24x =-+④当1x ≥时,10x -≥,20x +> ∴11x x -=-,22x x +=+,x x =∴原式=2(1)22222x x x x x x x -++-=-++-=综上所述,当2x <-时,212x x x -++-=2x -当20x -≤<时,212x x x -++-=4当01x ≤<时,212x x x -++-=24x =-+当1x ≥时,212x x x -++-=2x3. 化简124x x --+-【难度】4星【解析】零点分段法 【答案】解:令10x -=,40x -=,12x -=, ∴零点有1x =,4x =,3x =,1x =-则可以分五段来分类讨论:1x <-,11x -≤<,13x ≤<,34x ≤<,4x ≥ ①当1x <-时,10x -<,40x -<,10x --> ∴11x x -=-+,44x x -=-+,11x x --=--∴原式=124x x -+--+=14x x ---+=14x x ---+=23x -+②当11x -≤<时,10x -<,40x -<,10x --≤ ∴11x x -=-+,44x x -=-+,11x x --=+∴原式=124x x -+--+=14x x ---+=14x x +-+=5③当13x ≤<时,10x -≥,40x -<,30x -< ∴11x x -=-,44x x -=-+,33x x -=-+∴原式=124x x ---+=34x x --+=34x x -+-+=27x -+④当34x ≤<时,10x ->,40x -<,30x -≥ ∴11x x -=-,44x x -=-+,33x x -=-∴原式=124x x ---+=34x x --+=34x x --+=1⑤当4x ≥时,10x ->,40x -≥,30x -> ∴11x x -=-,44x x -=-,33x x -=-∴原式=124x x --+-=34x x -+-=34x x -+-=27x -综上所述,当1x <-时,124x x --+-=23x -+当11x -≤<时,124x x --+-=5当13x ≤<时,124x x --+-=27x -+当34x ≤<时,124x x --+-=1当4x ≥时,124x x --+-=27x -总结复习1.通过本堂课你学会了 .2.掌握的不太好的部分 .3.老师点评:① .② . ③ .课后作业1. 化简:2121x x x -++--【难度】3星【解析】零点分段法 【答案】解:令210x -=,20x +=,10x -=, ∴零点有12x =,2x =-,1x = 则可分四段进行讨论:2x <-,122x -≤<,112x ≤<,1x ≥ ①当2x <-时,210x -<,20x +<,10x -< ∴2121x x -=-+,22x x +=--,11x x -=-+∴原式=212(1)x x x -+----+=2121x x x -+--+-=22x -- ②当122x -≤<时,210x -<,20x +≥,10x -< ∴2121x x -=-+,22x x +=+,11x x -=-+∴原式=212(1)x x x -+++--+=2121x x x -++++-=2 ③当112x ≤<时,210x -≥,20x +>,10x -< ∴2121x x -=-,22x x +=+,11x x -=-+∴原式=212(1)x x x -++--+=2121x x x -+++-=4x④当1x ≥时,210x ->,20x +>,10x -≥∴2121x x -=-,22x x +=+,11x x -=- ∴原式=212(1)x x x -++--=2121x x x -++-+=22x +综上所述,当2x <-时,2121x x x -++--=22x -- 当122x -≤<时,2121x x x -++--=2 当112x ≤<时,2121x x x -++--=4x 当1x ≥时,2121x x x -++--=22x +。

七年级上学期数学 绝对值的几何意义题型训练 带答案

七年级上学期数学 绝对值的几何意义题型训练 带答案

绝对值的几何意义训练1、借助数轴理解绝对值的意义,会求实数的绝对值2、会利用绝对值的知识解决简单的化简问题例题精讲板块一:绝对值几何意义当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤:找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分内化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离.a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离.【例题1】m n -的几何意义是数轴上表示m 的点与表示n 的点之间的距离.⑴ x 的几何意义是数轴上表示 的点与 之间的距离;0-(>,=,<);⑵ 21-的几何意义是数轴上表示2的点与表示1的点之间的距离;则2- ⑶ 3x -的几何意义是数轴上表示 的点与表示 的点之间的距离,若31x -=,则 x = .⑷ 2x +的几何意义是数轴上表示 的点与表示 的点之间的距离,若22x +=,则 x = .⑸ 当1x =-时,则22x x -++= .【解析】⑴ x ,原点;=;⑵1;⑶x ,3,2或4;⑷x ,-2,0或-4;⑸4.【例题2】已知m 是实数,求12m m m +-+-的最小值【解析】根据绝对值的几何意义,这个问题可以转化为在数轴上找一点m ,使点m 到点o ,点1和点2的距离之和最小,显然当m=1时,原式的最小值为2【例题3】已知m 是实数,求2468m m m m -+-+-+-的最小值【解析】根据绝对值的几何意义,这个问题可以转化为在数轴上找一点m ,使m 到点2,点4,点6和点8的距离和最小,显然当点m 在点4和点6之间(包括点4和点6)时,原式的值最小为8【例题4】设123...n a a a a ,,,是常数(n 是大于1的整数),且123...n a a a a <<<<,m 是任意实数,试探索求123...n m a m a m a m a -+-+-++-的最小值的一般方法【解析】根据题意,结合数轴,不难得到:⑴当n 为奇数时,即当n=2k+1(k 为正整数)时,点m 应取在点a k +1处,原式的值最小,最小值为(a 2k+1-a 1)+(a 2k -a 2)+.......+(a k+2-a k )⑵当n 为偶数2k (k 是正整数)时,m 应取点a k 和点a k+1之间的任意位置,原式的值最小,最小值为(a 2k -a 1)+(a 2k-1-a 2)+.......+(a k+1-a k )【例题5】122009x x x -+-++-的最小值为 .【解析】当x=1005时,∣x-1∣+∣x-2∣+......∣x-2009∣取到最小值:∣x-1∣+∣x-2∣+......∣x-2009∣=∣1005-1∣+∣1005-2∣+......∣1005-2009∣ =1004+1003+.....+1+0+1+.....+1003+1004=1009020【巩固1】试求123...2005x x x x -+-+-++-的值【解析】联想到绝对值的几何意义:∣x-x n ∣即表示数轴上数x 的对应点与数x n 的对应点的距离,把这些绝对值转化为同一数轴上若干条线段之和来研究,发现∣x-1∣+∣x-2∣,当1≤x ≦2时,它有最小值1,对于∣x-1∣+∣x-2∣+∣x-3∣,,当x=2时,最小值为2,…猜想当x=1003时,原式有最小值最小值为∣x-1∣+∣x-2∣+......∣x-2005∣=∣1003-1∣+∣1003-2∣+......∣1003-2005∣ =1002+1001+.....+1+0+1+.....+1001+1002 =1005006【巩固2】设a b c <<,求当x 取何值时x a x b x c -+-+-的最小值.【解析】∣x-a ∣+∣x-b ∣+∣x-c ∣实际表示x 到a,b,c 三点的距离和,画图可知当x=b 时,原式有最小值为c-a .【巩固3】若1x 、2x 、3x 、4x 、5x 、6x 是6个不同的正整数,取值于1,2,3,4,5,6,记122334455661||||||||||S x x x x x x x x x x x x =-+-+-+-+-+-,则S 的最小值是 .【解析】利用此题我们充分展示一下数形结合的优越性:利用绝对值的几何意义∣x 1-x 2∣+∣x 2-x 3∣+∣x 3-x 4∣+∣x 4-x 5∣+∣x 5-x 6∣+∣x 6-x 1∣在数轴上表示出来,从x 1开始又回到x 1,我们可以看成是一个圈,故最小值为10,如下图所示,即使重叠路程最少.【例题6】正数a 使得关于x 的代数式162x x x a ++-+-的最小值是8,那么a 的值为 .【解析】如果a ≦6,那么当x=a 时,∣x+1∣+∣x-6∣+2∣x-a ∣=∣a+1∣+∣a-6∣=(a+1)+(6-a)=7,小于8与已知条件矛盾.所以a>6,那么算式∣x+1∣+∣x-6∣+2∣x-a ∣的几何意义是点x 到-1、6、a 、a 的4个距离之和,当6≦x ≦a 时取最小值,因此令x=6可得7+2∣6-a ∣=8,解得a=13/2.【巩固4】182324x x a x x -+-+-+-的最小值为12,则a 的取值范围是 .【解析】最小值一定能在零点处取到,而零点处代数式值为14+2a 、5+a 、12、19+a ,故12是这四个数中最小的,即14+2a ≧12且5+a ≧12且19+a ≧12,所以a ≧7.【例题7】已知代数式374x x -+-=,则下列三条线段一定能构成三角形的是( ).A . 1,x ,5B . 2,x ,5C . 3,x ,5D . 3,x ,4【解析】根据∣x-3∣+∣x-7∣=4可得3≦x ≦7,所以选择C .【巩固5】⑴是否存在有理数x ,使132x x ++-=?⑵是否存在整数x ,使433414x x x x -+-++++=?如果存在,求出所有整数x ,如果不存在,请说明理由【解析】⑴不存在⑵x=±3,x=±2,x=±1,x=0【巩固6】第17届希望杯培训试题)不等式127x x ++-<的整数解有 个.【解析】可分类讨论来做,也可以利用绝对值的几何意义来解,∣x+1∣+∣x-2∣<7的整数解表示数轴上到-1和2的距离之和小于7的点集合,利用数轴容易找到满足条件的整数有-2、-1、0、1、2、3共六个.【例题8】一共有多少个整数x 适合不等式20009999x x -+≤.【解析】零点为2000和0,可将数轴分成几段去考虑: (1)当x ≧2000时,原不等式变形为:x-2000+x ≦9999,进而得:x ≦5999.5,即2000≦x ≦5999.5,共有4000个整数适合;(2)当0<x<2000时,原不等式变形为:2000-x+x ≦9999,而2000<9999恒成立, 所以又有2000个整数适合.(3)当x<0时,原不等式变形为2000-x+(-x)≦9999,x ≧-3999.5, 即-3999.5<x<0,共有3999个整数适合.综上所得共有9999个整数适合不等式∣x-2000∣+∣x ∣≦9999.【例题9】已知∣x ∣≦1,∣y ∣≦1,设M=∣x+1∣+∣y+1∣+∣2y-x-4∣,求M 的最大值和最小值【解析】由已知首先讨论绝对值符号内的代数式的符号因为∣x ∣≦1,所以-1≦x ≦1,所以0≦x+1≦2,同理可得0≦y+1≦2 因为∣y ∣≦1,所以-1≦x ≦1,所以-2≦2y ≦2⑴因为∣x ∣≦1,,所以-1≦x ≦1,所以-1≦-x ≦1,所以-1-4≦-x-4≦1-4 即-5≦-x-4≦-3⑵⑴与⑵同向相加得-7≦2y-x-4≦-1 化简M 的表达式:M=2x-y+6 求M 的取值范围:因为-1≦x ≦1,所以-2≦2x ≦2 因为-1≦x ≦1,所以-1≦-y ≦1 所以-3≦2x-y ≦3 所以3≦2x-y+6≦9当x=1,y=-1时,M 最大值为9 当x=-1,y=1时,M 最小值为3【例题10】彼此不等的有理数a b c ,,在数轴上的对应点分别为A ,B ,C ,如果a b b c a c -+-=-,那么A ,B ,C 的位置关系是_____.【解析】由绝对值的几何意义知, ∣a-b ∣表示点A 与点B 之间的距离;∣b-c ∣表示点B 与点C 之间的距离;表示点A 与点C 之间的距离;当点B 位于点A 与点C 之间(包括A ,C 两点)时,∣a-b ∣+∣b-c ∣取得最小值,为∣a-c ∣.由题设知,a ,b ,c 相等,以A ,B ,C 不重合,故点B 位于点A 与点C 之间(包括A,C 两点).【巩固7】有理数a 、b 、c 、d 各自对应着数轴上X 、Y 、Z 、R 四个点,且 (1)∣b-d ∣比∣a-b ∣,∣a-c ∣、∣a-d ∣、∣b-c ∣、∣c-d ∣都大; (2)∣d-a ∣+∣a-c ∣=∣d-c ∣;(3)c 是a 、b 、c 、d 中第二大的数.则点X 、Y 、Z 、R 从左到右依次是 【解析】R 、X 、Z 、Y.【巩固8】如果1a b -=,1b c +=,2a c +=,求2a b c ++的值.【解析】可以去掉绝对值,分类讨论,但非常麻烦,我们仍可采用数形结合的方法,从绝对值的几何意义出发.根据∣a-b ∣=1,∣b+c ∣=∣b-(-c)∣=1,∣a+c ∣=∣a-(-c)∣=2,我们可以得到a 、b 、-c 三点在数轴上从左到右依次是-c 、b 、a 或a 、b 、-c ,我们会发现在这两种情况下,a-(-c),b-(-c)同号,所以∣a+b+2c ∣=∣a-(-c)+b-(-c)∣=∣a-(-c)∣+∣b-(-c)∣=∣a+c ∣+∣b+c ∣=3【巩固9】已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d += .【解析】法1:四个非负整数和为2,∣a+d ∣只可能为0、1或2. 讨论: ① 当a=0,b=0,c=1,d=0,满足条件,∣a+d ∣=0; ② 当a=1,b=0,c=0,d=0,满足条件,∣a+d ∣=1;③ 若∣a+d ∣=2,即a+d ≠0且∣a+b ∣=0,∣b+c ∣=0,∣c+d ∣=0,∴a+b=0, b+c=0,c+d=0,故0=0-0+0=(a+b)-(b+c)+(c+d)=a+d ,这与a+d ≠0矛盾. 所以,∣a+b ∣=0或1.【例题11】在数轴上把坐标为123...2006,,,,的点称为标点,一只青蛙从点1出发,经过2006次跳动,且回到出发点,那么该青蛙所跳过的全部路径的最大长度是多少?请说明理由 【解析】设青蛙依次到达的点为x 1 x 2 x 3 x 4......x 2006 x 1,整个跳过的路径长度为 S=∣x 1-x 2∣+∣x 2-x 3∣+∣x 3-x 4∣+......+∣x 2006-x 1∣≤2(1004+1005+....+2006)-2(1+2+3+...+1003)=2×1003×1003 故青蛙跳过的路径的最大长度为2×1003×1003【例题12】如图所示,在一条笔直的公路上有7个村庄,其中A 、B 、C 、D 、E 、F 到城市的距离分别为4、10、15、17、19、20千米,而村庄G 正好是AF 的中点.现要在某个村庄建一个活动中心,使各村到活动中心的路程之和最短,则活动中心应建在什么位置城市【解析】因为村庄G 是AF 的中点,所以村庄G 到城市的距离为12千米,即村庄G 在村庄BC 之间,7 个村庄依次排列为A B G C D E F .设活动中心到城市的距离为x 千米,各村到活动中心的距离之和为y 千米,则:y=∣x-4∣+∣x-10∣+∣x-12∣+∣x-15∣+∣x-17∣+∣x-19∣+∣x-20∣,因为4<10<12<15<17<19<20,所以当x=15时y 有最小值,所以活动中心应当建在c 处.【巩固10】如图所示为一个工厂区的地图,一条公路(粗线)通过这个地区,7个工厂1A ,2A ,…,7A 分布在公路的两侧,由一些小路(细线)与公路相连.现在要在公路上设一个长途汽车站,车站到各工厂(沿公路、小路走)的距离总和越小越好,那么这个车站设在什么地方最好?如果在P点又建立了一个工厂,并且沿着图上的虚线修了一条小路,那么这时车站设在什么地方好?F EDCBPA7A6A5A4A3A2A1【解析】每一条小路都是工厂到车站的必经之路,和其他工厂无关.但在公路上,有些路段将是一些工厂重复经过的,应使重复路线越短越好.要使各工厂到车站的距离之和最小,只要各工厂经小路进入公路的入口处(B C D E F)到车站的距离之和最小即可,各路段的弯曲程度是无关紧要的,因此可以把公路看成一条直线,这就和题例题6类似了!即车站设在D点最好.若在P处再建一个工厂,则车站建在D处、E处或它们之间的任何地方都是最佳的.。

七年级数学上册有理数—绝对值(含解析)

七年级数学上册有理数—绝对值(含解析)

七年级数学上册有理数一一绝对值考试要求:重难点:绝对值的几何意义:一个数。

的绝对值就是数轴上表示数。

的点与原点的距离.数。

的绝对值记作同.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;。

的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“I I”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:-5符号是负号,绝对值是5・求字母。

的绝对值:ci(a > 0)①用…®W=K:<o)-a(a < 0) ,利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若何 + [〃| + k]=。

,则4 = 0, b = 0, c = 0绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即卜户4,且回2一〃:(2)若同=同,则a = b或a = —b ;⑶ M = |a|H;.第(“0);(4)14H间的几何意义:在数轴上,表示这个数的点离开原点的距离.|的几何意义:在数轴上,表示数。

、b对应数轴上两点间的距离.例题精讲:【例1】到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4【难度】1星【解析】此题要全面考虑,原点两侧各有一个点到原点的距离为2,即表示2和-2的点.【答案】根据题意,知到数轴原点的距离是2的点表示的数,即绝对值是2的数,应是±2.点评:利用数轴可以直观地求出两点的距离或解决一些与距离有关的问题,体现了数形结合的数学思想.【例2】下列说法正确的有()①有理数的绝对值一定比0大:②如果两个有理数的绝对值相等,那么这两个数相等:③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数:⑤所有的有理数都可以用数轴上的点来表示:⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③©C、③④⑤D、③⑤⑥【难度】2星【解析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【答案】①。

七年级数学思维探究:绝对值与方程(有答案)(数学竞赛)

七年级数学思维探究:绝对值与方程(有答案)(数学竞赛)

七年级数学思维探究:绝对值与方程(有答案)(数学竞赛)商高是公元前11世纪的中国数学家,当时中国正在处于奴隶制社会的西周时期,数学研究还处于非常初级的阶段.商高最大的成就是在世界上第一个提出了勾股定理,在我国最早的一部数学著作《周髀算经》中记录着商高和周公的一段对话.商高:“故折矩,勾广三,股修四,经隅五.”即当直角三角形的两直角边分别为3和4时,直角三角形的斜边就是5,勾股定理在西方被叫做毕达哥拉斯定理,是古希腊数学家毕达哥拉斯在公元前6世纪发现的. 9.绝对值与方程 解读课标绝对值是数学中活性较高的一个概念,当这一概念与其他概念结合就生成许多新的问题,如绝对值方程、绝对值不等式、绝对值函数等.绝对值符号中含有未知数的方程叫绝对值方程,解绝对值方程的基本方法是:去掉绝对值符号,把绝对值方程转化为一般的方程求解.其基本类型有: 1.最简绝对值方程形如()0ax b c c +=≥是最简单的绝对值方程,可化为两个一元一次方程ax b c +=与ax b c +=-. 2.含多重或多个绝对值符号的复杂绝对值方程这类方程常通过分类讨论法、绝对值几何意义转化为最简绝对值方程和一般方程而求解. 问题解决例1 方程525x x -+=-的解是________.试一试原方程变形为552x x -=--,再把此方程化为一般方程求解.例2若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则m ,n ,k 的大小关系为().A .m n k >>B .n k m >>C .k m n >>D .m k n >> 试一试从方程ax b c +=有解的条件入手. 例3解下列方程: (1)314x x -+=; (2)311x x x +--=+; (3)134x x ++-=.试一试对于(1),从内向外,运用绝对值定义、性质简化方程;对于(2)、(3)运用零点分段讨论法去掉绝对值方程;需要注意的是,方程(3)利用绝对值几何意义可获得简解.例4 如图,数轴上有A 、B 两点,分别对应的数为a 、b ,已知()21a +与3b -互为相反数.点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,求点P 对应的数.(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值;若不存在,说明理由;(3)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问几分钟时点P 到点A 、点B 的距离相等?试一试由绝对值的几何意义建立关于x 的绝对值方程. 例5讨论关于x 的方程25x x a -+-=的解的情况.分析与解a 与方程中常数2、5有依存关系,这种关系决定了方程解的情况.故寻求这种关系是解本例的关键,利用分类讨论法或借助数轴是寻求这种关系的重要方法与工具. 数轴上表示数x 的点到数轴上表示数2和5的点的距离和的最小值为3,由此可得原方程的解的情况是: (1)当3a >时,原方程有两解;(2)当3a =时,原方程有无数解()25x ≤≤; (3)当3a <时,原方程无解. 数学冲浪 知识技能广场 1.若9x =是方程123x m -=的解,则m =_______;又若当1n =时,则方程123x n -=的解是_____. 2.方程3121x x -=+的解是_______;x =_______是方程()3115xx -=+的解;解方程399019951995x +=,得x =_______.3.如果()2230x x y -+-+=,那么()2x y +的值为________. 4.已知关于x 的方程()22ax a x +=-的解满足1102x --=,则a 的值为(). A .10或25B .10或25- C .10-或25 D .10-或25-5.若20042004202004x +=⨯,则x 等于().A .20或21-B .20-或21C .19-或21D .19或21- 6.方程880m m +++=的解的个数为() A .2个 B .3个C .无数个 D .不确定 7.解下列方程 (1)142132x -+=;(2)221x x -=-; -2-13(3)3548x -+=;(4)213x x -+=.8.求关于x 的方程()21001x a a ---=<<的所有解的和. 9.解方程32x k +-=.10.已知a 、b 、c 、d 都是整数,且2a b b c c d d a +++++++=,则a d +=_______. 11.若1x 、2x 都满足条件21234x x -++=,且12x x <,则12x x -的取值范围是_______. 12.满足方程2006182006x --+=的所有x 的和为________. 13.若关于x 的方程21x a --=有三个整数解,则a 的值为() A .0 B .2 C .1 D .314.方程27218a a ++-=的整数解的个数有() A .5 B .4 C .3D .215.若a 是方程20042004a a -=+的解,则2005a -等于() A .2005a - B .2005a -- C .2005a + D .2005a -+ 16.解下列方程(1)200520052006x x -+-=; (2)154x x -+-=.17.当a 满足什么条件时,关于x 的方程25x x a ---=有一解?有无数多个解?无解? 应用探究乐园18.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足()2210a b ++-=.(l )求线段AB 的长;(2)点C 在数轴上对应的数为x ,且x 是方程12122x x -=+的解,在数轴上是否存在点P ,使得PA PB PC +=?若存在,求出点P 对应的数;若不存在,说明理由;(3)在(1)、(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分剐以每秒4个单位长度和9个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其常数值.19.已知()()()12213136x x y y z z ++--++-++=,求23x y z ++的最大值和最小值. 微探究 从三阶幻方谈起ABO相传大禹在治洛水的时候,洛水神龟献给大禹一本洛书,书中有如图所示的一幅奇怪的图,这幅图用今天的数学符号翻译出来,就是一个3阶幻方,也就是在33⨯的方阵中填入1~9,其中每行、每列和两条对角线上数字和都相等.现在人们已给出一般三阶幻方的定义:在33⨯的方阵图中,每行、每列、每条对角线上3个数的和都相等,就称它为三阶幻方.可以证明三阶幻方以下基本性质:(1)在33⨯的方格中填入9个不同的数,使得各行各列及两条对角线上3个数的和都相等,且为S ,若最中间数为m ,则3S m =.(2)在三阶幻方中,每个数都加上一个相同的数,仍是一个三阶幻方. (3)在三阶幻方中,每个数都乘以一个相同的数,仍是一个三阶幻方.解三阶幻方问题,常需恰当引元,运用三阶幻方定义、性质,整体核算等方法求解.例1如图①,有9个方格,要求在每个方格填入不同的数,使得每行、每列、每条对角线上三个数之和都相等.问:图中左上角的数是多少?试一试虽然问题要求的只是左上角的数,但是问题的条件还与其他的数相关.故为充分运用已知条件,需引入不同的字母表示数(如图②).例2 如图,在33⨯的方格表中填入九个不同的正整数:1,2,3,4,5,6,7,8和x .使得各行、各列所填的三个数的和都相等,请确定x 的值,并给出一种填数法.试一试如下页图,引入不同字母表示数,表中各行、各列三数的和都是相等的正整数,即123456781233x x ++++++++=+为正整数,又2121233x xa b c d x +=+=+-=-,从估计a b +和c d +的最小值入手.图①1319?图②1913x 4x 3x 2x 1x整体核算法整体核算法即将问题中的一些对象看作一个整体,观察、分析问题中的题设与结论之间的整体特征和结构,从整体上计算、推理.例3 如图①,a 、b 、c 、d 、e 、f 、g 、h 、i 分别代表1,2,3,4,5,6,7,8,9中某一个数,不同字母代表不同的数,使每个小圆内3个数的和都相等,那么a d g ++的值是多少?分析与解设这个相等的和是S ,现将这9个小圆中()3927⨯=个数求和,可得:()()()912923129345135S a b c d e f g h i =++++⨯++++++++=⨯+++=⨯=,故15S =.先从9所在的小圆看,h 至少是1,i 最多只能是5,再从1所在的小圆看,a 最多只能是9,由于115i a ++=,所以必须5i =,9a =,由此可以求得图②.对照图①与图②中各数的位置,可看到93618a d g ++=++=. 当然也可以有另一解法.dcbax 123456789i h g f edc b a图①987654321987654321图②将含1、含2、含4、含5、含7与含8的6个小圆内()3618⨯=个数求和,可得:()615124578a b c d e f g h i a d g ⨯=+++++++++++++++++,即 9072a d g =+++,所以907218a d g ++=-=.练一练1.将2到10这9个自然数填入图中的9个圆圈中,每个数只能用一次,且使每一条直线上的三个数的和相同,则中间的圆圈中的数是_______,对应的每一条直线上的3个数的和是_______.2.请构造“幻角”,将1~10这10个整数填入图中的小三角形内(2和4已填好),使图中每个大三角形内四数之和都等于25.3.请将4-,3-,2-,1-,0,1,2,3,4,这9个数分别填入图中方阵的9个空格,使3行、3列、2条对角线上的3个数的和都是0.4.如图,a 、b 、c 、d 、e 、f 均为有理数,图中各行各列及两条对角线上的和都相等,求a b c d e f +++++的值.425.如图是一个33 的幻方,当空格填上适当的数后,每行、每列以及对角线上的和都是相等的,求k 的值.6.图中显示的填数“魔方”只填了一部分,将下列9个数:14,12,1,2,4,8,16,32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x 的值.7.幻方第一人幻方,相传最早见于我国的“洛书”,如图①,洛书中3行、3列以及2条对角线上的点数之和都等于15,是一种“3阶幻方”(如图②).我国南宋数学家杨辉是对幻方从数学角度进行系统研究的第一人,他在《续古摘奇算法》一书中给出从3阶到10阶的幻方,并对一些低阶幻方介绍了构造方法,其中运用了对称思想.例如,用1,2,3,…,16构造4阶幻方的方法是:先将1,2,3,…,16依次排成图③,然后以外四角对换,即1与16对换,4与13对换,再以内四角对换……请你在图④中填写用这种“对换”方法得出的4阶幻方.-134 fedc b a 1211k64x32图①图②98765321416151413121110987654321图③图④8.把数字1,2,3,…,9分别填入图中的9个圈内,要求三角形ABC 和三角形DEF 的每条边上三个圈内数字之和都等于18.(1)给出一种符合要求的填法;(2)共有多少种不同填法?证明你的结论.微探究 商品的利润商品的利润涉及商品进价、售价、利润、利润率、打折销售等名词术语,理解相关概念并熟悉它们之间的关系是解这类问题的基础. (1)100%=⨯利润利润率进价; (2)利润=售价-进价;(3)售价=进价+利润=进价×(1+利润率).例1 一家商店将某件商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润_______元.试一试从求出成本价切入.例2 某商店出售某种商品每件可获利m 元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为(). A .25% B .20% C .16% D .12.5% 试一试利用获利不变建立方程.例3 某房地产开发商开发一套房子的成本随着物价上涨比原来增加了10%,为了赚钱,开发商把售价提高了0.5倍,利润率比原来增加了60%,求开发商原来的利润率.试一试因售价=成本×(1+利润率),故还需设出成本. 例4 某超市对顾客实行优惠购物,规定如下: (1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予8折优惠.小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,FE DCBA他需付款多少?分析与解第一次付款198元,可能是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款,故应分两种情况加以讨论.情形l 当198元为购物不打折付的钱时,所购物品的原价为198元,又554450104=+,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱,1040.8130÷=(元).因此,554元所购物品的原价为130500630+=(元),于是购买小明花198630828+=(元)所购的全部物品,小亮一次性购买应付()5000.98285000.8712.4⨯+-⨯=(元).情形2 当198元为购物打九折付的钱时,所购物品的原价为1980.9220÷=(元).仿情形1的讨论,购220630850+=(元)物品一次性付款应为()5000.98505000.8730⨯+-⨯=(元). 练一练1.某商品的进价为x 元,售价为120元,则该商品的利润率可表示为_______.2.某商店老板将一件进价为800元的商品先提价50%,再打八折卖出,则卖出这件商品所获利润为_______元. 3.某商场推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共带省2800元,则用贵宾卡又享受了_______折优惠.4.某商品的价格标签已丢失,售货员只知道“它的进价为80元,打七折售出后,仍可获利5%”,你认为售货员应标在标签上的价格为________.5.一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原销售价的八折销售,售价为120元,则这款羊毛衫每件的原销售价为_______元.6.甲用1000元购买了一些股票,随即他将这些股票转卖给乙,获利10%.而后乙又将这些股票反卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这些股票卖给了乙.若上述股票交易中的其他费用忽略不计,则甲().A .盈亏平衡B .盈利1元C .盈利9元D .亏损1.1元7.2008年爆发的世界金融危机,是自20世纪30年代以来世界最严重的一场金融危机,受金融危机的影响,某商品原价为200元,连续两次降价%a 后售价为148元,下列所列方程正确的是().A .()22001%148a += B .()22001%148a -= C .()20012%148a -= D .()22001% 148a -=8.某商店出售某种商品每件可获利m 元,利润率为20%.若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m 元,则提价后的利润率为(). A .25% B .20% C .16% D .12.5%9.某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打().A .6新B .7折C .8折D .9折 10.某商场对顾客实行优惠,规定: ①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元,按标价给予九折优惠;③如一次购物超过500元,则其中500元按第②条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元和423元,如果他只去一次购买同样的商品,则应付款是().A.522.8元B.510.4元C.560.4元D.472.8元11.某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示:(2)若A型台灯按标价的九折出售,B型台灯按标价的八折出售,那么这批台灯全部售完后,商场共获利多少元?12.某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因而高新产品C是今年销售的重点.若要使今年的总销售金额与去年持平,问:今年高新产品C的销售金额应比去年增加多少?13.某大型超市元旦假期举行促销活动,规定一次购物不超过100元的不给优惠,超过100元而不超过300元时,按该次购物全额9折优惠,超过300元的其中300元仍按9折优惠,超过部分按8折优惠.小美两次购物分别用了94.5元和282.8元,现小丽决定一次购买小美分两次购买的同样的物品,那么小丽应该付款多少元?微探究多变的行程问题行程问题按运动方向可分为相遇问题、追及问题;按运动路线可分为直线形问题、环形问题等.相遇问题、追及问题是最基本的类型,它们的特点与常用的等量关系如下:1.相遇问题其特点是:两人(或物)从两地沿同一路线相向而行,而最终相遇.一般地,甲行的路程+乙行的路程=两地之间的距离.2.追及问题其特点是:两人(或物)沿同一路线、同一方向运动,由于位置或者出发时间不同,造成一前一后,又因为速度的差异使得后者最终能追及前者,一般地,快者行的路程-慢者行的路程=两地之间的距离.例1 (1)在公路上,汽车A、B、C分别以80km/h、70km/h、50km/h的速度匀速行驶,A从甲站开往乙站,同时,B、C从乙站开往甲站.A在与B相遇2小时后又与C相遇,则甲、乙两站相距_____km.(2)小王沿街匀速行走,他发现每隔6min从背后驶过一辆18路公交车;每隔3min迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路总站每隔固定时间发一辆车,那么,发车的间隔时间为_______min.试一试对于(2),“背后驶过与迎面驶来”,其实质就是追及与相遇,距离是同向行驶的相邻两车的间距.例2 (1)一艘轮船从A 港到B 港顺水航行,需6小时,从B 港到A 港逆水需8小时,若在静水条件下,从A 港到B 港需()小时.A .7B .172C .667D .162(2)甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动.甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2000次相遇在边(). A . AB 上 B .BC 上 C .CD 上 D .DA 上试一试对于(2),设正方形边长为a ,甲的速度为x ,相遇时甲行的路程为y ,利用“相遇时甲、乙两动点运动时间相等”建立方程,把y 用a 的代数式表示.例3 有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔113分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了多少分钟?试一试当甲追上乙时,甲行驶了多少圈?由此可导出甲、乙的速度之比.例4 甲、乙二人分别从A 、B 两地同时出发,在距离B 地6千米处相遇,相遇后两人又继续按原方向、原速度前进,当他们分别到达B 地、A 地后,又在距A 地4千米处相遇,求A 、B 两地相距多少千米?解法一第一次相遇时,甲、乙两人所走的路程之和,正是A 、B 两地相距的路程,即当甲、乙合走完A 、B 间的全部路程时,乙走了6千米,第二次相遇时,两人合走的路程恰为两地间距离的3倍(如图,图中实线表示甲所走路程,虚线表示乙所走路线),因此,这时乙走的路程应为6318⨯=(千米).考虑到乙从B 地走到A 后又返回了4千米,所以A 、B 两地间的距离为18414-=(千米).解法二甲、乙两人同时动身,相向而行,到相遇时两人所走时间相等,又因为两人都做匀速运动,应有:两人速度之比等于他们所走路程之比,且相同时间走过的路程亦成正比例. 到第一次相遇,甲走了(全程6-)千米,乙走了6千米;到第二次相遇,甲走了(2⨯全程4-)千米,乙走了(全程4+)千米.B (乙)(甲)A①②设全程为s ,易得到下列方程62464s s s --=+, 解得114s =,20s =(舍去), 所以A 、B 两地相距14千米.解法三设全程为s 千米,甲、乙两人速度分别为1v ,2v .则 121266244s v v s s v v -⎧=⎪⎪⎨-+⎪=⎪⎩①②,①÷②得66244s s s -=-+, 解得14s =或0s =(舍去). 乘车方案例5 老师带着两名学生到离学校33千米远的博物馆参观,老师乘一辆摩托车,速度为25千米/时,这辆摩托车后座可带乘一名学生,带人速度为20千米/时,学生步行的速度为5千米/时,请你设计一种方案,使师生三人同时出发后到达博物馆的时间都不超过3个小时.分析若能使人车同时到达目的地,则时间最短,而要实现“同时到达”,必须“机会均等”,即两名同学平等享受交通工具,各自乘车的路程相等,步行的路程也相等,这是设计方案的关键. 解要使师生三人都到达博物馆的时间尽可能短,可设计如下方案:设学生为甲、乙二人.乙先步行!,老师带甲乘摩托车行驶一定路程后,让甲步行,老师返回接乙,然后老师搭乘乙,与步行的甲同时到达博物馆. 如图,设老师带甲乘摩托车行驶了x 千米,用了20x 小时,比乙多行了()3205204x x ⨯-=(千米).这时老师让甲步行前进,而自己返、回接已,遇到乙时,用了()3255440xx ÷+=(小时).乙遇到老师时,已经步行了3520408xx x ⎛⎫+⨯= ⎪⎝⎭(千米),离博物馆还有3338x -(千米).要使师生三人能同时到达博物馆,甲、乙二人搭乘摩托车的路程应相同,则有3338x x =-,解得24x =.即甲先乘摩托车24千米,用时1.2小时,再步行9千米,用时1.8小时,共计3小时.因此,上述方案可使师生三人同时出发后都到达博物馆的时间不超过3个小时.另解:设乙先步行的时间为x 小时,步行的路程为2s ,则25s x =(千米),此时老师带甲走的路程为学校博物馆乙233335s x -=-(千米),老师返回接乙走的路程为23323310s x -=-.故有33533102025x xx --+=,解得 1.8x =,甲乘车的时间为335 1.220x-=(小时),故甲从学校到博物馆共用1.8 1.23+=(小时).练一练1.甲、乙两人从两地同时出发,若相向而行,则a 小时相遇;若同向而行,则b 小时甲追及乙,那么甲、乙两人的速度之比为_______.2.一轮船从甲地到乙地顺流行驶需4小时,从乙地到甲地逆流行驶需6小时,有一木筏由甲地漂流至乙地,需_______小时.3.甲、乙两列客车的长分别为150m 和200m ,它们相向行驶在平行的轨道上.已知甲车上某乘客测得乙车在他窗口外经过的时间为10秒,那么,乙车上的乘客看见甲车在他窗口外经过的时间是______.4.甲、乙分别自A 、B 两地同时相向步行,2小时后中途相遇,相遇后,甲、乙步行速度都提高了1千米/时,当甲到达B 地后立刻按原路向A 地返行,当乙到达A 地后也立刻按原路向B 地返行.甲、乙两人在第一次相遇后3小时36分又再次相遇,则A 、B 两地的距离是_______千米.5.甲、乙两人沿同一路线骑车(匀速)从A 到B ,甲需要30分钟,乙需要40分钟.如果乙比甲早出发6分钟,则甲出发后经______分钟可以追上乙.6.甲、乙、丙三人一起进行百米赛跑(假定三人均为匀速直线运动),如果当甲到达终点时,乙距终点还有5米,丙距终点还有10米,那么当乙到达终点时,丙距终点还有______米.7.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A 、B 两地间的路程.8.目前自驾游已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程; (2)两座跨海大桥的长度及过桥费见下表:y (元)的计算方法为:5y ax b =++,其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费,若林老师乙从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a .9.铁路旁的一条平行小路上有一行人与一骑车人同时向东行进,行人速度为3.6千米/时,骑车人的速度为10.8千米/时,如果有一列火车从他们背后开过来,它通过行人用了22秒,通过骑车人用了26秒.问这列火车的车身长为多少米?10.如图,甲、乙两人分别在A 、B 两地同时相向而行,于E 处相遇后,甲继续向B 地行走,乙则休息了14分钟,再继续向A 地行走.甲和乙到达B 和A 后立即折返,仍在E 处相遇.已知甲每分钟行走60米,乙每分钟行走80米,则A 和B 两地相距多少米?11.某单位有135人要到50千米外的某地参观,因为步行时速只有5千米,为了使他们上午到达,配备了一辆最多载人50名、时速25千米的大客车.于是早晨6时整出发,若人员上下车的时间不计,试拟一个运行方案,说明步车如何安排,才能使全体人员在最短时间内全部到达目的地,并求该地的时刻,画出汽车往返的运行图. 12.A 、B 、C 三辆车在同一条直路上同向行驶,某一时刻,A 在前,C 在后,B 在A 、C 正中间.10分钟后,C 追上B ;又过了5分钟,C 追上A .问再过多少分钟,B 追上A ?乙EBA9.绝对值与方程 问题解决例1 由552x x -=--,得552x x -=--或()552x x -=---,所以0x =或10x =-.经检验知0x =时, 方程左右两边不等,故舍去.从而原方程的解为10x =-.例2 A 23x m -=-,34x n -=-,45x k -=-,由题意得0m -<,0n -=,0k ->,从而0m >,0k <.例3 (1)54x =-或32x =.原方程化为314x x -+=或314x x -+=-,即314x x +=-或314x x +=+.(2)当3x <-时,原方程化为()()311x x x -++-=+,得5x =-. 当31x -<≤时,原方程化为311x x x ++-=+,得1x =-. 当1x ≥时,原方程化为()311x x x +--=+,得3x =. 综上知原方程的解为5x =-,1-,3.(3)由绝对值的几何意义得原方程的解为13x -≤≤.例4 (1)1x =;(2)存在,32x =-或72(3)223或415数学冲浪1.1;9或3 2.2或0;107±;0或1- 3.49 4.A 5.D 6.C7.(1)1x =-或3x =-;(2)1x =;(3)3x =或13x =;(4)43x =-或2x =. 8.()2101x a a -=±<<,()21x a -=±±,()21x a =±±,得13x a =+,23x a =-,31x a =+,41x a =-,故12348x x x x +++=.9.当0k <,原方程无解;当0k =时,原方程有两解:1x =-或5x =-;当02k <<时,原方程化为32x k +=±,此时原方程有四解:()32x k =-±±;当2k =时,原方程化为322x +=±,此时原方程有三解:1x =或7x =-或3x =-;当2k >时,原方程有两解:()32x k =-±+.10.0或12d a +≤,又a 、d 都是整数,得2d a +=,1,0.当2d a +=,则a b c d =-==-,即0d a +=矛盾;若1d a +=,令1a =,0b c d ===满足题意;若0d a +=,令1b =,0a c d ===满足题意.11.1220x x --<≤ 12.4012 13.C14.B 由数轴知72a -≤≤1,且2a 为偶数 15.D 0a ≤ 16.(1)1002或3008可以得到220052006x -=; (2)15x ≤≤.17.由绝对值几何意义知:当33a -<<时,方程有一解;当3a =±时,方程有无穷多个解,当3a >或3a <-时,方程无解.18.(1)2a =-,1b =,3AB =;(2)存在点P ,点P 对应的数为1-或3-;(3)()()''''53512A B B C t t -=+-+=,为常数.19.()12123x x x x ++-=--+-≥,同理213y y -++≥,314z z -++≥,得()()()12213136x x y y z z ++--++-++≥.当且仅当12x -≤≤,12y -≤≤,13x -≤≤时,上面各式等号成立. 又()()()12213136x x y y z z ++--++-++=,由12123x y z -⎧⎪-⎨⎪⎩①②-1③≤≤≤≤≤≤得①+②2⨯+③3⨯,62315x y z -++≤≤,因此,23x y z ++的最大值为15,最小值为6-. 从三阶幻方谈起(微探究)例l 由已知条件得:123413241319x x x x x x x x x x ++=++=++=++,这样前面两个式子之和等于后面的两个式子之和,即1234123421319x x x x x x x x x ++++=+++++,21319x =+∴,得16x =. 例2 a b +与c d +的最小值是123452+++=,所以21253x -≥,即212x ≤.而2123xa b +=-为整数,且x 是不同于1,2,3,4,5,6,7,8的正整数,故9x =. 练一练1.2,6,10;15,18,21设中间的圆圈中的数是x ,同一直线上的3个数的和是y ,则43231054y x -=+++=,4183x y =-. 2.如图3.如图:56379181024-1-2340-4-3214.由条件得:41 9a -+=,39b c ++=,9d e f ++=.上述三式相加有627a b c d e f ++++++=,故21a b c d e f +++++=.5.如图,由121a k b a c ++=++及11121c d b d ++=++,得121k b c +=+,110c b =+,从而110121231k =+=(注:这个幻方是可以完成的,如第1行为6,231,111;第2行为221,116,11;第3行为121,1,226).6.这9个数的积为31112481632646442⨯⨯⨯⨯⨯⨯⨯⨯=,所以每行、每列、每条对角线上三个数字积为64,得1ac =,1ef =,2ax =,a 、c 、e 、f 分别为14、12、2、4中的某个数,推得8x =. 7.略 8.(1)略(2)显然有12945x y z ++=+++=①图中六条边,每条边上三个圈中之数的和为18,得32618108z y x ++=⨯=.② ②-①,得21084563x y +=-=.③把AB 、BC 、CA 每一边上三圈中之数的和相加,得231854x y +=⨯=.④ 联立③、④解得15x =,24y =,进而6z =.在1~9中三个数之和为24的仅有7,8,9,所以在D 、E 、F 三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中之数一旦确定,根据题目要求,其余六个圈内之数也隧之确定,从而得到结论,共有6种不同的填法. 商品的利润(微探究)例l 设成本为a ,则()150%450a +=,得300a =,所求利润为4500.830060⨯-=(元).例2 C 设原进价为a 元,提价后的利润率为%x ,则()20%125%%m a a x =⋅=+⋅,解得%16%x =. 例3 设原来的利润率是%x ,原来的成本是a ,则()()()1.510.0110.110.0160a x a x +=+++⎡⎤⎣⎦,解 得65x =,即原来的利润率是65%. 练一练 1.120xx- 2.160 3.九 4.120 5.150 6.B 7.B8.C 设提价后的利润率为%x ,则()()()125%1%125%20%20%m m x m ++=++,解得16x =. dc b k a 11121。

人教版七年级数学上册《有理数的分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数的分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数的分类、数轴、相反数及绝对值》专题训练-附带答案【知识点梳理】考点1 正数和负数1.概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

2.意义:在同一个问题上用正数和负数表示具有相反意义的量。

考点2 有理数1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数负数和零统称为非正数正整数和零统称为非负整数负整数和零统称为非正整数。

2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数考点3 数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法在原点的两侧作加法。

(注意不带“+”“—”号)考点4 相反数1.概念代数:只有符号不同的两个数叫做相反数。

(0的相反数是0)几何:在数轴上离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数则a+b=0 即a=-b;反之若a+b=0 则a与b互为相反数。

两个符号:符号相同是正数符号不同是负数。

3.多重符号的化简多个符号:三个或三个以上的符号的化简看负号的个数(:当“—”号的个数是偶数个时结果取正号当“—”号的个数是奇数个时结果取负号)考点5 绝对值1.几何意义:一般地数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身(若|a|=|b| 则a=b或a=﹣b)2.代数意义一个负数的绝对值是它的相反数0的绝对值是03.代数符号意义:a >0 |a|=a 反之|a|=a 则a≥0 |a|=﹣a 则a≦0a = 0 |a|=0a<0 |a|=‐a注:非负数的绝对值是它本身非正数的绝对值是它的相反数。

2024-2025学年北师大版七年级数学上册阶段拔尖专训4 绝对值的常见应用

2024-2025学年北师大版七年级数学上册阶段拔尖专训4 绝对值的常见应用

阶段拔尖专训4 绝对值的常见应用|高分秘师|运用绝对值解决问题,在初中代数中具有重要的意义,利用绝对值的知识一般可以将问题化归,结合分类讨论思想、数形结合思想解决问题,从而达到化难为易、化繁为简的目的.应用1 绝对值在比较大小中的应用1.比较−|−734|和一(-4)的大小.应用2 绝对值在数轴中的应用2.我们知道,|x|表示x在数轴上对应的点到原点的距离,|x|我们可以看成|x-0|.所以|x-a|就表示x与a在数轴上对应的两点之间的距离.若|x+3|=5,则x=.3.[2024济南市中区月考]已知在数轴上A,B两点分别表示的数是a和b,|a|=2,|b|=4,|a-b|=a--b,点P 在数轴上且与点A,点B 的距离相等,则点P 表示的数为.应用3 绝对值的非负性在求字母值或取值范围中的应用4.若|a-1|=a-1,则a的取值范围是( )A. a≥1B. a≤1C. a<1D. a>15.如果|x-2|=2-x,那么x的取值范围是.6.[2024天津和平区模拟]已知|x-3|+|y+5|=0,求|x+y|的值.应用4 绝对值在化简中的应用7. 新考法零点分段法化简:|x--1|+|x-3|.8. 新考法分类讨论法已知a,b,c均不为零,求a|a|+b|b|+c|c|+abc|abc|的值.应用5 绝对值的几何意义在求字母值或最值中的应用9. 母题教材P73复习题T17绝对值不大于a(a>0,且a为整数)的所有整数共有5个,则( a=.10. 新视角学习探究题/同学们都知道,|5-1|表示5与1的差的绝对值,也可以表示数轴上5 和1这两点间的距离;|3--(-2)|表示3与-2的差的绝对值,实际上也可理解为3与--2在数轴上所对的两点之间的距离;自然地,对|3-(-2)|进行变形得|3+2|,同样可以表示3与-2在数轴上所对的两点之间的距离.试探索:(1)|3--(-2)|= ;(2)|x-2|表示x与之间的距离;|x+3|表示x与之间的距离;(3)当|x-2|+|x+3|=5时,x可取整数.(写出一个符合条件的整数x即可)(4)由以上探索,结合数轴猜想:对于任何有理数x,|x+4|+5的最小值为.(5)由以上探索,结合数轴猜想:对于任何有理数x,|x+4|+|x-6|的最小值为.(6)解决问题:一条笔直的公路边有三个代工厂A,B,C和城区O,代工厂A,B,C分别位于城区左侧5km,右侧1km,右侧3km. A代工厂需要芯片1000个,B代工厂需要芯片2 000个,C代工厂需要芯片3 000 个.现需要在该公路边建一个芯片研发实验室P,为这3个代工厂输送芯片.若芯片的运输成本为每千米1元/千个,那么实验室P 建在何处才能使总运输成本最低,最低成本是多少? (实验室不能建在代工厂及城区处)阶段拔尖专训4 绝对值的常见应用1.【解】因为−|−734|=−734,−(−4)=4,m−734<4,所以−|−734|<−(−4).2.-8或2 【点拨】因为|x+3|=5,所以数轴上表示数x的点到表示数-3的点的距离为5.所以x的值为-8或2.3.-1或-3 【点拨】因为|a|=2,|b|=4,所以a=±2,b=±4.因为|a-b|=a-b,所以a-b≥0.所以a≥b.所以a=2,b=-4或a=-2,b=-4.当a=2,b=-4时,因为点P在数轴上且与点A,点B的距离相等,所以点P 表示的数为2−42=−1;当a=-2,b=-4时,因为点P在数轴上且与点A,点B的距离相等,所以点P表示的数为−2−42=−3.所以点P 表示的数为-1或-3.4. A5. x≤26.【解】因为|x-3|+ lg+5|=0,|x-3|≥0,|y+5|≥0,所以x-3=0,y+5=0.所以x=3,y=-5.所以|x+y|=|3+(-5)|=2.7. 【解】当x≥3时,原式=(x-1)+(x-3)=2x-4;当1<x<3时,原式=(x-1)+(3-x)=2;当x≤1时,原式=(1-x)+(3-x)=4-2x.【点拨】要去掉两个绝对值的符号,就要同时确定两个绝对值里的式子的正负号,可以使用零点分段法,用分类讨论的思想方法来解.8. 【解】(1)当a,b,c均为正数时, a|a|+b|b|+c|c|+abc|abc|=1+1+1+1=4;(2)当a,b,c中,有两个正数,一个负数时,不妨设a,b为正,c为负. a|a|+b|b|+c|c|+abc|abc|=1+1+(−1)+(--1)=0;(3)当a,b,c中,有一个正数,两个负数时,不妨设a为正,b,c为负. a|a|+b|b|+c|c|+abc|abc|=1+(−1)+(−1)+1=0;(4)当a,b,c均为负数时, a|a|+b|b|+c|c|+abc|abc|=(−1)+(--1)+(-1)+(-1)=-4.综上,原式的值为-4或0 或4.【点拨】当a为正数时,a|a|=aa=1;当a为负数时,a|a|=a−a=−1.b,的情况类似.本题应根据a,b,c所有可能,出现的符号情况进行讨论.9.210. 【解】(1)5 (2)2;-3(3)2(答案不唯一) 【点拨】因为|x-2|+|x+3|=5 表示数轴上有理数x所对应的点到2 和-3所对应的点的距离之和为5,所以x在-3与2之间的线段上(即-3≤x≤2).所以x可取整数-3,-2,-1,0,1,2.(4)5(5)10 【点拨】因为|x+4|+|x-6|可理解为在数轴上表示x的点到表示一4 和6 的点的距离之和,所以当x在-4与6之间的线段上(即-4≤x≤6)时,|x+4|+|x-6|的值有最小值,最小值为10.(6)以城区O为原点,原点右侧为正方向,1km为1个单位长度,建立数轴,设实验室P 所对应的数为x.根据题意可得,x≠-5,0,1,3,芯片的运输成本为|x+5|+2|x-1|+3|x-3|=(|x+5|+|x-3|)+2(|x-1|+|x-3|)(元).(|x+5|+|x-3|)+2(|x--1|+|x-3|)可表示x到-5的距离与x到3的距离之和,和x到1的距离与x到3的距离之和的2倍的总和,则当1<x<3时,|x+5|+2|x--1|+3|x-3|取得最小值,此时|x+5|+2|x-1|+3|x-3|=x+5+2(x-1)-3(x-3)=12.所以实验室P建在B 代工厂和C代工厂之间,才能使总运输成本最低,最低成本是12 元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思维特训(四) 绝对值与分类讨论
方法点津 ·
1.由于去掉绝对值符号时,要分三种情况:即正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数,所以涉及绝对值的运算往往要分类讨论.
用符号表示这一过程为:||a =⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).
2.由于在数轴上到原点的距离相等的点(非原点)有两个,一个点表示的数是正数,另一个点表示的数是负数,因此知道某个数的绝对值求该数时,往往需要分两种情况讨论.
用符号表示这个过程为:若||x =a (a >0),则x =±a .
3.分类讨论的原则是不重不漏,一般步骤为:①分类;②讨论;③归纳.
典题精练 ·
类型一 以数轴为载体的绝对值的分类讨论
1.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a +4|+(b -1)2=0.现将点A ,B 之间的距离记作|AB |,定义|AB |=|a -b |.
(1)|AB |=________;
(2)设点P 在数轴上对应的数是x ,当|P A |-|PB |=2时,求x 的值.
2.我们知道:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离表示为
AB ,在数轴上A ,B 两点之间的距离AB =|a -b |,所以式子|x -3|的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.
根据上述材料,回答下列问题:
(1)|5-(-2)|的值为________;
(2)若|x -3|=1,则x 的值为________;
(3)若|x -3|=|x +1|,求x 的值;
(4)若|x -3|+|x +1|=7,求x 的值.
类型二 与绝对值化简有关的分类讨论问题
3.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答下列问题:
【提出问题】三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c
的值. 【解决问题】
解:由题意,得a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.
①当a ,b ,c 都是正数,即a >0,b >0,c >0时,则|a|a +|b|b +|c|c =a a +b b +c c
=1+1+1 =3;②当a ,b ,c 中有一个为正数,另两个为负数时,设a >0,b <0,c <0,则|a|a +|b|b +|c|c
=a a +-b b +-c c
=1-1-1=-1. 所以|a|a +|b|b +|c|c
的值为3或-1. 【探究】请根据上面的解题思路解答下面的问题:
(1)三个有理数a ,b ,c 满足abc <0,求|a|a +|b|b +|c|c
的值; (2)已知|a |=3,|b |=1,且a <b ,求a +b 的值.
4.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:
|6+7|=6+7;|6-7|=7-6;|7-6|=7-6;|-6-7|=6+7.
(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:
①|7-21|=________;
②|-12
+0.8|=________; ③⎪⎪⎪
⎪717-718=________. (2)用合理的方法计算:|15-12018|+|12018-12|-|-12|+11009
.
5.探索研究:
(1)比较下列各式的大小(填“<”“>”或“=”):
①|-2|+|3|________|-2+3|;
②|-1
2|+|-
1
3|________|-
1
2-
1
3|;
③|6|+|-3|________|6-3|;
④|0|+|-8|________|0-8|.
(2)通过以上比较,请你分析、归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(直接写出结论即可)
(3)根据(2)中得出的结论,解决以下问题:当|x|+|-2018|=|x-2018|时,求x的取值范围.
详解详析
1.解:(1)因为|a +4|+(b -1)2=0,所以a =-4,b =1,所以|AB |=|a -b |=5.
(2)当点P 在点A 左侧时,|P A |-|PB |=-(|PB |-|P A |)=-|AB |=-5≠2,不符合题意; 当点P 在点B 右侧时,|P A |-|PB |=|AB |=5≠2,不符合题意.
当点P 在点A ,B 之间时,|P A |=|x -(-4)|=x +4,|PB |=|x -1|=1-x .
因为|P A |-|PB |=2,所以x +4-(1-x )=2,
解得x =-12
. 2.解:(1)7
(2)因为|x -3|=1,所以x -3=±1,解得x =2或4.故x 的值为2或4.
(3)根据绝对值的几何意义可知,x 必在-1与3之间,故x -3<0,x +1>0, 所以原式可化为3-x =x +1,所以x =1.
(4)在数轴上表示3和-1的两点之间的距离为4,则满足方程的x 的对应点在-1的对应点的左边或3的对应点的右边.
若x 的对应点在-1的对应点的左边,则原式可化为3-x -x -1=7,解得x =-2.5; 若x 的对应点在3的对应点的右边,则原式可化为x -3+x +1=7,解得x =4.5. 综上可得,x 的值为-2.5或4.5.
3.解:(1)因为abc <0,
所以a ,b ,c 都为负数或其中一个为负数,另两个为正数.
①当a ,b ,c 都为负数,即a <0,b <0,c <0时,
则|a |a +|b |b +|c |c =-a a +-b b +-c c
=-1-1-1=-3; ②当a ,b ,c 中有一个为负数,另两个为正数时,设a <0,b >0,c >0, 则|a |a +|b |b +|c |c =-a a +b b +c c
=-1+1+1=1.
综上所述,|a |a +|b |b +|c |c
的值为-3或1. (2)因为|a |=3,|b |=1,且a <b ,
所以a =-3,b =1或-1,则a +b =-2或-4.
4.解:(1)①21-7 ②0.8-12 ③717-718
(2)原式=15-12018+12-12018-12+11009=15
. 5.解:(1)①因为|-2|+|3|=5,|-2+3|=1,所以|-2|+|3|>|-2+3|.
②因为|-12|+|-13|=56,|-12-13|=56,所以|-12|+|-13|=|-12-13
|. ③因为|6|+|-3|=6+3=9,|6-3|=3,
所以|6|+|-3|>|6-3|.
④因为|0|+|-8|=8,|0-8|=8,
所以|0|+|-8|=|0-8|.
(2)当a ,b 异号时,|a |+|b |>|a +b |;当a ,b 同号或a ,b 中有一个为0或两个同时为0时,|a |+|b |=|a +b |,
所以|a |+|b |≥|a +b |.
(3)由(2)中得出的结论可知,x 与-2018同号或x 为0,所以当|x |+|-2018|=|x -2018|时,x 的取值范围是x ≤0. 。

相关文档
最新文档