初中数学的基本概念

合集下载

初中数学概念大全总结

初中数学概念大全总结

初中数学概念大全总结数学作为一门重要的学科,涉及到许多基本概念和原理。

在初中阶段,学生需要掌握并理解这些数学概念,以便能够有效地应用于解决问题。

以下是对初中数学各个领域常见概念的总结。

1.数与代数-自然数:从1开始的正整数。

-整数:包括自然数、0和负整数。

-分数:有限小数或无限循环小数的比值形式。

-小数:没有小数点后面数字的数。

-百分数:表示百分之几的数。

-代数式:使用字母和数字表示的数学表达式。

-方程:一个等式,其中包含一个或多个未知数。

-不等式:包含不等号的数学语句。

-等比数列:每个数都是前一个数乘以同一个常数得到的序列。

-因式分解:将一个代数式分解成更简单的乘积形式。

2.几何和图形-点:在平面上没有长度和宽度的位置。

-直线:由无限多个点组成的连续路径。

-射线:起点为一个点,通过另一个点并延伸无穷远的路径。

-线段:由两个点之间的连续路径组成,具有固定的长度。

-角度:由两条射线共享同一个起点组成的形状。

-三角形:由三条线段组成的图形。

-四边形:由四条线段组成的图形。

-圆:所有离圆心的距离都相等的平面图形。

-多边形:由多条线段组成的封闭图形。

-相似图形:形状相似但大小不同的图形。

3.数据和统计-数据:收集到的数字或信息。

-平均数:一组数值的总和除以这组数的数量。

-中位数:一组数值按顺序排列后的中间数。

-众数:一组数值中出现次数最多的数。

-极差:一组数值中最大数与最小数之间的差。

-概率:事件发生的可能性。

-折线图:使用折线连接数据点的图表。

-条形图:使用长方形条形表示数据的图表。

4.函数-函数:输入值与输出值之间的关系。

-自变量:函数中的输入值。

-因变量:函数中的输出值。

-图像:函数在坐标轴上的可视化表示。

-正比例关系:自变量和因变量之间成比例的关系。

-反比例关系:自变量和因变量之间成反比例的关系。

5.线性方程与不等式-一元一次方程:只有一个未知数的一次方程。

-线性不等式:包含一个或多个未知数的不等式。

初中数学中有哪些知识点

初中数学中有哪些知识点

初中数学中有哪些知识点
中学数学的知识点包括基本概念、解题方法和具体知识点。

①基本概念:因数分解、约分、最小公倍数和最大公约数、算术、几何、数的基本概念。

②解题方法:按照数学问题和解题步骤,正确分析、理解、解决数学
问题,如提出、识别和分解问题、制定策略及计算等。

③具体知识点:数学运算、因式分解、因式恒等式、数列、立体几何、几何图形、平面几何、统计图形及其应用等。

1、数的基本概念:整数、分数、小数、百分数、分数、立方根、开方、二次乘方等。

2、因式分解:如何分解一个复合因式,利用因式分解法求因式,以
及因式分解的运用。

3、算术:四则运算、乘除法运算、加减法运算、二次方程解法、平
方根等。

4、几何:直角三角形、平行四边形、正多边形、圆、椭圆、抛物线
等图形的定义、参数、性质及求面积等。

5、统计图形:柱状图、饼状图、散点图、线图等数据图形的画法、
理解、求出有关信息。

6、数列:数列基本概念、数列的定义、正项数列、公差数列、首项
数列等,包括其等差数列、等比数列的求法以及相关拓展问题的求解。

7、数学建模:根据实际情况,利用抽象的数学模型,得出结论,解决问题,满足要求。

初中数学的十大概念有哪些

初中数学的十大概念有哪些

初中数学的十大概念有哪些初中数学的十大概念如下:1. 数:数是指用来计数和测量的概念,包括整数、分数、小数等形式。

数的概念是数学的基础,它包括了数的大小、数的比较等。

2. 代数:代数是用来描述和研究数与变量之间关系的一门数学分支。

初中代数主要包括代数式、方程、不等式等内容,通过代数方法可以解决各种实际问题。

3. 几何:几何是研究空间和图形的形状、大小、位置等性质的一门数学分支。

初中几何主要包括平面几何和空间几何,通过几何方法可以解决与形状、位置相关的问题。

4. 概率与统计:概率与统计是研究随机事件和数据的一门数学分支。

初中概率与统计主要包括事件的概率、统计图表、平均数、中位数等内容,通过概率与统计方法可以分析和处理随机事件和数据。

5. 函数:函数是一个把一个集合中的每一个元素映射到另一个集合中的元素的规则。

初中函数主要包括函数的概念、函数的图像、函数的性质等内容,通过函数的研究可以描述和分析各种数学问题。

6. 特殊数:特殊数是指在数学中具有一定特殊性质或特殊应用的数字。

初中特殊数主要包括质数、合数、完全数、有理数、无理数等,通过研究特殊数可以揭示数的规律和性质。

7. 图论:图论是研究图及其性质和应用的一门数学分支。

初中图论主要包括图的概念、图的表示法、图的性质等内容,通过图论可以研究和解决与网络、路径、连通性等相关的问题。

8. 数列与数列求和:数列是指由一系列数按照一定规律排列而成的有序数集。

初中数列与数列求和主要包括等差数列、等比数列、通项公式、部分和等内容,通过数列与数列求和可以计算和推导出一系列数学问题。

9. 相似与全等:相似与全等是研究两个形状之间关系的一部分几何内容。

初中相似与全等主要包括相似三角形、全等三角形等,通过相似与全等的研究可以计算和分析各种几何问题。

10. 计算与应用:计算与应用是数学的基本内容,包括四则运算、方程的求解、平方根的计算等。

初中计算与应用主要是教授解题方法和应用技巧,培养学生的数学计算能力和问题解决能力。

初中数学知识点总结

初中数学知识点总结

初中数学知识点总结1、基本概念线是由点连成的连续图形,可以分为直线、射线和线段。

直线没有端点,用一个字母或两个点表示;射线有一个端点,用一个字母和一个点表示;线段有两个端点,用两个字母或一个字母和一个点表示。

2、直线的性质两点确定一条直线,且经过两点有且只有一条直线。

3、画一条线段等于已知线段可以使用度量法或尺规作图法。

4、线段的大小比较方法可以使用度量法或叠合法。

5、线段的中点、三等分点、四等分点等线段的中点是把线段平均分成两条相等线段的点,用符号表示为若点M是线段AB的中点,则AM=BM=AB/2.6、线段的性质两点之间,线段最短。

7、两点的距离连接两点的线段长度叫做两点的距离。

8、点与直线的位置关系一个点可以在直线上或直线外。

9、直线相关定理过两点有且只有一条直线;两点之间线段最短;过一点有且只有一条直线和已知直线垂直;直线外一点与直线上各点连接的所有线段中,垂线段最短;平行公理经过直线外一点,有且只有一条直线与这条直线平行;如果两条直线都和第三条直线平行,这两条直线也互相平行;线段垂直平分线上的点和这条线段两个端点的距离相等;和一条线段两个端点距离相等的点,在这条线段的垂直平分线上;线段的垂直平分线可看作和线段两端点距离相等的所有点的集合。

10、等边三角形和等腰三角形等边三角形的各角都相等,并且每一个角都等于60°;三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形;等腰三角形的两个底角相等,顶角的平分线平分底边并且垂直于底边,顶角平分线、底边上的中线和底边上的高互相重合;如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

11、角由公共端点的两条射线所组成的图形叫做角,可以用四种表示法:用三个字母及角的符号表示,用表示顶点的字母表示,用一个数字表示,或直接用符号表示。

2.角的分类角可以分为五种类型:锐角、直角、钝角、平角和周角。

初中数学基本概念整理

初中数学基本概念整理

初中数学基本概念整理数学是一门理科,它以数字、符号和公式为基础,研究数量、结构、变化和空间等概念之间的关系。

在初中阶段,学生们开始接触到一些数学的基本概念,这些概念是建立数学知识体系的基础。

下面,我们将整理一些初中数学的基本概念,以帮助学生们更好地理解和应用这些概念。

1. 整数:正整数、负整数和零统称为整数。

在数轴上,整数被表示为点,其中正整数位于零的右侧,负整数位于零的左侧。

整数可以进行加减乘除的运算,如2 + 3 = 5,4 - 6 = -2,5 × (-2) = -10,等等。

2. 分数:分数是表示两个整数之间的部分关系的数字。

它由一个分子和一个分母组成,分子表示分数的一部分,分母表示整体被分成的部分数。

例如,1/2表示一个整体被等分为两个部分中的一部分。

3. 百分数:百分数是将数值表示为百分比的形式。

百分号表示每100个单位中的多少个单位。

例如,75%表示每100个单位中的75个单位。

4. 质数和合数:质数是只能被1和自身整除的正整数,例如2、3、5、7等。

而合数是至少有一个真除数(除了1和它本身)的正整数,例如4、6、8、9等。

5. 小数:小数是表示数值中的小部分的方式,它们由整数部分和小数部分组成,中间用小数点分隔。

例如,3.14是圆周率的一个近似值。

6. 比例和比例关系:比例是指两个或多个数字之间的比较关系。

比例关系是用来描述这种比较关系的数学表达式。

例如,当两个量的比例保持不变时,我们可以说它们之间存在比例关系。

7. 平方数和平方根:平方数是一个数的平方,例如1、4、9、16等。

平方根是一个数的平方等于给定数的正数解,例如√4 = 2。

8. 代数表达式和方程式:代数表达式是由数字、变量和运算符组成的数学表达式,可以用来表示数学关系。

方程式是由等号连接的两个代数表达式,我们可以通过求解方程式来找到使其成立的变量值。

9. 图形:图形是平面上的点、线和面之间的关系和组合。

常见的图形包括点、线段、角、三角形、四边形等。

初中数学基本概念整理

初中数学基本概念整理

初中数学课本基本概念整理【1】七上有理数:整数和分数的统称。

数轴:用一条直线上的点表示数,这条直线叫做数轴。

原点:在直线上任取一个点表示数0,这个点叫做原点。

相反数:只有符号不同的两个数叫做互为相反数。

绝对值:一般地,数轴上表示午数a的点与原点的距离叫做数a的绝对值,记作|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是。

倒数:乘积是1的两个数互为倒数。

乘方:求n个相同因数的积的运算。

幂:乘方的结果。

科学计数法:把一个大于10的数表示成a•10n的形式(其中a大于或等于1且小于10,n是正整数)单项式:数或字母的积的式子以及单独的一个字母或一个数。

系数:单项式中的数字因数叫做这个单项式的系数。

单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

多项式:几个单项式的和。

多项式的项:多项式中每个单项式叫做多项式的项。

多项式的次数:多项式里,次数最高项的的次数,叫做这个多项式的次数。

整式:样单项式与多项式的统称。

同类项:所含字母相同,并且相同字幕的指数也相同的项叫做同类项。

合并同类项:把多项式中的同类项合并成一项。

合并同类项后,所得项的系数是合并前个同类项的系数的和,且字母连同它的指数不变。

方程:含有未知数的等式。

一元一次方程:只含有一个未知数,未知数的次数都是一,等号两边都是整式。

等式的性质1:等式两边加(减)同一个数,(或式子结果仍相等。

等式的性质2:等式两边乘同一个数,或除以同一个不为的数,结果仍相等。

七下:在同一平面内,过一点有且只有一条直线与已知直线垂直。

垂线段最短直线外一点到这条直线的垂线段长度,叫点到直线的距离。

经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第三条直线平行,那么这两条直线互相平行。

同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行,同位角相等。

两直线平行,内错角相等。

两直线平行,同旁内角互补判断一件事情的语句,叫命题,命题由题设和结论组成如果题设成立那么结论一定成立,叫真命题如果题设成立结论不一定成立,叫假命题正确性得到推理证实的真命题叫定理推理一个命题的正确性叫证明0的算数平方根是0若一个正数a平方等于x,a叫x的算数平方根。

初中数学的概念界定

初中数学的概念界定

初中数学的概念界定初中数学是指在初中阶段所学习的数学知识和技能。

初中数学的主要内容包括数与代数、几何与图形、函数与方程、统计与概率等方面的知识。

它是中学数学的基础,对于学生的数学素养和综合能力的培养起着重要的作用。

首先,初中数学的核心概念是“数”。

数是数学中最基本的概念,它包括整数、分数、小数和实数等。

初中数学要求学生掌握数的读写、比较大小、加减乘除等运算方法,并能够用数解决实际问题。

其次,初中数学的概念界定中涉及到的另一个重要概念是“代数”。

代数是数学的一个重要分支,它是用字母和数字表示数的关系和运算的一种方法。

在初中数学中,学生通过学习代数可以进一步理解数的性质和规律。

代数的内容包括字母表达式、代数方程等。

几何与图形是初中数学中的另一个重要内容。

几何包括平面几何和立体几何。

平面几何主要涉及到线段、角、三角形、四边形、平行线、相似和全等等概念。

立体几何主要涉及到立体图形的认识、计算体积和表面积等知识。

图形部分包括平面图形的认识、运动、相似以及解决问题的能力。

函数与方程是初中数学的核心内容之一。

函数是数学中很重要的一种数学关系,它描述了自变量和因变量之间的关系。

方程是代数中的重要概念,是一种等式,其中包含未知数。

函数与方程的学习可以培养学生的逻辑思维和解决实际问题的能力。

统计与概率是初中数学的另一个重要内容。

统计是收集、整理和分析数据的方法。

学生通过学习统计可以了解数据的特征和规律,并能够用统计做出合理的推断和判断。

概率是研究随机事件发生可能性的一门学科,它与日常生活密切相关。

学生通过学习概率可以深入理解随机事件和概率的分布规律。

初中数学的学习不仅要求学生掌握相关的知识和技能,更重要的是培养学生的数学思维和解决问题的能力。

初中数学教育应当注重培养学生的逻辑思维、抽象思维、推理能力和创新精神。

通过培养学生对数学的兴趣和理解,可以提高他们的数学素养和综合能力,为他们今后更高层次的数学学习打下坚实的基础。

初中数学所有基础知识点

初中数学所有基础知识点

初中数学所有基础知识点初中数学的基础知识点非常广泛,包括数与代数、几何、概率与统计等多个方面。

下面是初中数学的基础知识点的概述。

一、数与代数:1.自然数、整数、有理数、实数、负数的概念和性质;2.数的四则运算(加减乘除)及其运算性质;3.分数的概念、基本性质和运算法则;4.百分数的概念、应用和计算方法;5.平方根、立方根的概念和计算方法;6.约分、通分、比较分数大小;7.数的整除性质和倍数、约数的概念;8.数的质因数分解和最大公约数、最小公倍数的计算方法;9.有理数的加减乘除、乘方和开方运算。

二、方程与不等式:1.一元一次方程的解法和应用;2.一元一次不等式的解法和应用;3.带有系数的一元一次方程和不等式的解法;4.解一元二次方程和一元二次不等式;5.解含有绝对值的方程和不等式。

三、平面几何:1.点、线、面、角的概念和性质;2.直线的斜率和倾斜角;3.平行线和垂直线的性质;4.各种三角形的性质和判定方法;5.各种四边形的性质和判定方法;6.圆的性质、切线与弦的性质;7.平面图形的相似和全等判定;8.平行四边形、梯形、菱形及其性质;9.三角形的面积计算公式;10.圆的面积和周长的计算。

四、数据与概率:1.数据的收集、整理、显示和分析方法;2.平均数、中位数、众数的计算方法和应用;3.概率的概念和计算方法;4.事件的概念和计算方法;5.两个事件的并、交和差的计算方法;6.事件的相互独立性和互斥性。

以上只是初中数学的基础知识点的概述,每一个知识点都有很多具体的细节和应用方法。

在学习初中数学时,需要逐步深入理解每一个知识点,并能够熟练运用。

初中数学的基本概念知识点整理

初中数学的基本概念知识点整理

初中数学的基本概念知识点整理初中数学作为学生们学习数学的第一步,是数学学科中最基础、最重要的一部分。

掌握好初中数学的基本概念知识点,对于进一步学习高中数学和大学数学都是至关重要的。

下面将对初中数学的基本概念知识点进行整理和概述。

1. 数的分类:(1)自然数:即大于等于1的整数,用N表示。

(2)整数:包括自然数、0和负整数,用Z表示。

(3)有理数:可以表示为两个整数之比的数,包括整数、分数和循环小数,用Q表示。

(4)无理数:不能表示为两个整数之比的数,如根号2和圆周率π,用I表示。

(5)实数:包括有理数和无理数,用R表示。

2. 数的运算:(1)四则运算:加法、减法、乘法、除法。

(2)算术规律:结合律、交换律、分配律。

(3)乘方与开方:乘方是指数a个相同因数相乘,开方是乘方的逆运算。

(4)整数的乘方:正整数的任意次方都是正整数,负整数的偶数次方是正整数,负整数的奇数次方是负整数。

(5)分数的乘方与开方:分数的乘方是分子与分母分别进行乘方运算,分数的开方是分子与分母分别进行开方运算。

3. 数的性质:(1)整除与倍数:若a能被b整除,则a是b的倍数,b是a的约数。

若a 能被b整除,记为b|a。

(2)质数与合数:大于1的整数,除了1和它本身不能被其他自然数整除之外,都称为质数;反之,称为合数。

(3)互质与最大公约数:两个数的最大公约数是能够同时整除它们的最大的正整数,如果最大公约数是1,则称两个数互质。

(4)质因数与分解质因数:每一个合数都可以分解为几个质因数的乘积,这些质因数就是这个合数的所有质因数。

将一个合数写成质因数的乘积的形式,叫做分解质因数。

(5)倍数关系与约数关系:若a能被b整除,则a是b的倍数,b是a的约数。

4. 平面几何的基本概念:(1)点:表示事物的一种简化概念,没有形状、大小和方向。

(2)线段:两个点之间直线最短的路径,用AB表示。

(3)尺规作图:使用尺子和圆规画出的图形。

(4)相交与平行:两条直线如果没有公共点,则称为平行线;反之,则称为相交线。

初中数学基本功

初中数学基本功

初中数学基本功是学习数学的基础,也是提高数学素养的重要手段。

下面是初中数学基本功的相关参考内容。

一、基本的数学概念和术语 1. 数:是事物的个数或数量关系的表示,能进行简单的计算和比较。

2. 数的分类:自然数、整数、有理数、实数等。

3. 数轴:用来表示数与数之间的大小关系,以点表示数,点的左侧表示较小的数,右侧表示较大的数。

4. 数的相反数:正数与负数互为相反数,它们的绝对值相等。

5. 数的绝对值:一个数的绝对值是这个数与0之间的距离,大于等于0。

6. 数的相反数与绝对值的关系:一个数的相反数等于这个数的绝对值与符号取反。

7. 数的相反数和绝对值的性质:相反数的绝对值相等,数的绝对值大于等于0。

8. 数的比较:使用<>或<、>等符号进行比较,要注意大小关系的方向。

9. 数的排序:将一组数按照从小到大或从大到小的顺序排列。

二、基本的运算法则和运算符 1. 加法法则:加法满足交换律和结合律,a+b=b+a,a+(b+c)=(a+b)+c。

2. 减法法则:减法的等式a-b=c可以转化为a=b+c。

3. 乘法法则:乘法满足交换律和结合律,a×b=b×a,a×(b×c)=(a×b)×c。

4. 除法法则:除法的等式a÷b=c可以转化为a=b×c。

5. 分数的运算:分数与分数的加减乘除,注意分数的化简和约分。

6. 小数的运算:小数与小数的加减乘除,注意小数位数对齐和进位。

7. 运算符的优先级:括号>乘除>加减,先乘除后加减。

8. 运算符的组合:同一级别的运算符按照从左往右的顺序进行计算。

三、整数运算 1. 整数的加减法:同号相加,异号相减,绝对值大的数决定结果的符号。

2. 整数的乘法:同号得正,异号得负,绝对值相乘。

3. 整数的除法:整数相除,商同号,余数不变。

四、方程和方程的解 1. 方程:含有未知数的等式,如2x+3=7。

数学初中多少个知识点总结

数学初中多少个知识点总结

数学初中多少个知识点总结一、初中数学的基本概念1. 数的概念:正数、负数、零、自然数、整数等2. 整数的大小比较和运算3. 小数和分数的概念4. 百分数的意义和运用5. 有理数的概念及性质二、代数1. 代数式的概念2. 代数式的加减乘除3. 一元一次方程及其实际问题4. 一元一次不等式5. 整式的加减乘除6. 公式及其应用7. 二次根式及其性质8. 分式及其性质9. 整式的因式分解10. 二次方程及其应用11. 一元二次不等式及其应用12. 实数的性质三、函数1. 函数的概念2. 函数的图象和性质3. 一次函数及其应用4. 指数函数及其应用四、几何1. 几何图形的基本概念2. 直线、射线和线段3. 角的概念及运算4. 三角形的性质及判定5. 四边形的性质及判定6. 圆的性质及应用7. 圆周角和弧的关系8. 圆的相交关系9. 圆的位置关系10. 投影及其应用11. 三视图及其应用12. 空间几何体的表面积和体积13. 相似三角形和全等三角形14. 中线定理和角平分线定理15. 相关角和对顶角16. 平行线和平行四边形17. 轴对称图形和点、轴对称的性质18. 勾股定理和勾股数19. 不等式的几何解法五、数论1. 基本数论概念2. 因数与倍数3. 质数与合数5. 互质数6. 约数与倍数的关系7. 分解质因数8. 最大公因数与最小公倍数9. 整数的性质和运算10. 质数分解及其应用11. 二次根式的化简六、统计与概率1. 统计图及其读图和作图2. 统计的基本概念3. 数据的整理和描绘4. 概率的基本概念5. 事件的概率6. 独立事件和互斥事件7. 概率问题的计算以上是初中数学中的一部分知识点总结,这些知识点涵盖了初中数学的基本内容。

通过学习和掌握这些知识点,可以帮助学生更好地理解数学的基本概念和运用,为将来的学习打下坚实的基础。

希望同学们能认真复习和掌握这些知识点,勤奋学习数学,提高自己的数学水平。

初中数学知识归纳数论的基本概念

初中数学知识归纳数论的基本概念

初中数学知识归纳数论的基本概念数论是数学的一个分支,研究整数的性质和结构。

在初中数学中,数论是一个重要且基础的概念。

本文将对初中数学中的数论基本概念进行归纳总结。

一、整数的概念在数论中,我们首先需要了解整数的概念。

整数是由正整数、负整数和零所组成的数集。

在日常生活和数学中,整数经常被用来表示数值和计算。

二、整数的运算法则在整数的运算中,我们需要掌握整数的基本运算法则,包括加法、减法、乘法和除法。

在加法运算中,正整数和正整数相加的结果还是正整数,负整数和负整数相加的结果还是负整数。

在减法运算中,两个正整数相减的结果可以是正整数、零或负整数,两个负整数相减的结果可以是正整数、零或负整数。

在乘法运算中,两个正整数相乘的结果还是正整数,两个负整数相乘的结果是正整数,一个正整数和一个负整数相乘的结果是负整数。

在除法运算中,两个正整数相除的结果可能是正整数、零或分数,两个负整数相除的结果可能是正整数、零或分数,一个正整数除以一个负整数的结果是负整数,一个负整数除以一个正整数的结果是负整数。

掌握整数的运算法则是进行数论运算的基础。

三、质数和合数在数论中,我们经常会遇到质数和合数的概念。

质数指的是只能被1和自身整除的整数,例如2、3、5、7等。

合数指的是能够被除了1和自身以外的其他整数整除的整数,例如4、6、8等。

质数和合数是数论中的基本概念,对于数的整除性质的理解非常重要。

四、最大公约数和最小公倍数最大公约数是指几个数中能够同时整除每个数的最大正整数,最小公倍数是指几个数中能够同时被每个数整除的最小正整数。

最大公约数和最小公倍数是进行数论运算和解题的基础工具。

五、同余定理同余定理是数论中的一个重要定理,用于研究整数的剩余类。

同余定理指出,如果两个整数除以一个正整数得到的余数相等,那么这两个整数对于这个正整数来说是同余的。

同余定理在密码学、编码理论等领域有着广泛的应用。

六、应用举例在初中数学中,数论的概念和方法被广泛应用于各个领域。

初中数学常用概念公式和定理

初中数学常用概念公式和定理

初中数学重要的概念、公式和定理第一章 有理数正数:大于0的数叫正数负数:小于0的数叫负数有理数:整数和分数统称有理数数轴:规定了方向、原点、单位长度的一条直线; 相反数:只有符号不同的两个数叫相反数;例a a -与绝对值:数轴上一个数到原点的距离叫绝对值;负数正数〉〉0,两个负数,绝对值大的反而小性质:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是他的相反数有理数的加法法则:1、同号两数相加,取相同的符号,并把它们的绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对数减去较小的绝对值,互为相反数的两数相加得0;3、一个数同0相加,仍得这个数:加法交换律:两数相加,交换加数的位置,和不变;a b b a +=+加法结合律:三个数相加,先把前两数相加或先把后两个数相加,和不变;)(c b a c b a ++=++)( 减去一个数,等于 加上这个数的相反数;)(b a b a -+=-乘法法则:两数相乘同号得正,异号得负并把绝对值相乘;任何数同0相乘都得0; 倒数:乘积为1的两个数互为倒数;乘法交换律:两数相乘,交换因数的位置,积不变;ba ab =乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等;)()(bc a c ab =乘法分配率:一个数同两个数的和相乘,等于把这两个数分别同这个数相乘,再把积相加;ac ab c b a +=+)(有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数;)0(1≠•=÷b b a b a两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0;乘方:求n 个相同因数的积的运算叫乘方;乘方的结果最做幂;n a 叫做幂,其中a 叫底数,n 叫指数负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何非0次幂都是0;科学计数法:把一个数写成n a 10⨯的形式叫科学计数法;1≤a <10, n 为整数一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:精确到得,结果有两个有效数字6,0.有理数的混合运算:先算乘除、后算加减、有括号的先算括号、有乘方的先算乘方;第二章整式的加减单项式:数或字母的积叫单项式,单独的一个数或一个字母也叫单项式;单项式的系数:单项式中的数字因数;π不能看作字母单项式的次数:单项式中所有字母指数的和;多项式:几个单项式的和叫多项式;其中每个单项式叫多项式的项,来含字母的项叫常数项;多项式的次数:多项式里次数最高项的次数叫多项的次数;单项式和多项式统称整式;同类项:所含字母相同,并且相同字母的指数也相同的项叫同类项;常数项都是同类项合并同类项:字母部分不变,系数相加;把几个同类项合并成一项叫合并同类项; 去括号:括号前面是正号,去括号后括号内各项的符不变;括号前面是负号,去括号后括号内各项要变号;第三章一元一次方程方程:含有未知数的等式叫方程;一元一次方程:只含有一个未知数,并且未知数的最高次数是一次的方程叫一元一次方程;方程的解:使方程等号两边相等的未知数的值;等式的性质:1、等式两边加上减去同一个数或式子,结果仍相等;若ba=,则cbca±=±2、等式两边乘同一个数,或除以同一个来为0的数,结果仍相等;若ba=,则bcac=;若ba=,则)0(≠=ccbca解方程的一般步骤或方法:去分母;2、去括号;3、移项;4、合并同类项;5、系数化为1;6、检验分式方程第四章图形认识初步几何图形:从实物中抽象出的各种图形统称几何图形;立体图形:几何图形的各部分不都在同一平面内的图形叫立体图形;平面图形:几何图形的各部分都在同一平面内的图形叫立体图形;两点确定一条直线;两点之间,线段最短;同一平面内两直线的位置关系:相交、平行;角:由两条有公共端点的射线组成的图形叫角;或由一条射线绕端点旋转得到的图形;角的平分线:从角的顶点出发,把一个角分成两个相等的角的射线;余角:两角的和为90°,则称这两个角互为余角;同角或等角的余角相等;补角:两角的和为180°,则称这两个角互为补角;同角或等角的补角相等;第五章 相交线与平行线邻补角:有一条公共边,另一边互为反向延长线的两个角;对顶角:一个角的两边分别是另一个角两边的反向延长线的两个角;对顶角相等; 点到直线垂线段最短;过一点有且只有一条直线与已知直线垂直;同位角、内错角、同旁内角平行线的判定:1、同位角相等,两直线平行;2、内错角相等,两直线平行;3、同旁内角互补,两直线平行:平行线的性质:1、两直线平行,同位角相等;2、两直线平行,内错角相等;3、两直线平行,同旁内角互补:命题:判断一件事情的语句;分真命题和假命题;定理:经过推理证实是正确的命题叫定理;平移变换也叫平移:1、平移不改变图形的形状和大小;2、对应点的连线平行且相等:第六章 平面直角坐标系有序数对:把有顺序的两个数组成的数对叫做有序数对;点的坐标是一个有序数对;平面直角坐标系:平面内两条互相垂直、原点重合的数轴; 坐标k >0 ×1-横坐标x 向右移动k 个单位 向左移动k 个单位 关于纵轴y 轴对称 纵坐标y 向上移动k 个单位 向下移动k 个单位 关于横轴x 轴对称 坐标y x , 向右移动k 个单位,再向上移动k 个单位 向左移动k 个单位;再向下移动k 个单位关于原点0,0中心对称三角形:由不在同一直线上的三条线段首尾顺次相接而成的图形;分类:按边 按角: 三角形三边关系:三角形两边之和大于第三边三角形两边之差小于第三边三角形的高、中线、角平分线 三角形具有稳定性:三角形的内角和等于180°三角形外角:三角形的一个外角等于它不相邻的两个内角的和三角形的一个外角大于与它不相邻的任何一个内角多边形:由一些线段首尾顺次相接而成的图形;对角线:多边形不相邻顶点的连线段;正多边形:各角都相等,各边都相等的多边形多边形的内角和︒-=180)2(n多边形的内角和等于360°第八章 二元一次方程组二元一次方程:含有两个未知数,含有未知数的项的次数都是1的方程;{{三角形不等边三角形等腰三角形形底边和腰不相等的三角等腰三角形{⎪⎩⎪⎨⎧有一个角是钝角钝角三角形有一个角是直角直角三角形三个角都是锐角锐角三角形三角形:::二元一次方程组:具有相同未知数的两个二元一次方程合在一起,就组成一个二元一次方程组.使二元一次方程两边的值相等的未知数的值,叫做二元一次方程的解;两个二元一次方程组两个方程的公共解,叫做二元一次方程组的解;解二元一次方程组的方法:1、代入消元法; 2、加减消元法:第九章 不等式与不等式组不等式:用不等号表示大小关系的式子叫不等式;不等式解集:使不等式成立的未知数的取值范围叫不等式的解的集合;简称解集; 一元一次不等式:含有一个未知数,并且未知数的次数是一次的不等式叫一元一次不等式;不等式的性质:1、不等式两边加或减同一个数或式子,不等号的方向不变;如果a >b ,那么a ±c >b ±c . 2、不等式两边乘或除以同一个正数,不等号的方向不变;如果a >b , c >0,那么ac >bc .或 c b c a 〉 3、不等式两边乘或除以同一个负数,不等号的方向改变;a >b , c <0,那么ac <bc . 或 cb c a 〈 一个一元一次不等式组:具有相同未知数的两个一元一次不等式合在一起,就组成一个一元一次不等式组.解不等式组的解集:几个不等式的解的公共部分,叫做不等式组的解集;解不等式组就是求它的解集;取两个不等式的公共解集:1、同大取大;2、同小取小;3、大于小的小于大的取之间;4、大于大的小于小的无解:第十章 数据的收集、整理与描述收集数据:整理数据:描述数据:列表法;条形图;扇形图:全面调查:对考察全体对象的调查;抽样调查:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的调查;总体:要考察的全体对象;个体:组成总体的每一个考察对象;样本:被抽取的个体组成一个样本;样本容量:样本中个体的数目;简单随机抽样:总体中的每一个个体都有相等的机会被抽到的抽样方法: 第十一章 全等三角形全等形:能够完全重合的两个图形;形状相同、大小相等全等三角形:能够完全重合的两个三角形;性质:对应边相等;对应角相等: 三角形的判定:SSS 、SAS 、ASA 、AAS 、Rt △HL角的平分线:性质:1、角的平分线上的点到角的两边的距离相等;2、到角两边距离相等的点在角的角的平分线上;第十二章 轴对称轴对称图形:如果一个图形沿一条直线折叠,直线两旁能互相重合;这条直线就是它的对称轴;把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那第说这两个图形关于这条直线对称;折叠后重合的点是对应点,叫做对称点;垂直平分线:经过线段中点并且垂直于这条线段的直线;线段垂直平分线上的点到这条线段两端距离相等;到线段两端距离相等的点在这条线段的垂直平分线上;轴对称图形的对称轴垂直平分对应点的连线;等腰三角形:两边相等的三角形;性质:1、两底角相等等边对等角、等角对等边;2、顶角平分线、底边上的中线、底边上的高相互重合三线合一:等边三角形正三角形:三边都相等的三角形;性质:三个内角都相等并且每一个内角都等于60°;判定:1、三个角都相等的三角形是等边三角形:2、有一个角是60°的等腰三角形是等边三角形:直角三角形中30°角所对的边等于斜边的一半;第十三章 实数算术平方根:如果一个正数x 的平方等于a a x =2,那么这个正数x 叫做a 的算术平方根;记为:a ,读作“根号a ”, a 叫做被开方数;0的算术平方根是0; 平方根二次方根:一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根; 开平方:求一个数a 的平方根的运算叫做开平方;1、正数的两个平方根,它们互为相反数;2、0的平方3、根是0;负数没有平方根:立方根三次方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根开立方:求一个数的立方根的运算叫做开立方;用3a 表示,读作“三次根号a ”其中3叫根指数1、正数的立方根是正数;2、0的立方根是0;3、负数的立方根是0:{实数可以写成有限小数或无限循环小数的数有理数无理数无限不循环小数⎩⎨⎧按小数分数{{{实数正有理数正无理数负有理数负无理数正实数负理数按大小分类第十四章 一次函数变量:数值会发生变化的量;常量:数值始终不变的量;函数:如果在一个变化过程中有两个变量x 和y ,对于x 的每一个确定的值,y 都有一个唯一的值与它对应,我们就说x 是自变量,y 是x 的函数;表示函数的方法:列表法;解析法;图象法:一次函数:一般形式)0(≠+=k b kx y 正比列函数:0)0(≠≠=b k kx y 经过原点 图象:一条直线;画函数图象的步骤:列表、描点、连线;性质::x ,y ;k x ,y k 的增大而减小随时增大而增大随时00〈〉第十五 章整式的乘法与因式分解单项式×单项式:把它们的系数×系数、相同字母×相同字母单项式×多项式:用单项式去乘以多项式的每一项多项式×多项式:用一个多项式每一项乘以另一个多项式的每一项平方差公式:22))((b a b a b a -=-+完全平方公式:2222)(b ab a b a +±=±2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-去括号:括号前面是正号,去括号后各项都不变号;括号前面是负号,去括号后各项都要变号:因式分解分解因式:把一个多项式化成几个整式的乘积的形式;方法:提公因式法和公式法;第十六 章分式分式:分母中含有字母的式子分式的基本性质:1、分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变;2、①同分母:分母不变,分子相加减;②异分母:先通分,变为同分母,再按同分母分式相加减进行运算;约分:根据分式的性质,约去分式的分子和分母的公因式;最简分式:分子分母没有公因式、分子分母中的系数都是整数、分子分母中没有分式;通分:把不同分母分式的分母化相同;最简公分母分式方程:分母中含有未知数的方程;第十七章 反比列函数反比列函数:一般形式:)0(≠=k x k y图象:双曲线 性质:1、k >0时,;x ,y 、的增大而减小随三象限图象在第一2、k <0时,;x ,y 、的增大而减大随四象限图象在第二第十八章 勾股定理勾股定理: 222,Rt c b a c ,b ,a =+∆那么斜边为中两直角边分别为勾股定理的逆定理:若三角形中,三边长222,,c b a c b a =+满足,那么,这个三角形是直角三角形第十九章平行四边形平行四边形:两组对边分别平行的四边形叫做平行四边形性质1、平行四边形的对角相等平行四边形性质定理2 、平行四边形的对边相等3、 平行四边形的对角线互相平分推论 夹在两条平行线间的平行线段相等判定定理判定:1、定义两组对边分别平行的四边形是平行四边形2、两组对角分别相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形5、一组对边平行相等的四边形是平行四边形三角形的中位线平行且等于第三边的一半;矩形:有一个角是直角的平行四边形;性质:1、矩形的四个角都是直角叫矩形2、 矩形的对角线相等判定:1、定义有一个角是直角的平行四边形是矩形定义2、有三个角是直角的四边形是矩形3、对角线相等的平行四边形是矩形菱形:有一组邻边相等的平行四边形是叫菱形性质:1、菱形的四条边都相等2、菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,ab :s 21=即判定1、四边都相等的四边形是菱形2、对角线互相垂直的平行四边形是菱形正方形:有一个角是直角有一组邻边相等的平行四边形是正方形性质1、正方形的四个角都是直角,四条边都相等2、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 梯形:有一组对边平行,另一组对边不平行的四边形叫做梯形;等腰梯形:两腰相等的梯形;直角梯形:有一个角是直角的梯形;性质1、等腰梯形在同一底上的两个角相等2、两条对角线相等判定1、两腰相等的梯形是等腰梯形2、在同一底上的两个角相等的梯形是等腰梯形3、对角线相等的梯形是等腰梯形 第二十章数据的代表nn n w w w w x w x w x x ++++++= 212112:加权平均数权:数据的重要程度;n n w w w ;x x x ;n ,,,,,,2121 每个数据的权这组数据为这组数据的个数中位数:一组数据按顺序排列,处于中间位置的数;众数:一组数据中出现次数最多的数据;极差:一组数据中最大数据与最小数据的差;⎥⎦⎤⎢⎣⎡-++-+-=---)()()(1212x x x x x x n :s n 方差方差越大,数据波动越大;方差越小,数据波动越小:标准差:⎥⎦⎤⎢⎣⎡-++-+-=---)()()(121x x x x x x n s n n x x x ;x ,,,21 这组数据为这组数据的平均数第二十一章二次根式 二次根式:形如)0(≥a a 的式子;“”称为二次根号;代数式:用基本运算符号把数和表示数的字母连接起来的式子;基本运算符号有:加、减、乘、除、乘方和开方最简二次根式:必须满足1、被开方数不含分母;2、被开方数中不含开得尽的因数或因式:二次根式的加减:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;第二十二章一元二次方程一元二次方程:只含有一个未知数,未知数的最高次数是二次的方程;一元二次方程的解也叫一元二次方程的根;一元二次方程的一般形式:)0(02≠=++a c b a c bx ax 为常数、、解一元二次方程的方法:1、配方法;2、公式法;3、因式分解法: 第二十三章旋转旋转:把一个图形绕着平面某一个点转动一个角度;旋转中心、旋转心方向、旋转角旋转图形:1、对应点到旋转中心的距离相等;2、对应点与旋转中心所连的夹角等于旋转角;3、旋转前、后图形全等:中心对称图形:把一个图形绕某一个点旋转180°,如果它能与另一个图形重合,那么这两个图形叫中心对称图形;也说这两个图形关于这个点中心对称,这个点叫对称中心.这时对应点也叫对称点;第二十四章圆圆:在一个平面内,线段绕它的一个端点旋转一周,另一个端点形成的图形叫做圆;圆心、半径弦:圆上任意两点的线段;经过圆心的弦叫做直径;弧:圆上任意两点间的部分;半圆、等圆、等弧垂径定理:垂直于弦的直径平分弦,并且平分缠绵民对的两条弧;平分弦不是直径的直径垂直于弦,并且平分缠绵民对的两条弧;同圆或等圆中,弦、弧、圆心角、圆周角中,任意一个量相等,则另外三个量也相等; 圆内接四边形对角互动补;如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形; 点和圆的位置关系:P 表示点、d ”读作等价于点P 在圆外⇔d >r ;点P 在圆外⇔d=r ;点P 在圆外⇔d <r ;不在同一直线上的三点确定一个圆;反证法:由矛盾断定所假设不正确,从而得到原命题成立;直线和圆的位置关系:l 表示直线、d 表示这条直线到圆心的距离、r 表示半径 直线l 和圆相交⇔d <r ;直线l 和圆相切⇔d=r ;直线l 和圆相离⇔d >r圆的切线:经过半径外端、垂直于半径的直线;圆的切线垂直于经过切点的半径 切线长:经过圆外一点作圆的切线,这点和切点之间的线段长;从圆外一点可以作圆的两条切线,它们的切 线长相等,这点和圆心的连线平分两条切线的夹角;多边形内切圆:与多边形各边都相切的圆;内切圆的圆心叫多边形的内心;圆与圆的位置关系:d 表示两圆心之间的距离、R 表示大圆半径、r 表示小圆半径、R >r外离⇔d >R+r外切⇔d=R+r相交⇔R-r <d <R+r内切⇔d=R-r内含⇔d >R-r多边形的中心:正多边形外接圆的圆心;多边形的半径:正多边形外接圆的半径;多边形的中心角:正多边形每一边所对的圆心角;多边形的边心距:中心到正多边形一边的距离; 弧长: 180R n l π=l 表示弧长、n 表示圆心角、R 表示圆的半径 扇形面积:lR R n S 213602== π扇形圆锥侧面积:lR S π=圆锥侧 第二十五章概率初步 n mP =列表法,树状图第二十六章二次函数二次函数:用二次式表示的函数;一般形式解析式:)0,,,(2≠++=a c b a c bx ax y 是常数 图象:抛物线 性质:a b ac a b x a y c bx ax y 44)2(222-++=++=化成 第二十七章相似相似图形:形状相同的图形;相似多边形:形状相同的多边形;相似多边形:对应边的比相等,对应角相等;对应边的比叫相似比;相似三角形的判定:SSS 、SAS 、AA;相似三角形:相似比=边长比=周长比=对应边上的高或中线、角平分线的比 面积比=相似比的平方位似:两个多边形不且相似,而且对应点的连线相交于一点,对应边互相平行,这个点叫做位似中心;第二十八章锐角三角函数特殊的三角函数值: 第二十九章投影与视图 投影:光线照射物体,在某个平面上得到的影子;中心投影:由同一点发出的光线形成的投影; 锐角a三角函数 30° 60°45° sinA cosAtanA正投影:投影线垂直于投影面产生的投影;视图:从某一角度观察一个物体,所看到的图象;三视图:主视图、俯视图、左视图画三视图:主视图与俯视图长对正、主视图与左视图高平齐、左视图与俯视图宽相等;。

初中数学手抄报内容

初中数学手抄报内容

初中数学手抄报内容一、简介初中数学是中学阶段的一门重要学科,它不仅是学生学习数理知识的基础,更是培养学生分析问题、解决问题的逻辑思维能力的重要途径。

本手抄报将介绍初中数学的基本概念、重要知识点以及数学在现实生活中的应用。

二、初中数学的基本概念1. 数的类型初中数学的基本概念之一是数的类型。

在初中数学中,我们常常接触到自然数、整数、有理数、实数等不同类型的数。

每种类型的数字都有其特点和应用场景。

2. 数的四则运算数的四则运算是初中数学的基础,包括加法、减法、乘法和除法。

掌握这些运算的规则和方法,对于学习更高级的数学知识起着基石的作用。

3. 代数代数是初中数学的重要内容之一。

学习代数,我们会了解到字母可以代表任意一个数,通过代数表达式和方程式可以解决实际问题,从而培养我们的逻辑思维和解决问题的能力。

4. 几何初中数学中的几何是研究形状、大小和相对位置的数学分支。

我们会学习到平面几何和空间几何的基本概念,如点、线、面、角等,以及展开、投影、旋转等几何变换。

三、初中数学的重要知识点1. 分数和百分数分数和百分数是初中数学中重要而常见的知识点。

分数是用来表示一个数相对于另一个数的部分,百分数则是将一个数表示为百分之几。

2. 方程与不等式学习方程和不等式的解法,可以帮助我们解决实际问题中的未知数。

通过方程和不等式,我们可以建立数学模型,找到问题的解决办法。

3.图形的性质与计算初中数学中有很多与图形相关的知识点,如多边形的性质、圆的性质、三角形的性质等。

通过学习它们的性质和计算方法,我们能够解决与图形相关的问题。

4. 数据的分析与统计在现实生活中,我们常常需要通过数据的收集和分析来做出决策。

初中数学中的数据统计知识,可以帮助我们有效地处理和分析各种数据,得出有用的结论。

四、数学在现实生活中的应用数学不仅仅是一门学科,它还广泛应用于我们的日常生活中。

以下是数学在现实生活中的一些应用场景:•在购物中,我们需要进行算术运算来计算价格、找零和折扣;•在旅行中,我们需要使用地图和几何知识来确定方向和距离;•在做饭时,我们需要进行容量和重量的测量;•在金融投资中,我们需要应用利率、百分比和复利计算来做出决策;•在统计调查中,我们需要使用数据分析和概率知识来得出结论。

初中数学点知识归纳数论的基本概念和定理

初中数学点知识归纳数论的基本概念和定理

初中数学点知识归纳数论的基本概念和定理数论是研究整数性质和整数运算规律的一个分支学科。

它在初中数学中占有重要的地位,涉及到许多基本概念和定理。

本文将对初中数学中的数论基本概念和定理进行归纳和总结,帮助读者更好地理解和掌握数论知识。

一、质数与合数质数是指大于1的整数,除了1和它本身,没有其他正因数的数。

常见的质数有2、3、5、7、11等。

而除了质数,其他大于1的整数都称为合数。

根据整数的质因数分解定理,任何一个大于1的整数都可以唯一地分解成若干个质数的乘积。

这就是数论中的一个重要定理。

二、最大公约数和最小公倍数最大公约数(GCD)是指两个或多个整数中能够整除所有这些数的最大正整数。

最小公倍数(LCM)是指这些整数中能够被所有这些数整除的最小正整数。

对于两个整数a和b,我们可以通过辗转相除法快速求得它们的最大公约数。

而最小公倍数则可以通过最大公约数求得,利用最大公约数和两个整数的乘积等于最小公倍数与最大公约数的积这一性质。

三、整除性与带余除法整除性是指一个整数能够整除另一个整数,也就是除法运算没有余数。

如果一个整数a能够被整数b整除,我们可以说b是a的因数。

而a是b的倍数。

带余除法是指对于任意两个整数a和b(b不等于0),都存在唯一的两个整数q和r,使得a=bq+r且0≤r<|b|。

其中q是商,r是余数。

带余除法在数论中的应用广泛,它可以用来判断两个整数之间的关系,比如整除关系、同余关系等。

四、同余与模运算同余是指两个整数在除以同一个正整数时,余数相等。

我们可以用符号≡来表示同余关系。

对于任意整数a、b和正整数m,如果a-b能够被m整除,那么我们可以说a与b关于模m同余。

即a≡b(mod m)。

其中mod表示取模运算。

同余关系在数论中的作用非常重要,它可以用来解决很多整数性质和问题,如定理的证明、方程的解、密码学等。

五、费马小定理和欧拉函数费马小定理是数论中的一个重要定理,它表明对于任意质数p和任意整数a,a^p≡a(mod p)。

初中数学知识点归纳全

初中数学知识点归纳全

第一章《有理数》总复习一、本章知识结构图正整数负整数整数正分数负分数分数有理数数轴比较大小有理数的运算加法减法交换律结合律分配律乘法除法乘方点与数的对应一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量③带“-”号的数并不都是负数1.正数、负数和零的概念正数负数零象1、2.5、、48等大于零的数叫正数象-1、-2.5,,-48等小于零的数叫负数0叫做零,0既不是正数也不是负数12﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,不能被2整除的数是奇数,3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。

如圆周率就不能表示成分数。

5. 数0既不是正数,也不是负数,0是正数与负数的分界。

0的意义已不仅是表示“没有”.2、数轴⎧①三要素正方向单位长度定义三要素应用数形结合规定了原点、正方向、单位长度的直线叫数轴原点正方向单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大1.数轴的概念(1)规定了原点、正方向和单位长度的直线叫做数轴.这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.2.数轴的画法(1)画直线(一般画成水平的)、定原点,标出原点“O”.(2)取原点向右方向为正方向,并标出箭头.(3)选适当的长度作为单位长度,各点。

初中数学五大基本概念教案

初中数学五大基本概念教案

初中数学五大基本概念教案教学目标:1. 了解和掌握初中数学五大基本概念:有理数、整式、方程、函数、几何。

2. 能够运用这些基本概念解决实际问题。

教学重点:1. 掌握有理数、整式、方程、函数、几何这五大基本概念。

2. 能够运用这些基本概念解决实际问题。

教学难点:1. 对有理数、整式、方程、函数、几何这五大基本概念的理解和运用。

教学准备:1. 教师准备PPT或者黑板,用于展示和讲解。

2. 学生准备笔记本,用于记录和复习。

教学过程:一、导入(5分钟)1. 引导学生回顾小学数学学过的内容,如加减乘除、分数、小数等。

2. 提问:你们觉得初中数学会和小学数学有什么不同呢?二、讲解有理数(10分钟)1. 介绍有理数的定义和分类,如整数、分数、正数、负数等。

2. 通过示例和练习,让学生理解和掌握有理数的加减乘除运算。

三、讲解整式(10分钟)1. 介绍整式的定义和分类,如单项式、多项式等。

2. 通过示例和练习,让学生理解和掌握整式的加减乘除运算。

四、讲解方程(10分钟)1. 介绍方程的定义和分类,如一元一次方程、一元二次方程等。

2. 通过示例和练习,让学生理解和掌握方程的解法。

五、讲解函数(10分钟)1. 介绍函数的定义和分类,如一次函数、二次函数等。

2. 通过示例和练习,让学生理解和掌握函数的性质和图像。

六、讲解几何(10分钟)1. 介绍几何的基本概念,如点、线、面、角等。

2. 通过示例和练习,让学生理解和掌握几何的基本性质和定理。

七、总结和练习(10分钟)1. 对五大基本概念进行总结,让学生加深理解和记忆。

2. 布置练习题,让学生巩固所学内容。

教学反思:通过本节课的教学,学生应该已经掌握了初中数学五大基本概念,并且能够运用这些基本概念解决实际问题。

在讲解过程中,要注意举例清晰、讲解透彻,让学生充分理解和掌握。

在练习环节,要多布置一些实际问题,让学生运用所学知识解决,提高学生的应用能力。

初中数学概念大全

初中数学概念大全

初中数学概念大全1.1有理数1.1.1有理数的定义:整数和分数的统称。

1.1.2有理数的分类:(1)分为整数和分数。

而整数分为正整数、零和负整数;分数分为正分数和负分数。

(2)分为正有理数、零和负有理数。

而正有理数分为正整数和正分数;负有理数分为负整数和负分数。

1.1.3数轴1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

1.1.3.2数轴的三要素:①原点②正方向③单位长度1.1.3.3每个有理数都能用数轴上的点表示1.1.4相反数1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为01.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数1.1.4.3相反数的判别(1)若a+b=0,则a 、b 互为相反数(2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。

1.1.5倒数1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。

(若ab=1 ,则a、b互为倒数)注:零没有倒数。

1.1.6绝对值1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作∣a∣)1.1.6.2绝对值的性质:∣a∣≥01.1.7有理数大小的比较1.1.7.1正数大于0,负数小于01.1.7.2正数大于负数1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数就小,绝对值小的这个数就大。

1.1.7.4作差法:两个有理数相减。

若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。

1.1.7.5作商法:两个有理数相除(除数或分母不为0)。

若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。

1.1.8有理数的加法1.1.8.1运算法则:①符号相同的两个数相加,取相同的符号,并把绝对值相加②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个数相加等于0)③任何有理数加0仍等于这个数。

初一数学概念

初一数学概念

初一数学概念实数:—有理数与无理数统称为实数。

有理数:整数和分数统称为有理数。

无理数:无理数是指无限不循环小数。

自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

数轴:规定了圆点、正方向和单位长度的直线叫做数轴。

相反数:符号不同的两个数互为相反数。

倒数:乘积是1的两个数互为倒数。

绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。

一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式有理数的运算法则⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

⑵减法法则:减去一个数,等于加上这个数的相反数。

⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

1、整数包括哪些数?自然数是什么?什么叫有理数?答:整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、什么叫数轴?在数轴上如何表示数?答:数轴是一条带有方向、原点和规定长度单位的直线。

一个有理数在数轴上总可以找出一点和它对应。

表示方向的箭头在直线的右端。

数轴上方或右方是正数、原点的左方或下方是负数、原点是零。

3、什么叫相反数?什么是绝对值?如何判定有理数的大小?答:到原点距离相等的两个数叫互为相反的数。

零的相反数是零。

数轴上表示的数a到原点的距离叫数a的绝对值。

一个正数的绝对值是它本身、一个负数的绝对值是它相反数、零的绝对值是它本身。

正数大于零,零大于负数,正数大于负数、两个负数绝对值大的反而小。

4、有理数加法法则是什么?答:符号相同的两数相加,和的符号与加数的符号相同,并把它们的绝对值相加;绝对值不等符号相异的两数相加,和的符号取绝对值较大的那个加数的符号,并把较大的绝对值减去较小的绝对值;互为相反的数相加,和为零;任何数与零相加,和就是这个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学的基本概念数学SHU XUE第一章有理数一.基本概念1.大于0的数叫做正数;小于0的数叫做负数;0既不是正数也不是负数.注(1)正负数通常用来表示一对具有相反意义的量.(2)不一定是负数.(3)负数<0<正数.(要会比较两个数的大小)2有理数"或有理数注:了解几个概念,"正整数"、"负整数"、"非正整数"、"非负整数".3.数轴的三要素:原点、正方向和单位长度.(判断是不是数轴的依据)4.(1)相反数:只有符号不同的两个数叫做互为相反数.(2)倒数:乘积为1的两个数叫做互为倒数.(3)绝对值:数轴上表示数的点与原点的距离叫做数的绝对值.注:① 互为相反数的两数之和为0;互为倒数的两数之积为1.② 0的相反数是0;0的绝对值是0;0没有倒数.③ 出现"平方"、"绝对值"、"距离"等关键字的题目,一般有两个答案.例如:平方为9的数有±3;绝对值为3的数有±3;距离原点3个单位长度的点表示的数是±3.注:要求能够熟练、快速、准确的求出任意一个数的相反数、倒数(0除外)和绝对值.相反数绝对值倒数正数负数正数正数负数正数正数负数000不存在5.科学记数法:把一个大于10的数表示成的形式,就叫做科学记数法.注:是整数位只有一位的数,是正整数.6(1)近似数:它是相对于精确数来说的.(2)有效数字:从一个数的左边第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字.二.有理数的运算法则1.加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)0加任何数都得任何数.2.减法法则:减去一个数,等于加上这个数的相反数.即注:加上一个数等于减去这个数的相反数.例如.3.乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)0乘任何数都得0.4.除法法则:法则1:除以一个不等于0的数,等于乘以这个数的倒数.即法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.5.乘方法则:(1)负数的奇次幂是负数,负数的偶次幂是正数.(2)正数的任何次幂都是正数.(3)0的任何次幂都是0.☆ 任何一个数都可以看作是它本身的1次方.即6.有理数的混合运算法则:(1)先乘方,在乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.三.有理数的运算律1.加法运算律(1)加法交换律:(2)加法结合律:2.乘法运算律(1)乘法交换律:(2)乘法结合律:(3)乘法分配律:☆负数一定要用括号括起来,如:.第二章一元一次方程一.几个基本概念1.等式:用等号连接的式子叫做等式.2.方程:含有未知数的等式叫做方程.3.一元一次方程:只含有一个未知数,并且未知数的次数是一次的方程叫做一元一次方程.注:方程一定是等式,但等式不一定是方程.☆“方程的解”和“解方程”二.等式的基本性质1.在等式的两边同时加上或减去一个数或式子,结果不变.即2.在等式的两边同时乘以一个数,或者除以一个不为0的数,结果不变.即三.解一元一次方程的步骤1.去括号(把括号和括号前边的符号一同去掉,若括号前边是正号,则不变号;若括号前边是负号的,则变做相反的符号.)2.去分母(在等式的两边同时乘以公分母.注意:是等式两边的每一项都要乘以公分母.)3.移项(通常把未知数移到等式的左边,常数项移到等式的右边.注意:从等式的一边移到另一边要变作相反的符号.)4.合并同类项(化简的作用.)5.化系数为1.四.利润问题、工程问题1.利润=售价-进价=进价利润率(盈利率)售价=进价+利润=原价折扣数利润率=利润进价2.工作总量=工作效律工作时间注意:做题时,往往把工作总量看作1.顺流(风)速度=静水(风)速度+水(风)流速度逆流(风)速度=静水(风)速度-水(风)流速度★ 补充教材★(一)字母表示数如:若、分别表示两个数,则加法的交换律可以表示为,乘法交换律可以表示为等.还有解方程中的、圆面积中的等都表示数字.☆字母与字母相乘,乘号可以省略不写,或简单记作“ ”,数字与字母相乘,一定要把数字写在字母的前面,并把数字叫做该项的系数.(二)代数式像、、、等这样的式子都是代数式.(三)代数式求值1.填写下表1234511264252.人体血液的质量约占人体体重的6%~7.5%,如果某人体重是千克,那么他的血液质量大约在什么范围内?(四)去括号(比较与添括号)去括号的法则:(1)括号前边是"",把括号和它前面的""一同去掉,原括号里各项的符号都不改变.(2)括号前边是"",把括号和它前面的""一同去掉,原括号里各项的符号改变为相反的符号.(即正变负,负变正)第三章图形认识初步注:平面几何要求熟记面积公式和周长公式,立体几何要求会作图,知道它们的顶点、棱、面的个数.2.直线、射线、线段.端点长短粗细表示直线无无无直线AB射线1无无射线AB 线段2有无线段AB(1)两点之间线段最段.两点确定一条直线.(2)点和直线的位置关系:① 点在直线上(直线经过点)② 点在直线外(直线不经过点)(3)点动成线,线动成面,面动成体.即:无数个点构成线,无数条线构成面,无数个面构成体.3.角的两种概念:(1)有公共端点的两条射线构成的图形叫做角.(2)一条射线绕着它的端点旋转后得到的图形叫做角.4.角的度量1度=分=秒.(要求:熟悉单位之间的换算)例如:(1)23度15分=___度.(2)75.5度=____度___分.5.余角和补角.(会求任意角的余角和补角)(1)若两角之和为度,则称这两个角互为余角.(2)若两角之和为度,则称这两个角互为补角.☆ 同(等)角的余角相等;☆ 同(等)角的补角相等.第四章数据的收据与整理☆调查☆调查的方式有:问卷调查、访问调查、查阅文献资料和实验等.1.收据数据(制作调查问卷)2.整理数据(制作表格)3.描述数据(条形统计图、扇形统计图、折线统计图)4.分析数据(得出结论、给出建议)☆本章:要求会作统计图、会看统计图、会分析统计图,最后得出结论.第五章相交线与平行线一.基本概念1.两直线的位置关系(1)相交(有一个交点)(2)平行(无交点)☆垂直是相交中的一种特例.☆ 三条直线相交有1个或3个交点.2.邻补角(互补)3.对顶角(相等)4.垂直(90o)5.垂足(交点)6.点到直线的距离:直线外一点到这条直线的垂线段的长度叫做,叫做点到直线的距离.☆所有的距离都是指垂直距离.7.两条平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.8.命题:判断一件事情的语句叫做命题.包括条件和结论.一般写成"如果……那么……"的形式.可分为真命题和假命题.你能找出左图中的邻补角、对顶角吗?二.基本性质1.过一点有且只有一条直线与已知直线平行.(点可以在直线上,也可以在直线外)2.过直线外一点,有且只有一条直线和已知直线垂直.3.连接直线外一点与直线上各点的所有线段中,垂线段最短.(简单说成:垂线段最短.)4.(平行的传递性)如果两条直线都与第三条直线平行,那么这两条直线也相互平行.即:如果a∥b,b∥c ,那么a∥c.(平行的传递性)☆ 等式的传递性:若A=B,B=C,则A=C.☆ 全等(相似)三角形的传递性6.两直线平行的条件(判定):(1)同位角相等,两直线平行.(2)内错角相等,两直线平行.(3)同旁内角互补,两直线平行.7.平行线的性质:(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.你能找出左图中的同位角、内错角、同旁内角吗?8.(1)平移不改变图形的大小和形状.(2)连接各组对应点的线段平行且相等.第六章平面直角坐标系一.平面直角坐标系(直角坐标系)及其相关概念(坐标原点)纵坐标横坐标☆ 有序数对:有顺序的两个数a与b组成的数对,叫做有序数对.记作(a,b).☆ 一般情况下:(a,b)≠(b,a)☆ 点的坐标就是一个有序数对.☆ 原点O的坐标是(0,0),x轴上的坐标是(x,0),y轴上的坐标为(0,y).二.用坐标表示平移1.左右平移,纵坐标不变,横坐标左减右加.2.上下平移,横坐标不变,纵坐标上加下减.第七章三角形一.基本概念1.三角形2.多边形(凸、凹)3.正多边形(各个角相等,各条边相等)4.内角(简称为角,三角形、多边形的内角)5.外角(三角形、多边形的外角)6.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.7.三角形的高(垂直,即90o)、中线(线段相等)、角平分线(角相等)二.基本性质1.三角形的任意两边之和大于第三边.(判断任意三条线段能否组成三角形的依据)2.三角形具有稳定性.3.n边形的内角和为(n-2)·180o;三角形的内角和为180o,四边形的内角和为360o.4.多边形的外角和为360o.5.(1)三角形的一个外角等于与它不相邻的两个内角和.(2)三角形的一个外角大于与它不相邻的任何一个内角.第八章二元一次方程组一.基本概念1.二元一次方程:含有两个未知数,并且未知数的次数都是一次的方程叫二元一次方程.2.二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就叫做二元一次方程组.3.二元一次方程的解:使二元一次方程左右两边相等的未知数的值,叫二元一次方程的解.4.二元一次方程组的解:二元一次方程组的两个方程的公共解叫二元一次方程组的解.二.解二元一次方程组的两种方法1 .代入消元法(代入法):由二元一次方程组中的一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.2.加减消元法(加减法):两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.☆如何消元更简单?如果有一个未知数的系数是1,那么通常情况下采用代入消元法;如果两个二元一次方程中同一未知数的系数相反或相等时,那么通常情况下采用加减消元法.第九章不等式与不等式组学习方法:学习本章要结合前面的等式、方程、方程组进行对比学习,注意知识之间的融会贯通,找出它们之间的联系和区别.一.基本概念1.不等式:用不等号(<、≤、>、≥、≠)连接的式子叫做不等式.2.不等式的解:使不等式成立的未知数的值叫做不等式的解.3.解的集合(解集):不等式的所有解组成的结合叫做解的集合(解集).4.一元一次不等式:含有一个未知数,未知数的次数是一次的不等式叫做一元一次不等式.5.一元一次不等式组:把两个一元一次不等式合起来,组成一个一元一次不等式组.6.不等式组的解集:几个不等式解集的公共部分,叫做它们组成的不等式组的解集.二.不等式的基本性质1.不等式的两边加(或减)同一个数(或式子),不等号的方向不改变.如果a >b,那么a±c >b±c.2.不等式两边乘(或除以)同一个正数,不等号的方向不改变.如果a>b,c>0,那么ac >bc(或)3.不等式两边乘(或除以)同一个负数,不等号的方向要改变.如果a>b,c<0,那么ac <bc(或)三.解不等式的一般步骤去分母→去括号→移项→合并→化系数为1(系数是负数时,不等号的方向要改变).四.用不等式(组)解决实际问题的一般步骤解设→找出不等量关系,列出不等式(组)→求解不等式(组)→考虑问题的实际意义→作答.☆到底是选择方程(组)还是选择不等式(组)解题,主要是看是否有以下关键词:不能完成任务,提前完成任务;超过,不超过.第十章实数一.基本概念1.平方根:若x2=a,则称x是a的平方根,记作:x=± ;其中x=叫做a算术平方根,x=-,叫做a的负的平方根.""读做二次根号a,a叫做被开方数.2.开平方:求一个数a的平方根的运算叫做开平方.平方与开平方互为逆运算.3.立方根:若x3=a,则称x是a的立方根做:x=;""读做三次根号a,a叫做被开方数.3叫做根指数.4.开立方:求一个数立方根的运算叫做开立方.立方与开立方互为逆运算.算术平方根(1个)平方根(2个)立方根(1个)正数正数互为相反数正数0000负数不存在不存在负数5.无理数:无限不循环小数叫做无理数.它包括正无理数和负无理数.6.实数:有理数和无理数统称为实数.(1)实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.(2)有理数关于相反数和绝对值的意义同样适合于实数;在进行实数的运算时,有理数的运算法则及运算性质等同样适用.二.实数的两种分类无限不循环小数有限小数和无限循环小数1.2.第十一章一次函数一.基本概念1.常量:数值不发生变化的量.2.变量:数值发生变化的量.3.自变量(x);函数(y);函数值;函数图象.二.两种重要的函数1.正比例函数y=kx (k≠0)它的图象是一条经过原点的直线.⑴当k>0时,图象过一、三象限;上升;y随x的增大而增大.⑵当k<0时,图象过二、四象限;下降;y随x的增大而减小.2.一次函数y=kx+b (k≠0)⑴当k>0时,;上升;y随x的增大而增大.⑵当k<0时,;下降;y随x的增大而减小.☆ 当b=0时,一次函数就是正比例函数.三.函数图象的平移直线y=kx+b是由直线y=kx平移︱b︱个单位长度得到(当b&gt;0时,向上平移;当b&lt;0时,向下平移).四.用函数观点看方程(组)与不等式即用函数图象解方程(组)与不等式1.解一元一次方程把一元一次方程化为ax+b=0(a≠0)的形式,把左边看成一个一次函数y=kx+b,函数图象与x轴的交点的横坐标就是方程的解.2.解二元一次方程组一个二元一次方程对应一条直线,一个二元一次方程组就对应两条直线.两条直线的交点就是方程组的解(横坐标是x的解,纵坐标是y的解).3.解不等式把不等式化为ax+b&gt;0或ax+b&lt;0的形式,解不等式可以看作:函数值大(小)于0时,求自变量相应的取值范围.关键还是看函数图象与x轴交点的横坐标的值.五.常见题型和做题方法1.常见题型①怎样判断一个点是否在函数图象上?②怎样判断一个图象是不是函数图象?③正比例函数、一次函数的概念?2. 做题方法① 待定系数法求正比例函数、一次函数的解析式.② 题目中说:某个点在函数图象上(函数图象经过某个点),通常情况下需要把这个点的坐标代入函数的解析式.第十二章数据的描述一.基本概念1.频数:(城市)个数.2.频率=频数÷总数.(总数=频率×总数)3.组数.4.组距:前后两个端点的差叫做组距.5.组中值:各个小组两个端点的平均数叫做组中值.二.几种常见的统计图要求:会作图、会看图(分析图).1.条形图特点:能够显示每组中的具体数据.作图和看图时:需注意横轴、纵轴分别表示什么,条形图中应该有几"条".2.扇形图特点:能够显示部分在总体中所占的百分比.作图和看图时:需要有图例,注意扇形图中有几个扇形,能求出各个扇形所对的弧长、圆心角的度数、扇形面积.L弧长=圆周长×百分比S扇形=圆面积×百分比圆心角=360°×百分比3.折线图特点:能够显示数据的变化趋势.作图看图时:需要注意横坐标、纵坐标分别表示什么.坡度越陡,变化趋势就越大.4.直方图特点:能够显示数据的分布情况.作图看图时:需先找出数据中的最大数据和最小数据,确定组距(≥3)、分出组数(5至12组),确定横轴、纵轴分别表示什么.第十三章全等三角形一.基本概念1.全等形:形状、大小完全相同的图形(能够完全重合的图形)叫做全等形.2.全等三角形:形状、大小完全相同三角形(能够完全重合的三角形)叫做全等三角形.① 对应点:重合的点叫做对应点.② 对应边:重合的边叫做对应边.③ 对应角:重合的角叫做对应角.3.公共边、公共角二.性质1.全等三角形的性质:① 全等三角形的对应边相等.② 全等三角形的对应角相等.由此可知:要证明分别属于两个三角形的线段相等或者角相等的问题,通常通过证明这两个三角形全等来解决.2.角平分线的性质:① 角平分线上的点到角两边的距离相等.② 到角两边的距离相等的点在角平分线上.三.三角形全等的条件(如何判断两个三角形全等)1.任意两个三角形全等的条件:① 三边对应相等的两个三角形全等(SSS)② 两边及夹角对应相等的两个三角形全等(SAS)③ 两角及夹边对应相等的两个三角形全等(ASA)④ 两角及其中一个角所对的边对应相等的两个三角形全等(AAS).2.直角三角形(Rt△)全等的条件:斜边和一直角边对应相等的两个三角形全等(HL)第十四章轴对称一.基本概念1.轴对称图形:(1个图形)相关概念,对称点、对称边、对称角.2.成轴对称图形:(2个图形)3.对称轴:其实质是一条直线.注意:(成)轴对称图形一定是全等形,但全等形不一定是轴对称图形.4.垂直平分线(中垂线):垂直、平分.5.轴对称变换:由一个平面图形得到它的轴对称图形的过程(动作)叫轴对称变换.注意:对称轴方向和位置发生变换时,得到图形的方向和位置也会发生变换.6.等腰三角形:相关概念,等腰直角三角形(等腰三角形、直角三角形)、腰、底边、顶点、底角、顶角.等边三角形是一种特殊的等腰三角形.二.几条重要的性质1.垂直平分线的性质(联系角平分线的性质记忆)(1)垂直平分线上的点到线段两端点的距离相等.(2)到线段两端点距离相等的点在垂直平分线上.2.轴对称图形的性质(作某个图形关于某条直线的对称图形、作对称轴的依据).(1)任意一对对称点的连线段的垂直平分线是对称轴.(2)对称轴垂直平分任意一对对称点的连线段.3.等腰三角形的性质(1)等腰三角形的两个底角相等.(简记为"等边对等角")注意:大边对大角,小边对小角.它们的逆定理同样成立,例如:等角对等边.(2)三线合一(三线是指:底边的高、中线、顶角的角平分线)注意区分中线、中位线、中垂线(垂直平分线).4.等边三角形的性质(1)等边三角形的三个内角都等于60。

相关文档
最新文档