第七章《平行线的证明》单元测试(含答案)

合集下载

2021-2022学年北师大版八年级数学上册《第7章平行线的证明》单元综合练习题(附答案)

2021-2022学年北师大版八年级数学上册《第7章平行线的证明》单元综合练习题(附答案)

2021-2022学年北师大版八年级数学上册《第7章平行线的证明》单元综合练习题(附答案)1.如图,在正方体ABCD﹣EFGH中,下列各棱与棱AB平行的是()A.BC B.CG C.EH D.HG2.三条直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不确定3.如图,下列条件中,能判定DE∥AC的是()A.∠EDC=∠EFC B.∠AFE=∠ACD C.∠3=∠4D.∠1=∠24.下列说法错误的是()A.内错角相等,两直线平行B.两直线平行,同旁内角互补C.同角的补角相等D.相等的角是对顶角5.若三角形三个内角度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.已知,在△ABC中,∠A=60°,∠C=80°,则∠B=()A.60°B.30°C.20°D.40°7.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°8.具备下列条件的三角形ABC中,不为直角三角形的是()A.∠A+∠B=∠C B.∠A=∠B=∠C C.∠A=90°﹣∠B D.∠A﹣∠B=90°9.下列语句:①每一个外角都等于60°的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式有意义的条件是分子为零且分母不为零.其中正确的个数为()A.1B.2C.3D.410.下列命题的逆命题是真命题的是()A.两直线平行同位角相等B.对顶角相等C.若a=b,则a2=b2D.若(a+1)x>a+1,则x>111.5月1日,小明一家准备在市内作短途旅游.小明征求大家的意见:爷爷奶奶:如果去玉泉观就一定再去伏羲庙;爸爸妈妈:如果不去南寺也就不去李广墓;姑姑:要么去玉泉观,要么去南郭寺.如果只去一个景点,小明应该选择去()A.玉泉观B.伏羲庙C.南郭寺D.李广墓12.某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是()A.嫌疑犯乙B.嫌疑犯丙C.嫌疑犯甲D.嫌疑犯甲和丙13.在同一平面内,两条直线有种位置关系,分别是和.14.设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关系是;(2)若a⊥b,b⊥c,则a与c的位置关系是.15.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有.16.△ABC中,∠A=60°,∠ABC和∠ACB的平分线相交于点P,则∠BPC=.17.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=度.18.如图,是一个不规则的五角星,则∠A+∠B+∠C+∠D+∠E=.(用度数表示)19.把命题“等角的补角相等”改写成“如果…那么…”的形式是.20.字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为.组合连接a⊕b b⊕d d⊕c21.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.22.如图∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠ADE=∠AED,那么DE ∥BF吗?请说明理由.23.在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(),∴AB∥CD()∴∠B=∠DCE()又∵∠B=∠D(),∴∠DCE=∠D()∴AD∥BE()∴∠E=∠DFE()24.已知:如图,直线AB∥CD,并且被直线EF所截,EF分别交AB和CD于点P和Q,射线PR和QS分别平分∠BPF和∠DQF,求证:∠BPR=∠DQS.25.如图所示,在△ABC中,AD⊥BC于D,AE平分∠BAC,∠BAC=80°,∠B=60°,求∠AEC和∠DAE的度数.26.如图,在△ABC中,∠ADB=∠ABD,∠DAC=∠DCA,∠BAD=32°,求∠BAC的度数.参考答案1.解:结合图形可知,与棱AB平行的棱有CD,EF,GH.故选:D.2.解:∵三条直线a、b、c中,a∥b,b∥c,∴a∥c,故选:B.3.解:∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC和EC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选:C.4.解:A、内错角相等,两直线平行,是平行线的判断方法之一,正确;B、两直线平行,同旁内角互补,是平行线的性质之一,正确;C、根据数量关系,同一个角的补角一定相等,正确;D、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误.故选:D.5.解:∵三角形三个内角度数之比为1:2:3,∴可以假设三个内角分别为x.2x,3x.∵x+2x+3x=180°,∴x=30°,∴三角形的三个内角分别为30°,60°,90°,∴△ABC是直角三角形.6.解:∵在△ABC中,∠A=60°,∠C=80°,∴∠B=180°﹣60°﹣80°=40°.故选:D.7.解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,故选:C.8.解:根据三角形内角和定理,∠A+∠B+∠C=180°.A、∠A+∠B=∠C成立,则∠C=90°;B、∠A=∠B=∠C,则∠C=90°;C、∠A=90°﹣∠B,即∠A+∠B=90°所以∠C=90°;D、∠A﹣∠B=90°,那么∠A>90°,一定不是直角三角形.故选:D.9.解:①每一个外角都等于60°的多边形是正六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确;④分式有意义的条件是分母不为零,故错误;正确的有2个.故选:B.10.解:A、“两直线平行同位角相等”的逆命题是“同位角相等两直线平行”正确,故是真命题;B、“对顶角相等”的逆命题是“相等的角是对顶角”,相等的角不一定是对顶角,所以逆命题错误,故是假命题;C、“若a=b,则a2=b2”的逆命题是“若a2=b2,则a=b”,因为a2=b2,则a=±b,所以逆命题错误,故是假命题;D、“若(a+1)x>a+1,则x>1”的逆命题是“若x>1,则(a+1)x>a+1”,逆命题中若a+1<0,则(a+1)x<a+1,所以逆命题错误,故是假命题.故选:A.11.解:姑姑的意见中有两个景点,必须选择其中的一个.若选去玉泉观,按爸爸妈妈的意见就得还去一个景点:伏羲庙,这与只去一个景点相矛盾,所以不可取.若去南郭寺,与爷爷奶奶、爸爸妈妈的意见均不矛盾.所以应去南郭寺.故选:C.12.解:由于“大量的商品在夜间被罪犯用汽车运走”,根据条件(3)可知:乙肯定不是主犯;根据(1)可知:嫌疑犯必在甲和丙之间;由(2)知:若丙作案,则甲必作案;由于没有直接证明丙作案的证据,因此根据(1)(2)可以确定的是甲一定是嫌疑犯.故选:C.13.解:在同一平面内,两条直线有两种位置关系,分别是平行和相交.故答案为:两;平行;相交.14.解:(1)∵a∥b,b∥c,∴a∥c;(2)∵a、b、c为平面上三条不同直线,a⊥b,b⊥c,∴a∥c.故答案为:a∥c,a∥c.15.解:∵∠2=∠C,∴EF∥CG,又∵∠1=∠2,∴∠1=∠C,∴AB∥CD.故答案为EF∥CG,AB∥CD.16.解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵∠ABC与∠ACB的角平分线相交于P,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×120°=60°,在△PBC中,∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°.故答案为:120°.17.解:设∠A=x,则∠C=∠ABC=2x.根据三角形内为180°知,∠C+∠ABC+∠A=180°,即2x+2x+x=180°,所以x=36°,∠C=2x=72°.在直角三角形BDC中,∠DBC=90°﹣∠C=90°﹣72°=18°.故填18°.18.解:如右图所示,∵∠1=∠C+∠2,∠2=∠A+∠D,∴∠1=∠C+∠A+∠D,又∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故答案是:180°.19.解:题设为:两个角是等角的补角,结论为:它们相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么这两个角相等.故答案为:如果两个角是等角的补角,那么这两个角相等.20.解:结合前两个图可以看出:b代表正方形;结合后两个图可以看出:d代表圆;因此a代表线段,c代表三角形,∴图形的连接方式为a⊕c故答案为:a⊕c.21.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.22.解:DE∥BF,理由是:∵∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,∴∠CDE=∠ABF,∵∠ADE=∠AED,∴∠AED=∠ABF,∴DE∥BF.23.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)又∵∠B=∠D(已知),∴∠DCE=∠D(等量代换)∴AD∥BE(内错角相等,两直线平行)∴∠E=∠DFE(两直线平行,内错角相等).24.证明:∵AB∥CD,∴∠BPQ=∠DQF,∵射线PR和QS分别平分∠BPF和∠DQF,∴∠BPR=∠RPQ=∠BPQ,∠DQS=∠SQF=∠DQF,∴∠BPR=∠DQS.25.解:∵AE平分∠BAC,∠BAC=80°,∴∠BAE=40°,又∵∠B=60°,∴∠AEC=∠BAE+∠B=100°.又∵AD⊥BC,∴∠ADE=90°,∴∠DAE=∠AEC﹣∠ADE=100°﹣90°=10°.26.解:在三角形ABD中,∠ADB=∠ABD=(180°﹣32°)=74°,在三角形ADC中,∠DAC=∠DCA=∠ADB=37°,∴∠BAC=∠DAC+∠BAD=37°+32°=69°.。

第七章 平行线的证明单元测试卷(含解析)

第七章 平行线的证明单元测试卷(含解析)

第七章平行线的证明单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列命题:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程=1.2中的分母化为整数,得=12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A.1个B.2个C.3个D.4个2.如图,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分别为O、E、H,且DO∥AC,∠B=43°,则图中角的度数为47°的角的个数是()A.5 B.6 C.7 D.83.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°4.如图,在△ABC中,∠ABC=40°,∠ACD=76°,BE平分∠ABC,CE平分△ABC的外角∠ACD,则∠E=()A.40°B.36°C.20°D.18°5.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°6.如图,△ABC中,∠B,∠C的平分线相交于点O,过O作DE∥BC,若BD+EC=5,则DE等于()A.7 B.6 C.5 D.47.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°8.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)10.已知,如图AB∥CD,∠1=∠2,EP⊥FP,则以下错误的是()A.∠3=∠4 B.∠2+∠4=90°C.∠1与∠3互余D.∠1=∠3二.填空题(共8小题,满分24分,每小题3分)11.用推理的方法判断为正确的命题叫做.12.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,和∠DCE n﹣1的平分线,交点为E n.第n次操作,分别作∠ABE n﹣1若∠E n=1度,那∠BEC等于度13.将一副直角三角尺如图放置(其中∠A=60°,∠F=45°),点E在AC上,ED∥BC,则∠AEF的度数是.14.如图,∠1=52°,∠2=128°,∠C=∠D.探索∠A与∠F的数量关系为.15.说理解答题在空白处填上适当的内容(理由或数学式)解:在ABC中∠B+∠ACB+∠BAC=180°∴∠BAC=180°﹣∠B﹣(等式的性质)=180°﹣36°﹣110°=∵AE是∠BAC的平分线(已知)∴∠CAE=∠BAC=17°∵AD是BC边上的高即AD⊥BC (已知)∴∠D=∵∠AC E是△ACD的外角(已知)∴∠ACE=∠CAD+∠D∴∠CAD=∠ACE﹣∠D (等式的性质)=110°﹣90°═20°∴∠DAE=∠CAD+=20°+17°=.16.如图,将等腰直角△ABC沿BC方向平移得到△A1B1C1,若BC=,,则BB1=.17.一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能是.18.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,当横板AB的A端着地时,测得∠OAC=α,则在玩跷跷板时,横板AB绕点O上下转动的最大角度为°.三.解答题(共7小题,满分66分)19.(8分)如图,∠ACD=2∠B,CE平分∠ACD,求证:CE∥AB.20.(8分)补全解题过程.如图,在△ABC中∠ABC平分线BP和外角平分线CP交于点P,试猜想∠A与∠P之间的关系,并说明理由.解:∠A=2∠P理由:∵BP、CP分别平分∠ABC、∠ACD(已知)∴∠ABC=∠1,∠ACD=2∠2 ()∵∠ACD为△ABC的外角∴∠ACD=∠A+∠=∠A+2∠1(三角形外角的性质)即:2∠2=∠A+2∠1同理:∠2=∠P+∴∠A=2∠P.21.(8分)如图:在△ABC中,∠C=90°,点D是AB边上一点,DM⊥AB且DE=BC,过点M作ME∥BC交AB于点E.求证:ME=AB.22.(10分)已知:如图,在Rt△ABC中,∠A=90°,AB=AC=1,P是AB边上不与A点、B点重合的任意一个动点,PQ⊥BC于点Q,QR⊥AC于点R.(1)求证:PQ=BQ;(2)设BP=x,CR=y,求y关于x的函数解析式,并写出定义域;(3)当x为何值时,PR∥BC.23.(10分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b 反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°;(2)在(1)中,若∠1=55°,则∠3=°,若∠1=40°,则∠3=°;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3=°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n 平行,请说明理由.24.(10分)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.25.(12分)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=82°,则∠BEC=;若∠A=a°,则∠BEC=.【探究】(1)如图2,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB,若∠A=a°,则∠BEC=;(2)如图3,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A 有怎样的关系?请说明理由;(3)如图4,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A 有怎样的关系?请说明理由.参考答案与试题解析1.解:①错误,﹣1的平方是1;②正确;③错误,方程右应还为1.2;④错误,只有每任意三点不在同一直线上的四个点才能画6条直线,若四点在同一直线上,则只有画一条直线了.故选:A.2.解:∵AO平分∠BAC,AO⊥BC,∴∠BAO=∠CAO,∠AOB=∠AOC=90°,∴∠B=∠C,∵DO∥AC,∴∠BOD=∠C,∴∠B=∠BOD,∴DB=DO,又∵DE⊥BO,∴ED平分∠BDO,∵∠B=43°,∴∠BDE=47°,∴∠BAO=∠EDO=∠AOD=∠CAO=∠CGH=47°,故选:A.3.解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.4.解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ABC=40°,∠ACD=76°,∴∠ACD﹣∠ABC=36°,∵BE平分∠ABC,CE平分∠ACD,∴∠ECD=∠ACD,∠EBC=∠ABC,∵∠ECD是△BCE的一个外角,∴∠ECD=∠EBC+∠E,∴∠E=∠ECD﹣∠EBC=∠ACD﹣∠ABC=18°.故选:D.5.解:∵AB∥CD,MP∥AB,∴AB∥CD∥MP,∵∠A=40°,∠D=30°,∴∠AMP=∠A=40°,∠DMP=∠D=30°,∴∠AMD=40°+30°=70°,∵MN平分∠AMD,∴∠AMN=∠AMD=×70°=35°,∴∠NMP=∠AMP﹣∠AMN=40°﹣35°=5°.故选:C.6.解:∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB.又∵∠B,∠C的平分线相交于点O,∴∠DBO=∠DOB,∠EOC=∠ECO.∴DB=DO,EC=EO,又∵BD+EC=5,DO+EO=DE,∴DE=5.故选:C.7.解:如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK ﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选:B.8.解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.9.解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.10.解:过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠EPH,∠3=∠HPF,∵EP⊥FP,∴∠2+∠4=90°,∠HPF+∠EPH=90°,∴∠3=∠4,故A正确;∵EP⊥FP,∴∠2+∠4=90°,故B正确;∵∠1=∠2,∠3=∠4,∠2+∠4=90°,∴∠1+∠3=90°,∠1与∠3互余,故C正确;故选:D.11.解:定理是用推理的方法判断为正确的命题,故用推理的方法判断为正确的命题叫做定理.12.解:如图①,过E作EF∥AB,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n .13.解:∵ED∥BC,∴∠DEC=∠C=30°,∴∠FEC=15°,∴∠AEF=180°﹣15°=165°,故答案为:165°.14.解:∵∠1=52°,∠2=128°,∴∠1+∠2=180°,∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF,∴∠A=∠F.15.解:在ABC中,∵∠B+∠ACB+∠BAC=180°(三角形内角和定理)∴∠BAC=180°﹣∠B﹣∠BCA(等式的性质)=180°﹣36°﹣110°=34°∵AE是∠BAC的平分线(已知)∴∠CAE=∠BAC=17°∵AD是BC边上的高即AD⊥BC (已知)∴∠D=90°,∵∠AC E是△ACD的外角(已知)∴∠ACE=∠CAD+∠D(三角形外角的性质)∴∠CAD=∠ACE﹣∠D (等式的性质)=110°﹣90°=20°∴∠DAE=∠CAD+∠CAE=20°+17°=37°.故答案为:三角形内角和定理;∠BAC;34°;;90°;三角形外角的性质;∠CAE;37°.16.解:∵△ABC是等腰直角三角形,∴平移后∠PB1C=∠CB=45°,∴△PB1C是等腰直角三角形,∴S=B1C•(B1C)=2,△PB1C解得B1C=2,∴BB1=BC﹣B1C=3﹣2=.故答案为:.17.解:如图①所示,当∠BAC=48°时,那么它的最大内角是90°当∠ACB=48°时,有以下4种情况,故答案为:88°,90°,99°,108°,116°18.解:如图所示,作DE∥AC,则有∠1=∠A=α,则上下最大可以转动的角度为2α.故答案为:2α.19.证明:∵CE平分∠ACD,∴∠ACD=2∠DCE,∵∠ACD=2∠B,∴∠DCE=∠B,∴AB∥CE.20.解:∠A=2∠P理由:∵BP、CP分别平分∠ABC、∠ACD(已知)∴∠ABC=2∠1,∠ACD=2∠2 (角平分线的定义)∵∠ACD为△ABC的外角∴∠ACD=∠A+∠ABC=∠A+2∠1(三角形外角的性质)即:2∠2=∠A+2∠1,∴∠A=2∠P.故答案为:2,角平分线的定义,ABC,∠1.21.证明:∵ME∥BC,∴∠B=∠MED,∵DM⊥AB,∴∠MDE=90°,∴∠MDE=∠C=90°,在△ABC和△MED中,,∴△ABC≌△MED(ASA),∴ME=AB.22.(1)证明:∵∠A=90°,AB=AC=1∴∠B=∠C=45°又∵PQ⊥BQ∴∠BPQ=45°∴△BPQ是等腰三角形∴PQ=BQ.(2)解:在等腰直角△BPQ中,∵BP=x∴BQ=在Rt△ABC中,BC==在等腰直角三角形CQR中,CR=y∴CQ=y∵CQ=BC﹣BQ即y=﹣所以y=﹣x+1.又∵△BPQ为等腰三角形,∴PQ=∵PR∥BC∴∠PRQ=∠RQC=45°∴PR=∠A=∠A,∠APR=∠B,∠ARP=∠C∴△APR∽△ABC∴即解得:x=.23.解:(1)100°,90°.∵入射角与反射角相等,即∠1=∠4,∠5=∠6,根据邻补角的定义可得∠7=180°﹣∠1﹣∠4=80°,根据m∥n,所以∠2=180°﹣∠7=100°,所以∠5=∠6=(180°﹣100°)÷2=40°,根据三角形内角和为180°,所以∠3=180°﹣∠4﹣∠5=90°;(2)90°,90°.由(1)可得∠3的度数都是90°;(3)90°(2分)理由:因为∠3=90°,所以∠4+∠5=90°,=360°﹣2∠4﹣2∠5,=360°﹣2(∠4+∠5),=180°.由同旁内角互补,两直线平行,可知:m∥n.24.解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).25.解:∵∠A=82°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣82°=98°,∵BE平分∠ABC,CE平分∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×98°=49°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣49°=131°;由三角形的内角和定理得,∠ABC+∠ACB=180°﹣∠A=180°﹣a°,∵BE平分∠ABC,CE平分∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×(180°﹣a°)=90°﹣a°,故答案为:131°,90°+a°;探究:(1)由三角形的内角和定理得,∠ABC+∠ACB=180°﹣∠A=180°﹣a°,∵BD,BE三等分∠ABC,CD,CE三等分∠ACB,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×(180°﹣a°)=120°﹣a°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(120°﹣a°)=60°+a°;故答案为:60°+a°;(2)∠BOC=∠A.理由如下:由三角形的外角性质得,∠ACD=∠A+∠ABC,∠OCD=∠BOC+∠OBC,∵O是∠ABC与外角∠ACD的平分线BO和CO的交点,∴∠ABC=2∠OBC,∠ACD=2∠OCD,∴∠A+∠ABC=2(∠BOC+∠OBC),∴∠A=2∠BOC,∴∠BOC=∠A;(3)∠BOC=90°﹣∠A.理由如下:∵O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,∴∠OBC=(180°﹣∠ABC)=90°﹣∠ABC,∠OCB=(180°﹣∠ACB)=90°﹣∠ACB,在△OBC中,∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(90°﹣∠ABC)﹣(90°﹣∠ACB)=(∠ABC+∠ACB),由三角形的内角和定理得,∠ABC+∠ACB=180°﹣∠A,∴∠BOC=(180°﹣∠A)=90°﹣∠A.。

北师大版八年级上册数学第七章平行线的证明单元测试(含答案)

北师大版八年级上册数学第七章平行线的证明单元测试(含答案)

八年级上册数学第七章单元测试一、选择题(每题3分,共30分)1.命题“负数没有平方根”的条件是()A.如果一个数是正数B.如果一个数没有平方根C.如果一个数是负数D.如果一个数是非负数2.如图,下列能判定AB∥CD的条件有()(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个3.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG的度数是()A.70°B.20°C.35°D.40°4.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′5.如图,下列选项中,不可以得到l1∥l2的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.如图,把△ABC纸片沿DE折叠,则()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE为()A.80°B.60°C.50°D.40°9.如图,在△ABC中,∠B=38°,∠C=54°,AD是BC边上的高,AE是∠BAC 的平分线,则∠DAE的度数为()A.8°B.10°C.12°D.14°10.在三角板拼角活动中,小明将一副三角板按如图方式叠放,则拼出的∠α度数为()A.65°B.75°C.105°D.115°二、填空题(每题3分,共15分)11.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则∠A为________度.12.如图,AB∥CD,∠1=58°,FG平分∠EFD交AB于G,则∠FGB的度数为________.13.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是________.14.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于________.15.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC =________度.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.如图,点A、B、C、D在同一条直线上,EC∥FD,∠F=∠E,求证:AE ∥BF.将证明过程补充完整,并在括号内填写推理依据.证明:∵EC∥FD,()∴∠________=∠1.()∵∠F=∠E,(已知)∴∠________=∠________,()∴AE∥BF.()17.如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=100°,DF平分∠BDE,求∠C的度数.18.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.19.如图,已知BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD.20.如图,已知:DE⊥AO于点E,BO⊥AO于点O,∠CFB=∠EDO,证明:CF∥DO.21.如图,AD为△ABC的角平分线,DE∥AB,DE交AC于点E.若∠B=57°,∠C=65°,求∠ADE的度数.22.已知如图,点E在△ABC的边BC上,AD∥BC,∠DAE=∠BAC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠2的度数.23.如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.答案一、1.C 2.C 3.C 4.D 5.C 6.B7.B8.D9.A10.C二、11.3012.151°13.51°或93°14.230°15.122.5三、16.已知;F;两直线平行,内错角相等;E;1;等量代换;内错角相等,两直线平行17.解:(1)∵DE∥AB,∴∠A=∠2.∵∠1+∠2=180°,∴∠A+∠1=180°,∴DF∥AC.(2)∵∠1=100°,∠1+∠2=180°,∴∠2=80°.∵AC∥DF,∴∠FDE=∠2=80°,∠C=∠BDF.∵DF平分∠BDE,∴∠BDF=80°,∴∠C=∠BDF=80°.18.解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3.∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE.(2)∵BF⊥AC,∴∠BF A=90°.∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°-35°=55°.19.证明:∵BE∥CF,∴∠1=∠2.∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,∴∠ABC=∠BCD,∴AB∥CD.20.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO,∴∠EDO=∠BOD.又∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO.21.解:∵∠B=57°,∠C=65°,∴∠BAC=180°-57°-65°=58°.∵AD为△ABC的角平分线,∴∠BAD=∠DAC=29°.∵DE∥AB,∴∠ADE=∠BAD=29°.22. (1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1.∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE.(2)解:∵∠DAE=∠BAC,∴∠BAE=∠DAC.∵AE平分∠BAC,∴∠EAC=∠BAE=∠DAC.∵AD∥BC,∴∠C=∠DAC=35°,∴∠EAC=∠DAC=35°,∴∠AEC=180°-∠EAC-∠C=110°,∴∠2=180°-∠AEC=70°.23.解:(1)135°(2)90°+12n°(3)∵BC、BD分别是∠OBA和∠NBA的平分线,∴∠ABC=12∠OBA,∠ABD=12∠NBA,∴∠ABC+∠ABD=12∠OBA+12∠NBA=12(∠OBA+∠NBA)=90°,即∠CBD=90°,同理:∠CAD=90°.∵四边形内角和等于360°,∴∠ACB+∠ADB=360°-90°-90°=180°,由(2)知:∠ACB=90°+12n°,∴∠ADB=180°-(90°+12n°)=90°-12n°,∴∠ACB+∠ADB=180°,∠ADB=90°-12n°.(4)∠E的度数不会变,∠E=40°.求解如下:∵∠NBA=∠AOB+∠OAB,∴∠OAB=∠NBA-∠AOB.∵AE、BC分别是∠OAB和∠NBA的平分线,∴∠BAE=12∠OAB,∠CBA=12∠NBA,∵∠CBA=∠E+∠BAE,∴12∠NBA=∠E+12∠OAB,∵12∠NBA=∠E+12(∠NBA-80°),即12∠NBA=∠E+12∠NBA-40°,∴∠E=40°.。

第7章 平行线的证明单元测试卷(解析卷)

第7章 平行线的证明单元测试卷(解析卷)

第7章平行线的证明单元测试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.下列命题是真命题的是()A.有两边及一角对应相等的两个三角形全等B.底角相等的两个等腰三角形全等C.若a+b=0,则|a|=|b|D.角不是轴对称图形解:A、有两边及一角对应相等的两个三角形不一定全等,错误,是假命题;B、底角相等的两个等腰三角形不一定全等,错误,是假命题;C、若a+b=0,则|a|=|b|,正确,是真命题;D、角是轴对称图形,错误,是假命题,故选:C.2.在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直解:在同一个平面内,两条直线只有两种位置关系,即平行或相交.故选:C.3.已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥c C.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c 解:A、如果a∥b,a⊥c,那么b⊥c,说法正确;B、如果b∥a,c∥a,那么b∥c,说法正确;C、如果b⊥a,c⊥a,那么b⊥c,说法错误;D、如果b⊥a,c⊥a,那么b∥c,说法正确;故选:C.4.如图,点在延长线上,下列条件中不能判定BD∥AC的是()A.∠1=∠2B.∠3=∠4C.∠5=∠C D.∠C+∠BDC=180°解:选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A选项不合题意.选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),不能判定BD∥AC,所以B选项符合题意;选项C中,∵∠5=∠C,∴BD∥AC (内错角相等,两直线平行),所以C选项不合题意;选项D中,∵∠C+∠BDC=180°,∴BD∥AC(同旁内角互补,两直线平行),所以D 选项不合题意;故选:B.5.甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.0解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选:D.6.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD 于点O,且∠EOD+∠OBF=180°,∠F=∠G.则图中与∠ECB相等的角有()A.6个B.5个C.4个D.3个证明:∵∠EOD=∠BOC,∠EOD+∠OBF=180°,∴∠BOC+∠OBF=180°,∴EC∥BF,∴∠ECD=∠F,∠ECB=∠CBF,又∵CE平分∠ACB,∴∠ECD=∠ECB.又∵∠F=∠G,∴∠G=∠ECB.∴DG∥CE,∴∠CDG=∠DCE,∴∠CDG=∠G=∠F=DCE=∠CBF=∠ECB,故选:B.7.在△ABC中,∠A:∠B:∠C=3:4:8,则这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形解:∵∠A:∠B:∠C=3:4:8,∴设∠A=3α,∠B=4α,∠C=8α,∵∠A+∠B+∠C=180°,∴3α+4α+8α=180°,∴α=12°,∴∠C=8α=96°,∴这个三角形一定是钝角三角形,故选:D.8.如图,已知∠AEF=∠EGH,AB∥CD,则下列判断中不正确的是()A.∠BEF=∠EGH B.∠AEF=∠EFD C.AB∥CH D.GH∥CD 解:∵∠AEF=∠EGH,∴AB∥GH,∵AB∥CD,∴AB∥GH∥CD,故C、D正确;∴∠AEF=∠EFD,故B正确;故选:A.9.下列结论正确的是()A.不相交的两条直线叫做平行线B.两条直线被第三条直线所截,同位角相等C.垂直于同一条直线的两条直线互相平行D.平行于同一条直线的两条直线互相平行解:A、在同一个平面内不相交的两条直线叫做平行线,故A不符合题意;B、两条平行线被第三条直线所截,同位角相等,故B不符合题意;C、在同一平面内垂直于同一条直线的两条直线互相平行,故C不符合题意;D、平行于同一条直线的两条直线互相平行,故D符合题意;故选:D.10.在下面的四个图形中,已知∠1=∠2,那么能判定AB∥CD的是()A.B.C.D.解:A.由∠1=∠2,能判定AB∥CD,故本选项正确;B.由∠1=∠2,不能判定AB∥CD,故本选项错误;C.由∠1=∠2,不能判定AB∥CD,故本选项错误;D.由∠1=∠2,只能判定AD∥CB,故本选项错误;故选:A.11.如图△ABC中,∠C=∠ABC=2∠A,BD是边AC上的高,则∠DBC的度数是()A.36°B.26°C.18°D.16°解:∵∠A+∠C+∠ABC=180°,∠C=∠ABC=2∠A,∴2∠A+2∠A+∠A=180°,解得,∠A=36°,则∠C=72°,∵BD是边AC上的高,∴∠BDC=90°,∴∠DBC=90°﹣∠C=18°,故选:C.12.如图,将△ADE沿DE折叠,折痕为DE,则图中∠1,∠2,∠3之间的关系中,下列式子中正确的是()A.∠3=2∠1+∠2B.∠3=∠1+2∠2C.∠3=∠1+∠2D.∠3=180°﹣∠1﹣∠2解:∵将△ADE沿DE折叠,∴∠A=∠A′,即∠1=∠A′,∵∠4=180°﹣∠2﹣∠A′=180°﹣∠2﹣∠1,又∵∠B+∠C=180﹣∠1,∠3+∠4+∠B+∠C=360°∴∠3+180°﹣∠2﹣∠1+180°﹣∠1=360°∴∠3=2∠1+∠2,故选:A.二.填空题(共4小题,满分12分,每小题3分)13.如图,∠1=∠2,∠3=125°,则∠4等于55°.解:如图,∵∠1=∠2,∠2=∠6,∴∠1=∠6,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣125°=55°,故答案为:55°.14.已知:a∥b,b∥c,则a∥c.理由是平行于同一直线的两条直线平行.解:∵a∥b,a∥c(已知),∴b∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).故答案为平行于同一直线的两条直线平行15.如图,在△ABC中,点D、E分别在边BC、AC上,∠DCE=∠DEC,点F在AC、点G在DE的延长线上,∠DFG=∠DGF.若∠EFG=35°,则∠CDF的度数为70°.解:∵∠DCE=∠DEC,∠DFG=∠DGF,∴设∠DCE=∠DEC=x°,∠DFG=∠DGF=y°,则∠FEG=∠DEC=x°,∵在△GFE中,∠EFG=35°,∴∠FEG+∠DGF=x°+y°=180°﹣35°=145°,即x+y=145,在△FDC中,∠CDF=180°﹣∠DCE﹣∠DFC=180°﹣x°﹣(y°﹣35°)=215°﹣(x°+y°)=70°,故答案为:70°.16.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是①③④⑤(填序号)解:①∵∠1=∠2,∴a∥b,故此选项正确;②∠3=∠6无法得出a∥b,故此选项错误;③∵∠4+∠7=180°,∴a∥b,故此选项正确;④∵∠5+∠3=180°,∴∠2+∠5=180°,∴a∥b,故此选项正确;⑤∵∠7=∠8,∠6=∠8,∴∠6=∠7,∴a∥b,故此选项正确;综上所述,正确的有①③④⑤.故答案为:①③④⑤.三.解答题(共8小题,满分52分)17.(6分)如图所示,∠B=25°,∠D=42°,∠BCD=67°,试判断AB和ED的位置关系,并说明理由.解:AB∥ED,理由:如图,过C作CF∥AB,∵∠B=25°,∴∠BCF=∠B=25°,∴∠DCF=∠BCD﹣∠BCF=42°,又∵∠D=42°,∴∠DCF=∠D,∴CF∥ED,∴AB∥ED.18.(6分)先把下列两个命题分别改写成“如果……那么……”的形式,再判断该命题是真命题还是假命题,如果是假命题,举出一个反例(1)同旁内角互补,两直线平行;(2)一个角的补角一定是钝角.解:(1)如果两条直线被第三条直线所截得的同旁内角互补,那么这两条直线平行.是真命题.(2)如果一个角是另一个角的补角,那么这个角一定是钝角.是假命题;如:设∠1=60°,∠2=120°,∠1是∠2的补角,但∠1不是钝角.19.(6分)已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.解:过P点作PM∥AB交AC于点M.∵AB∥CD,(已知)∴∠BAC+∠ACD=180°.(两直线平行,同旁内角互补)∵PM∥AB,∴∠1=∠2,(两直线平行,内错角相等)且PM∥DC.(平行于同一直线的两直线也互相平行)∴∠3=∠4.(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,(已知)∴∠1=∠BAC,∠4=ACD.∴∠1+∠4=∠BAC+∠ACD=90°.∴∠APC=∠2+∠3=∠1+∠4=90°.总结:两直线平行时,同旁内角的角平分线互相垂直.解:过P点作PM∥AB交AC于点M.∵AB∥CD,(已知)∴∠BAC+∠ACD=180°.(两直线平行,同旁内角互补)∵PM∥AB,∴∠1=∠2,(两直线平行,内错角相等)且PM∥DC.(平行于同一直线的两直线也互相平行)∴∠3=∠4.(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,(已知)∴∠1=∠BAC,∠4=ACD.∴∠1+∠4=∠BAC+∠ACD=90°.∴∠APC=∠2+∠3=∠1+∠4=90°.总结:两直线平行时,同旁内角的角平分线互相垂直.故答案为:已知;两直线平行,同旁内角互补;2;两直线平行,内错角相等,DC;4;两直线平行,内错角相等;已知;互相垂直.20.(6分)如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.21.(6分)四个足球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分,有一个队一场都没输过,排名却倒数第一,你觉得可能吗?如果可能,请举出这情况何时出现;如果不可能,请说明理由.解:某队全平的情况下会排名倒数第一,如:甲队:全平⇒1+1+1=3(分),乙队:平1场,胜1场(乙胜丙),输1场⇒1+3+0=4(分),丙队:平1场,胜1场(丙胜丁),输1场⇒1+3+0=4(分),丁队:平1场,胜1场(丁胜乙),输1场⇒1+3+0=4(分),当然还有其它情况出现.22.(6分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=10°,∠B=50°,求∠C的度数.解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.23.(8分)如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有3个,以点O为交点的“8字型”有4个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=∠CAB,∠CDP=∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.(1)证明:在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①3;4;故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=(∠B+∠C)=(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠CAB,∠BDP=∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.24.(8分)如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.解:(1)AB∥CD,理由:延长EG交CD于H,∴∠HGF=∠EGF=90°,∴∠GHF+∠GFH=90°,∵∠BEG+∠DFG=90°,∴∠BEG=∠GHF,∴AB∥CD;(3)∠BEG+∠MFD=90°,理由:∵AB∥CD,∴∠BEG=∠GHF,∵EG⊥FG,∴∠GHF+∠GFH=90°,∵∠MFG=n∠DFG,∴∠BEG+∠MFG=90°.。

(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试(有答案解析)

(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试(有答案解析)

一、选择题1.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =2.如图,△ABC 中,∠BAC =58°,∠C =82°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A .29°B .39°C .42°D .52° 3.如图,直线AB 、CD 被BC 所截,若//AB CD ,150∠=︒,240∠=︒,则3∠的大小是( )A .80︒B .70︒C .90︒D .100︒ 4.下列四个命题中,假命题有( )(1)两条直线被第三条直线所截,内错角相等.(2)如果1∠和2∠是对顶角,那么12∠=∠.(3)一个锐角的余角一定小于这个锐角的补角.(4)如果1∠和3∠互余,2∠与3∠的余角互补,那么1∠和2∠互补.A .1个B .2个C .3个D .4个5.下列命题是假命题的是( )A .同旁内角互补,两直线平行B .直角三角形的两个锐角互余C .三角形的一个外角等于它的两个内角之和D .有一个角是60°的等腰三角形是等边三角形6.如图,在△ABC 中,D 为BC 上一点,∠1=∠2,∠3=∠4,∠BAC =105°,则∠DAC 的度数为( )A .80°B .82°C .84°D .86°7.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23° 8.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 9.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .410.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠1=∠3B .∠2=∠4C .∠EAD=∠BD .∠D=∠DCF 11.如图,AB ∥DE ,80,45B D ︒︒∠=∠=则C ∠的度数为( )A .50︒B .55︒C .60︒D .65︒12.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;②若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有②C .①②都正确D .①②都不正确二、填空题13.如图,已知CD ⊥DA ,DA ⊥AB ,∠1=∠4.试说明DF ∥AE .请你完成下列填空,把证明过程补充完整.证明:∵_________(___________)∴∠CDA=90°,∠DAB=90°(_________).∴∠4+∠3=90°,∠2+∠1=90°.又∵∠1=∠4,∴_____(_____),∴DF ∥AE (______).14.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.15.如图,点D 是△ABC 的边BC 的延长线上的一点,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推…,已知∠A =α,则∠A 2020的度数为_____.(用含α的代数式表示).16.如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.17.如图,△ABC 中,∠B=60°,∠C=80°,点D,E 分别在线段AB ,BC 上, 将△BDE 沿直线DE 翻折,使B 落在B′ 处, B′ D, B′E 分别交AC 于F,G. 若∠ADF=70°,则∠CGE 的度数为______.18.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点()P x,y 的坐标满足xy 0<,那么点 P 一定在第二象限.其中正确命题的序号为 ___.19.如图,已知△ABC ,∠B 的角平分线与∠C 的外角角平分线交于点 D ,∠B 的外角角平分线与∠C 的外角角平分线交于点 E ,则∠E+∠D=_____.20.如图,C 是线段AB 上一点,∠DAC =∠D ,∠EBC =∠E ,AO 平分∠DAC ,BO 平分∠EBC .若∠DCE =40°,则∠O =______°.三、解答题21.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).22.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A ′,若∠C =125°,∠A =20°,求∠BD A ′的度数.23.如图,在ABC 中,D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于点F ,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒.求:(1)BDC ∠的度数;(2)BFD ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学公式)解:(1)∵BDC A ACD ∠=∠+∠( )∴623597BDC ∠=︒+︒=︒(等量代换)(2)∵BFD BDC ABE ∠+∠+∠=______( )∴180BFD BDC ABE ∠=︒-∠-∠(等式的性质)1809720=︒-︒-︒(等量代换)63=︒24.如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=50°,∠C=70°,求:∠DAC 和∠BOA 的度数.25.如图,在四边形ABCD 中,E 、F 分别是CD 、AB 延长线上的点,连接EF ,分别交AD 、BC 于点G 、H .若12∠=∠,A C ∠=∠,试判断AB 与CD 的位置关系,并说明理由.补全解答过程.猜想:AB 与CD 的位置关系是 ① .证明:∵12∠=∠(已知),1AGH ∠=∠(②),∴2AGH ∠=∠(③).∴ ④ (同位角相等,两直线平行).∴ADE C ∠=∠(⑤),∵A C ∠=∠(已知),∴ ⑥ (等量代换).∴ ⑦ (⑧).26.如图,在ABC 中,EF AB ⊥,CD AB ⊥,G 在AC 边上,AGD ACB ∠=∠.求证:(1)12∠=∠;(2)90BCD ADG ∠+∠=︒.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.2.A解析:A【分析】根据三角形的内角和得到∠B =180︒-∠BAC -∠C =40︒,根据角平分线的定义得到∠BAD=12∠BAC=29︒,根据三角形的外角的性质即可得到结论. 【详解】解:∵在△ABC 中,∠BAC =58︒,∠C =82︒,∴∠B =180︒-∠BAC -∠C =180︒-58︒-82︒=40︒,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =29︒, ∴∠ADC =∠B +∠BAD =69︒,∵∠ADE =∠B =40︒,∴∠CDE =29︒,故选:A .【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解题的关键. 3.C解析:C【分析】先根据平行线的性质求出C ∠,再由三角形外角性质即可得解;【详解】∵//AB CD ,150∠=︒,∴150∠=∠=︒C ,∵240∠=︒,∴3290C ∠=∠+∠=︒;故答案选C .【点睛】本题主要考查了平行线的性质和三角形的外角性质,准确计算是解题的关键. 4.A解析:A【分析】按照命题的条件,结论,进行推理计算,或与定理,定义,法则对照,进行判断即可.【详解】∵两条平行直线被第三条直线所截,内错角相等,∴(1)是假命题;∵对顶角相等,∴(2)是真命题;设锐角为x ,则其余角为90°-x ,补角为180°-x ,∴(90-x )-(180-x )=90°-x-180°+x=-90<0,∴(3)是真命题;∵1∠和3∠互余,2∠与3∠的余角互补,∴1∠+3∠=90,2∠+(90-3∠)=180,∴2∠+1∠=180,∴(4)是真命题;故选A.【点睛】本题考查了对命题的真伪的甄别,解答时,熟练掌握数学的基本概念,基本定理,基本法则,基本性质是解题的关键.5.C解析:C【分析】根据平行线的判定定理,直角三角形互余性质,三角形的外角性质,等边三角形的判定去分别判断即可.【详解】解:∵同旁内角互补,两直线平行,∴选项A 选项为真命题,不符合题意;根据三角形内角和定理,得直角三角形的两个锐角互余,∴选项B选项为真命题,不符合题意;∵三角形的一个外角等于和它不相邻的两个内角之和,∴选项C选项为假命题,符合题意;根据等角对等边,有一个角是60°的等腰三角形是等边三角形,∴选项D选项为真命题,不符合题意;故选C.【点睛】本题考查了对数学基础知识的掌握,全面规范掌握数学基础知识是解题的关键.6.A解析:A【分析】根据三角形的内角和定理和三角形的外角性质即可解决.【详解】解:∵∠BAC=105°,∴∠2+∠3=75°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=75°,∴∠2=25°.∴∠DAC=105°−25°=80°.故选A.【点睛】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键.7.C解析:C【分析】根据∠DAE=∠DAC-∠CAE,只要求出∠DAC,∠CAE即可.【详解】解:∵∠BAC=180°-∠B-∠C,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∠BAC=31°,∴∠DAC=12∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C .【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识. 8.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断. 9.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.10.B解析:B【分析】根据各选项中各角的关系及利用平行线的判定定理,分别分析判断AD 、BC 是否平行即可.【详解】解:A 、∵∠1=∠3,∴AD ∥BC (内错角相等,两直线平行);B 、∵∠2=∠4,∴AB ∥CD (内错角相等,两直线平行),但不能判定AD ∥BC ; C 、∵∠EAD=∠B ,∴AD ∥BC (同位角相等,两直线平行);D、∵∠D=∠DCF,∴AD∥BC(内错角相等,两直线平行);故选:B.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.B解析:B【分析】延长DE交BC于F,利用平行线的性质求出∠DFC=∠B=80°,再利用三角形的内角和定理求 的度数.出C【详解】延长DE交BC于F,如图,∵AB∥DE,∴∠DFC=∠B=80°,∵∠C+∠D+∠DFC=180°,∴∠C= =180°-∠D-∠DFC=55°,故选:B.【点睛】此题考查平行线的性质:两直线平行,同位角相等;三角形的内角和定理.12.A解析:A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得②错误.【详解】解:①若a∥b,b∥c,则a∥c,说法正确;②若a⊥b,b⊥c,则a⊥c,说法错误,应为同一平面内,若a⊥b,b⊥c,则a∥c;故选:A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.二、填空题13.CD ⊥DADA ⊥AB ;已知;垂直定义;∠2=∠3;等角的余角相等;内错角相等两直线平行【分析】先根据垂直的定义得到再根据等角的余角相等得出最后根据内错角相等两直线平行进行判定即可【详解】证明:∵CD解析:CD ⊥DA ,DA ⊥AB ;已知;垂直定义;∠2=∠3;等角的余角相等;内错角相等,两直线平行【分析】先根据垂直的定义,得到1290∠+∠=︒,3490∠+∠=°,再根据等角的余角相等,得出23∠∠=,最后根据内错角相等,两直线平行进行判定即可.【详解】证明:∵ CD ⊥DA ,DA ⊥AB (已知)∴∠CDA=90°,∠DAB=90° ( 垂直定义 ).∴∠4+∠3=90°,∠2+∠1=90°.又∵∠1=∠4,∴∠2=∠3 ( 等角的余角相等 ),∴DF ∥AE ( 内错角相等,两直线平行 ).故答案为:.CD ⊥DA ,DA ⊥AB , 已知;垂直定义;∠2=∠3 ,等角的余角相等;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定以及垂直的定义,解题时注意:内错角相等,两直线平行. 14.【分析】根据翻折变换的性质得出∠ACD=∠BCD ∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC 再利用平角的定义即可得出答案【详解】解:∵将Rt △ABC 沿CD 折叠使点B 落在AC 边解析:40︒【分析】根据翻折变换的性质得出∠ACD=∠BCD ,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC ,再利用平角的定义,即可得出答案.【详解】解:∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC 和∠B′DC 的度数是解题关键.15.【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A1=∠A2=∠A3=据此找规律可求解【详解】解:在△ABC 中∠A =∠ACD ﹣∠ABC =α∵∠ABC 的平分线与∠ACD 的平分线交于点A1 解析:202012α【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A 1=12α,∠A 2=212α,∠A 3=312α,据此找规律可求解. 【详解】 解:在△ABC 中,∠A =∠ACD ﹣∠ABC =α,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1=∠A 1CD ﹣∠A 1BC =12(∠ACD ﹣∠ABC )=12∠A =12α, 同理可得∠A 2=12∠A 1=212α, ∠A 3=12∠A 2=312α, …以此类推,∠A 2020=202012α, 故答案为:202012α.【点睛】考查三角形内角和定理以及三角形外角的性质,熟练掌握和运用三角形外角的性质是解题的关键. 16.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE 和BC 被AB 所截∴当时AD ∥BC (内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B ∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.∵DE和BC被AB所截,∠=∠时,AD∥BC(内错角相等,两直线平行).∴当DAB B∠=∠故答案为DAB B【点睛】此题考查平行线的性质,难度不大17.500【分析】连接BB由翻折变换的性质得:∠ABC=∠DBE=60°再根据三角形外角性质即可得到∠ADF+∠CEG=60°+60°=120°进而得出∠CEG=50°再根据三角形内角和定理即可得到△C解析:500【分析】连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,再根据三角形外角性质,即可得到∠ADF+∠CEG=60°+60°=120°,进而得出∠CEG=50°,再根据三角形内角和定理,即可得到△CEG中,∠CGE=180°-50°-80°=50°.【详解】如图,连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,∵∠ADF是△BDB'的外角,∠CEG是△BEB'的外角,∴∠ADF+∠CEG=60°+60°=120°,又∵∠ADF=70°,∴∠CEG=50°,又∵∠C=80°,∴△CEG中,∠CGE=180°-50°-80°=50°,故答案为50°.【点睛】本题考查了翻折变换的性质、三角形外角的性质以及三角形内角和定理的运用;熟练掌握翻折变换的性质,并能进行推理计算是解决问题的关键.18.①③【分析】依次分析判断即可得到答案【详解】①在同一平面内过一点有且只有一条直线与已知直线垂直故该项正确;②两条平行线被第三条直线所截同旁内角互补故该项错误;③数轴上的每一个点都表示一个实数故该项正解析:①③【分析】依次分析判断即可得到答案.①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点()P x,y 的坐标满足xy 0<,则x 与y 异号,那么点P 在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.19.90°【分析】利用角平分线的性质和三角形的内角和定理解答即可【详解】解:∵BDBE 分别是∠B 的角平分线和外角平分线∴∠DBE=×180°=90°∴∠D+∠E=180°-∠DBE=180°-90°=9解析:90°.【分析】利用角平分线的性质和三角形的内角和定理解答即可.【详解】解:∵BD ,BE 分别是∠B 的角平分线和外角平分线,∴∠DBE=12×180°=90°, ∴∠D+∠E=180°-∠DBE=180°-90°=90°.故答案为:90°.【点睛】本题主要考查了角平分线的性质和三角形的内角和定理,熟练掌握定理是解答此题的关键.20.125【分析】利用平角的定义可得由角平分线的性质易得由三角形的内角和定理可得结果【详解】解:平分平分故答案为:125【点睛】本题主要考查了角平分线的性质和三角形的内角和定理熟练运用定理是解答此题的关键 解析:125【分析】利用平角的定义可得180********ACDBCE DCE ,由角平分线的性质易得11()1105522OABOBA DAC CBE ,由三角形的内角和定理可得结果. 【详解】解:40DCE , 180********ACDBCE DCE , DACD ,EBCE ∠=∠, 221802140220DACCBE , 110DAC CBE ,AO平分DAC∠,BO平分EBC∠,∴11()1105522OAB OBA DAC CBE,180()18055125O OAB OBA,故答案为:125.【点睛】本题主要考查了角平分线的性质和三角形的内角和定理,熟练运用定理是解答此题的关键.三、解答题21.(1)130°;(2)125°;(3)135°;(4)1902A ︒+∠.【分析】(1)依据∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC的度数;(2)依据∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC的度数;(3)依据∠A=90°,可得∠ABC+∠ACB的度数,依据∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC的度数;(4)根据三角形的内角和定理可得∠ABC+∠ACB的度数,依据∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC=90°+12∠A.【详解】解:如下图所示,(1)∵∠ABC=40°,∠ACB=60°,∠ABC和∠ACB的平分线相交于点P,∴∠2+∠4=20°+30°=50°,∴△BCP中,∠P=180°-50°=130°,故答案为:130°;(2)∵∠ABC+∠ACB=110°,∠ABC和∠ACB的平分线相交于点P,∴∠2+∠4=12×110°=55°,∴△BCP中,∠P=180°-55°=125°,故答案为:125°;(3)∵∠A=90°,∴∠ABC+∠ACB=90°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×90°=45°, ∴△BCP 中,∠P=180°-45°=135°,故答案为:135°;(4)∵∠ABC+∠ACB=180°-∠A ,∠ABC 和∠ACB 的平分线相交于点P , ∴124(180)2A ∠+∠=⨯︒-∠, ∴△BCP 中,11180(180)9022P A A =︒-⨯︒-∠=︒+∠∠. 故答案为:1902A ︒+∠. 【点睛】 本题主要考查了三角形内角和定理以及角平分线的定义的运用,解题时注意:三角形内角和是180°.22.110°【分析】利用翻折变换的性质以及三角形内角和定理求出∠BDE ,∠A′DE ,即可解决问题.【详解】∵∠A +∠B +∠C =180°,∠A =20°,∠C =125°,∴∠B =35°,∵DE ∥BC ,∴∠ADE =∠B =35°,∠BDE +∠B =180°,∴∠BDE =180−∠B =180°−35°=145°,∵△ADE 沿DE 折叠成△A′DE ,∴∠A′DE =∠ADE =35°,∴∠BDA′=∠BDE−∠A′DE =145°−35°=110°.【点睛】本题考查三角形内角和定理,翻折变换的性质以及平行线的性质,解题的关键是熟练掌握翻折变换的性质,属于中考常考题型.23.(1)三角形的外角性质;(2)180,三角形内角和定理【分析】(1)在△ACD 中,利用三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和计算即可;(2)在△BFD 中,利用三角形的内角和定理计算即可.【详解】(1)∵∠BDC=∠A+∠ACD (三角形的外角性质),∴∠BDC=62°+35°=97°(等量代换),故答案为:三角形的外角性质;(2)∵∠BFD+∠BDC+∠ABE=180°(三角形内角和定理),∴∠BFD=180°-∠BDC-∠ABE (等式的性质),=180°-97°-20°(等量代换)=63°;故答案为:180°,三角形内角和定理.【点睛】本题主要考查了三角形的外角性质与三角形的内角和定理,熟记性质与定理是解题的关键.24.∠DAC =20°,∠BOA =125°.【分析】在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,继而根据AE ,BF 是角平分线可得∠BAO 、∠ABO ,最后在△ABO 中根据内角和定理可得答案.【详解】∵AD 是BC 上的高,∴∠ADC =90°,又∵∠C =70°,∴∠DAC =90°﹣∠C =20°,∵∠BAC =50°,AE 平分∠BAC ,∴∠ABC =180°﹣∠BAC ﹣∠C =60°,∠BAO =12∠BAC =25°, ∵BF 平分∠ABC ,∴∠ABO =12∠ABC =30°, ∴∠AOB =180°﹣∠ABO ﹣∠BAO =180°﹣30°﹣25°=125°.【点睛】本题主要考查三角形内角和定理,熟练掌握三角形内角和是180°和三角形高线、角平分线的定义是解题的关键.25.①//AB CD ;②对顶角相等;③等量代换;④//AD BC ;⑤两直线平行,同位角相等;⑥ADE ∠A =∠;⑦//AB CD ;⑧内错角相等,两直线平行【分析】先根据同位角相等,两直线平行,判定AD ∥BC ,进而得到∠ADE=∠C ,再根据内错角相等,两直线平行,即可得到AB ∥CD .【详解】猜想:AB 与CD 的位置关系是AB ∥CD .证明:∵∠1=∠2(已知)∠1=∠AGH (对顶角相等)∴∠2=∠AGH (等量代换)∴AD ∥BC (同位角相等,两直线平行)∴∠ADE=∠C (两直线平行,同位角相等)∵∠A=∠C (已知)∴∠ADE=∠A (等量代换)∴AB ∥CD (内错角相等,两直线平行)故答案为:①//AB CD ;②对顶角相等;③等量代换;④//AD BC ;⑤两直线平行,同位角相等;⑥ADE ∠A =∠;⑦//AB CD ;⑧内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.26.(1)见解析;(2)见解析【分析】(1)根据同位角相等证得//DG BC ,根据垂直得到同位角相等进而得到//FE DC ,然后根据平行线的性质,利用等量代换即可证明;(2)根据90CDB ∠=︒,得到190ADG ∠+∠=︒,结合(1)中结论12∠=∠和1DCB ∠=∠,利用等量代换即可证明.【详解】(1)∵AGD ACB ∠=∠∴//DG BC∴1DCB ∠=∠∵EF AB ⊥,CD AB ⊥∴//FE DC∴2DCB =∠∠∴12∠=∠(2)由(1)得1DCB ∠=∠∵CD AB ⊥∴90CDB ∠=︒∴190ADG ∠+∠=︒又∵1DCB ∠=∠∴90BCD ADG ∠+∠=︒【点睛】本题考查了平行的判定和性质,等量代换,熟练掌握平行线的判定和性质是本题的关键.。

2022年北师大版第七章平行线的证明单元检测题含答案

2022年北师大版第七章平行线的证明单元检测题含答案

北师大版八年级上册第七章平行线的证明单元检测题一、选择题(每小题3分,共30分)1.下列语句中,是命题的是()A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连接A,B两点2.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是()A.25°B.35°C.50°D.65°,第2题图),第3题图),第4题图),第5题图)3.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于() A.90°B.100°C.130°D.180°4.如图,已知△ABC中,点D在AC上,延长BC至E,连接DE,则下列结论不成立的是() A.∠DCE>∠ADB B.∠ADB>∠DBC C.∠ADB>∠ACB D.∠ADB>∠DEC5.如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2等于()A.50°B.60°C.65°D.90°6.如图,已知直线AB∥CD,BE平分∠ABC,且BE交CD于点D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°7.如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是()A.84°B.106°C.96°D.104°,第6题图),第7题图),第9题图),第10题图)8.适合条件∠A=12∠B=13∠C的三角形ABC是()A.锐角三角形 B. 直角三角形C.钝角三角形D.都有可能9.如图,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合.若∠A=75°,则∠1+∠2等于() A.150° B. 210°C.105°D.75°10.已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于() A.30° B. 35°C.40°D.45°二、填空题(每小题3分,共24分)11.命题“对顶角相等”的条件是____,结论是___.12.如图,DAE是一条直线,DE∥BC,则x=____.,第12题图),第13题图),第14题图)13.如图,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是____.14.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠ABD=____,∠CED=____.15.已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=____.,第15题图),第16题图),第18题图)16.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为____.17.已知等腰三角形的一腰上的高与另一腰的夹角为40°,则这个等腰三角形的顶角为____.18.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=___度.三、解答题(共66分)19.(8分)如图,∠C=∠1,∠2和∠D互余,BE⊥FD,求证:AB∥CD.20.(8分)一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.21.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.22.(10分)如图,△ABC中,∠BAC=90°,∠ABC=∠ACB,又∠BDC=∠BCD,且∠1=∠2,求∠3的度数.23.(10分)如图,△ABC中,D,E,F分别为三边BC,BA,AC上的点,∠B=∠DEB,∠C=∠DFC.若∠A=70°,求∠EDF的度数.24.(10分)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行证明.25.(12分)【问题】如图①,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,则∠BEC=__130°__;若∠A=n°,则∠BEC=__90°+12n°__.【探究】(1)如图②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB.若∠A=n°,则∠BEC=____;(2)如图③,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图④,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)答案:一、选择题(每小题3分,共30分)1---5 CABAC 6—10 CCBAB二、填空题(每小题3分,共24分)11.命题“对顶角相等”的条件是__两个角是对顶角__,结论是__相等__.12.如图,DAE是一条直线,DE∥BC,则x=__64°__.,第12题图),第13题图),第14题图)13.如图,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是__50°__.14.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠ABD=__70°__,∠CED=__110°__.15.已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=__120°__.,第15题图),第16题图),第18题图)16.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为__22°__.17.已知等腰三角形的一腰上的高与另一腰的夹角为40°,则这个等腰三角形的顶角为__50°或130°__.18.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=__10__度.三、解答题(共66分)19.(8分)如图,∠C=∠1,∠2和∠D互余,BE⊥FD,求证:AB∥CD.解:∵∠C=∠1,∴CF∥BE,又BE⊥FD,∴CF⊥FD,∴∠CFD=90°,则∠2+∠BFD =90°,又∠2+∠D=90°,∴∠D=∠BFD,则AB∥CD20.(8分)一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.解:50°,因为∠1=130°,所以与∠1相邻的内角为50°,所以∠3-∠2=50°21.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.解:∵BE∥DF,∴∠ABE=∠D,又AB=FD,∠A=∠F,∴△ABE≌△FDC(ASA),∴AE=FC22.(10分)如图,△ABC中,∠BAC=90°,∠ABC=∠ACB,又∠BDC=∠BCD,且∠1=∠2,求∠3的度数.解:由∠BAC=90°,∠ABC=∠ACB易求∠ACB=45°,设∠1=x,可得∠BCD=∠2+45°=x+45°=∠3,∴x+(x+45°)+(x+45°)=180°,x=30,则∠3=x+45°=75°23.(10分)如图,△ABC中,D,E,F分别为三边BC,BA,AC上的点,∠B=∠DEB,∠C=∠DFC.若∠A=70°,求∠EDF的度数.解:∵∠A+∠B+∠C=180°,∴∠B+∠C=110°,∵∠B=∠DEB,∠C=∠DFC,∴∠B+∠DEB+∠C+∠DFC=220°,∵∠B+∠DEB+∠C+∠DFC+∠EDB+∠FDC=360°,∴∠EDB+∠FDC=140°,即∠EDF=180°-140°=40°24.(10分)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行证明.解:∠AED=∠C.∵∠1+∠2=180°,∠1+∠EFD=180°,∴∠2=∠EFD,∴AB∥EF,∴∠3=∠ADE,又∵∠3=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠AED=∠C25.(12分)【问题】如图①,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,则∠BEC=__130°__;若∠A=n°,则∠BEC=__90°+12n°__.【探究】(1)如图②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB.若∠A=n°,则∠BEC=__60°+23n°__;(2)如图③,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图④,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)解:(2)∠BOC=12∠A.理由:∠BOC=∠2-∠1=12∠ACD-12∠ABC=12(∠ACD-∠ABC)=12∠A(3)∠BOC=90°-12∠A第一章勾股定理章末测试卷一、选择题(每题3分,共36分)1.(3分)如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.1942.(3分)分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.53.(3分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形4.(3分)下列数据中是勾股数的有()组(1)3,5,7 (2)5,15,17 (3),2,2.5 (4)7,24,25 (5)10,24,26.A.1 B.2 C.3 D.45.(3分)已知直角三角形的两直角边之比是3:4,周长是36,则斜边是()A.5 B.10 C.15 D.206.(3分)若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm7.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形8.(3分)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.9.(3分)下列三角形一定不是直角三角形的是()A.三角形的三边长分别为5,12,13B.三角形的三个内角比为1:2:3C.三角形的三边长之比为1:2:3D.三角形的两内角互余10.(3分)放学以后,小明和小华从学校分开,分别向北和东走回家,若小明和小华行走的速度都是50米/分,小明用10分到家,小华用24分到家,小明和小华家的距离为()A.600米B.800米C.1000米D.1300米11.(3分)下面说法正确的是()A.在Rt△ABC中,a2+b2=c2B.在Rt△ABC中,a=3,b=4,那么c=5C.直角三角形两直角边都是5,那么斜边长为10D.直角三角形中,斜边最长12.(3分)在△ABC中,AB=12cm,AC=9cm,BC=15cm,下列关系成立的是()A.∠B+∠C>∠A B.∠B+∠C=∠A C.∠B+∠C<∠A D.以上都不对二、填空题(每空3分,共12分)13.(3分)一长为13m的木梯,架在高为12m的墙上,这时梯脚与墙的距离是m.14.(3分)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.15.(3分)一根电线杆在一次台风中于地面3米处折断倒下,杆顶端落在离杆底端4米处,电线杆在折断之前高米.16.(3分)如果直角三角形的三条边分别为4、5、a,那么a2的值等于.三、解答题(共52分)17.(8分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?18.(8分)求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.19.(8分)某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?20.(10分)一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?21.(10分)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,求线段CN长.22.(8分)如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?参考答案一、选择题(每题3分,共36分)1.(3分)如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194【考点】勾股定理.【专题】换元法.【分析】由图可知在直角三角形中,已知斜边和一直角边,求另一直角边的平方,用勾股定理即可解答.【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选C.【点评】此题比较简单,关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.2.(3分)分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.(3分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形【考点】勾股定理的逆定理;三角形内角和定理.【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.故选B.【点评】本题考查了直角三角形的判定.4.(3分)下列数据中是勾股数的有()组(1)3,5,7 (2)5,15,17 (3),2,2.5 (4)7,24,25 (5)10,24,26.A.1 B.2 C.3 D.4【考点】勾股数.【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:(1)3,5,7 不是勾股数,因为32+52≠72;(2)5,15,17 不是勾股数,因为52+152≠172;(3),2,不是勾股数,因为,2,不是正整数;(4)7,24,25 是勾股数,因为72+242=252,且7、24、25是正整数;(5)10,24,26是勾股数,因为102+242=262,且10,24,26是正整数.故选B.【点评】本题考查了勾股数的概念:满足a2+b2=c2的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:、6、满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…5.(3分)已知直角三角形的两直角边之比是3:4,周长是36,则斜边是()A.5 B.10 C.15 D.20【考点】勾股定理.【分析】设直角三角形的两直角边分别为3k,4k,则斜边为5k,列出方程求出k,即可解决问题.【解答】解:设直角三角形的两直角边分别为3k,4k,则斜边为5k.由题意3k+4k+5k=36,解得k=3,所以斜边为5k=15.故选C.【点评】本题考查勾股定理、一元一次方程等知识,解题的关键是灵活于勾股定理解决问题,学会设未知数列方程解决问题,属于中考常考题型.6.(3分)若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】可以先作出BC边上的高AD,根据等腰三角爱哦形的性质可得BD的长,在Rt△ADB中,利用勾股定理就可以求出高AD.【解答】解:作AD⊥BC于D,∴BD=BC=8cm,∴AD==6cm,故选:D.【点评】本题主要考查了勾股定理及等腰三角形的性质,关键是掌握勾股定理和等腰三角形三线合一的性质.7.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理,再判断其形状.【解答】解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故选:C.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理判定.8.(3分)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【考点】勾股定理.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积9.(3分)下列三角形一定不是直角三角形的是()A.三角形的三边长分别为5,12,13B.三角形的三个内角比为1:2:3C.三角形的三边长之比为1:2:3D.三角形的两内角互余【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理以及直角三角形的定义一一判断即可.【解答】解:A、正确.∵52+122=132,∴三角形为直角三角形.B、正确.∵三角形的三个内角比为1:2:3,∴三个内角分别为30°,60°,90°,∴三角形是直角三角形.C、错误.∵12+22≠32,∴三角形不是直角三角形.D、正确.∵三角形的两内角互余,∴第三个角是90°,∴三角形是直角三角形.故选C.【点评】本题考查勾股定理的逆定理、三角形的内角和等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.10.(3分)放学以后,小明和小华从学校分开,分别向北和东走回家,若小明和小华行走的速度都是50米/分,小明用10分到家,小华用24分到家,小明和小华家的距离为()A.600米B.800米C.1000米D.1300米【考点】勾股定理的应用.【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,∵小明用10分到家,小华用24分到家,∴OA=10×50=500(米),OB=24×50=1200(米),∴AB==1300(米).答:小明和小华家的距离为1300米.故选:D.【点评】本题考查的是勾股定理的应用,熟知在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.11.(3分)下面说法正确的是()A.在Rt△ABC中,a2+b2=c2B.在Rt△ABC中,a=3,b=4,那么c=5C.直角三角形两直角边都是5,那么斜边长为10D.直角三角形中,斜边最长【考点】勾股定理.【分析】利用直角三角形勾股定理进行解题.【解答】解:A,B:直角三角形直角是哪个,未知,故不能得出a2+b2=c2,c=5 C:斜边长为5;D:由勾股定理知显然正确.故选D.【点评】考查了直角三角形相关知识以及勾股定理的应用.12.(3分)在△ABC中,AB=12cm,AC=9cm,BC=15cm,下列关系成立的是()A.∠B+∠C>∠A B.∠B+∠C=∠A C.∠B+∠C<∠A D.以上都不对【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行分析,从而得到三角形的形状,则不难求得其各角的关系.【解答】解:因为122+92=152,所以三角形是直角三角形,则∠B+∠C=∠A.故选B.【点评】本题考查了直角三角形的判定及勾股定理逆定理的应用.二、填空题(每空3分,共12分)13.(3分)一长为13m的木梯,架在高为12m的墙上,这时梯脚与墙的距离是5m.【考点】勾股定理的应用.【分析】根据题意可知,梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解答】解:∵梯子、地面、墙刚好形成一直角三角形,∴梯脚与墙角的距离==5(m).故答案为:5.【点评】本题考查的是勾股定理在实际生活中的应用,正确应用勾股定理是解题关键.14.(3分)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【考点】勾股定理.【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=,OC=,OD=∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.15.(3分)一根电线杆在一次台风中于地面3米处折断倒下,杆顶端落在离杆底端4米处,电线杆在折断之前高8米.【考点】勾股定理的应用.【分析】先根据勾股定理求出大树折断部分的高度,再根据大树的高度等于折断部分的长与未断部分的和即可得出结论.【解答】解:由勾股定理得斜边为=5米,则原来的高度为3+5=8米.即电线杆在折断之前高8米.故答案为8.【点评】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术的算法求解.16.(3分)如果直角三角形的三条边分别为4、5、a,那么a2的值等于9或41.【考点】勾股定理.【分析】此题有两种情况,一是当这个直角三角形的斜边的长为5时;二是当这个直角三角形两条直角边的长分别为4和5时,由勾股定理分别求出此时的a2值即可.【解答】解:当这个直角三角形的斜边的长为5时,a2=52﹣42=9;当这个直角三角形两条直角边的长分别为4和5时,a2=52+42=41.故a的值为9或41.故答案为:9或41.【点评】本题考查勾股定理的知识,解答此题的关键是直角三角形的斜边没有确定,所以要进行分类讨论,注意不要漏解,难度一般.三、解答题(共52分)17.(8分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?【考点】勾股定理的应用.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480m,答:该河流的宽度为480m.【点评】本题考查了勾股定理的应用,是实际问题但比较简单.18.(8分)求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.【考点】勾股定理.【分析】(1)首先利用勾股定理计算出BC的长,进而得到圆的半径BO长,再利用半圆的面积减去直角三角形面积即可;(2)首先计算出AC的长,再利用勾股定理计算出BC的长,然后利用矩形的面积公式计算即可.【解答】解:(1)∵AB=8,AC=6,∴BC===10,∴BO=5,∵S=AB×AC=×8×6=24,△ABCS半圆=π×52=,=﹣24;∴S阴影(2)∵AD=14,CD=2,∴AC=12,∵AB=13,∴CB===5,=2×5=10.∴S阴影【点评】此题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.19.(8分)某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?【考点】勾股定理的应用.【专题】探究型.【分析】过点A作AF⊥CE于点F,由AB=5m,EC=29m可求出EF的长,再由BC=10m 可知AE=BC=10m,在Rt△AEF中利用勾股定理即可求出AE的长.【解答】解:过点A作AF⊥CE于点F,∵AB⊥BC,EC⊥BC,∴四边形ABCF是矩形,∵AB=5m,EC=29m,∴EF29﹣5=24m,∵BC=10m,∴AE=BC=10m,在Rt△AEF中,∵AF=10m,EF=24m,∴AE===26m.答:彩带AE的长是23米.【点评】本题考查的是勾股定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(10分)一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?【考点】勾股定理的逆定理.【分析】由勾股定理逆定理可得△ACD与△ABC均为直角三角形,进而可求解其面积.【解答】解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°∴S 四边形ABCD =S △ABC +S △ACD =×3×4+×5×12=6+30=36.【点评】熟练掌握勾股定理逆定理的运用,会求解三角形的面积问题.21.(10分)如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,求线段CN 长.【考点】翻折变换(折叠问题).【分析】根据折叠的性质,只要求出DN 就可以求出NE ,在直角△CEN 中,若设CN=x ,则DN=NE=8﹣x ,CE=4cm ,根据勾股定理就可以列出方程,从而解出CN 的长.【解答】解:设CN=xcm ,则DN=(8﹣x )cm ,由折叠的性质知EN=DN=(8﹣x )cm ,而EC=BC=4cm ,在Rt △ECN 中,由勾股定理可知EN 2=EC 2+CN 2,即(8﹣x )2=16+x 2,整理得16x=48,解得:x=3.即线段CN 长为3.【点评】此题主要考查了翻折变换的性质,折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.22.(8分)如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?【考点】轴对称-最短路线问题.【专题】计算题;作图题.【分析】此题的关键是确定点M的位置,需要首先作点A的对称点A′,连接点B和点A′,交l于点M,M即所求作的点.根据轴对称的性质,知:MA+MB=A′B.根据勾股定理即可求解.【解答】解:作A关于CD的对称点A′,连接A′B与CD,交点CD于M,点M即为所求作的点,则可得:DK=A′C=AC=10千米,∴BK=BD+DK=40千米,∴AM+BM=A′B==50千米,总费用为50×3=150万元.【点评】此类题的重点在于能够确定点M的位置,再运用勾股定理即可求解.。

八年级上册数学单元测试卷-第七章 平行线的证明-北师大版(含答案)

八年级上册数学单元测试卷-第七章 平行线的证明-北师大版(含答案)

八年级上册数学单元测试卷-第七章平行线的证明-北师大版(含答案)一、单选题(共15题,共计45分)1、一个三角形三个内角的度数之比为2∶3∶7,这个三角形一定是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形2、如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB等于()A.40°B.75°C.85°D.140°3、一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB 上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为()度.A.85B.75C.90D.1004、如图,△ABC内接于⊙O,CD是⊙O的直径,∠ABC=20°,则∠ACD的度数是( )A.40°B.50°C.60°D.70°5、如图,在△ABC中,点I为△ABC的内心,点D在BC上,且ID⊥BC,若∠ABC=44°,∠C=56°,则∠AID的度数为()A.174°B.176°C.178°D.180°6、在△ABC中,若∠A=∠B=40°,则∠C等于()A.40°B.60°C.80°D.100°7、如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3=()A.180°B.360°C.540°D.无法确定8、如图,△ABC中,∠A = 70°,⊙O在△ABC的三条边上所截得的弦长都相等,则∠BOC 的度数是();A.140°B.135°C.130°D.125°9、如图,已知AF平分∠BAC,过F作FD⊥BC,若∠B比∠C大20度,则∠F的度数是()A.10°B.15°C.20°D.不能确定10、如下图,在△ABC中,AD平分外角∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A.50°B.65°C.80°D.95°11、如图,将△ABC绕着点C按顺时针方向旋转20°,点B落在点E位置,点A落在点D 位置,若AC⊥DE,则∠BAC的度数为()A.20°B.50°C.70°D.60°12、如图,将纸片沿折叠,点A落在点F处,已知,则的度数等于()A.40°B.50°C.60°D.70°13、下列条件中,不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A ∠B= ∠CC.∠B=50°,∠C=40° D.a=5,b=12,c=1314、如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠ACD 等于()A.80°B.60°C.40°D.20°15、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个结论,你发现的结论是()A.2∠A=∠1-∠2B.3∠A=2(∠1-∠2)C.3∠A=2∠1-∠2D.∠A=∠1-∠2二、填空题(共10题,共计30分)16、如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=________ .17、一列数a1,a2,a3…满足条件a1=,a n=(n≥2,且n为整数),则a2019=________.18、如图,在直角坐标系中,一动点从出发向上移动一个单位至处,然后向左移动2个单位至处,再向下移动3个单位至处,再向右移动4个单位至处,按此继续移动下去,设,n为正整数,则________ .19、命题“等腰三角形两底角的平分线相等”的逆命题是________20、定理“等腰三角形的两个底角相等”的逆定理是:________.21、如图,在菱形纸片ABCD中,,将菱形纸片翻折,使点A落在CD 的中点E处,折痕为FG,点分别在边上,则的值为________ .22、将量角器按如图所示的方式放置在三角形纸片上,使点C在半圆圆心上,点B在半圆上,边AB、AC分别交圆于点E、F,点B、E、F对应的读数分别为160°、70°、50°,则∠A的度数为________.23、如图,在△ABC中,∠BAC=70°,将△ABC绕点A逆时针旋转,得到△AB'C',连接C'C.若C'C∥AB,则∠BAB'=________°.24、在中,,点D在边上,且,则的度数为________25、在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B、∠C越来越大.若∠A减小α,∠B增加β,∠C增加γ,则α、β、γ三者之间的等量关系是________.三、解答题(共5题,共计25分)26、如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF过点O,且平行于BC,求∠BOC的度数.27、如图所示,在△ABC中,AB=AC=CD,AD=DB,求∠BAC的度数.28、如图所示,已知△ABF≌△DEC,说明AC∥DF成立的理由.29、如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.30、已知:如图,BD平分∠ABC,AD∥BC.求证:AB=AD.参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、D5、A6、D8、D9、A10、C11、C12、B13、A14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

北师大版初中数学八年级上册《第7章 平行线的证明》单元测试卷(含答案解析

北师大版初中数学八年级上册《第7章 平行线的证明》单元测试卷(含答案解析

北师大新版八年级上学期《第7章平行线的证明》单元测试卷一.选择题(共15小题)1.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个2.同一平面内的两条线段,下列说法正确的是()A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交3.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直4.下列说法正确的是()A.不相交的两条射线一定平行B.在同一平面内,过一点有且只有一条直线与这条直线平行C.在同一平面内,过一点有且只有一条直线与这条直线垂直D.直线外一点与直线上任一点的连线段叫做点到直线的距离5.如图,直线l3⊥l4,且∠1=∠4,则下列判断正确的是()A.l1∥l2B.∠1+∠4=∠2+∠3C.∠1+∠4=90°D.∠2=∠46.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°7.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个8.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°9.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°10.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°11.下列命题中,是真命题的是()A.任何数都有平方根B.只有正数才有平方根C.负数没有立方根D.存在算术平方根等于本身的数12.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A.a=2,b=3B.a=﹣3,b=2C.a=3,b=﹣2D.a=﹣2,b=3 13.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有()A.0个B.1个C.2个D.3个14.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多15.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15B.20C.25D.30二.填空题(共15小题)16.平面上不重合的四条直线,可能产生交点的个数为个.17.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)18.已知:a∥b,b∥c,则a∥c.理由是.19.已知直线a∥b,b∥c,则直线a、c的位置关系是.20.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是.21.如图,△ABC中,∠ACB=90°,沿CD边折叠△CBD,使点B恰好落在AC边上点E处,若∠A=32°;则∠BDC=°.22.在△ABC中,∠B=58°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.23.如图,在△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°,则∠DAE=.24.如图,△ABC沿直线AB向下翻折得到△ABD,若∠ABC=25°,∠ADB=110°,则∠DAC的度数是.25.如图,△ABE和△ACD是△ABC分别以AB、AC为对称轴翻折180°形成的,若∠1:∠2:∠3=29:4:3,则∠α的度数为.26.“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为.27.举反例说明命题对于“对于任意实数x,代数式x2﹣1的值总是正数”是假命题,你举的反例是x=(写出一个x的值即可).28.下列命题:①若a2=b2,则a=b;②点(﹣2,1)关于y轴的对称点为(2,1);③两组对边分别相等的四边形是平心四边形,其中真命题有(填写序号).29.重庆一中乘持“尊重自由、激发自觉”的教育理念,开展了丰富多彩的第二课堂及各种有趣有益的竟赛活动.其中“小棋王”争霸赛得到同学们的涵跃参与,经过初选、复试最后十位同学进入决赛这十位同学进行单循环比赛(每两人均赛一局),胜一局得2分、平局得1分、负一局得0分,最后按照每人的累计得分的多少进行排名,得分最高者就是第一名,以此类推.赛完后发现每人最后得分均不相同,第一名和第二名的同学均没负一局,他们两人的得分之和比第三名同学多20分,第四名同学的得分刚好是最后四名同学得分的总和,则第五名的同学得分为分.30.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2min;②洗菜3min;③准备面条及佐料2min;④用锅把水烧开7min;⑤用烧开的水煮面条和菜要3min.以上各道工序,除④外,一次只能进行一道工序.小敏要将面条煮好,最少需要min.三.解答题(共20小题)31.填空并完成以下证明:已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.证明:FH⊥AB(已知)∴∠BHF=.∵∠1=∠ACB(已知)∴DE∥BC()∴∠2=.()∵∠2=∠3(已知)∴∠3=.()∴CD∥FH()∴∠BDC=∠BHF=.°()∴CD⊥AB.32.如图,已知直线AB、CD被直线EF所截,FG平分∠EFD,∠1=∠2=80°,求∠BGF的度数.解:因为∠1=∠2=80°(已知),所以AB∥CD()所以∠BGF+∠3=180°()因为∠2+∠EFD=180°(邻补角的性质).所以∠EFD=.(等式性质).因为FG平分∠EFD(已知).所以∠3=∠EFD(角平分线的性质).所以∠3=.(等式性质).所以∠BGF=.(等式性质).33.如图,在四边形ABCD中,∠A=∠B,CB=CE.求证:CE∥AD.34.如图,已知∠1=∠2求证:a∥b.35.已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(),∴∠2=∠(等量代换),∴DB∥EC(),∴∠DBC+∠C=180°(两直线平行,),∵∠C=∠D(),∴∠DBC+ =180°(等量代换),∴DF∥AC(,两直线平行),∴∠A=∠F()36.(1)如图(a),如果∠B+∠E+∠D=360°,那么AB、CD有怎样的关系?为什么?解:过点E作EF∥AB ①,如图(b),则∠ABE+∠BEF=180°,()因为∠ABE+∠BED+∠EDC=360°()所以∠FED+∠EDC=°(等式的性质)所以FE∥CD ②()由①、②得AB∥CD ().(2)如图(c),当∠1、∠2、∠3满足条件时,有AB∥CD.(3)如图(d),当∠B、∠E、∠F、∠D满足条件时,有AB∥CD.37.填空,如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.证明:∵∠1=∠2(已知)又∠1=∠DMN ()∴∠2=∠DMN(等量代换)∴DB∥EC ()∴∠DBC+∠C=180°()∵∠C=∠D(已知)∴∠DBC+ =180°(等量代换)∴DF∥AC ()∴∠A=∠F ()38.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.39.如图,在△ABC中,AD⊥BC于D,AE平分EBAC.(1)若∠B=70°,∠C=40°,求∠DAE的度数.(2)若∠B﹣∠C=30°,则∠DAE=.(3)若∠B﹣∠C=α(∠B>∠C),求∠DAE的度数(用含α的代数式表示)40.如图,在△ABC中,∠1=∠2,∠3=∠4,∠BAC=54°,求∠DAC的度数.41.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D.(1)如图①,当点F与点A重合,且∠C=50°,∠B=30°时,求∠EFD的度数,并直接写出∠EFD与(∠C﹣∠B)之间的数量关系.(2)如图②,当点F在线段AE上(不与点A重合),∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)当点F在△ABC外部时,在图③中画出符合题意的图形,并直接写出∠EFD 与∠C﹣∠B的数量关系.42.如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F.43.如图所示,在△ABC中,BO、CO是角平分线.(1)∠ABC=50°,∠ACB=60°,求∠BOC的度数,并说明理由.(2)题(1)中,如将“∠ABC=50°,∠ACB=60°”改为“∠A=70°”,求∠BOC的度数.(3)若∠A=n°,求∠BOC的度数.44.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论.小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图,△ABC.求证:∠A+∠B+∠C=180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB=180°(平角定义),∴∠A+∠B+∠ACB=180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.45.在数学实践课上,老师在黑板上画出如下的图形(其中点B、F、C、E在同一条直线上),并写出四个条件:①AB=DE,②∠1=∠2.③BF=EC,④∠B=∠E,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.(1)写出所有的真命题.(用序号表示题设、结论)(2)请选择一个给予证明.46.如图,∠ABC的两边分别平行于∠DEF的两条边,且∠ABC=45°.(1)图1中:∠DEF=,图2中:∠DEF=;(2)请观察图1、图2中∠DEF分别与∠ABC有怎样的关系,请你归纳出一个命题.47.如图,在△ABC和△DCB中,AC与BD交于点E,现有三个条件:①AB=DC;②∠A=∠D,③∠1=∠2,请你从三个条件中选出两个作为条件,另一个作为结论,组成一个真命题,并给予证明.(1)条件是;结论是(填序号);(2)证明.48.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,请你根据表中数据猜一下2号,5号,8号,9号学生哪一个进入30秒跳绳决赛.说明你的理由.49.四个足球队进行单循环比赛,规定胜一场得3分,平一场得1分,负一场得0分,有一个队一场都没输过,排名却倒数第一,你觉得可能吗?如果可能,请举出这情况何时出现;如果不可能,请说明理由.50.我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.因为甲先说,你认为谁会获胜?请你分析获胜策略、推理说明获胜的道理.北师大新版八年级上学期《第7章平行线的证明》单元测试卷参考答案与试题解析一.选择题(共15小题)1.下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内的两直线位置关系只有两种:平行或相交.A.1个B.2个C.3个D.4个【分析】①根据两点之间线段最短判断.②对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.③根据平行公理进行判断.④根据垂线的性质进行判断.⑤距离是指的长度.⑥根据在同一平面内,两条不重合的直线的位置关系.【解答】解:①两点之间的所有连线中,线段最短,故①正确.②相等的角不一定是对顶角,故②错误.③经过直线外一点有且只有一条直线与已知直线平行,故③错误.④平面内过一点有且只有一条直线与已知直线垂直,故④错误.⑤两点之间的距离是两点间的线段的长度,故⑤错误.⑥在同一平面内,两直线的位置关系只有两种:相交和平行,故⑥正确.综上所述,正确的结论有2个.故选:B.【点评】本题主要考查对平行线的定义,两点间的距离,相交线等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.2.同一平面内的两条线段,下列说法正确的是()A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交【分析】根据线段是任意两点之间的距离,它有长度,故同一平面内的两条线段可以既不平行又不相交.【解答】解:根据线段的定义得出:同一平面内的两条线段,可以既不平行又不相交,故选:C.【点评】此题主要考查了线段的定义以及线段之间的位置关系,利用线段定义得出是解题关键.3.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直【分析】根据平行公理和相交线、垂线的定义利用排除法求解.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;B、应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项错误;C、两条直线相交,有且只有一个交点,故本选项正确;D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,故本选项正确.故选:B.【点评】本题主要考查公理定义,熟练记忆公理和定义是学好数学的关键.4.下列说法正确的是()A.不相交的两条射线一定平行B.在同一平面内,过一点有且只有一条直线与这条直线平行C.在同一平面内,过一点有且只有一条直线与这条直线垂直D.直线外一点与直线上任一点的连线段叫做点到直线的距离【分析】根据射线在一直线上课判断A;根据平行公理的推论课判断B;根据点到直线的距离定义可判断D;根据垂线的性质可判断C.【解答】解:A、当两射线在一直线上时就不平行,故本选项错误;B、过直线外一点有且只有一条直线平行于已知直线,故本选项错误;C、在同一平面内,过一点有且只有一条直线垂直于已知直线,故本选项正确;D、过直线外一点作直线的垂线,这点和垂足之间的线段的长是点到直线的距离,故本选项错误;故选:C.【点评】本题考查了对平行公理及推论,垂线,点到直线的距离等知识点的应用,关键是能根据定理和性质进行判断.5.如图,直线l3⊥l4,且∠1=∠4,则下列判断正确的是()A.l1∥l2B.∠1+∠4=∠2+∠3C.∠1+∠4=90°D.∠2=∠4【分析】利用两直线平行,同位角相等与垂直的定义,对选项一一分析,排除错误答案.【解答】解:A、正确,∵∠1=∠4,∴l1∥l2(同位角相等,两直线平行).B、错误,应为∠1+∠2=∠3+∠4.C、错误,应为∠1+∠2=90°或∠3+∠4=90°.D、错误,应为∠2=∠3.故选:A.【点评】本题此题综合考查了两直线平行,同位角相等的性质和垂直的定义.6.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°【分析】设∠GBC=x,∠DCB=y,在△BFC和△BGC中,根据三角形内角和定理列方程,相加可得:3x+3y的值,即可求得∠A的度数.【解答】解:设∠GBC=x,∠DCB=y,在△BFC中,2x+y=180°﹣120°=60°①,在△BGC中,x+2y=180°﹣102°=78°②,解得:①+②:3x+3y=138°,∴∠A=180°﹣(3x+3y)=180°﹣138°=42°,故选:C.【点评】本题考查了三角形的内角和定理、三等分线的定义,利用整体的思想解决问题比较简便.7.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH ⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,判断出错误;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,∴正确的有①②④,共三个,故选:B.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键8.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠ADE度数为()A.71°B.64°C.38°D.45°【分析】由折叠的性质可求得∠ACD=∠BCD,∠BDC=∠CDE,在△ACD中,利用外角可求得∠BDC,即可解决问题.【解答】解:由折叠可得∠ACD=∠BCD,∠BDC=∠CDE,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠ADE=180°﹣71°﹣71°=38°故选:C.【点评】本题主要考查折叠的性质,掌握折叠前后图形的对应线段和对应角相等是解题的关键.9.如图,BD,CD分别是内角∠ABC和外角∠ACE的平分线,若∠A=70°,则∠D=()A.30°B.35°C.40°D.45°【分析】根据角平分线的定义得到∠DCE=∠ACE,∠DBC=∠ABC,根据三角形的外角的性质计算即可.【解答】解:∵BD,CD分别是∠ABC与外角∠ACE的平分线,∴∠DCE=∠ACE,∠DBC=∠ABC,∵∠ACE﹣∠ABC=∠A=70°,∴∠D=∠DCE﹣∠DBC=∠A=35°,故选:B.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=55°,∠D=15°,则∠P 的度数为()A.15°B.20°C.25°D.30°【分析】延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=(∠A﹣∠D),然后代入数据计算即可得解.【解答】解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=55°,∠D=15°,∴∠P=(55°﹣15°)=20°.故选:B.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线然后整理出∠A、∠D、∠P三者之间的关系式是解题的关键.11.下列命题中,是真命题的是()A.任何数都有平方根B.只有正数才有平方根C.负数没有立方根D.存在算术平方根等于本身的数【分析】根据平方根的定义,结合正数有两个平方根;0的平方根是0;负数没有平方根逐一进行判定即可.【解答】解:A、因负数没有平方根,故任何数都有平方根错误;B、因0的平方根是0,故只有正数才有平方根错误;C、负数有立方根,错误;D、存在算术平方根等于本身的数,即是1和0,正确.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.12.对于命题“若a2>b2,则a>b.”下列关于a,b的值中,能说明这个命题是假命题的是()A.a=2,b=3B.a=﹣3,b=2C.a=3,b=﹣2D.a=﹣2,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=4,b2=9,且3>2,此时不但不满足a2>b2,也不满足a>b不成立故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=2,且﹣2<3,此时满足满足a2>b2,但不能满足a>b,即意味着命题“若a2>b2,则a>b”不能成立,故B选项中a、b的值能说明命题为假命题;在C中,a2=9,b2=4,且3>﹣2,满足“若a2>b2,则a>b”,故C选项中a、b 的值不能说明命题为假命题;在D中,a2=4,b2=9,且﹣2<3,此时不但不满足a2>b2,也不满足a>b不成立,故D选项中a、b的值不能说明命题为假命题;故选:B.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.13.命题:①一个三角形中至少有两个锐角;②垂直于同一条直线的两条直线垂直;③如果两个有理数的积小于0,那么这两个数的和也小于0.其中为真命题的有()A.0个B.1个C.2个D.3个【分析】根据三角形的内角、直线的垂直、有理数进行判断即可.【解答】解:①一个三角形中至少有两个锐角,是真命题;②垂直于同一条直线的两条直线平行,是假命题;③如果两个有理数的积小于0,但这两个数的和不一定小于0,是假命题;故选:B.【点评】此题主要考查了命题与定理,熟练掌握相关的定理是解题关键.14.小柔要榨果汁,她有苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,已知小柔榨果汁时没有使用柳丁,关于她榨果汁时另外两种水果的使用情形,下列叙述何者正确?()A.只使用苹果B.只使用芭乐C.使用苹果及芭乐,且使用的苹果颗数比使用的芭乐颗数多D.使用苹果及芭乐,且使用的芭乐颗数比使用的苹果颗数多【分析】根据三种水果的颗数的关系,设出三种水果的颗数,再根据榨果汁后的颗数的关系,求出榨果汁后,苹果和芭乐的颗数,进而求出苹果,芭乐的用量,即可得出结论.【解答】解:∵苹果、芭乐、柳丁三种水果,且其颗数比为9:7:6,∴设苹果为9x颗,芭乐7x颗,柳丁6x颗(x是正整数),∵小柔榨果汁时没有使用柳丁,∴设小柔榨完果汁后,苹果a颗,芭乐b颗,∵小柔榨完果汁后,苹果、芭乐、柳丁的颗数比变为6:3:4,∴,,∴a=9x,b=x,∴苹果的用量为9x﹣a=9x﹣9x=0,芭乐的用量为7x﹣b=7x﹣x=x>0,∴她榨果汁时,只用了芭乐,故选:B.【点评】此题是推理与论证题目,主要考查了根据比例的关系,比例的性质,求出榨汁后苹果和芭乐的数量是解本题的关键.15.小明、小林和小颖共解出100道数学题,每人都解出了其中的60道,如果将其中只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,那么难题比容易题多多少道()A.15B.20C.25D.30【分析】设容易题有x道,中档题有y道,难题有z道,然后根据题目数量和三人解答的题目数量列出方程组,然后根据系数的特点整理即可得解.【解答】解:设容易题有x道,中档题有y道,难题有z道,由题意得,,①×2﹣②得,z﹣x=20,所以,难题比容易题多20道.故选:B.【点评】此类题注意运用方程的知识进行求解,观察系数的特点巧妙求解更简便.二.填空题(共15小题)16.平面上不重合的四条直线,可能产生交点的个数为0,1,3,4,5,6个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.17.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.【点评】此题主要考查了命题与定理等知识,熟练掌握相关定理是解题关键.18.已知:a∥b,b∥c,则a∥c.理由是平行于同一直线的两条直线平行.【分析】根据平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行即可求解.【解答】解:∵a∥b,a∥c(已知),∴b∥c(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).故答案为平行于同一直线的两条直线平行【点评】本题考查了平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.注意:平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.19.已知直线a∥b,b∥c,则直线a、c的位置关系是平行.【分析】根据平行于同一条直线的两条直线互相平行,可得答案.【解答】解:若直线直线a∥b,b∥c,则直线a、c的位置关系是平行,故答案为:平行.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.20.如图,添加一个条件(不再添加字母),使得AB∥CD,你添加的条件是∠DAB=∠D.【分析】根据平行线的判定定理进行解答即可.【解答】解:添加的条件为:∠DAB=∠D,。

北师大版2020-2021学年八年级数学上册第七章《平行线的证明》单元同步试卷(含答案)

北师大版2020-2021学年八年级数学上册第七章《平行线的证明》单元同步试卷(含答案)

《平行线的证明》单元测试卷时间:90分钟满分:100分一.选择题(每题3分,共36分)1.下列说法正确的是()A.如果两条直线被第三条直线所截,那么内错角必相等B.如果两条直线被第三条直线所截,那么同位角的角平分线必平行C.如果同旁内角互补,那么它们的角平分线必互相垂直D.如果两角的两边分别平行,那么这两个角必相等2.若一个三角形三个内角度数的比为1:2:3,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.妈妈让小明给客人烧水沏茶,洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,放茶叶要用2分钟,给同学打电话要用1分钟.为使客人早点喝上茶,小明最快可在几分钟内完成这些工作?()A.19分钟B.18分钟C.17分钟D.16分钟4.如图,“因为∠1=∠2,所以a∥b”,其中理由依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等,两直线平行5.下列命题中,()是真命题.A.相等的角是对顶角B.9的算术平方根是±3C.垂直于同一条直线的两条直线互相平行D.点A(a,0)在x轴上6.下列说法正确的是()A.相等的两个角是对顶角B.过一点有且只有一条直线与已知直线平行C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.过一点有且只有一条直线与已知直线垂直7.如图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的平分线,则∠ADC的大小为()A.25°B.50°C.65°D.70°8.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=60°,∠B=48°,则∠CDE的大小为()A.72°B.36°C.30°D.189.如图,下列四组条件中,能判断AB∥CD的是()A.∠1=∠2B.∠BAD=∠BCDC.∠ABC=∠ADC,∠3=∠4D.∠BAD+∠ABC=180°10.如图,在△ABC中,A D是BC边上的高,且∠ACB=∠BAD,AE平分∠CAD,交BC 于点E,过点E作EF∥AC,分别交AB、AD于点F、G.则下列结论:①∠BAC=90°;②∠AEF=∠BEF;③∠BAE=∠BEA;④∠B=2∠AEF,其中正确的有()A.4个B.3个C.2个D.1个11.给出下列命题:①对角线相等且互相平分的四边形是矩形②对角线平分一组对角的平行四边形是菱形③对角线互相垂直的矩形是正方形④对角线相等的菱形是正方形其中是真命题的有()个.A.1个B.2个C.3个D.4个12.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°二.填空题(每题3分,共12分)13.在同一平面内,与已知直线a平行的直线有条;而经过直线外一点P,与已知直线a平行的直线有且只有条.14.在同一平面内,若a⊥b,b⊥c,则a与c的位置关系是.15.已知AD为△ABC的高线,AE为角平分线,当∠B=40°,∠ACD=60°时,∠EAD =度.16.如图,已知∠1=∠2=∠3=65°,则∠4的度数为.三.解答题(共52分)17.如图,已知∠1=∠2,∠3=∠4,试说明AB∥CD.18.如图,∠A=64°,∠B=76°,将纸片的一角折叠,使点C落在△ABC外,若∠AEC'=22°,求∠BDC'的度数.19.如图,若AE是△ABC边上的高,∠EAC的角平分线AD交BC于D,∠ACB=40°,求∠ADE.20.如图,BD⊥AC于D,EF⊥AC于F,DM∥BC,∠1=∠2.求证:∠AMD=∠AGF.21.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.22.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,试判断DG与BC的位置关系,并说明理由.23.在△ABC中,∠C>∠B,AE平分∠BAC,F为射线AE上一点(不与点E重合),且FD⊥BC于D;(1)如果点F与点A重合,且∠C=50°,∠B=30°,如图1,求∠EFD的度数;(2)如果点F在线段AE上(不与点A重合),如图2,问∠EFD与∠C﹣∠B有怎样的数量关系?并说明理由.(3)如果点F在△ABC外部,如图3,此时∠EFD与∠C﹣∠B的数量关系是否会发生变化?请说明理由.参考答案一.选择题1.解:A、两条被截直线平行时,内错角相等,故本选项错误;B、如果两条相互平行直线被第三条直线所截,那么同位角的角平分线必平行,故本选项错误;C、如果同旁内角互补,那么这个角的两条边相互平行,则它们的角平分线必互相垂直,故本选项正确;D、如果两角的两边分别平行,那么这两个角相等或互补,故本选项错误;故选:C.2.解:设三角形的三角的度数是x°,2x°,3x°,则x+2x+3x=180,解得x=30,∴3x=90,即三角形是直角三角形,故选:A.3.解:小明应先洗开水壶用1分钟,再烧开水用15分钟,在烧水期间,洗茶壶用1分钟,洗茶杯用1分钟,放茶叶用2分钟,给同学打电话用1分钟,一共用5分钟,不用算入总时间,故为使客人早点喝上茶,小明最快可在16分钟内完成这些工作.故选:D.4.解:因为∠1=∠2,所以a∥b(内错角相等,两直线平行),故选:B.5.解:A、相等的角不一定是对顶角,故错误,是假命题;B、9的算术平方根是3,故错误,是假命题;C、平面内垂直于同一条直线的两条直线互相平行,故错误,是假命题;D、点A(a,0)在x轴上,正确,是真命题,故选:D.6.解:A、对顶角相等,但是相等的两个角不一定是对顶角,故本选项错误;B、过直线外一点有且只有一条直线与已知直线平行,故本选项错误;C、从直线外一点到这条直线上的各点连结的所有线段中,垂线段最短,符合垂线段的定义,故本选项正确;D、在平面内过一点有且只有一条直线与已知直线垂直,故本选项错误.故选:C.7.解:由三角形的内角和定理可知:∠CAB=50°,∵AD是∠BAC的平分线,∴∠DAC=25°,∴∠ADC=90°﹣∠DAC=65°故选:C.8.解:∵∠A=60°,∠B=48°,∴∠ACB=180°﹣∠A﹣∠B=72°,∵CD平分∠ACB,∴∠BCD=∠ACB=36°,∵DE∥BC,∴∠CDE=∠BCD=36°;故选:B.9.解:A、∵∠1=∠2,∴AD∥CB,故本选项错误;B、∵∠BAD=∠BCD,不能得出AB∥CD,故本选项错误;C、∵∠ABC=∠ADC,∠3=∠4,∠ABD=∠BDC,∴AB∥CD,故本选项错误;D、∵∠BAD+∠ABC=180°,∴AD∥BC,故本选项错误;故选:C.10.解:∵AD⊥BC,∴∠ADC=90°,∴∠C+∠CAD=90°,∵∠BAD=∠C,∴∠B AD+∠CAD=90°,∴∠CAB=90°,故①正确,∵∠BAE=∠BAD+∠DAE,∠DAE=∠CAE,∠BAD=∠C,∴∠BAE=∠C+∠CAE=∠BEA,故③正确,∵EF∥AC,∴∠AEF=∠CAE,∵∠CAD=2∠CAE,∴∠CAD=2∠AEF,∵∠CAD+∠BAD=90°,∠BAD+∠B=90°,∴∠B=∠CAD=2∠AEF,故④正确,无法判定EA=EC,故②错误.故选:B.11.解:①对角线相等且互相平分的四边形是矩形,是真命题②对角线平分一组对角的平行四边形是菱形,是真命题③对角线互相垂直的矩形是正方形,是真命题④对角线相等的菱形是正方形,是真命题;故选:D.12.解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.二.填空题13.解:在同一平面内,与已知直线a平行的直线有无数条;而经过直线外一点P,与已知直线a平行的直线有且只有1条.14.解:∵a⊥b,b⊥c,∴a∥c.故答案为a∥c.15.解:①如图1,∵∠B=40°,∠ACD=60°,∴∠BAC=180°﹣60°﹣40°=80°,∵AE为∠BAC角平分线,∴∠BAE==80°×=40°,∵AD为△ABC的高,∴∠ADB=90°,∴∠DAC=90°﹣∠C=90°﹣60°=30°,∴∠E AD=∠EAC﹣∠DAC=40°﹣30°=10°,②如图2,在△ABC中,∵∠ACD=∠B+∠BAC,∴∠BAC=60°﹣40°=20°,∵AE平分∠BAC,∠BAC=10°,∴∠AED=∠B+∠BAE=40°+10°=50°,∵AD为高,∴∠ADE=90°,∴∠EAD=90°﹣∠AED=90°﹣50°=40°.故答案为:10或40.16.解:∵∠1=∠2,∴AB∥CD,∴∠3=∠5,又∠1=∠2=∠3=65°,∴∠5=65°又∠5+∠4=180°,∴∠4=115°;故答案为:115°.三.解答题17.解:∵∠1=∠2,∴CE∥BF,∴∠4=∠AEC,又∵∠3=∠4,∴∠3=∠AEC,∴AB∥CD.18.解:如图设AE交DC′于F.在△ABC中,∠C=180°﹣∠A﹣∠B=180°﹣64°﹣76°=40°,由折叠可知∠C'=40°,∴∠DFE=∠AEC'+∠C=22°+40°=62°,∴∠BDC'=∠DFE+∠C=62°+40°=102°.19.解:∵AE⊥BC,∠ACB=40°,∴∠CAE=90°﹣∠ACB=90°﹣40°=50°.∵AD平分∠EAC,∴∠DAE=∠CAD=∠CAE=25°,∴∠ADE=∠CAD+∠ACD=25°+40°=65°.20.证明:∵BD⊥AC,EF⊥AC,∴BD∥EF,∴∠2=∠CBD,∵∠2=∠1,∴∠1=∠CBD,∴GF∥BC,∵BC∥DM,∴MD∥GF,∴∠AMD=∠AGF.21.已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D22.解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC.23.(1)解:∵∠C=50°,∠B=30°,∴∠BAC=180°﹣50°﹣30°=100°.∵AE平分∠BAC,∴∠CAE=50°.在△ACE中∠AEC=80°,在Rt△ADE中∠EFD=90°﹣80°=10°.(2)∠EFD=(∠C﹣∠B)证明:∵AE平分∠BAC,∴∠BAE==90°﹣(∠C+∠B)∵∠AEC为△ABE的外角,∴∠AEC=∠B+90°﹣(∠C+∠B)=90°+(∠B﹣∠C)∵FD⊥BC,∴∠FDE=90°.∴∠EFD=90°﹣90°﹣(∠B﹣∠C)∴∠EFD=(∠C﹣∠B)(3)∠EFD =(∠C ﹣∠B ).如图,∵AE 平分∠BAC ,∴∠BAE =.∵∠DEF 为△ABE 的外角,∴∠DEF =∠B +=90°+(∠B ﹣∠C ), ∵FD ⊥BC ,∴∠FDE =90°.∴∠EFD =90°﹣90°﹣(∠B ﹣∠C )∴∠EFD =(∠C ﹣∠B ).1、人不可有傲气,但不可无傲骨。

(好题)初中数学八年级数学上册第七单元《平行线的证明》测试题(包含答案解析)

(好题)初中数学八年级数学上册第七单元《平行线的证明》测试题(包含答案解析)

一、选择题1.甲、乙、丙、丁四个同学在玩推理游戏,要找出谁在数学测评中获奖.甲说:“是乙获奖.”乙说:“是丙获奖.”丙说:“乙说的不是实话.”丁说:“反正我没有获奖.”如果这四个同学中只有一个人说了实话,请问是谁获奖( )A .甲B .乙C .丙D .丁 2.如图,直线AB 、CD 被BC 所截,若//AB CD ,150∠=︒,240∠=︒,则3∠的大小是( )A .80︒B .70︒C .90︒D .100︒ 3.小明和小亮在研究一道数学题,如图EF AB ⊥,CD AB ⊥,垂足分别为E 、D ,G 在AC 上.小明说:“如果CDG BFE ∠=∠,则能得到AGD ACB ∠=∠”;小亮说:“连接FG ,如果//FG AB ,则能得到GFC ADG ∠=∠”.则下列判断正确的是( )A .小明说法正确,小亮说法错误B .小明说法正确,小亮说法正确C .小明说法错误,小亮说法正确D .小明说法错误,小亮说法错误 4.下列命题是假命题的是( )A .同旁内角互补,两直线平行B .直角三角形的两个锐角互余C .三角形的一个外角等于它的两个内角之和D .有一个角是60°的等腰三角形是等边三角形 5.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE ∠的度数是( )A .50°B .25°C .30°D .35°6.一个三角形的三个内角中( )A .至少有一个等于90°B .至少有一个大于90°C .不可能有两个大于89°D .不可能都小于60°7.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0和1B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0和1D .如果一个数的算术平方根等于这个数本身,那么这个数一定是08.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 9.用反证法证明“m 为正数”时,应先假设( ).A .m 为负数B .m 为整数C .m 为负数或零D .m 为非负数 10.下列六个命题: ①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是( )A .3个B .4个C .5个D .6个11.下列命题中,真命题的个数为( )(1)如果22a b >,那么a>b ; (2)对顶角相等;(3)四边形的内角和为360︒; (4)平行于同一条直线的两条直线平行;A .1个B .2个C .3个D .4个12.下列说法正确的是( )A .无限小数都是无理数B .有最小的正整数,没有最小的整数C .a ,b ,c 是直线,若 a ⊥b ,b ⊥c ,则 a ⊥cD .内错角相等二、填空题13.如图,已知//AB CD ,现将一直角三角形PMN 放入图中,其中90P ∠=︒,PM 交AB 于点E ,PN 交CD 于点F .(1)当PMN 所放位置如图①所示时,求PFD ∠与AEM ∠的数量关系并证明;(2)当PMN 所放位置如图②所示时,PFD ∠与AEM ∠还有与(1)中一样的数量关系吗?请说明理由;(3)在(2)的条件下,若MN 与CD 交于点O ,且20DON ∠=︒,15PEB ∠=︒,直接写出N ∠的度数 ︒.14.证明“若a b >,则22a b >.”是假命题,可举出反例:_________.15.如图,65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在ABC 外,若218∠=︒,则1∠的度数为________________.16.如图,已知CD ⊥DA ,DA ⊥AB ,∠1=∠4.试说明DF ∥AE .请你完成下列填空,把证明过程补充完整.证明:∵_________(___________)∴∠CDA=90°,∠DAB=90°(_________).∴∠4+∠3=90°,∠2+∠1=90°.又∵∠1=∠4,∴_____(_____),∴DF ∥AE (______).17.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C ﹣6°,则∠C 的度数为_____.18.如图,AE 平分,BAC BE AE ∠⊥于,//E ED AC ,,BAC a ∠=则BED ∠的度数为________________.(用含α的式子表示)19.如图,已知AD ∥BC ,∠1=∠2,∠A=112°,且BD ⊥CD ,则∠C=_____.20.如图, AM 、CM 分别平分∠BAD 和∠BCD ,且∠B=31°,∠D=39°,则∠M=______.三、解答题21.如图,C 是线段AB 的中点,过C 作//CE AD ,且CE AD =,连接BE .证明://BE CD .22.如图,BD 平分ABC ∠,CD 平分ACB ∠.试确定A ∠和D ∠的数量关系.23.(感知)如图①,//AB CD ,130PAB ∠=︒ ,120PCD ∠=︒.求APC ∠的度数.(提示:过点P 作直线//PQ AB )(探究)如图②,//AD BC ,点P 在射线OM 上运动,ADP a ∠=∠ ,BCP β∠=∠. (1)当点P 在线段AB 上运动时,CPD ∠,α∠,β∠之间的数量关系为_______________.(2)当点P 在A ,B 两点外侧运动时(点P 与点A ,B ,O 三点不重合),直接写出CPD ∠,a ∠,β∠ 之间的数量关系为____________________________________________________________.24.如图,//AD BC ,∠1=∠C ,∠B =60°,DE 平分∠ADC 交BC 于点E ,试说明//AB DE .请完善解答过程,并在括号内填写相应的理论依据.解:∵//AD BC ,(已知)∴∠1=∠ =60°.( )∵∠1=∠C ,(已知)∴∠C =∠B =60°.(等量代换)∵//AD BC ,(已知)∴∠C +∠ =180°.( )∴∠ =180°-∠C =180°-60°=120°.(等式的性质)∵DE 平分∠ADC ,(已知)∴∠ADE =12∠ADC =12×120°=60°.( ) ∴∠1=∠ADE .(等量代换)∴//AB DE .( )25.已知:如图,∠AGD =∠ACB ,∠1=∠2,CD 与EF 平行吗?为什么?26.如图,已知直线//AB CD ,100A C ∠=∠=︒,E 、F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)直线AD 与BC 有何位置关系?请说明理由.(2)求DBE ∠的度数.(3)若平行移动AD ,在平行移动AD 的过程中,存在使BEC ADB ∠=∠的情况,求ADB ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】若甲说的是真话,则乙是假话,丙说的是真话,和已知不符合.故甲说的是假话,不是乙获奖;若乙说的是真话,则丁说的也是真话,和已知不符合.故乙说的是假话,不是丙获奖.显然丙说的是真话,丁说的是假话,则是丁获奖.【详解】解:本题可分三种情况:①如果甲是真命题,则乙是假命题,丙是真命题,丁是真命题;显然与已知不符; ②如果甲是假命题,乙是真命题,则丙是假命题,丁是真命题;显然与已知不符; ③如果甲是假命题,乙是假命题,则丙是真命题,丁是假命题;在这种情况下,只有丙说了实话,而其他人都说了假话,因此这种情况符合题意.在③的条件下,丁说了假话,因此丁才是真正获奖的人.故选D .此题主要考查命题的真假推理,解题的关键是用假设的方法,进行分析排除.2.C解析:C【分析】先根据平行线的性质求出C ∠,再由三角形外角性质即可得解;【详解】∵//AB CD ,150∠=︒,∴150∠=∠=︒C ,∵240∠=︒,∴3290C ∠=∠+∠=︒;故答案选C .【点睛】本题主要考查了平行线的性质和三角形的外角性质,准确计算是解题的关键.3.A解析:A【分析】由EF ⊥AB ,CD ⊥AB ,知CD ∥EF ,然后根据平行线的性质与判定即可得出答案.【详解】解:∵EF ⊥AB ,CD ⊥AB ,∴CD ∥EF ,若∠CDG=∠BFE ,∵∠BCD=∠BFE ,∴∠BCD=∠CDG ,∴DG ∥BC ,∴∠AGD=∠ACB ,故小明说法正确;∵FG ∥AB ,∴∠B=∠GFC ,故得不到∠GFC=∠ADG ,故小亮说法错误,故选:A .【点睛】本题考查了平行线的判定与性质,属于基础题,关键是掌握平行线的性质与判定. 4.C解析:C根据平行线的判定定理,直角三角形互余性质,三角形的外角性质,等边三角形的判定去分别判断即可.【详解】解:∵同旁内角互补,两直线平行,∴选项A选项为真命题,不符合题意;根据三角形内角和定理,得直角三角形的两个锐角互余,∴选项B选项为真命题,不符合题意;∵三角形的一个外角等于和它不相邻的两个内角之和,∴选项C选项为假命题,符合题意;根据等角对等边,有一个角是60°的等腰三角形是等边三角形,∴选项D选项为真命题,不符合题意;故选C.【点睛】本题考查了对数学基础知识的掌握,全面规范掌握数学基础知识是解题的关键.5.C解析:C【分析】根据三角形内角和求出∠ABC的度数,再根据角平分线和平行线的性质求角.【详解】解:在ABC中,∠ABC=180°-∠A-∠B=180°-55°-65°=60°,∠,∵BD平分ABC∴∠ABD=∠CBD=1∠ABC=30°,2DE BC,∵//∠=∠CBD=30°,∴BDE故选C.【点睛】本题考查了三角形内角和、角平分线的意义和平行线的性质,准确识图并能熟练应用三角形内角和、角平分线和平行线的性质是解题关键.6.D解析:D【分析】根据三角形的内角性质、三角形的内角和定理逐项判断即可得.【详解】A、反例:锐角三角形的三个内角均小于90︒,此项错误;B、反例:锐角三角形的三个内角均小于90︒,此项错误;︒︒︒,此项错误;C、反例:一个三角形的三个内角分别为89.5,89.5,1D、因为三角形的内角和等于180︒,所以不可能都小于60︒,此项正确;故选:D.【点睛】本题考查了三角形的内角、三角形的内角和定理,熟练掌握三角形的内角和定理是解题关键.7.C解析:C【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,故A是假命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,例如:-1的倒数也是-1,故B是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0和1,故C是真命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,例如:1的算术平方根也是1,故D是假命题;故选:C.【点睛】本题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.8.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D .【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.9.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m 为正数”时,应先假设m 为负数或零故选:C .【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解. 10.C解析:C【分析】分别根据有理数、平行线的判定与性质以点到直线的距离分别判断得出即可.【详解】①实数与数轴上的点一一对应,原命题是假命题;②两条平行线线被第三条直线所截,内错角相等,原命题是假命题;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离,原命题是假命题; ④平行于同一条直线的两条直线互相平行,是真命题;⑤垂直于同一平面内的同一条直线的两条直线互相平行,原命题是假命题; ⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,原命题是假命题;故选:C .【点睛】此题主要考查了命题与定理,熟练掌握相关的定理与性质是解题关键.11.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果22a b ,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.B解析:B【分析】A、根据无理数的定义即可判定;B、根据整数的定义可以判断;C、根据在同一平面内,垂直同一直线的两直线互相平行可判断;D、根据平行线的性质可以判断.【详解】解:A、无限小数包含无限循环小数和无限不循环小数,无限不循环小数才是无理数,故选项错误;B、有最小的正整数是1,没有最小的整数,故选项正确;C、在同一平面内,a,b,c 是直线,若 a⊥b,b⊥c,则 a∥c,故选项错误;D、两直线平行,内错角相等,故选项错误.故选:B.【点睛】本题考查数、直线、角的若干基本概念,深刻理解有关基本概念是解题关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.(1)∠PFD+∠AEM=90°;(2)∠PFD-∠AEM=90°理由见解析;(3)55【分析】(1)如下图作PH∥AB利用AB∥HPHP∥CD转化角度可得;(2)∠PFD和∠PFO互补将∠PFO转解析:(1)∠PFD+∠AEM=90°;(2)∠PFD-∠AEM=90°,理由见解析;(3)55【分析】(1)如下图,作PH∥AB,利用AB∥HP,HP∥CD转化角度可得;(2)∠PFD和∠PFO互补,将∠PFO转化为∠FON和∠FNO,结合第一问的结论可得;(3)利用第二问的结论,直接代入计算即可解.【详解】(1)关系:∠PFD+∠AEM=90°.理由:如下图,作 PH∥AB∵ AB∥CD ,∴ PH∥CD ,∴∠PFD=∠NPH,∠AEM=∠HPM ,∵∠MPN=90°,∴∠PFD+∠AEM=90°;(2)关系:∠PFD−∠AEM=90°如下图,作MG∥AB交PN于点G,∠PMN=∠AEM+∠MOC理由同上,∵∠PFC=∠FON+∠FNO,∴∠PFC=∠MOC+∠FNO,∴∠AEM+∠PFD=∠AEM+∠MOC+∠PNO=∠PMN+∠PNO,∵∠P=90°,∴∠AEM+∠PFC=∠PMN+∠PNO=90°,∠PFC=180°-∠PFD代入得:∠AEM+180°-∠PFD=90°,化简得:∠PFD-∠AEM=90°.(3)∠N 的度数为:55°,∵∠AEM=∠PEB=15°,由(2)得,∠PFD=90°+∠AEM=90°+∠PEB=90°+15°=105°,∴∠N=180°−∠DON−∠PFD =180°−20°−105°=55°.【点睛】本题考查平行的性质,解题关键是过中间点M作平行线,此题是“M型”模型,常见辅助线即为在中间点处作平行线.14.答案不唯一例如当但【分析】可根据的正负性来考虑即可例如用来进行判断即可【详解】反例:取有但故答案为:但【点睛】本题考查了命题与定理举反例说明说明命题是假命题时在选取反例时要注意遵循这一原则:反例的选 解析:答案不唯一,例如当1,1,a b a b ==->,但22a b <【分析】可根据a 、b 的正负性来考虑即可,例如用1a =、1b =-来进行判断即可.【详解】反例:取1a =,1b =-,有a b >,但22a b =.故答案为:1a =,1b =-,a b >,但22a b =.【点睛】本题考查了命题与定理,举反例说明说明命题是假命题时,在选取反例时要注意遵循这一原则:反例的选取一定要满足所给命题的题设要求,而不能满足命题的结论. 15.98°【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5解析:98°【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=82°,然后利用平角的定义即可求出∠1.【详解】∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C 落在△ABC 外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°-82°=98°.【点睛】本题综合考查了三角形内角和定理、外角定理以及翻折变换的问题,而翻折变换实际上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,明确各个角之间的等量关系,是解决本题的关键.16.CD ⊥DADA ⊥AB ;已知;垂直定义;∠2=∠3;等角的余角相等;内错角相等两直线平行【分析】先根据垂直的定义得到再根据等角的余角相等得出最后根据内错角相等两直线平行进行判定即可【详解】证明:∵CD解析:CD ⊥DA ,DA ⊥AB ;已知;垂直定义;∠2=∠3;等角的余角相等;内错角相等,两直线平行【分析】先根据垂直的定义,得到1290∠+∠=︒,3490∠+∠=°,再根据等角的余角相等,得出23∠∠=,最后根据内错角相等,两直线平行进行判定即可.【详解】证明:∵ CD ⊥DA ,DA ⊥AB (已知)∴∠CDA=90°,∠DAB=90° ( 垂直定义 ).∴∠4+∠3=90°,∠2+∠1=90°.又∵∠1=∠4,∴∠2=∠3 ( 等角的余角相等 ),∴DF ∥AE ( 内错角相等,两直线平行 ).故答案为:.CD ⊥DA ,DA ⊥AB , 已知;垂直定义;∠2=∠3 ,等角的余角相等;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定以及垂直的定义,解题时注意:内错角相等,两直线平行. 17.32°【分析】根据三角形的内角和等于180°求出∠A=90°从而得到∠B ∠C 互余然后用∠C 表示出∠B 再列方程求解即可【详解】∵∠A=∠B+∠C ∠A+∠B+∠C=180°∴∠A=90°∴∠B+∠C=9解析:32°【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B 、∠C 互余,然后用∠C 表示出∠B ,再列方程求解即可.【详解】∵∠A=∠B+∠C ,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C ,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A 的度数是解题的关键.18.【分析】由ED//AC 可以得到所以由三角形内角和定理可以得到的值再次利用三角形内角和定理就可以得到的度数【详解】解:由已知得:又ED//AC ∴∴∴∠BED=故答案为【点睛】本题考查三角形内角和定理和 解析:1902a + 【分析】由ED//AC 可以得到EDB C ∠=∠,所以由三角形内角和定理可以得到EDB EBD ∠+∠的值,再次利用三角形内角和定理就可以得到BED ∠的度数.【详解】 解:由已知得:1909022a ABE BAC ∠=︒-∠=︒-, 又ED//AC ,∴EDB C ∠=∠, ∴180180909022a a EDB EBD BAC ABE a ⎛⎫∠+∠=︒-∠-∠=︒--︒-=︒- ⎪⎝⎭ ∴∠BED=180909022a a ⎛⎫︒-︒-=︒+ ⎪⎝⎭ 故答案为902a ︒+. 【点睛】本题考查三角形内角和定理和角平分线的综合应用,灵活运用三角形内角和定理是解题关键. 19.56°【解析】解:∵AD ∥BC ∴∠2=∠ADB 又∵AD ∥BC ∠A=112°∴∠ABC=180°-∠A=68°∵∠1=∠2∴∠1=∠2=∠ADB=34°∵BD ⊥CD ∴∠2+∠C=90°∴∠C=90°﹣ 解析:56°【解析】解:∵AD ∥BC ,∴∠2=∠ADB .又∵AD ∥BC ,∠A =112°,∴∠ABC =180°-∠A =68°,∵∠1=∠2,∴∠1=∠2=∠ADB =34°,∵BD ⊥CD ,∴∠2+∠C =90°,∴∠C =90°﹣34°=56°,故答案为56°.点睛:此题综合运用了三角形的内角和定理、平行线的性质.三角形的内角和是180°;两条直线平行,则同位角相等,内错角相等,同旁内角互补.20.35°【分析】根据三角形内角和定理用∠B ∠M 表示出∠BAM-∠BCM 再用∠B ∠M 表示出∠MAD-∠MCD 再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD 然后求出∠M 与∠B ∠D 关系代入数解析:35°【分析】根据三角形内角和定理用∠B 、∠M 表示出∠BAM-∠BCM ,再用∠B 、∠M 表示出∠MAD-∠MCD ,再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD ,然后求出∠M 与∠B 、∠D 关系,代入数据进行计算即可得解;【详解】解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM ,∴∠BAM-∠BCM=∠M-∠B ,同理,∠MAD-∠MCD=∠D-∠M ,∵AM 、CM 分别平分∠BAD 和∠BCD ,∴∠BAM=∠MAD ,∠BCM=∠MCD ,∴∠M-∠B=∠D-∠M ,∴∠M=12(∠B+∠D )=12(31°+39°)=35°; 故答案为:35°【点睛】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.三、解答题21.见解析【分析】由全等三角形的判定定理,先证明DAC ECB ≌△△,得到DCA EBC ∠=∠,即可得到结论成立.【详解】证明:C 是线段AB 的中点,AC BC ∴=.//CE AD ,DAC ECB ∴∠=∠.在DAC △和ECB 中, DA EC DAC ECB AC CB =⎧⎪∠=∠⎨⎪=⎩,DAC ECB ∴≌△△.DCA EBC ∴∠=∠,//BE CD ∴.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是正确得到DAC ECB ≌△△.22.1902D A ∠=︒+∠【分析】根据角平分线定义可得12DBC ABC ∠=∠,12DCB ACB ∠=∠,根据()180D DBC DCB ∠=︒-∠+∠,()180A ABC ACB ∠=︒-∠+∠即可求得∠D 与∠A 的数量关系.【详解】解:在DBC △中,()180D DBC DCB ∠=︒-∠+∠,在ABC 中,()180A ABC ACB ∠=︒-∠+∠, ∵12DBC ABC ∠=∠,12DCB ACB ∠=∠, ∴()180D DBC DCB ∠=︒-∠+∠()()11802118018021902ABC ACB A A =︒-∠+∠=︒-︒-∠=︒+∠, ∴1=902D A ∠︒+∠. 【点睛】本题考查角平分线的定义,三角形内角和定理,熟练掌握相关性质、定理是解题的关键. 23.【感知】110︒;【探究】(1)CPD αβ∠=∠+∠;(2)CPD αβ∠=∠-∠或CPD βα∠=∠-∠.【分析】根据平行线性质知两直线平行同旁内角互补可以求出,∠APQ 和∠CPQ ,探究(1)作//PQ BC ,根据两直线平行内错角相等结合等量代换即可得出结论;(2)分类讨论当P 在AM 上或OB 上时两种情况,分别作平行线结合两直线平行内错角相等进行求证即可.【详解】解:过点P 作直线//PQ AB ,∵//AB CD ,∴//PQ CD .∴180PAB APQ ∠+∠=︒,180QPC PCD ∠+∠=︒,∵130PAB ∠=︒,120PCD ∠=︒,∴50APQ ∠=︒,60CPQ ∠=︒,∴5060110APC ∠=︒+︒=︒.∴APC ∠的度数为110︒.探究(1)CPD αβ∠=∠+∠.如图②:作//PQ BC ,∵//AD BC ,∴////PQ BC AD ,∴∠DPQ=∠α,∠CPQ=∠β ,∴DP C Q PD CPQ αβ∠+∠=∠=∠+∠;(2)CPD αβ∠=∠-∠或CPD βα∠=∠-∠.如图③:当P 在AM 上时,作//PQ BC ,∵//AD BC ,∴////PQ BC AD ,∴∠DPQ=∠α,∠CPQ=∠β ,∴CP C Q PD DPQ βα∠-∠=∠=∠-∠;当P 在OB 上时,同理:CPD αβ∠=∠-∠.综上所述,CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【点睛】此题主要考查平行线的性质:两直线平行,内错角相等,同旁内角互补等结合等量代换进行证明,做辅助线进行转化是关键.24.B ;两直线平行,同位角相等;ADC ;两直线平行,同旁内角互补;ADC ;角平分线性质;内错角相等,两直线平行.【分析】利用平行线的性质和判定,角平分线的性质去进行填空.【详解】解∵//AD BC ,(已知)∴∠1=∠B=60°.(两直线平行,同位角相等)∵∠1=∠C ,(已知)∴∠C =∠B =60°.(等量代换)∵//AD BC ,(已知)∴∠C +∠ADC=180°.(两直线平行,同旁内角互补)∴∠ADC=180°-∠C =180°-60°=120°.(等式的性质)∵DE 平分∠ADC ,(已知)∴∠ADE =12∠ADC =12×120°=60°.(角平分线性质)∴∠1=∠ADE .(等量代换)∴//AB DE .(内错角相等,两直线平行)【点睛】本题考查平行线的性质和判定,解题的关键是掌握平行线的性质和判定定理.25.平行,见解析.【分析】先判定GD//CB,然后根据平行的性质得到∠1=∠BCD,然后利用同位角相等、两直线平行即可证明.【详解】解:平行. 理由如下:∵ ∠AGD =∠ACB , (已知)∴ GD ∥BC (同位角相等,两直线平行)∴∠1=∠BCD (两直线平行,内错角相等)∵∠1=∠2,(已知)∴∠2=∠BCD (等量代换)∴ CD ∥EF (同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,灵活运用同位角相等、两直线平行是解答本题的关键. 26.(1)直线AD 与BC 互相平行,理由见解析;(2)40DBE ∴∠=︒(3)存在,60BEC ADB ∠=∠=︒.【分析】(1)根据平行线的性质,以及等量代换证明180ADC C ∠+∠=︒,即可证得//AD BC ; (2)由直线//AB CD ,根据两直线平行,同旁内角互补,即可求得ABC ∠的度数,又由12DBE ABC ∠=∠,即可求得DBE ∠的度数. (3)首先设ABD DBF BDC x ∠=∠=∠=︒,由直线//AB CD ,根据两直线平行,同旁内角互补与两直线平行,内错角相等,可求得BEC ∠与ADB ∠的度数,又由BEC ADB ∠=∠,即可得方程:4080x x ︒+︒=︒-︒,解此方程即可求得答案.【详解】解:(1)直线AD 与BC 互相平行,理由://AB CD ,180A ADC ∴∠+∠=︒,又A C ∠=∠180ADC C ∴∠+∠=︒,//AD BC ∴;(2)//AB CD ,18080ABC C ∴∠=︒-∠=︒,DBF ABD ∠=∠,BE 平分CBF ∠,11140222DBE ABF CBF ABC ∴∠=∠+∠=∠=︒; (3)存在.设ABD DBF BDC x ∠=∠=∠=︒.//AB CD ,40BEC ABE x ∴∠=∠=︒+︒;//AB CD ,18080ADC A ∴∠=︒-∠=︒,80ADB x ∴∠=︒-︒.若BEC ADB ∠=∠,则4080x x ︒+︒=︒-︒,得20x ︒=︒.∴存在60BEC ADB ∠=∠=︒.【点睛】此题主要考查了平行线的性质与判定.解题的关键是注意掌握两直线平行,同旁内角互补与两直线平行,内错角相等定理的应用,注意数形结合与方程思想的应用.。

八年级数学上册《第七章平行线的证明》单元测试卷及答案-北师大版

八年级数学上册《第七章平行线的证明》单元测试卷及答案-北师大版

八年级数学上册《第七章平行线的证明》单元测试卷及答案-北师大版一、选择题1.下列说法正确的是( )A .过直线上一点有且只有一条直线与已知直线平行B .不相交的两条直线叫做平行线C .直线外一点到该直线的所有线段中垂线最短D .过直线外一点有且只有一条直线与已知直线平行2.下列语句是命题的是( )A .作直线AB 的垂线 B .在线段AB 上取点C C .垂线段最短吗?D .同旁内角互补3.如图,直线a 、b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .∠1=∠3B .∠2+∠4=180°C .∠1=∠4D .∠1+∠4=180°4.如图a b 和158∠=︒,则2∠的度数为( )A .58°B .112°C .120°D .132°5.在Rt ABC 中90C ∠=︒和25B ∠=︒,则A ∠的度数是( )A .75︒B .65︒C .55︒D .45︒6.下列说法正确的个数有( )①有两组边对应相等,一组角对应相等的两个三角形全等;②垂直于同一条直线的两直线平行;③三角形的中线把三角形的面积平分;④等腰三角形高所在的直线是对称轴. A .1个B .2个C .3个D .4个7.下列命题中是假命题的是( ).A .同旁内角互补,两直线平行B .直线a b ⊥,则a 与b 相交所成的角为直角C .如果两个角互补,那么这两个角是一个锐角,一个钝角D .若a b ,a c ⊥那么b c ⊥8.下列画出的直线a 与b 不一定平行的是( )A .B .C .D .9.如图AOB ADC ≌且90O D ∠∠︒==,记αOAD ∠=,βABO ∠=当BC OA 时,α与β之间的数量关系为( )A .αβ=B .α2β=C .αβ90+︒=D .α2β180+︒=10.如图,∠ABC∠∠DEF ,若∠A=100°,∠F=47°,则∠E 的度数为( )A .100°B .53°C .47°D .33°二、填空题11.在说明命题“若|a|>3,则a >3”是假命题的反例中,a 的值可以是 . 12.如图,AB∠CD ,点P 到AB ,BC ,CD 的距离相等,则∠P =13.如图,已知 AB//CF ,E 为DF 的中点,若AB=13cm ,CF=7cm ,则BD= cm .14.已知等腰三角形的顶角是底角的4倍,则顶角的度数为 .三、解答题15.以下是两位同学在复习不等式过程中的对话:小明说:”不等式a> 2a 永远都不会成立,因为如果在这个不等式两边同时除以a ,就.会出现1>2这样的错误结论!”小丽说:“如果a>b ,c>d ,那么一定会得出a-c>b-d ."你认为小明的说法 (填“正确”或“不正确”);小丽的说法 (填“正确”或“不正确”),并选择其中一个人判断阐述你的理由(若认为正确,则进行证明;若认为不正确,则给出反例).16.如图,C 为∠AOB 平分线上一点,点D 在射线OA 上,且OD =CD.求证:CD∠OB.17.已知,如图AB AE =,AB DE 和ACB D ∠=∠,求证:ABC EAD ≌.18.如图,在ABC 中36A ∠=︒,AB AC =且BM 平分ABC ∠交AC 于点M ,求证:AM BM =四、综合题19.探究问题:已知∠ABC ,画一个角∠DEF ,使DE ∠AB ,EF ∠BC ,且DE 交BC 于点P .∠ABC 与∠DEF 有怎样的数量关系?(1)我们发现∠ABC 与∠DEF 有两种位置关系:如图1与图2所示.①图1中∠ABC 与∠DEF 数量关系为 ;图2中∠ABC 与∠DEF 数量关系为 ; 请选择其中一种情况说明理由. ②由①得出一个真命题(用文字叙述): . (2)应用②中的真命题,解决以下问题:若两个角的两边互相平行,且一个角比另一个角的2倍少30°,请直接写出这两个角的度数.20.如图,AE 平分∠BAC ,∠CAE =∠CEA.(1)AB 与CD 有怎样的位置关系?为什么? (2)若∠C=50°,求∠CEA 的度数.21.如图,在四边形ABCD 中,P 为CD 边上的一点BCAD AP 、BP 分别是BAD ∠、ABC∠的角平分线.(1)若70BAD ∠=︒,则ABP ∠的度数为 ,APB ∠的度数为 ; (2)求证:AB BC AD =+(3)设3BP a =,4AP a =过点P 作一条直线,分别与AD ,BC 所在直线交于点E 、F ,若AB EF = 直接写出AE 的长(用含a 的代数式表示)22.如图,在ABC 中AB AC =,AB 的垂直平分线DE 分别交AC ,AB 于点D ,E.(1)若50A ∠=︒,求C ∠的度数:(2)若7AB =且CBD 周长为12,求BC 的长.23.问题情境在综合与实践课上,同学们以“一个含30︒的直角三角尺和两条平行线”为背景开展数学活动如图1,已知两直线a ,b 且a b 和直角三角形ABC 90BCA ∠=︒ 30BAC ∠=︒ 60ABC ∠=︒(1)在图1中146∠=︒,求2∠的度数;(2)如图2,创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21∠-∠是一个定值,请写出这个定值,并说明理由;(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠ 此时发现1∠与2∠又存在新的数量关系,请直接写出1∠与2∠的数量关系.参考答案与解析1.【答案】D【解析】【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故该选项错误;B、在同一平面内,不相交的两条直线叫做平行线,故该选项错误;C、直线外一点到该直线的所有线段中垂线段最短,故该选项错误;D、过直线外一点有且只有一条直线与已知直线平行,故该选项正确.故答案为:D.【分析】根据平行线的定义:在同一平面内,不相交的两条直线叫平行线;平行公理:经过直线外一点,有且只有一条直线与这条直线平行;垂线段的性质可得答案.2.【答案】D【解析】【解答】解:A.作直线AB的垂线为描述性语言,它不是命题,所以A选项不符合题意;B.在线段AB上取点C为描述性语言,它不是命题,所以B选项不符合题意;C.垂线段最短吗为疑问句,它不是命题,所以C选项不符合题意;D.同旁内角互补为命题,所以D选项符合题意.故答案为:D.【分析】判断一件事情的语句叫做命题,据此判断即可.3.【答案】D【解析】【解答】解:A.由∠1=∠3,可得直线a与b平行,故A能判定;B. 如下图,由∠2+∠4=180°,∠5+∠4=180°,可得∠2=∠5,故直线a与b平行,故B能判定;C.由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;D.由∠1+∠4=180°,不能判定直线a与b平行故答案为:D.【分析】根据平行线的判定方法逐项判断即可。

八年级上册数学单元测试卷-第七章 平行线的证明-北师大版(含答案)

八年级上册数学单元测试卷-第七章 平行线的证明-北师大版(含答案)

八年级上册数学单元测试卷-第七章平行线的证明-北师大版(含答案)一、单选题(共15题,共计45分)1、将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(﹣2,0),∠ABO=30°.则△AOB旋转过程中所扫过的图形的面积为()A. B. C. D.2、在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°3、如图,已知所示的两个三角形全等,则的大小是()A.50°B.58°C.60°D.72°4、如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°5、如图,△ABC中,∠ABC,∠ACB的三等分线交于点E,D,若∠BFC=120°,∠BGC=102°,则∠A的度数为()A.34°B.40°C.42°D.46°6、由线段组成的三角形不是直角三角形的是()A. B. C.D.7、如图,△ABC中,∠A=75°,∠B=50°,将△ABC绕点C按逆时针方向旋转,得到△A’B’ C,点A的对应点A'落在AB边上,则∠BCA'的度数为()A.20°B.25°C.30°D.35°8、若等腰三角形的一个角是70°,则其底角为()A.70°B.55°C.70°或55°D.30°9、已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A﹣∠B=∠CB.∠A:∠B:∠C=3:4:5C.(b+c)(b﹣c)=a2 D.a=7,b=24,c=2510、如图,在△ABC中,∠ACB=α,将△ABC绕点C顺时针方向旋转到△A′B′C的位置,使AA′∥BC,设旋转角为β,则α,β满足关系()A.α+β=90°B.α+2β=180°C.2α+β=180°D.α+β=180°11、在△ABC中,∠B和∠C的平分线交于点I,边AB和AC的垂直平分线交于点O,若∠BIC=90°+ θ,则∠BOC=()A.90°﹣θB.2θC.180°﹣θD.以上答案都不对12、如图,是等边三角形,两个锐角都是的三角尺的一条直角边在上,则的度数为()A. B. C. D.13、在△ABC中,∠A-∠B=35°,∠C=55°,则∠B等于( )A.50°B.55°C.45°D.40°14、如图,点P是∠AOB的边OA上一点,PC⊥OB于点C,PD∥OB,∠OPC=35°,则∠APD 的度数是( )A.60°B.55°C.45°D.35°15、下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,AB∥CD,∠DCE=118°,∠AEC的角平分线EF与GF相交于点F,∠BGF=132°,则∠F的度数是________.17、下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=________.,,,,18、如图,已知△AOC≌△BOC,∠ACB=92°,∠B=98°,则∠1=________度。

(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试题(含答案解析)

(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试题(含答案解析)

一、选择题1.如图,BE ,CF 都是△ABC 的角平分线,且∠BDC =110°,则∠A 的度数为( )A .40°B .50°C .60°D .70°2.下列命题是真命题的是( )A .平行于同一直线的两条直线平行B .两直线平行,同旁内角相等C .同旁内角互补D .同位角相等 3.下列命题的逆命题是真命题的是( ).A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等 4.一个三角形的三个内角中( )A .至少有一个等于90°B .至少有一个大于90°C .不可能有两个大于89°D .不可能都小于60° 5.如图,AD ,AE 分别为△ABC 的高线和角平分线,DF ⊥AE 于点F ,当∠ADF =69°,∠C=65°时,∠B 的度数为( )A .21°B .23°C .25°D .30° 6.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°7.如图,//AB CD ,一副三角尺按如图所示放置,18AEG ∠=︒,则HFD ∠为( )A .23B .33C .36D .38 8.在△ABC 中,∠A =80°,∠B =50°,则∠C =( ) A .130°B .50°C .40°D .20° 9.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠D .12180B ∠+∠+∠=︒ 10.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .6811.如图,现给出下列条件:①1B ∠=∠,②25∠=∠,③34∠=∠,④180BCD D ︒∠+∠=.⑤180B BCD ︒∠+∠=,其中能够得到//AB CD 的条件有( )A .①②④B .①③⑤C .①②⑤D .①②④⑤ 12.如图,在ABC ∆中,CD 是ACB ∠的平分线,80A ∠=︒,40ABC ∠=︒,那么BDC ∠=( )A .80︒B .90︒C .100︒D .110︒二、填空题13.如图,在△ABC 中,∠A =50°,BE 平分∠ABC ,CE 平分外角∠ACD ,则∠E 的度数为________.14.如图,65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在ABC 外,若218∠=︒,则1∠的度数为________________.15.若一个三角形三个内角度数的比为1:3:6,则其最大内角的度数是________. 16.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.17.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.18.已知直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为___________.19.如图,把△ABC纸片沿DE折叠,使点B落在图中的B'处,设∠B'EC=∠1,∠B'DA =∠2.若∠B=25°,则∠2﹣∠1=_____°.20.三角形中,如果有一个内角是另外一个内角的3倍,我们把这个三角形叫做“三倍角三角形”.在一个“三倍角三角形”中有一个内角为60°,则另外两个角分别为_____.三、解答题21.阅读感悟:如下是小明在学习完“证明三角形内角和定理”后对所学知识的整理和总结,请仔细阅读,并完成相应的任务.三角形内角和定理的证明今天,在老师的带领下学习了三角形内角和定理证明的多种方法,我对这些方法进行了梳理,主要分为两大类:动手实践操作类①量角器测量法:通过引导同学们画出任意三角形,每人都用量角器测量并将所测得的角度相加,得到结论;②折叠法:如图1,将①所画的三角形剪下并折叠,使每个角都落到三角形一边的同一点处,发现三个角正好可拼为一个平角,进而得到相关结论;③剪拼法:如图2,将方法②用过的三角形展开之后,随意的将某两个角撕下之后,拼到第三个角处,发现三个角正好可拼为一个平角,故而得到相应的结论.证明类(思路:由实际操作的后两种方法得到的启发,我们可以通过构造辅助线,将所证明的三个角通过某些特殊的方法转化到一条直线上,利用所学相关数学知识来证明三角形内角和):①如图3,过三角形的某个顶点作对边的平行线,利用平行线性质来证明;②如图4,延长三角形的某一条边,并过相应的点做一条平行线,进而利用平行线性质来证明;……任务:(1)“折叠法”和“剪拼法”中得到相应结论的根据是:_________.(2)“证明类”的方法中主要体现了_______的数学思想;A .方程B .类比C .转化D .分类(3)结合以上数学思想,请在图5中画出一种不同于以上思路的证明方法,并证明三角形内角和定理.22.已知,//AB CD ,点P 在AB 、CD 之间,连结AP 、CP .(1)如图1,求A C P ∠+∠+∠的度数(提供两种作辅助线的方法:方法一:过点P 作AB 的平行线;方法二:连结AC );(2)已知100APC ∠=︒,PAB ∠和PCD ∠的角平分线AO 、CO 交于点0,请你画出草图,并直接写出AOC ∠的度数.23.已知,如图,ADE B ∠=∠,12∠=∠,GF AB ⊥.求证:CD AB ⊥;下面是证明过,请你将它补充完整证明:∵ADE B ∠=∠ ∴ // ( )∴13∠=∠又∵12∠=∠∴23∠∠=∴ // ( )∴FGB ∠=∵FG AB ⊥∴FGB ∠=∴CDB ∠=∴CD AB ⊥24.如图1,AD //BC ,BAD ∠的平分线交BC 于点G ,90BCD ∠=︒.(1)求证:BAG BGA ∠=∠(2)如图2,若50ABC ∠=︒,BCD ∠的平分线交AD 于点E ,交射线GA 于点F ,AFC ∠的度数.(3)如图3,线段AG 上有一点P ,满足2ABP PBG ∠=∠,过点C 作CH //AG . 若在直线AG 上取一点M ,使PBM DCH ∠=∠,请求:ABM GBM ∠∠的值.25.综合与实践问题情境:在数学活动课上,全班同学分组进行了一副三角尺上角的探究活动,如图所示,放置一副三角尺,两个三角尺的顶点O 重合,边CD 与边AB 重合,试求AOC ∠的度数.(1)探究展示勤奋小组展示了如下的解决方法(请结合图形1,完成填空)解:∵45OCD ∠=︒,60OBC ∠=︒∴BOC ∠=__________(___________________)又∵90AOB ∠=︒,∴AOC ∠=__________.(2)反思交流:创新小组受勤奋小组的启发,继续进行探究,如图2所示,绕顶点O 逆时针旋转DOC △,当DC AO //时,求得AEO ∠的度数.(请你写出解答过程)(3)探索发现:小明受到旋转的启发,继续进行探究(如图3),继续绕顶点O 逆时针旋转DOC △,使点B 落在边DC 上,此时发现1∠与2∠之间的数量关系.以下是他的解答过程,请补充完整解:在AOE △与BCE 中,∵12AEO A CEB C ∠+∠+∠=∠+∠+∠又∵AEO CEB ∠=∠(___________________)A ∠=__________,C ∠=__________,∴12A C ∠+∠=∠+∠12∠-∠=__________.26.已知在DEF ∆中,70E F ∠+∠=︒,现将DEF ∆放置在ABC ∆上,使得D ∠的两条边DE ,DF 分别经过点B 、C .(1)如图①所示,若50A ∠=︒,且//BC EF 时,ABC ACB ∠+∠= 度,DBC DCB ∠+∠= 度,ABD ACD +=∠∠ 度;(2)如图②,改变ABC ∆的位置,使得点D 在ABC ∆内,且BC 与EF 不平行时,请探究ABD ACD ∠+∠与A ∠之间存在怎样的数量关系,并验证你的结论;(3)如图③,改变ABC ∆的位置,使得点D 在ABC ∆外,且BC 与EF 不平行时,请探究ABE ∠、ACF ∠、A ∠之间存在怎样的数量关系,请直接写出你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∵BE 、CF 都是△ABC 的角平分线,∴∠A=180°-(∠ABC+∠ACB),=180°-2(∠DBC+∠BCD)∵∠BDC=180°-(∠DBC+∠BCD),∴∠A=180°-2(180°-∠BDC)∴∠BDC=90°+12∠A , ∴∠A=2(110°-90°)=40°.故答案为:A .本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.2.A解析:A【分析】对照平行线的性质和定理,逐一判断即可.【详解】∵平行于同一直线的两条直线平行,∴选项A正确;∵两直线平行,同旁内角互补,∴选项B错误;∵两直线平行,同旁内角互补,∴选项C错误;∵两直线平行,同位角相等,∴选项D错误;故选A.【点睛】本题考查了平行线的性质和判定,熟记性质和判定的条件和结论是解题的关键.3.C解析:C【分析】根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A3的逆命题是:3的平方根,是假命题;BC、1的立方根是1的逆命题是:1是1的立方根,是真命题;D、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题;故选:C.【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.4.D解析:D【分析】根据三角形的内角性质、三角形的内角和定理逐项判断即可得.A 、反例:锐角三角形的三个内角均小于90︒,此项错误;B 、反例:锐角三角形的三个内角均小于90︒,此项错误;C 、反例:一个三角形的三个内角分别为89.5,89.5,1︒︒︒,此项错误;D 、因为三角形的内角和等于180︒,所以不可能都小于60︒,此项正确;故选:D .【点睛】本题考查了三角形的内角、三角形的内角和定理,熟练掌握三角形的内角和定理是解题关键.5.B解析:B【分析】依据三角形内角和定理即可得到∠DAF 和∠CAD 的度数,再根据角平分线的定义,即可得到∠BAC 的度数,最后依据三角形内角和定理即可得到∠B 的度数.【详解】解:∵DF ⊥AE ,∠ADF =69°∴∠DAF =21°,∵AD ⊥BC ,∠C =65°,∴∠CAD =25°,∴∠CAE =∠DAF+∠CAD =21°+25°=46°,又∵AE 平分∠BAC ,∴∠BAC =2∠CAE =92°,∴∠B =180°﹣∠BAC ﹣∠C =180°﹣92°﹣65°=23°,故选:B .【点睛】本题考查了三角形内角和定理,解题的关键是掌握三角形内角和定理:三角形内角和是180°.6.D解析:D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF , ∴31∠=∠, ∵AD CE , ∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.7.B解析:B【分析】过点G 作AB 平行线交EF 于P ,根据平行线的性质求出∠EGP ,求出∠PGF ,根据平行线的性质、平角的概念计算即可.【详解】解:过点G 作AB 平行线交EF 于P ,由题意易知,AB ∥GP ∥CD ,∴∠EGP=∠AEG=18°,∴∠PGF=72°,∴∠GFC=∠PGF=72°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=33°.故选:B .【点睛】本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.8.B解析:B【分析】直接利用三角形内角和定理得到∠C 的度数即可.【详解】解:∵在△ABC 中,∠A=80°,∠B=50°,∴∠C=180°-80°-50°=50°,故选:B .【点睛】本题考查了三角形内角和定理,正确把握定义是解题的关键.9.B解析:B【解析】A 不可以;∵∠1=∠3,∴AD ∥BC(内错角相等,两直线平行),不能得出AB ∥CD ,∴A 不可以;B 可以;∵∠2=∠4,∴AB ∥CD(内错角相等,两直线平行);∴B 可以;C 、D 不可以;∵∠B=∠D,不能得出AB ∥CD ;∵∠1+∠2+∠B=180°,∴AD ∥BC(同旁内角互补,两直线平行),不能得出AB ∥BC ;∴C 、D 不可以;故选B.10.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.11.C解析:C【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠BCD+∠D=180°,∴AD∥CB,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.综上,正确的有①②⑤.故选:C.【点睛】本题考查了平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.12.D解析:D【分析】根据三角形的内角和得出∠ACB的度数,再根据角平分线的性质求出∠DCA的度数,再根据三角形内角与外角的关系求出∠BDC的度数.【详解】解:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠ACB=180°-∠A-∠B=180°-80°-40°=60°,∵CD是∠ACB的平分线,∠ACB=30°(角平分线的性质),∴∠ACD=12∴∠BDC=∠ACD+∠A=30°+80°=110°(三角形外角的性质).故选:D.【点睛】本题主要考查了三角形的内角和定理,角平分线的定义及三角形外角的知识,三角形的一个外角等于与它不相邻的两个内角的和,难度适中.二、填空题13.25°【分析】根据角平分线定义得出∠ABC=2∠EBC∠ACD=2∠DCE根据三角形外角性质得出2∠E+∠ABC=∠A+∠ABC求出∠A=2∠E即可求出答案【详解】解:∵BE平分∠ABCCE平分∠A解析:25°【分析】根据角平分线定义得出∠ABC=2∠EBC,∠ACD=2∠DCE,根据三角形外角性质得出2∠E +∠ABC=∠A+∠ABC,求出∠A=2∠E,即可求出答案.【详解】解:∵BE平分∠ABC,CE平分∠ACD,∴∠ABC=2∠EBC,∠ACD=2∠DCE,∵∠ACD=2∠DCE=∠A+∠ABC,∠DCE=∠E+∠EBC,∴2∠DCE=2∠E+2∠EBC,∴2∠E+∠ABC=∠A+∠ABC,∴∠A=2∠E,∵∠A=50°,∴∠E=25°,故答案为:25°.【点睛】本题考查的是三角形外角的性质,三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.14.98°【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5解析:98°【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=82°,然后利用平角的定义即可求出∠1.【详解】∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°-82°=98°.【点睛】本题综合考查了三角形内角和定理、外角定理以及翻折变换的问题,而翻折变换实际上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,明确各个角之间的等量关系,是解决本题的关键.15.108°【分析】已知三角形三个内角的度数之比可以设一份为x°根据三角形的内角和等于180°列方程求三个内角的度数确定最大的内角的度数【详解】解:设一份为x°则三个内角的度数分别为x°3x°6x°根据解析:108°【分析】已知三角形三个内角的度数之比,可以设一份为x°,根据三角形的内角和等于180°列方程求三个内角的度数,确定最大的内角的度数.【详解】解:设一份为x°,则三个内角的度数分别为x°,3x°,6x°,根据三角形内角和定理,可知x+3x+6x=180,解得x=18.所以6x°=108°,即最大的内角是108°.故答案为108°【点睛】此题考查三角形的内角和定理,利用三角形内角和定理和列方程求解可简化计算.16.5度【分析】由∠A1CD=∠A1+∠A1BC∠ACD=∠ABC+∠A而A1BA1C分别平分∠ABC和∠ACD得到∠ACD=2∠A1CD∠ABC=2∠A1BC于是有∠A=2∠A1同理可得∠A1=2∠A解析:5度【分析】由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此推出∠A=25∠A5,而∠A=80°,即可求出∠A5.【详解】解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1同理可得∠A1=2∠A2,即∠A=22∠A2,…,∴∠A=25∠A 5,∵∠A=80°,∴∠A 5=80°÷32=2.5°.故答案为:2.5°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质.17.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛 解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 18.40°【分析】如图过E 作EF ∥AB 则AB ∥EF ∥CD 根据平行线的性质和三角形的内角和定理即可求得答案【详解】解:如图过E 作EF ∥AB 则AB ∥EF ∥CD ∴∠1=∠3∠2=∠4∵∠3+∠4=180°-9解析:40°【分析】如图,过E 作EF ∥AB ,则AB ∥EF ∥CD ,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E 作EF ∥AB ,则AB ∥EF ∥CD ,∴∠1=∠3,∠2=∠4,∵∠3+∠4=180°-90°-30°=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°.故答案为:40°.【点睛】本题以三角板为载体,主要考查了平行线的性质和三角形的内角和定理,正确添加辅助线、熟练掌握平行线的性质是解题的关键.19.50【分析】由折叠性质求得∠B′由三角的外角性质用∠1表示∠2进而求得∠2﹣∠1【详解】如图:∵∠B=25°∴∠B′=∠B=25°∵∠3=∠1+∠B′=∠1+25°∵∠2=∠3+∠B=∠1+25°+解析:50【分析】由折叠性质求得∠B′,由三角的外角性质,用∠1表示∠2,进而求得∠2﹣∠1.【详解】如图:∵∠B=25°,∴∠B′=∠B=25°,∵∠3=∠1+∠B′=∠1+25°,∵∠2=∠3+∠B=∠1+25°+25°,∴∠2﹣∠1=50°,故答案为:50.【点睛】本题主要考查了三角形的外角性质,折叠的性质,关键是根据三角形的外角性质表示出∠1与∠2的关系式.20.100°20°或90°30°【分析】分三种情形讨论求解即可解决问题【详解】解:在△ABC中不妨设∠A=60°①若∠A=3∠C则∠C=20°∠B=100°②若∠C=3∠A则∠C=180°(不合题意)③解析:100°,20°或90°,30°【分析】分三种情形讨论求解即可解决问题.【详解】解:在△ABC中,不妨设∠A=60°.①若∠A=3∠C,则∠C=20°,∠B=100°.②若∠C=3∠A,则∠C=180°(不合题意).③若∠B=3∠C,则∠B=90°,∠C=30°,综上所述,另外两个角的度数为100°,20°或90°,30°.故答案为:100°,20°或90°,30°.【点睛】本题考查了三角形的内角和定理的运用,解题的关键是学会用分类讨论的思想思考问题.三、解答题21.(1)平角为180︒;(2)C ;(3)见解析【分析】(1)分析题意,即可得到“折叠法”和“剪拼法”都是根据平角为180︒进行证明; (2)由题意,证明类主要是通过角度的转化,从而进行证明;(3)过点D 作//DE AC 交AB 于,//E DF AB 交AC 于F ,由角度的关系,得到A EDF ∠=∠,然后根据平角的定义,即可得到结论成立.【详解】解:(1)根据题意,“折叠法”和“剪拼法”都是根据平角为180︒进行证明;故答案为:平角为180︒;(2)根据题意,“证明类”的方法中主要体现了角度的转化,从而进行证明结论成立; 故选:C ;(3)证明:如图,过点D 作//DE AC 交AB 于,//E DF AB 交AC 于F ,,,180,180FDC B EDB C A AED EDF AED ∴∠=∠∠=∠∠+∠=︒∠+∠=︒. A EDF ∴∠=∠,180A B C EDF FDC EDB CDB ∴∠+∠+∠=∠+∠+∠=∠=︒.∴三角形的内角和为180︒.【点睛】本题考查了三角形的内角和定理的证明,解题的关键是掌握证明三角形内角和等于180°的方法.22.(1)360︒;(2)130AOC ∠=︒或50︒【分析】(1)连结AC ,根据三角形的内角和定理可得∠P+∠PAC+∠PCA=180°,再根据AB//CD 得到∠BAC+∠DCA=180°即可求得.(2)分两种情况,点P 在AC 的左侧,点P 在AC 的右侧,由(1)中的得到的结论,∠P+∠PAB+∠PCD=360°,再由平行线的性质和角平分线的定理,可以得到∠AOC 的度数.【详解】(1)连结AC∴180P PAC PCA ∠+∠+∠=︒,∵//AB CD∴180BAC DCA ∠+∠=︒,∴360PAB PCD P ∠+∠+∠=︒,(2)如图a ,点P 在AC 的左侧,130AOC ∠=︒,∵∠P+∠PAB+∠PCD=360° ,又∠APC=100° ,∴∠PAB+∠PAC=260° ,又AO 、CO 是∠PAB 和 ∠PCD 的角平分线,∴∠PAO+∠PCO=12×260° =130° , ∴∠AOC=360° -100° -130° =130° , 如图b ,点P 在AC 的右侧,50AOC ∠=︒,过点P 作MN ∥AB ,∵MN ∥AB ,CD ∥AB ,∴MN ∥CD ,∵MN ∥AB ,∴∠APM=∠BAP ,∵MN ∥CD ,∴∠CPM=∠PCD , ∴∠BAP+∠PCD=∠APM+∠CPM=∠APC=100°, 又AO 、CO 是∠PAB 和 ∠PCD 的角平分线,∴∠BAO+∠DCO= 12×100° =50°, ∴∠AOC=∠BAO+∠DCO=50° ,∴∠AOC=130° 或50°.【点睛】此题考查了平行线的性质和判定,以及角平分线定理,三角形的内角和定理,解题的关键是灵活运用平行线的性质和角的平分线的定理求角的度数.23.DE ,BC ,同位角相等,两直线平行 ;GF ,CD ,同位角相等,两直线平行;CDB ∠,90,90【分析】根据平行线、垂线的性质分析,即可将证明过程补充完整.【详解】证明:∵ADE B ∠=∠∴//DE BC (同位角相等,两直线平行)∴13∠=∠(两直线平行 ,内错角相等)又∵12∠=∠∴23∠∠=∴//GF CD (同位角相等,两直线平行)∴FGB CDB ∠=∠∵FG AB ⊥∴ 90FGB ∠=∴90CDB =∠∴CD AB ⊥故答案为:DE ,BC ,同位角相等,两直线平行 ;GF ,CD ,同位角相等,两直线平行;CDB ∠,90,90.【点睛】本题考查了平行线、垂线的知识;解题的关键是熟练掌握平行线的判定和性质定理,从而完成求解.24.(1)见解析;(2)20︒;(3)1:5或7:5.【分析】(1)由两直线平行,内错角相等证得DAG AGB ∠=∠,再由角平分线的性质得到12BAG DAG BAD ∠=∠=∠,据此解题; (2)由等腰三角形的性质结合三角形内角和解得65BGA ∠=︒,再由补角的定义解得115AGC ∠=︒,接着由角平分线的性质解得ECB ∠的度数,最后根据三角形内角和180°解题;(3)设,1802AGB BAG ABG αα∠=∠=∠=︒-,根据题意,解得ABP PBG ∠∠、的度数,再根据两直线平行,同位角相等解得HCB AGB α∠=∠=,继而解得DCH PBM ∠∠、的度数,接着分两种情况讨论:当M 在BP 上方时,或当M 在BP 下方时,分别解得ABM GBM ∠∠、的度数,即可解题.【详解】解:(1)//AD BCDAG AGB ∴∠=∠AC 平分BAD ∠ 12BAG DAG BAD ∴∠=∠=∠ ∴∠=∠BAG BGA ;(2)50ABC ∠=︒1(180)652BGA ABG ∴∠=︒-∠=︒ 180115AGC AGB ∴∠=︒-∠=︒CE 平分DCB ∠1452ECB DCB ∴∠=∠=︒ 18020AFC AGC ECB ∴∠=︒-∠-∠=︒;(3)设,1802AGB BAG ABG αα∠=∠=∠=︒-2ABP PBG ∠=∠2412033ABP ABG α∴∠=∠=︒- 126033PBG ABG α∠=∠=︒- //CH AGHCB AGB α∴∠=∠=90DCH α∴∠=︒-PBM DCH ∴∠=∠90PBM α∴∠=︒-90α<︒160902αα∴︒-<︒- 4120903αα∴︒->︒- PBG PBM ABP ∴∠<∠<∠当M 在BP 上方时,1303ABM ABP PBM α∠=∠-∠=︒-51503GBM PBG PBM α∠=∠+∠=︒- :1:5ABM GBM ∠∠=当M 在BP 下方时,72103ABM ABP PBM α∠=∠+∠=︒- 51503GBM PBG PBM α∠=∠+∠=︒- 7:5ABM GBM ∠∠=:综上所述,:1:5ABM GBM ∠∠=或7:5ABM GBM ∠∠=:.【点睛】本题考查平行线的性质、角平分线的定义、三角形内角和180°等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.(1)75︒;三角形内角和是180︒;15︒;(2)105︒;见解析;(3)对顶角相等;30;45︒;15︒【分析】(1)利用三角形内角和定理求解即可;(2)利用平行线的性质求得∠AOC=45°,再利用三角形内角和定理求解即可;(3)在△AOE 与△BCE 中,利用三角形内角和定理得到∠1+∠A=∠2+∠C ,计算即可求解.【详解】解:∵∠OCD=45°,∠OBC=60°,∴∠BOC=75°(三角形内角和是180°),又∵∠AOB=90°,∴∠AOC=15°;(2)解:∵DC ∥AO ,∠OCD=45°,∴∠AOC=45°(两直线平行,内错角相等),又∵∠BAO=30°,∴∠AEO=180°−∠AOC−∠BAO=180°−45°−30°=105°(三角形内角和是180°);(3)在△AOE 与△BCE 中,∵∠AEO+∠1+∠A=∠CEB+∠2+∠C ,又∵∠AEO=∠CEB (对顶角相等),∠A=30°,∠C=45°,∴∠1+∠A=∠2+∠C ,∠1−∠2=15°.【点睛】本题考查了三角形内角和定理,平行线的性质,正确的识别图形是解题的关键. 26.(1)130;70;60;(2)110ABD ACD A ∠+∠=︒-∠,见解析;(3)110ABE ACF A ∠+∠=︒+∠【分析】(1)根据三角形的内角和即可求出ABC ACB ∠+∠的度数,根据平行线的性质可得到DBC DCB ∠+∠的度数,利用角度的和差关系即可求出ABD ACD ∠+∠的度数;(2)同(1)分别求出ABC ACB ∠+∠,DBC DCB ∠+∠和ABD ACD ∠+∠的度数,故可求解;(3)先求出ABC ACB ∠+∠,DBC DCB ∠+∠,再根据平角的性质即可计算求解.【详解】(1)∵50A ∠=︒,在△ABC 中,ABC ACB ∠+∠=180°-50°=130°,∵//BC EF∴DBC E ∠=∠,DCB F ∠=∠∴DBC DCB ∠+∠=70E F ∠+∠=︒∴ABD ACD +=∠∠(ABC ACB ∠+∠)-()DBC DCB ∠+∠=60°故答案为:130;70;60;(2)由题意,得()180110D E F ∠=︒-∠+∠=︒所以18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴()()18070110ABD ACD ABC ACB DBC DCB A A ∠+∠=∠+∠-∠+∠=︒-∠-︒=︒-∠即110ABD ACD A ∠+∠=︒-∠(3)由题意,得()180110D E F ∠=︒-∠+∠=︒∴18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴360ABE ACF ∠+∠=︒-(DBC DCB ∠+∠)-(ABC ACB ∠+∠)=110A ︒+∠ 即110ABE ACF A ∠+∠=︒+∠.【点睛】此题主要考查三角形的内角和及平行线的性质,解题的关键是熟知三角形的内角和为180°.。

八年级数学上册《第七章平行线的证明》单元测试题及答案-北师大版

八年级数学上册《第七章平行线的证明》单元测试题及答案-北师大版

八年级数学上册《第七章平行线的证明》单元测试题及答案-北师大版一、选择题1.如图,直线12//l l ,一直角三角板ABC(∠ACB=90° )放在平行线上,两直角边分别l 1与l 2、交于点D 、E ,现测得∠1=75°,则∠2的度数为( )A .15°B .25°C .30°D .35°2.下列命题中,假命题是( )A .同一平面内,过一点有且只有一条直线与已知直线垂直B .对顶角相等C .过一点有且只有一条直线与已知直线平行D .如果a b c b ,,那么a c3.如图,直线1l 、2l 被直线3l 所截,下列选项中哪个不能得到12//l l ?( )A .12∠=∠B .23∠∠=C .35∠=∠D .34180∠+∠=︒4.如图,a//b ,∠2=120°,则∠1的度数为( )A .45°B .60°C .65°D .120°5.在Rt ABC 中,∠A=90°,∠B=50°,∠C=( )A .40︒B .50︒C .30︒D .45︒6.已知在同一平面内有三条不同的直线a ,b ,c ,下列说法错误的是( )A .如果a b ,a c ⊥那么b c ⊥B .如果a b ,a c 那么b cC .如果a b ⊥,a c ⊥那么b c ⊥D .如果a b ⊥,a c ⊥那么b c7.下列选项中,能说明命题“两个锐角的和是锐角”是一个假命题的反例是( )A .2060AB ∠=︒∠=︒, B .5090A B ∠=︒∠=︒,C .4050A B ∠=︒∠=︒,D .40100A B ∠=︒∠=︒,8.如图,下列条件中,能判定 AB CD 的是( )A .14∠=∠B .46∠=∠C .25180?∠∠+=D .13180∠+∠=︒9.如图,AD 是EAC ∠的平分线AD BC ,100BAC ∠=︒则C ∠的度数是( )A .50°B .40°C .35°D .45°10.如图,将长方形ABCD 沿AC 折叠,使点B 落到点1B 处,1B C 交AD 于点E ,若125∠=︒,则2∠等于( )A .25︒B .30︒C .35︒D .40︒二、填空题1111133+=112344+=11355+=⋯观察下列各式:请你找出其中规律,并将第(1)n n ≥个等式写出来 .12.将命题“相等的角是直角”改写成“如果……那么……”的形式 .13.如图,下列条件中:①180B BCD ∠+∠=︒;②12∠=∠;③3=4∠∠;④5B ∠=∠;则一定能判定AB//CD 的条件有 (填写所有正确的序号).14.如图,直线//a b ,135∠=︒和290∠=︒则3∠= °.三、解答题15.如图AB CD ,12110∠+∠=︒求G ∠的度数.16.如图所示,在①DE∠BC ;②∠1=∠2;③∠B =∠C 三个条件中,任选两个作题设,另一个作为结论,组成一个命题,并证明.17.如图,∠1+∠2=180°,∠3=∠B ,求证∠AED =∠C .完成下面的证明过程.证明:∵∠1+∠2=180°,∠1+∠4=180° ∴∠2=∠4(同角的补角相等).∴AB∠ ▲ (内错角相等,两直线平行). ∴∠3=∠ADE ( ). 又∵∠3=∠B (已知)∴ ▲ =∠B (等量代换)﹒ ∴DE∠BC ( ).∴∠AED =∠C (两直线平行,同位角相等).18.如图,已知∠ABC 中,∠B =60°,AD 是BC 边上的高,AE 是∠BAC 的平分线,且∠1=10°,求∠C 的度数四、综合题19.已知,ABC ∠和DEF ∠中AB DE ,BC EF 试探究:(1)如图1,写出B ∠与E ∠的关系,并说明理由;(2)如图2,写出B ∠与E ∠的关系,并说明理由;(3)根据上述探究,请归纳得到一个真命题.20.如图,直线AB∠CD ,直线MN 与AB ,CD 分别交于点M ,N ,ME ,NE 分别是∠AMN 与∠CNM 的平分线,NE 交AB 于点F ,过点N 作NG∠EN 交AB 于点G .(1)求证:EM∠NG ;(2)连接EG ,在GN 上取一点H ,使∠HEG=∠HGE ,作∠FEH 的平分线EP 交AB 于点P ,求∠PEG 的度数.21.如图,在ABC 中90ACB ∠=︒,CD AB ⊥于点D ,BE 平分ABC ∠交AC 于点E ,交CD 于点F ,过点E 作EG CD ,交AB 于点G ,连接CG .(1)求证:90A AEG ∠+∠=︒; (2)求证:EC EG =;(3)若4CG =,5BE =求四边形BCEG 的面积.22.如图,在Rt ABC 中90ACB ∠=︒,BC AC <过点B 作DEAC ,且BD BC =,过点B 作BF AB ⊥交CD 于点F ,连接EF .(1)如图1,若=40BAC ∠︒,且BF BE =,求CFE ∠的度数; (2)如图2,若DE AC =,求证:AB BF EF =+.参考答案与解析1.【答案】A【解析】【解答】解:如图,过点C作CF∠l1∵l1∠l2∴CF∠l1∠l2∴∠FCD=∠1=75°,∠BCF=∠2∵∠ACB=90°∴∠1+∠2=90°∴∠2=90°-75°=15°故答案为:A.【分析】过点C作CF∠l1,根据平行公理得出CF∠l1∠l2,得出∠FCD=∠1=75°,∠BCF=∠2,再根据∠ACB=90°得出∠1+∠2=90°,即可得出∠2=90°-75°=15°.2.【答案】C【解析】【解答】解:A正确,所以是真命题;B:B正确,所以是真命题;C:过直线外一点有且只有一条直线与已知直线平行,故错误,是假命题;D:D正确,是真命题。

第七章 平行线的证明单元测试(解析版)

第七章 平行线的证明单元测试(解析版)

第七章平行线的证明单元测试一、选择题(本题共10小题,每小题3分,共30分)1.下列语句中,是命题的为()A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗2.下列命题中真命题是()A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角3.“两条直线相交,有且只有一个交点”的题设是()A.两条直线B.交点C.两条直线相交D.只有一个交点4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补5.三角形的一个外角等于与它不相邻的内角的4倍,等于与它相邻的一个内角的2倍,则三角形各角的度数为()A.45°,45°,90°;B.30°,60°,90°; C.25°,25°,130°;D.36°,72°,72°6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,那么与∠FCD相等的角有()A.1个B.2个C.3个D.4个7.下列四个命题中,真命题有()(1)两条直线被第三条直线所截,内错角相等;(2)如果∠1和∠2是对顶角,那么∠1=∠2;(3)一个角的余角一定小于这个角的补角;(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A.1个B.2个C.3个D.4个8.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()A.∠ADC>∠AEB B.∠ADC=∠AEBC.∠ADC<∠AEB D.大小关系不能确定(第8题) (第9题) (第10题)9.如下图,在△ABC中,AD平分外角∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A.50°B.65°C.80°D.95°10.如图AB∥CD,AD、BC交于点O,∠A=42°,∠C=58°,则∠AOB=()A.42°B.58°C.80°D.100°二、填空题(本大题共10小题,每小题4分,共40分)11.如图所示,∠1=∠2,∠3=80°,那么∠4=.(第11题) (第12题) (第13题)12.如图所示,∠ABC=36°40′,DE∥BC,DF⊥AB于F,则∠D=.13.如图所示,AB∥CD,∠1=115°,∠3=140°,∠2=°.14.如果一个三角形三个内角的比是1:2:3,那么这个三角形是三角形.15.一个三角形的三个外角的度数比为2:3:4,则与此对应的三个内角的比为.16.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC=度.(第16题) (第18题)17.命题:“同角的余角相等”的题设是,结论是.18.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为°.19.如果等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于度.20.过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较大的角的度数是.三、解答题(本大题共5小题,共30分)21.如图所示,∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.22.如图所示,BF∥DE,∠1=∠2,求证:GF∥B C.23.如图所示,已知AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.24.已知,如图所示,直线AB∥CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.25.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.下列语句中,是命题的为()A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗【考点】命题与定理.【分析】根据命题的定义对各个选项进行分析从而得到答案.【解答】解:A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.【点评】此题主要考查学生对命题与定理的理解及掌握情况.2.下列命题中真命题是()A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角 D.锐角小于它的余角【考点】命题与定理.【分析】根据补角、余角的定义结合反例即可作出判断.【解答】解:A、两个30°角的和是60°,是锐角,不正确;B、两个80°的角之和是160°,是钝角,不正确;C、钝角大于90°,它的补角小于90°,正确;D、80°锐角的余角是10°,不正确.故选C.【点评】可以举具体角的度数来证明.3.“两条直线相交,有且只有一个交点”的题设是()A.两条直线 B.交点 C.两条直线相交 D.只有一个交点【考点】直线、射线、线段.【分析】本题考查两直线相交,有且只有一个交点的命题,题设和结论要搞清楚.【解答】解:两条直线相交,有且只有一个交点这一命题题设是两条直线相交,结论是有且只有一个交点,故选C.【点评】本题主要考查直线、线段、射线的知识点,不是很难,不过做题要仔细.4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等 B.互余或互补C.互补 D.相等或互补【考点】平行线的性质.【分析】本题主要利用两直线平行,同位角相等以及同旁内角互补作答.【解答】解:如图知∠A和∠B的关系是相等或互补.故选D.【点评】如果两个的两条边分别平行,那么这两个角的关系是相等或互补.5.三角形的一个外角等于与它不相邻的内角的4倍,等于与它相邻的一个内角的2倍,则三角形各角的度数为()A.45°,45°,90°B.30°,60°,90° C.25°,25°,130°D.36°,72°,72°【考点】三角形的外角性质.【专题】探究型.【分析】设这个外角为4x,则与它不相邻的内角的度数为x,则与它相邻的一个内角为2x,再由2x+4x=180°即可求出x的值,故可得出各内角的度数.【解答】解:设这个外角为4x,则与它不相邻的内角的度数为x,则与它相邻的一个内角为2x,另一个内角为4x﹣x=3x,∵2x+4x=180°,∴x=30°,∴2x=60°,4×30°﹣30°=90°,∴三角形各角的度数为30°,60°,90°.故选B.【点评】本题主要考查了三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理,即三角形的一个外角等于与它不相邻的两个内角之和,难度适中.6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,那么与∠FCD相等的角有()A.1个B.2个C.3个D.4个【考点】平行线的判定与性质.【分析】利用平行线的性质进行求解.【解答】解:∵AB⊥EF,CD⊥EF,∴AB∥CD,∴∠FCD=∠A,∵∠1=∠F=30°,∴BG∥AF,∴∠A=∠ABG;故选B.【点评】考查了平行线的判定以及平行线的性质,需要熟练掌握.7.下列四个命题中,真命题有()(1)两条直线被第三条直线所截,内错角相等(2)如果∠1和∠2是对顶角,那么∠1=∠2(3)一个角的余角一定小于这个角的补角(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A.1个B.2个C.3个D.4个【考点】命题与定理;余角和补角;对顶角、邻补角;同位角、内错角、同旁内角.【分析】根据常用知识点对各个选项进行分析,从而判定真命题的个数.【解答】解:(1)不正确,应该是两条平行线被第三条直线所截,内错角相等;(2)正确,因为对顶角相等;(3)正确,因为一个角的补角比它的余角大90°;(4)正确,因为∠3的余角即∠1,则∠1与∠2互补.所以正确有的三个,故选:C.【点评】此题主要考查学生对命题与定理的理解及对常用知识点的综合运用能力.8.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()A.∠ADC>∠AEB B.∠ADC=∠AEBC.∠ADC<∠AEB D.大小关系不能确定【考点】三角形的外角性质.【分析】利用三角形的内角和为180度计算.【解答】解:在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴等量代换后有∠ADC=∠AE B.故选B.【点评】本题利用了三角形内角和为180度.9.如下图,在△ABC中,AD平分外角∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A.50°B.65°C.80°D.95°【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.【分析】利用平分线的性质,三角形的内角和定理以及外角的性质计算.【解答】解:由题意可得,∠CAE=130°,∴∠BAC=50°,∴∠ACD=∠B+∠BAC=30°+50°=80°.故选C.【点评】此题主要考查角平分线的性质,三角形的内角和定理以及外角的性质.10.如图AB∥CD,AD、BC交于点O,∠A=42°,∠C=58°,则∠AOB=()A.42°B.58°C.80°D.100°【考点】平行线的性质;三角形内角和定理.【专题】计算题.【分析】由AB∥CD,可得∠B=∠C=58°,根据三角形的内角和为180°即可求得∠AOB的值.【解答】解:∵AB∥CD,∴∠B=∠C=58°;∵∠A+∠B+∠AOB=180°,∠A=42°,∴∠AOB=80°.故选C.【点评】此题考查了平行线的性质:两直线平行,内错角相等.还考查了三角形的内角和为180°.二、填空题(本大题共10小题,每小题4分,共40分)11.如图所示,∠1=∠2,∠3=80°,那么∠4=80°.【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1=∠2,根据同位角相等,两直线平行得到a∥b,然后根据平行线的性质得∠4=∠3=80°.【解答】解:∵∠1=∠2,∴a∥b,∴∠4=∠3=80°.故答案为80°.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.12.如图所示,∠ABC=36°40′,DE∥BC,DF⊥AB于F,则∠D=53°20′.【考点】平行线的性质;垂线.【专题】计算题.【分析】由平行线的性质可得出∠ABC=∠DAF=36°40′,再由DF⊥AB于F,可得出∠D的值.【解答】解:∵DE∥BC,∴∠ABC=∠DAF=36°40′,又∵DF⊥AB,∴∠D=90°﹣∠DAF=53°20′.【点评】本题考查平行线的性质,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补.13.如图所示,AB∥CD,∠1=115°,∠3=140°,∠2=75°.【考点】平行线的性质.【专题】计算题.【分析】根据两直线平行,同旁内角互补求出∠4的度数,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出∠2的度数.【解答】解:如图,∵AB∥CD,∠3=140°,∴∠4=180°﹣140°=40°,∵∠1=115°,∴∠2=∠1﹣∠4=115°﹣40°=75°.【点评】本题主要利用两直线平行,同旁内角互补的性质和三角形的一个外角等于和它不相邻的两个内角的和求解.14.如果一个三角形三个内角的比是1:2:3,那么这个三角形是直角三角形.【考点】三角形内角和定理.【分析】根据三角形的内角和等于180°和已知求出三角形的最大角的度数,即可得出答案.【解答】解:∵一个三角形三个内角的比是1:2:3,∴这个三角形的最大内角的度数是:180°×=90°,∴这个三角形是直角三角形,故答案为:直角.【点评】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角是解此题的关键,注意:三角形的内角和等于180°.15.一个三角形的三个外角的度数比为2:3:4,则与此对应的三个内角的比为5:3:1.【考点】三角形的外角性质.【分析】设设三个外角的度数分别为2x、3x、4x,根据三角形的外角和等于360°列出方程,解方程即可求出三个外角的度数,得到与此对应的三个内角的度数,计算即可.【解答】解:设三个外角的度数分别为2x、3x、4x,由题意得,2x+3x+4x=360°,解得,x=40°,则三个外角分别为80°、120°、160°则对应的三个内角分别为:100°、60°、20°,∴与此对应的三个内角的比为5:3:1.故答案为:5:3:1.【点评】本题考查的是三角形的外角的性质,掌握三角形的外角和等于360°是解题的关键.16.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC=122.5度.【考点】三角形内角和定理;角平分线的定义.【分析】根据三角形的内角和定理和角平分线的定义求得.【解答】解:∵在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°.∴∠EBC+∠ECB==57.5°,∴∠BEC=180°﹣57.5°=122.5°.【点评】此题考查了三角形内角和定理,属简单题目.17.命题:“同角的余角相等”的题设是如果是同角的余角,结论是那么这两个角相等..【考点】命题与定理.【专题】计算题.【分析】命题一般都能够写成“如果…,那么…”的形式,“如果”后面就是题设,“那么”后面就是结论,因此可正确找出题设和结论.【解答】解:“同角的余角相等”可写成是“如果是同角的余角,那么这两个角相等”.故答案为:如果是同角的余角;那么这两个角相等.【点评】本题考查命题的题设和结论,命题一般都能够写成“如果…,那么…”的形式,“如果”后面就是题设,“那么”后面就是结论.18.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为90°.【考点】平行线的性质.【专题】计算题.【分析】根据两直线平行,内错角相等可得∠B=∠BEF,∠D=∠DEF,又知∠B=∠1,∠D=∠2,可得出∠1+∠2=∠DEF+∠DEF,由平角的定义,求出∠BED的值即可.【解答】解:∵AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,又∵∠B=∠1,∠D=∠2,∴∠1=∠BEF,∠2=∠DEF,又∵∠1+∠BEF+∠2+∠DEF=180°,∴∠BED=×180°=90°.【点评】本题主要考查运用平行线的性质的能力,主要考查平行线的性质(两直线平行,内错角相等)以及等量代换等知识点.19.如果等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于90度.【考点】等腰直角三角形.【分析】根据等腰直角三角形底边上的“三线合一”的性质,判定等腰直角三角形.【解答】解:根据等腰三角形底边上的高也是底边上的中线和顶角的角平分线可知,高把原等腰直角三角形分成两个等腰直角三角形,顶角也就平分成两个45°,故顶角是90°,故填90.【点评】本题充分运用等腰直角三角形底边上的“三线合一”的性质解题.20.过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较大的角的度数是70°.【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余可以得到,∠A、∠B中有一个是70°,另一个是50°,因而∠A、∠B中较大的角的度数是70°.【解答】解:如图,依题意得∠ACD=40°,∠DCB=20°,而CD⊥AB于D,∴∠A=50°,∠B=70°,因而∠A、∠B中较大的角的度数是70°.故填空答案:70°.【点评】本题主要考查的是直角三角形两锐角互余的性质,比较简单.三、解答题(本大题共5小题,共30分)21.如图所示,∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.【考点】等腰三角形的判定.【专题】证明题.【分析】由平行线的性质可得∠2=∠C,∠1=∠B,已知∠1=∠2,从而推出∠B=∠C,根据等角对等边可得到AB=AC,即△ABC是等腰三角形.【解答】证明:∵AE∥BC(已知),∴∠2=∠C(两直线平行,内错角相等).∠1=∠B(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠B=∠C(等量代换).∴AB=A C.∴△ABC是等腰三角形(等角对等边).【点评】此题主要考查平行线的性质及等腰三角形的判定;进行角的等量代换是正确解答本题的关键.22.如图所示,BF∥DE,∠1=∠2,求证:GF∥B C.【考点】平行线的判定与性质.【专题】证明题.【分析】先根据两直线平行,同位角相等,得∠2=∠FBC,再结合已知条件和等量代换证得内错角∠FBC=∠1,从而得GF∥B C.【解答】解:∵BF∥DE(已知),∴∠2=∠FBC(两直线平行,同位角相等),∵∠2=∠1(已知),∴∠FBC=∠1(等量代换),∴GF∥BC(内错角相等,两直线平行).【点评】本题主要考查平行线的性质及判定,熟练记忆公理和定义是学好数学的关键.23.如图所示,已知AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.【考点】平行线的性质;角平分线的定义;垂线.【专题】计算题.【分析】根据平行线的性质,结合角平分线的定义和垂线的定义求解.【解答】解:∵AB∥CD,∠AEF=62°,∴∠EFD=∠AEF=62°,∠CFE=180°﹣∠AEF=180°﹣62°=118°;∵FH平分∠EFD,∴∠EFH=∠EFD=×62°=31°;又∵FG⊥FH,∴∠GFE=90°﹣∠EFH=90°﹣31°=59°,∴∠GFC=∠CFE﹣∠GFE=118°﹣59°=59°.【点评】此题考查的是平行线的性质,即两直线平行内错角相等,同旁内角互补.24.已知,如图所示,直线AB∥CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.【考点】平行线的判定与性质.【专题】证明题.【分析】根据题意证得∠AEF=∠CFM,再由∠AEP=∠CFQ,可得出∠PEM=∠QFM,PE∥QF,即能得出∠EPM=∠FQM.【解答】证明:∵AB∥CD(已知),∴∠AEF=∠CFM(两直线平行,同位角相等).又∵∠PEA=∠QFC(已知),∴∠AEF+∠PEA=∠CFM+∠QFC(等式性质).即∠PEM=∠QFM.∴PE∥QF(同位角相等,两直线平行).∴∠EPM=∠FQM(两直线平行,同位角相等).【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.25.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.【考点】三角形内角和定理;角平分线的定义.【分析】要求∠DAC的度数,只要求出∠C的度数即可.先根据角平分线的定义,可得∠EBC的度数,在△BEC中利用三角形的内角和可得∠C的度数.因AD为BC上的高,所以∠ADC=90°,在△ADC 中,再运用三角形的内角和可求∠DAC的度数.【解答】解:∵BE平分∠ABC,且∠ABC=60°,∴∠ABE=∠EBC=30°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣30°﹣75°=75°.又∵∠C+∠DAC=90°,∴∠DAC=90°﹣∠C=90°﹣75°=15°.【点评】灵活运用垂直的定义和角平分线的定义,结合三角形的内角和定理是解决本题的关键.特别注意“三角形的内角和是180°”这一隐含的条件.。

北师大新版八年级数学上册 第七章 平行线的证明 单元练习卷 含解析

北师大新版八年级数学上册 第七章 平行线的证明 单元练习卷   含解析

第七章平行线的证明一.选择题(共10小题)1.下列说法中正确的是()A.不相交的两条直线叫做平行线B.相等的角是对顶角C.过一点有且只有一条直线与已知直线平行D.在平面中过一点有且只有一条直线与已知直线垂直2.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直3.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠B D.∠B+∠BDC=180°4.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°5.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为()A.62°B.152°C.208°D.236°6.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.360°D.258°7.给出下列命题:①两边及一边上的中线对应相等的两个三角形全等;②底边和顶角对应相等的两个等腰三角形全等;③斜边和斜边上的高线对应相等的两个直角三角形全等,其中属于真命题的是()A.①②B.②③C.①③D.①②③8.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁9.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC 外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°10.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.24°B.25°C.30°D.36°二.填空题(共7小题)11.如图,当风车的一片叶子AB旋转到与地面MN平行时,叶子CD与地面MN,理由是.12.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是.13.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有(填写所有正确的序号).14.如图,若∠1=∠D,∠C=72°,则∠B=.15.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC=.16.如图,在△ABC中,∠A=80°,∠B=60°,将△ABC沿EF对折,点C落在C′处.如果∠1=50°,那么∠2=.17.夏洛特去山里寻宝,来到藏有宝藏的地方,发现这里有编号分为一,二,三,四,五的五扇大门,每扇门上都写有一句话:一,宝藏在五号大门的后面;二,宝藏或者在三号大门的后面,或者在五号的后面;三,宝藏不在五号大门的后面;四,宝藏不在此门后面;五,宝藏在二号大门的后面,夏洛特从当地人得到,五句话中只有一句是真的,那么夏洛特应该去号大门后面寻找宝藏.三.解答题(共5小题)18.如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.19.如图,已知直线AB,CD被直线EF所截,∠1+∠2=180°.证明:AB∥CD.20.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.21.如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.22.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.参考答案与试题解析一.选择题(共10小题)1.下列说法中正确的是()A.不相交的两条直线叫做平行线B.相等的角是对顶角C.过一点有且只有一条直线与已知直线平行D.在平面中过一点有且只有一条直线与已知直线垂直【分析】利用平行线的定义及公理,对顶角的性质和垂直的概念分析.【解答】解:A、在同一平面内永不相交的两条直线叫做平行线,故选项错误;B、两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角,故选项错误;C、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故选项错误;D、正确.故选:D.2.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直【分析】根据平行公理和相交线、垂线的定义利用排除法求解.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;B、应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项错误;C、两条直线相交,有且只有一个交点,故本选项正确;D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,故本选项正确.故选:B.3.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠5=∠B D.∠B+∠BDC=180°【分析】根据平行线的判定方法直接判定.【解答】解:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),所以正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;而选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A错误.故选:A.4.如图,将一副三角板按如图方式叠放,则角α等于()A.165°B.135°C.105°D.75°【分析】根据三角形内角和定理求出∠1,根据三角形外角的性质求出∠2,根据邻补角的概念计算即可.【解答】解:∠1=90°﹣30°﹣60°,∴∠2=∠1﹣45°=15°,∴∠α=180°﹣15°=165°,故选:A.5.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为()A.62°B.152°C.208°D.236°【分析】首先求出∠F+∠B=∠D+∠EGD,然后证明出∠C+∠A+∠F+∠B﹣∠D=180°,最后结合题干∠D=28°求出∠A+∠B+∠C+∠F的度数.【解答】解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,故选:C.6.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2=()A.282°B.180°C.360°D.258°【分析】根据三角形内角和定理求出∠3+∠4,根据邻补角的概念计算即可.【解答】解:∵∠C=78°,∴∠3+∠4=180°﹣78°=102°,∴∠1+∠2=360°﹣(∠3+∠4)=258°,故选:D.7.给出下列命题:①两边及一边上的中线对应相等的两个三角形全等;②底边和顶角对应相等的两个等腰三角形全等;③斜边和斜边上的高线对应相等的两个直角三角形全等,其中属于真命题的是()A.①②B.②③C.①③D.①②③【分析】根据全等三角形的判定定理进行判断即可.【解答】解:①两边及一边上的中线对应相等的两个三角形全等是真命题;②底边和顶角对应相等的两个等腰三角形全等是真命题;③斜边和斜边上的高线对应相等的两个直角三角形全等是真命题,故选:D.8.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁【分析】直接利用已知得出甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,进而得出答案.【解答】解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,∵甲、乙都没有输球,∴甲一定与乙平,∵丙得分3分,1胜0平,乙得分5分,1胜2平,∴与乙打平的球队是甲与丁.故选:B.9.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC 外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°【分析】根据三角形内角和定理求出∠C,根据折叠的性质求出∠C′,根据三角形的外角的性质计算,得到答案.【解答】解:∵∠A=65°,∠B=75°,∴∠C=180°﹣65°﹣75°=40°,由折叠的性质可知,∠C′=∠C=40°,∴∠3=∠1+∠C′=60°,∴∠2=∠C+∠3=100°,故选:C.10.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A.24°B.25°C.30°D.36°【分析】根据∠A=20°,求出∠ABC+∠ACB的度数,根据题意依次求出∠D1BC+∠D1CB…∠D5BC+∠D5CB的度数,得到答案.【解答】解:∵∠A=20°,∴∠ABC+∠ACB=180°﹣20°=160°,∵∠ABC与∠ACB的角平分线交于D1,∴∠D1BC+∠D1CB=80°,由题意得,∴∠D2BC+∠D2CB=80°+40°=120°,∴∠D3BC+∠D3CB=120°+20°=140°,∴∠D4BC+∠D4CB=140°+10°=150°,∴∠D5BC+∠D5CB=150°+5°=155°,∴∠BD5C=180°﹣155°=25°.故选:B.二.填空题(共7小题)11.如图,当风车的一片叶子AB旋转到与地面MN平行时,叶子CD与地面MN垂直,理由是在同一平面内,垂直于平行线中的一条则必垂直于另一条.【分析】根据AB⊥CD,AB∥MN来判定CD与MN的关系.【解答】解:∵AB⊥CD,AB∥MN,∴CD⊥MN(在同一平面内,垂直于平行线中的一条则必垂直于另一条).故答案是:垂直;在同一平面内,垂直于平行线中的一条则必垂直于另一条.12.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是经过直线外一点,有且只有一条直线与这条直线平行.【分析】直接利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,得出即可.【解答】解:∵MC∥AB,NC∥AB,∴点M,C,N在同一条直线上,理由是:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.13.如图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;则一定能判定AB∥CD的条件有①③④(填写所有正确的序号).【分析】根据平行线的判定方法:同旁内角互补,两直线平行可得①能判定AB∥CD;根据内错角相等,两直线平行可得③能判定AB∥CD;根据同位角相等,两直线平行可得④能判定AB∥CD.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥CB;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD,故答案为:①③④.14.如图,若∠1=∠D,∠C=72°,则∠B=108°.【分析】先依据∠1=∠D,判定AB∥CD,再根据平行线的性质,即可得到∠B的度数.【解答】解:∵∠1=∠D,∴AB∥CD,∴∠B+∠C=180°,又∵∠C=72°,∴∠B=108°,故答案为:108°.15.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC=110°.【分析】根据∠BAC=40°的条件,求出∠ACB+∠ABC的度数,再根据∠ACB=∠ABC,∠ACP=∠CBP,求出∠PBA=∠PCB,于是可求出∠ACP+∠ABP=∠PCB+∠PBC,然后根据三角形的内角和定理求出∠BPC的度数.【解答】解:∵∠BAC=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ACB=∠ABC,∠ACP=∠CBP,∴∠PBA=∠PCB,∴∠ACP+∠ABP=∠PCB+∠PBC=140°×=70°,∴∠BPC=180°﹣70°=110°.故答案为110°.16.如图,在△ABC中,∠A=80°,∠B=60°,将△ABC沿EF对折,点C落在C′处.如果∠1=50°,那么∠2=30°.【分析】根据三角形的内角和定理求出∠CEF+∠CFE=∠A+∠B,然后根据平角等于180°列式计算即可得解.【解答】解:∵∠A+∠B+∠C=180°,∠CEF+∠CFE+C=180°,∴∠CEF+∠CFE=∠A+∠B=80°+60°=140°,由翻折的性质得,2(∠CEF+∠CFE)+∠1+∠2=180°×2,∴2×140°+50°+∠2=360°,解得∠2=30°.故答案为:30°.17.夏洛特去山里寻宝,来到藏有宝藏的地方,发现这里有编号分为一,二,三,四,五的五扇大门,每扇门上都写有一句话:一,宝藏在五号大门的后面;二,宝藏或者在三号大门的后面,或者在五号的后面;三,宝藏不在五号大门的后面;四,宝藏不在此门后面;五,宝藏在二号大门的后面,夏洛特从当地人得到,五句话中只有一句是真的,那么夏洛特应该去四号大门后面寻找宝藏.【分析】利用五句话中只有一句是真的,利用已知可得一号门和三号门上的话必有一个正确的,而另一个是不正确的,进而分析得出即可.【解答】解:由只有一句话正确可知,一号门和三号门上的话必有一个正确的,而另一个是不正确的.假设一号门上的话正确,则四号门上的话也是正确的,假设不成立;假设三号门的话是正确的,因为四号门上的话不正确,可知宝藏在四号门后,证明其它门上的话也是不正确的,假设成立;所以三号门上的话是正确的,宝藏在四号门后面.故答案为:四.三.解答题(共5小题)18.如图,AE与CD交于点O,∠A=50°,OC=OE,∠C=25°,求证:AB∥CD.【分析】先利用等腰三角形的性质得到∠E=∠C=25°,再根据三角形外角性质计算出∠DOE=50°,则有∠A=∠DOE,然后根据平行线的判定方法得到结论.【解答】证明:∵OC=OE,∴∠E=∠C=25°,∴∠DOE=∠C+∠E=50°,∵∠A=50°,∴∠A=∠DOE,∴AB∥CD.19.如图,已知直线AB,CD被直线EF所截,∠1+∠2=180°.证明:AB∥CD.【分析】根据∠1+∠2=180°,∠2+∠3=180°,可知∠1=∠3,根据平行线的判定定理即可求解.【解答】证明:∵∠1+∠2=180°,∠2+∠3=180°,∴∠1=∠3(等量代换),∴AB∥CD(同位角相等,两直线平行).20.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.【分析】由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C=∠FEC,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.【解答】证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.21.如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.【分析】首先根据∠1=∠2,可得AD∥BF,进而得到∠D=∠DBF,再由∠3=∠D,可以推出∠3=∠DBF,进而根据平行线的判定可得DB∥CF.【解答】解:BD∥CF,理由如下:∵∠1=∠2,∴AD∥BF,∴∠D=∠DBF,∵∠3=∠D,∴∠3=∠DBF,∴BD∥CF.22.已知:点A在射线CE上,∠C=∠D.(1)如图1,若AC∥BD,求证:AD∥BC;(2)如图2,若∠BAC=∠BAD,BD⊥BC,请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,过点D作DF∥BC交射线于点F,当∠DFE=8∠DAE时,求∠BAD的度数.【分析】(1)根据AC∥BD,可得∠DAE=∠C,再根据∠C=∠D,即可得到∠DAE=∠D,则结论得证;(2)根据∠CGB是△ADG是外角,即可得到∠CGB=∠D+∠DAE,再根据△BCG中,∠CGB+∠C=90°,即可得到∠D+∠DAE+∠C=90°,进而得出2∠C+∠DAE=90°;(3)设∠DAE=α,则∠DFE=8α,∠AFD=180°﹣8α,根据DF∥BC,即可得到∠C=∠AFD=180°﹣8α,再根据2∠C+∠DAE=90°,即可得到2(180°﹣8α)+α=90°,求得α的值,由三角形内角和定理得到∠BAD的度数.【解答】解:(1)如图1,∵AD∥BC,∴∠DAE=∠C,又∵∠C=∠D,∴∠DAE=∠D,∴AD∥BC;(2)∠EAD+2∠C=90°.证明:如图2,设CE与BD交点为G,∵∠CGB是△ADG是外角,∴∠CGB=∠D+∠DAE,∵BD⊥BC,∴∠CBD=90°,∴△BCG中,∠CGB+∠C=90°,∴∠D+∠DAE+∠C=90°,又∵∠D=∠C,∴2∠C+∠DAE=90°;(3)如图3,设∠DAE=α,则∠DFE=8α,∵∠DFE+∠AFD=180°,∴∠AFD=180°﹣8α,∵DF∥BC,∴∠C=∠AFD=180°﹣8α,又∵2∠C+∠DAE=90°,∴2(180°﹣8α)+α=90°,∴α=18°,∴∠C=180°﹣8α=36°=∠ADB,又∵∠C=∠BDA,∠BAC=∠BAD,∴∠ABC=∠ABD=∠CBD=45°,∴△ABD中,∠BAD=180°﹣45°﹣36°=99°.。

(必考题)初中数学八年级数学上册第七单元《平行线的证明》检测卷(含答案解析)

(必考题)初中数学八年级数学上册第七单元《平行线的证明》检测卷(含答案解析)

一、选择题1.将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有( )①OE 平分AOD ∠;②AOC BOD ∠=∠;③15AOC CEA ∠-∠=︒;④180COB AOD ∠+∠=︒ A .0B .1C .2D .32.下列命题是真命题的是( ) A .平行于同一直线的两条直线平行 B .两直线平行,同旁内角相等 C .同旁内角互补D .同位角相等3.下列命题中,属于假命题的是( ) A .相等的角是对顶角 B .三角形的内角和等于180° C .两直线平行,同位角相等D .两点之间,线段最短 4.下列选项中,可以用来证明命题“若,a b >则a b >”是假命题的反例是( ) A .1,0a b ==B .1,2a b ==-C .2,1a b =-=D .2,1a b ==-5.下列命题的逆命题是真命题的是( ). A .3的平方根是3 B .5是无理数 C .1的立方根是1D .全等三角形的周长相等6.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23°7.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .B D∠=∠D .12180B ∠+∠+∠=︒8.已知下列命题(1)等边三角形的三个内角都相等; (2)平行四边形相邻的两个角都相等;(3)线段垂直平分线上的点到这条线段两个端点距离相等; (4)底角相等的两个等腰三角形全等. 其中原命题和逆命题均为真命题的有( ) A .1个B .2个C .3个D .4个9.下列命题是真命题的是( )A .相等的角是对顶角B .内错角相等C .任何非负数的算术平方根是非负数D .直线外一点到这条直线的垂线段叫做点到直线的距离 10.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠1=∠3B .∠2=∠4C .∠EAD=∠BD .∠D=∠DCF11.下列说法正确的是( ) A .同位角相等B .相等的角是对顶角C .内错角相等,两直线平行D .互补的两个角一定有一个锐角 12.在ABC 中,若+,A B C ∠=∠∠那么这个三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .钝角三角形二、填空题13.如图,Rt △ABC 中,∠ACB =90°,∠A =52°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为_____.14.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).15.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.16.如图,AB ∥CD ,EF 交AB 、CD 于点G 、H ,GM 、HM 分别平分∠BGH 、∠GHD ,GM 、HM 交于点M ,则∠GMH =_________.17.如图,已知:AB ∥CD ,DB ⊥BC ,∠1=40°,求∠2的度数.完成下面的证明过程: 证明:∵AB ∥CD ( ), ∴∠1=∠BCD =40°( ). ∵BD ⊥BC , ∴∠CBD = .∵∠2+∠CBD+∠BCD = ( ), ∴∠2= .18.如图,已知AD ∥BC ,∠1=∠2,∠A=112°,且BD ⊥CD ,则∠C=_____.19.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA ,CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .下列结论:①AB ∥CD ;②∠AEB +∠ADC =180°;③DE 平分∠ADC ;其中结论正确的有______________20.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下: 如图1,我们想要证明“如果直线AB ,CD 被直线所截EF ,AB ∥CD ,那么∠EOB=EO D '∠.” 如图2,假设∠EOB≠EO D '∠,过点O 作直线A'B',使EOB '∠=EO D '∠,可得A B ''∥CD .这样过点O 就有两条直线AB ,A B ''都平行于直线CD ,这与基本事实_________矛盾,说明∠EOB≠EO D '∠的假设是不对的,于是有∠EOB=∠EO D '∠.小贴士反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.请补充上述证明过程中的基本事实:_________________________三、解答题21.如图,AD BC ⊥于点D ,EG BC ⊥于点G ,若1E ∠=∠,试说明:23∠∠=.下面是推理过程,请将推理过程补充完整.∵AD BC ⊥于点D ,EG BC ⊥于点G (已知), ∴90ADC EGC ∠=∠=︒ ∴//AD EG ( ) ∴12∠=∠( ) ∵1E ∠=∠(已知), ∴E ∠=_______(等量代换) 又∵//AD EG (已证), ∴______3=∠( ) ∴23∠∠=(等量代换).22.如图,//AD BC ,∠1=∠C ,∠B =60°,DE 平分∠ADC 交BC 于点E , 试说明//AB DE .请完善解答过程,并在括号内填写相应的理论依据.解:∵//AD BC ,(已知) ∴∠1=∠ =60°.( ) ∵∠1=∠C ,(已知) ∴∠C =∠B =60°.(等量代换) ∵//AD BC ,(已知)∴∠C +∠ =180°.( )∴∠ =180°-∠C =180°-60°=120°.(等式的性质) ∵DE 平分∠ADC ,(已知) ∴∠ADE =12∠ADC =12×120°=60°.( ) ∴∠1=∠ADE .(等量代换) ∴//AB DE .( )23.如图所示,已知,A F ∠=∠,C D ∠=∠.(1)求证: //BD CE ;(2)已知:2:3ABD DEC ∠∠=,求DEC ∠的度数. 24.在ABC 中,ABC ∠与ACB ∠的平分线相交于点P .(1)如图①,如果80A ∠=︒,求BPC ∠的度数;(2)如图②,作ABC 外角MBC ∠,NCB ∠的角平分线,且交于点Q ,试探索Q ∠,A ∠之间的数量关系;(3)如图③,在图②中延长线段BP ,QC 交于点E 若BQE △中存在一个内角等于另一个内角的2倍,求A ∠的度数.25.如图已知12B C ∠=∠∠=∠,,求证://AB CD . 证明:∵12∠=∠(已知), 且14∠=∠(__________),∴24∠∠=(__________). ∴//BF _____(__________).∴∠____3=∠(__________). 又∵B C ∠=∠(已知), ∴_____________(等量代换). ∴//AB CD (__________).26.在数学课上,学习了角平分线后,王老师给同学们出了如下题目:已知直线MN ⊥直线PQ ,垂足为O ,点A 在直线PQ 上运动,点B 在直线MN 上运动.(1)如图①,AE 、BE 分别是BAO ∠和ABO ∠的平分线,点A 、B 在运动的过程中,AEB ∠的大小是否会发生变化?若发生变化请说明变化的情况;若不发生变化,请说明理由,并求AEB ∠的大小.王老师又让各小组经过认真思考后,改编题目中的条件,提出问题,并解答.以下是两个小组提出的问题,请同学们继续解答.(2)创新小组:如图②,点F 是BAP ∠和ABM ∠的角平分线的交点,点A 、B 在运动过程中,F ∠的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,请说明理由.并求出F ∠的大小.(3)探索小组:如图③,点F 是平面内一点,连接AF 、BF ,将F ∠沿直线CD 翻折后与E ∠重合,已知AB 与CD 不平行,问E ∠、BCE ∠,ADE ∠存在怎样的数量关系(直接写出结论,不必证明).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据同角的余角相等可得∠AOC=∠BOD ;根据角的和差关系可得∠COB+∠AOD=180;根据三角形的内角和即可得出∠AOC-∠CEA=15°. 【详解】解:∵∠DOC=∠AOB=90°, ∴∠DOC-∠BOC=∠AOB-∠COB , 即∠AOC=∠BOD ,故②正确; ∵∠AOB=∠COD=90°,∴∠COB+∠AOD=∠AOB+∠COD=180°,故④正确; 如图,AB 与OC 交于点P ,∵∠CPE=∠APO,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°,∴∠AOC-∠CEA=15°.故③正确;没有条件能证明OE平分∠AOD,故①错误.综上,②③④正确,共3个,故选:D.【点睛】本题考查了余角与补角以及三角形内角和定理,熟知余角与补角的性质以及三角形内角和是180°是解答此题的关键.2.A解析:A【分析】对照平行线的性质和定理,逐一判断即可.【详解】∵平行于同一直线的两条直线平行,∴选项A正确;∵两直线平行,同旁内角互补,∴选项B错误;∵两直线平行,同旁内角互补,∴选项C错误;∵两直线平行,同位角相等,∴选项D错误;故选A.【点睛】本题考查了平行线的性质和判定,熟记性质和判定的条件和结论是解题的关键.3.A解析:A【分析】利用对顶角、三角形内角和、平行线的性质等分别判断后即可确定正确的选项.【详解】解:A、相等的角不一定是对顶角,原命题是假命题;B、三角形三个内角的和等于180°,是真命题;C、两直线平行,同位角相等,是真命题;D、两点之间,线段最短,是真命题;故选:A.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角、平行线的性质和三角形内角和,难度不大.4.B解析:B 【分析】需要证明一个结论不成立,可以举反例证明; 【详解】∵当1a =,2b =-时,1<2-,∴证明了命题“若,a b >则a b >”是假命题; 故答案选B . 【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.5.C解析:C 【分析】根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可. 【详解】A 3的逆命题是:3的平方根,是假命题;B C 、1的立方根是1的逆命题是:1是1的立方根,是真命题;D 、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题; 故选:C . 【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.6.C解析:C 【分析】根据∠DAE=∠DAC-∠CAE ,只要求出∠DAC ,∠CAE 即可. 【详解】解:∵∠BAC=180°-∠B-∠C ,∠B=45°,∠C=73°, ∴∠BAC=62°, ∵AD 平分∠BAC , ∴∠DAC=12∠BAC=31°,∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.7.B解析:B【解析】A不可以;∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行),不能得出AB∥CD,∴A不可以;B可以;∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行);∴B可以;C、D不可以;∵∠B=∠D,不能得出AB∥CD;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.8.B解析:B【分析】根据逆命题的概念分别写出各个命题的逆命题,根据等边三角形的判定和直线定理、平行四边形的判定和性质定理、线段垂直平分线的判定和性质、全等三角形的判定和性质定理判断即可.【详解】解:(1)等边三角形的三个内角都相等,是真命题,逆命题为:三个角相等的三角形是等边三角形,是真命题;(2)平行四边形相邻的两个角互补,但不一定相等,本说法是假命题,逆命题为:相邻的两个角都相等的四边形是平行四边形,是真命题;(3)线段垂直平分线上的点到这条线段两个端点距离相等,是真命题,逆命题为:到线段两个端点距离相等的点在线段垂直平分线上,是真命题;(4)底角相等的两个等腰三角形不一定全等,本说法是假命题,逆命题为:两个全等的等腰三角形的底角相等,是真命题;故选:B.【点睛】本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.C解析:C【分析】根据对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义逐一分析即可.【详解】解:A.对顶角相等,但是相等的角不一定是对顶角,该项为假命题;B.两直线平行,内错角相等,该项为假命题;C.任何非负数的算术平方根是非负数,该项为真命题;D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离,该项为假命题;故选:C.【点睛】本题考查判断命题的真假,掌握对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义是解题的关键.10.B解析:B【分析】根据各选项中各角的关系及利用平行线的判定定理,分别分析判断AD、BC是否平行即可.【详解】解:A、∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B、∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行),但不能判定AD∥BC;C、∵∠EAD=∠B,∴AD∥BC(同位角相等,两直线平行);D、∵∠D=∠DCF,∴AD∥BC(内错角相等,两直线平行);故选:B.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.C解析:C【分析】直接利用平行线的性质、判定以及对顶角的定义、补角的特征分别判断得出答案.【详解】A 、两直线平行,同位才能角相等,此项错误;B 、相等的角不一定是对顶角,此项错误;C 、内错角相等,两直线平行,此项正确;D 、互补的两个角不一定有一个锐角,有可能是两个直角,此项错误;故选:C .【点睛】本题考查了平行线的性质、判定以及对顶角的定义等,掌握平行线与相交线的相关知识是解题关键.12.C解析:C【分析】根据三角形内角和定理得到180A B C ∠+∠+∠=︒,则180B C A ∠+∠=︒-∠,变形得180A A ︒-∠=∠,解得90A ∠=︒,即可判断△ABC 的形状.【详解】解:∵180A B C ∠+∠+∠=︒,∴180B C A ∠+∠=︒-∠,又∵+A B C ∠=∠∠,∴180A A ︒-∠=∠,解得:90A ∠=︒,∴△ABC 为直角三角形.故选:C .【点睛】本题考察了三角形内角和定理:三角形的内角和为180°.二、填空题13.14°【分析】根据∠A =52°可求∠B 由折叠可知∠DA′C=52°利用外角性质可求【详解】解:∵∠ACB =90°∠A =52°∴∠B=90°-52°=38°由折叠可知∠DA′C=∠A =52°∠A′DB解析:14°【分析】根据∠A =52°,可求∠B ,由折叠可知∠D A′C=52°,利用外角性质可求.【详解】解:∵∠ACB =90°,∠A =52°,∴∠B=90°-52°=38°,由折叠可知∠D A′C=∠A =52°,∠A′DB=∠D A′C -∠B=52°-38°=14°,故答案为:14°.【点睛】本题考查了直角三角形的性质、轴对称的性质、三角形外角的性质,解题关键是灵活运用三角形的性质和轴对称性质建立角之间的联系.14.50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点 解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒, ∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.15.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相 解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.16.90°【分析】由平行线性质可得到再由角平分线定义可得到【详解】解:∵AB ∥CD ∴∠BGH+∠GHD=180(两直线平行同旁内角互补)又GMHM 分别平分∠BGH ∠GHD ∴∠MGH+∠GHM=90(角平解析:90°【分析】由平行线性质可得到180BGH GHD ∠+∠=︒,再由角平分线定义可得到90GMH ∠=︒.【详解】解:∵AB ∥CD∴∠BGH+∠GHD=180︒(两直线平行,同旁内角互补)又GM 、HM 分别平分∠BGH 、∠GHD ,∴∠MGH+∠GHM=90︒(角平分线的定义)∴ ∠GMH=180︒-(∠MGH+∠GHM )=180︒-90︒=90︒(三角形内角和定理). 故答案为 90°.【点睛】本题考查三角形内角和、角平分线及平行线的综合应用,熟练掌握有关性质、定义和定理是解题关键.17.已知;两直线平行同位角相等;90°;180°;三角形内角和定理;50°【分析】由平行线的性质和垂线的定义可得∠1=∠BCD =40°∠CBD =90°由三角形内角和定理可求∠2的度数【详解】∵AB ∥CD解析:已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【分析】由平行线的性质和垂线的定义可得∠1=∠BCD =40°,∠CBD =90°,由三角形内角和定理可求∠2的度数.【详解】∵AB∥CD(已知),∴∠1=∠BCD=40°(两直线平行,同位角相等).∵BD⊥BC,∴∠CBD=90°.∵∠2+∠CBD+∠BCD=180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.【点睛】本题考查了平行线的性质,垂线的定义,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.18.56°【解析】解:∵AD∥BC∴∠2=∠ADB又∵AD∥BC∠A=112°∴∠ABC=180°-∠A=68°∵∠1=∠2∴∠1=∠2=∠ADB=34°∵BD⊥CD∴∠2+∠C=90°∴∠C=90°﹣解析:56°【解析】解:∵AD∥BC,∴∠2=∠ADB.又∵AD∥BC,∠A=112°,∴∠ABC=180°-∠A=68°,∵∠1=∠2,∴∠1=∠2=∠ADB=34°,∵BD⊥CD,∴∠2+∠C=90°,∴∠C=90°﹣34°=56°,故答案为56°.点睛:此题综合运用了三角形的内角和定理、平行线的性质.三角形的内角和是180°;两条直线平行,则同位角相等,内错角相等,同旁内角互补.19.①③【分析】先根据AB⊥BCAE平分∠BAD交BC于点EAE⊥DE∠1+∠2=90°∠EAM和∠EDN的平分线交于点F由三角形内角和定理以及平行线的性质即可得出结论【详解】解:∵AB⊥BCAE⊥DE解析:①③【分析】先根据AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分线交于点F,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正确;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②错误;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正确,故答案为:①③.【点睛】本题考查了平行线的性质与判定、三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解题的关键.20.经过直线外一点有且只有一条直线与已知直线平行经过直线外一点有且只有一条直线与已知直线平行【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案【详解】解:假设∠EOB≠∠EOD过点O作直线解析:经过直线外一点,有且只有一条直线与已知直线平行,经过直线外一点,有且只有一条直线与已知直线平行.【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案.【详解】解:假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,依据基本事实同位角相等,两直线平行,可得A'B'∥CD.这样过点O就有两条直线AB,A′B′都平行于直线CD,这与基本事实:经过直线外一点,有且只有一条直线与已知直线平行矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.故答案为:经过直线外一点,有且只有一条直线与已知直线平行;经过直线外一点,有且只有一条直线与已知直线平行.【点睛】本题考查了反证法,正确掌握反证法的基本步骤是解题的关键.三、解答题21.见解析【分析】根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD∥EG,由平行线的性质得到∠1=∠2,等量代换得到∠E=∠2,由平行线的性质得到∠E=∠3,等量代换即可得到结论.【详解】∵AD⊥BC于点D,EG⊥BC于点G(已知),∴∠ADC=∠EGC=90°(垂直的定义),∴AD∥EG(同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∵∠E=∠1(已知)∴∠E=∠2(等量代换)∵AD∥EG,∴∠E=∠3(两直线平行,同位角相等).∴∠2=∠3(等量代换).【点睛】考查了平行线的性质、垂直的定义,解题关键是熟练掌握平行线的性质.22.B;两直线平行,同位角相等;ADC;两直线平行,同旁内角互补;ADC;角平分线性质;内错角相等,两直线平行.【分析】利用平行线的性质和判定,角平分线的性质去进行填空.【详解】解∵//AD BC,(已知)∴∠1=∠B=60°.(两直线平行,同位角相等)∵∠1=∠C,(已知)∴∠C=∠B=60°.(等量代换)∵//AD BC,(已知)∴∠C+∠ADC=180°.(两直线平行,同旁内角互补)∴∠ADC=180°-∠C=180°-60°=120°.(等式的性质)∵DE平分∠ADC,(已知)∴∠ADE=12∠ADC=12×120°=60°.(角平分线性质)∴∠1=∠ADE.(等量代换)∴//AB DE.(内错角相等,两直线平行)【点睛】本题考查平行线的性质和判定,解题的关键是掌握平行线的性质和判定定理.23.(1)见解析;(2)∠D EC =108°【分析】(1)由AC//DE可得∠D=∠ABD,根据等量代换得到∠C=∠ABD,从而可证BD//C E;(2)设∠ABD=2x,∠D EC=3x,根据两直线平行,同旁内角互补求解即可.【详解】(1)证明∵∠A=∠F,∴AC//DE,∴∠D=∠ABD,∵∠D=∠C ,∴∠C=∠ABD ,∴BD//C E ;(2)∵BD//C E ,DF//BC ,∴∠ABD =∠C ,∠D EC +∠C=180°,∵∠ABD :∠DEC=2:3,∴设∠ABD=2x ,∠D EC=3x ,则2x+3x=180°,∴x=36°,∴∠D EC =3x=108°.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.24.(1)130︒;(2)1902Q A ∠=︒-∠;(3)A ∠的度数是90°或60°或120° 【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠PBC+∠PCB ,进而求出∠BPC 即可解决问题;(2)根据三角形的外角性质分别表示出∠MBC 与∠BCN ,再根据角平分线的性质可求得∠CBQ+∠BCQ ,最后根据三角形内角和定理即可求解;(3)在△BQE 中,由于∠Q=90°12-∠A ,求出∠E=12∠A ,∠EBQ=90°,所以如果△BQE 中,存在一个内角等于另一个内角的2倍,那么分四种情况进行讨论:①∠EBQ=2∠E=90°;②∠EBQ=2∠Q=90°;③∠Q=2∠E ;④∠E=2∠Q ;分别列出方程,求解即可.【详解】(1)∵80A ∠=︒,∴100ABC ACB ∠+∠=︒,又∵点P 是ABC ∠和ACB ∠的平分线的交点,∴50PBC PCB ∠+∠=︒,∴()180********P PBC PCB ∠=︒-∠+∠=︒-︒=︒;(2)∵外角MBC ∠,NCB ∠的角平分线交于点Q , ∴12QBC MBC ∠=∠,12QCB NCB ∠=∠, ∵180ABC MBC ∠+∠=︒,180ACB NCB ∠+∠=︒,∴180MBC ABC ∠=︒-∠,180NCB ACB ∠=︒-∠, ∴()12QBC QCB MBC NCB ∠+∠=∠+∠()13602ABC ACB =︒-∠-∠ ()1360180-2A =︒-︒∠⎡⎤⎣⎦ ()11802A =︒+∠ 1902A =+∠︒, ∴()180Q QBC QCB ∠=︒-∠+∠1180902A ⎛⎫=︒-︒+∠ ⎪⎝⎭1902A =︒-∠; (3)延长BC 至F ,∵CQ 为△ABC 的外角∠NCB 的角平分线,∴CE 是△ABC 的外角∠ACF 的平分线,∴∠ACF=2∠ECF ,∵BE 平分∠ABC ,∴∠ABC=2∠EBC ,∵∠ECF=∠EBC+∠E ,∴2∠ECF=2∠EBC+2∠E ,即∠ACF=∠ABC+2∠E ,又∵∠ACF=∠ABC+∠A ,∴∠A=2∠E ,即∠E=12∠A , ∵∠EBQ=∠EBC+∠CBQ=12∠ABC+12∠MBC =12(∠ABC+∠A+∠ACB ) =90°.如果△BQE 中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E ,则∠E=30°,解得∠A=2∠E=60°;④∠E=2∠Q ,则∠E=60°,解得∠A=2∠E=120°.综上所述,∠A 的度数是90°或60°或120°.【点睛】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.25.见解析【分析】根据平行线的判定和性质解答.【详解】解:证明:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴BF ∥EC (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等).又∵∠B=∠C (已知),∴∠3=∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 26.(1)AEB ∠的大小不变,理由见解析;135AEB ∠=︒;(2)AFB ∠的大小不变,理由见解析;45F ∠=︒;(3)2ADE BCE E ∠+∠=∠.【分析】(1)根据三角形内角和定理结合角平分线性质解题;(2)由邻补角的定义结合三角形内角和定理解得270BAP ABM ∠+∠=︒,由角平分线的性质得到12EAB OAB ∠=∠,12EBA OBA ∠=∠,据此整理解题; (3)由翻折的性质,得到F E ∠=∠,FDC EDC ∠=∠,FCD ECD ∠=∠,再由三角形内角和定理结合角的和差解题即可.【详解】解:(1)结论:AEB ∠的大小不变,理由:∵90AOB ∠=︒,∴OAB OBA 90∠+∠=︒,∵AE 、BE 分别是BAO ∠和ABO ∠角的平分线, ∴12EAB OAB ∠=∠,12EBA OBA ∠=∠,∴1()452EAB EBA OAB OBA ∠+∠=∠+∠=︒, ∴18045135AEB ∠=︒-︒=︒. (2)结论:AFB ∠的大小不变,理由:∵90AOB ∠=︒,∴OAB OBA 90∠+∠=︒,∴270BAP ABM ∠+∠=︒,∵AF 、BF 分别是BAP ∠和ABM ∠的平分线, ∴12FAB PAB ∠=∠,12FBA MBA ∠=∠, ∴1()1352FAB FBA PAB MBA ∠+∠=∠+∠=︒, ∴180()18013545F FAB FBA ∠=︒-∠+∠=︒-︒=︒; (3)2ADE BCE E ∠+∠=∠,理由如下:∵将F ∠沿直线CD 翻折后与E ∠重合,∴F E ∠=∠,FDC EDC ∠=∠,FCD ECD ∠=∠,∵180E ECD EDC ∠+∠+∠=︒,∴180ECD EDC E ∠+∠=︒-∠,又∵1802ADE EDC ∠=︒-∠,1802BCE ECD ∠=︒-∠,∴3602()ADE BCE ECD EDC ∠+∠=︒-∠+∠()36021802E E =︒-︒-∠=∠.【点睛】本题考查翻折变换、三角形内角和定理、角平分线性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.。

北师大八年级数学上第七章平行线的证明单元测试含答案解析

北师大八年级数学上第七章平行线的证明单元测试含答案解析

第七章平行线的证明单元测试一、单选题(共10题;共30分)1、如图,△ABC中,∠ACB=90°, ∠A=30°,AC的中垂线交AC于E.交AB于D,则图中60°的角共有( )A、6个B、5个C、4个D、3个2、下列说法中正确的是( )A、原命题是真命题,则它的逆命题不一定是真命题B、原命题是真命题,则它的逆命题不是命题C、每个定理都有逆定理D、只有真命题才有逆命题3、下列命题是假命题的是( )A、­如果a∥b,b∥c,那么a∥cB、锐角三角形中最大的角一定大于或等于60°C、两条直线被第三条直线所截,内错角相等D、矩形的对角线相等且互相平分4、如图,在梯形ABCD中,AB∥CD,AD=DC=CB,若,则A、130°B、125°C、115°D、50°5、如图,AB∥CD,∠D=∠E=35°,则∠B的度数为()A、60°B、65°C、70°D、75°6、下列条件中,能判定△ABC为直角三角形的是()A、∠A=2∠B=3∠CB、∠A+∠B=2∠CC、∠A=∠B=30°D、∠A=∠B=∠C7、下列四个命题,其中真命题有()(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为a•sin20°.A、1个B、2个C、3个D、4个8、下列命题:①等腰三角形的角平分线、中线和高重合,②等腰三角形两腰上的高相等;③等腰三角形的最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A、1个B、2个C、3个D、4个9、下列命题中,真命题是()A、周长相等的锐角三角形都全等B、周长相等的直角三角形都全等C、周长相等的钝角三角形都全等D、周长相等的等腰直角三角形都全等10、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A、80B、50C、30D、20二、填空题(共8题;共26分)11、命题“三角形的一个外角等于和它不相邻的两个内角的和”的条件是________,结论________.12、如图,一张矩形纸片沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD等于________.13、已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是 ________,该逆命题是 ________命题(填“真”或“假”).14、如图,AB∥CD,∠A=56°,∠C=27°,则∠E的度数为________.15、写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:________.16、已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为________.17、一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是________度.18、如图,在ABCD中,CH⊥AD于点H,CH与BD的交点为E.如果,,那么________三、解答题(共5题;共29分)19、如图,已知∠ABC=52°,∠ACB=60°,BO,CO分别是∠ABC和∠ACB的平分线,EF过点O,且平行于BC,求∠BOC的度数.20、如图,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度数.21、已知△ABC中,∠A=105°,∠B比∠C大15°,求:∠B,∠C的度数.22、如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.23、已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章平行线的证明单元测试一、单选题(共10题;共30分)1、如图,△A BC中,∠A CB=90°, ∠A=30°,A C的中垂线交A C于E.交A B于D,则图中60°的角共有( )A、6个B、5个C、4个D、3个2、下列说法中正确的是( )A、原命题是真命题,则它的逆命题不一定是真命题B、原命题是真命题,则它的逆命题不是命题C、每个定理都有逆定理D、只有真命题才有逆命题3、下列命题是假命题的是( )A、-如果a∥b,b∥c,那么a∥cB、锐角三角形中最大的角一定大于或等于60°C、两条直线被第三条直线所截,内错角相等;D、矩形的对角线相等且互相平分4、如图,在梯形A BCD中,A B∥CD,A D=DC=CB,若,则A、130°B、125°C、115°D、50°5、如图,A B∥CD,∠D=∠E=35°,则∠B的度数为()A、60°B、65°C、70°D、75°6、下列条件中,能判定△A BC为直角三角形的是()A、∠A=2∠B=3∠CB、∠A+∠B=2∠CC、∠A=∠B=30°D、∠A=∠B=∠C7、下列四个命题,其中真命题有()(1)有理数乘以无理数一定是无理数;(2)顺次联结等腰梯形各边中点所得的四边形是菱形;(3)在同圆中,相等的弦所对的弧也相等;(4)如果正九边形的半径为a,那么边心距为a•sin20°.A、1个B、2个C、3个D、4个8、下列命题:①等腰三角形的角平分线、中线和高重合,②等腰三角形两腰上的高相等;③等腰三角形的最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A、1个B、2个C、3个D、4个9、下列命题中,真命题是()A、周长相等的锐角三角形都全等B、周长相等的直角三角形都全等C、周长相等的钝角三角形都全等D、周长相等的等腰直角三角形都全等10、如图,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为()A、80B、50C、30D、20二、填空题(共8题;共26分)11、命题“三角形的一个外角等于和它不相邻的两个内角的和”的条件是________,结论________.12、如图,一张矩形纸片沿A B对折,以A B中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD 等于________.13、已知命题“如果一个四边形是平行四边形,那么这个四边形是旋转对称图形.”,写出它的逆命题是 ________,该逆命题是 ________命题(填“真”或“假”).14、如图,A B∥CD,∠A=56°,∠C=27°,则∠E的度数为________.15、写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:________.16、已知,如图,在△A BC中,OB和OC分别平分∠A BC和∠A CB,过O作DE∥BC,分别交AB、A C于点D、E,若BD+CE=5,则线段DE的长为________.17、一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是________度.18、如图,在A BCD中,CH⊥A D于点H,CH与BD的交点为E.如果,,那么________三、解答题(共5题;共29分)19、如图,已知∠A BC=52°,∠A CB=60°,BO,CO分别是∠A BC和∠A CB的平分线,EF 过点O,且平行于BC,求∠BOC的度数.20、如图,△A BC中,∠A=30°,∠B=62°,CE平分∠A CB,CD⊥A B于D,DF⊥CE于F,求∠CDF的度数.21、已知△A BC中,∠A=105°,∠B比∠C大15°,求:∠B,∠C的度数.22、如图,过∠A OB平分线上一点C作CD∥OB交O A于点D,E是线段OC的中点,请过点E画直线分别交射线C D、OB于点M、N,探究线段O D、ON、DM之间的数量关系,并证明你的结论.23、已知:如图,E、F是平行四边行A BCD的对角线A C上的两点,A E=CF。

求证:(1)△A DF≌△CBE ; (2)EB∥DF.四、综合题(共1题;共15分)24、综合题(1)如图1,把△A BC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).(2)如图2,BI平分∠A BC,CI平分∠A CB,把△A BC折叠,使点A与点I重合,若∠1+∠2=130°,求∠BIC的度数;(3)如图3,在锐角△A BC中,BF⊥A C于点F,CG⊥A B于点G,BF、CG交于点H,把△A BC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.答案解析一、单选题1、【答案】B【考点】三角形内角和定理,线段垂直平分线的性质,等腰三角形的性质【解析】【分析】根据线段垂直平分线定理,可得A D=CD,则∠CDE=∠A DE,又∠A CB=90°, ∠A=30°,∴∠B=∠DCB=∠BDC=∠CDE=∠A DE=60°共5个角为60°故选B【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.2、【答案】A【考点】命题与定理【解析】原命题是真命题,则它的逆命题不是命题是错误的,原命题的逆命题依然有条件和结论两部分,依然是命题。

每个定理都有逆定理是错误的,原命题是定理,但逆命题不一定是定理,不能称为逆定理。

只有真命题才有逆命题是错误的,假命题也有逆命题。

A正确3、【答案】C【考点】同位角、内错角、同旁内角,平行公理及推论,三角形内角和定理,矩形的性质,命题与定理【解析】【分析】依次分析各选项即可得到结论。

A.如果a∥b,b∥c,那么a∥c,B.锐角三角形中最大的角一定大于或等于60°,D.矩形的对角线相等且互相平分,均是真命题,不符合题意;C.两条直线被第三条直线所截,若这两条直线平行,则内错角相等,故是假命题。

【点评】此类问题知识点综合性较强,主要考查学生对所学知识的熟练掌握程度,在中考中比较常见,常以填空题、选择题形式出现,属于基础题,难度一般。

4、【答案】A【考点】三角形内角和定理,等腰三角形的性质,等腰梯形的性质【解析】【分析】先根据平行线的性质求得∠CDB的度数,再根据等腰三角形的性质求得∠CBD的度数,最后根据三角形的内角和定理求解即可.∵A B∥CD,∴∠CDB=∵A D=DC=CB∴∠CBD=∠CDB=25°∴180°-25°-25°=130°故选A.【点评】此类问题是是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.5、【答案】C【考点】平行线的性质,三角形的外角性质【解析】【分析】∵∠D=∠E=35°,∴∠1=∠D+∠E=35°+35°=70°,∵A B∥CD,∴∠B=∠1=70°.故选C.6、【答案】D【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=,所以A选项错误;B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△A BC为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=∠B=∠C,则∠C=90°,所以D选项正确.故选D.【分析】根据三角形内角和定理和各选项中的条件计算出△A BC的内角,然后根据直角三角形的判定方法进行判断.7、【答案】A【考点】命题与定理【解析】【解答】解:有理数乘以无理数不一定是无理数,若0乘以π得0,所以(1)错误;顺次联结等腰梯形各边中点所得的四边形是菱形,所以(2)正确;在同圆中,相等的弦所对的弧对应相等,所以(3)错误;如果正九边形的半径为a,那么边心距为a•cos20°,所以(4)错误.故选A.【分析】利用反例对(1)进行判断;根据等腰梯形的对角线相等和三角形中位线性质、菱形的判定方法可对(2)进行判断;根据弦对两条弧可对(3)进行判断;根据正九边形的性质和余弦的定义可对(4)解析判断.8、【答案】B【考点】命题与定理【解析】【解答】解:①等腰三角形的顶角的角平分线、底边上的中线和高重合,故本选项错误,②等腰三角形两腰上的高相等,正确;③等腰三角形的最小边不一定是底边,故本选项错误;④等边三角形的高、中线、角平分线都相等,正确;⑤等腰三角形不一定是锐角三角形,故本选项错误;其中正确的有2个,故选:B.【分析】根据等腰三角形的判定与性质、等边三角形的性质分别对每一项进行分析即可9、【答案】D【考点】全等三角形的判定,命题与定理【解析】【解答】解:A、周长相等的锐角三角形的对应角不一定相等,对应边也不一定相等,假命题;B、周长相等的直角三角形对应锐角不一定相等,对应边也不一定相等,假命题;C、周长相等的钝角三角形对应钝角不一定相等,对应边也不一定相等,假命题;D、由于等腰直角三角形三边之比为1:1:,故周长相等时,等腰直角三角形的对应角相等,对应边相等,故全等,真命题.故选D.【分析】全等三角形必须是对应角相等,对应边相等,根据全等三角形的判定方法,逐一检验.10、【答案】D【考点】平行线的性质,三角形的外角性质【解析】【解答】解:如图,∵BC∥DE,∴∠CBD=∠2=50°,又∵∠CBD为△A BC的外角,∴∠CBD=∠1+∠3,即∠3=50°﹣30°=20°.故选D.【分析】由BC∥DE得内错角∠CBD=∠2,由三角形外角定理可知∠CBD=∠1+∠3,由此可求∠3.二、填空题11、【答案】一个角是三角形的外角;等于和它不相邻的两个内角的和【考点】命题与定理【解析】【解答】先把命题写成“如果”,“那么”的形式,“如果”后面的是条件,“那么”后面的是结论。

命题“三角形的一个外角等于和它不相邻的两个内角的和”的条件是一个角是三角形的外角,结论是等于和它不相邻的两个内角的和.【分析】解答本题的关键是要掌握“如果”后面的是条件,“那么”后面的是结论。

相关文档
最新文档