数学九年级上册 二次函数单元培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学九年级上册 二次函数单元培优测试卷

一、初三数学 二次函数易错题压轴题(难)

1.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 2

0x +(b+1)x 0+b ﹣2

=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;

(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;

(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2

121

a +是线段AB 的垂

直平分线,求实数b 的取值范围.

【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣

b <0. 【解析】 【分析】

(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;

(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;

(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121

a +是线段AB 的垂

直平分线,从而可以求得b 的取值范围. 【详解】

解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,

即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,

∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,

设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,

即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),

∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣

b a

, ∵线段AB 中点坐标为(122x x +,122

x x

+), ∴该中点的坐标为(2b a -,2b a

-), ∵直线y =﹣x+2

121

a +是线段AB 的垂直平分线,

∴点(2b a -,2b

a -)在直线y =﹣x+2121

a +上, ∴2b

a -

=21221

b a a ++

∴﹣b =

2

21

a a ≤

+a

∴0<﹣b ≤

4

∴﹣

4

≤b <0,

即b b <0. 【点睛】

本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.

2.在平面直角坐标系中,将函数2

263,(y x mx m x m m =--≥为常数)的图象记为G .

(1)当1m =-时,设图象G 上一点(),1P a ,求a 的值; (2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;

(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ;

(4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭

,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.

【答案】(1)0a =或3a =-;(2)

118;(3)21136x -<<-;(4)1

8

m <-或1

16

m >-

【解析】 【分析】

(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值; (2)分m >0和m ≤0两种情况,结合二次函数性质求最值; (3)结合二次函数与x 轴交点及对称轴的性质确定取值范围; (4)结合一元二次方程根与系数的关系确定取值范围. 【详解】

解:(1)当1m =-时,()2

2613y x x x =++≥

把(),1P a 代入,得

22611a a ++=

解得0a =或3a =- (2)当0m >时,,(3)F m m - 此时,0o y m =-<

当0m ≤时,2

22

3926=2()22

y x mx m x m m m =----- ∴239,22F m m m ⎛⎫

--

⎪⎝⎭

此时,229911=()22918

m m m -

--++ ∴0y 的最大值1

18

=

综上所述,0y 的最大值为

118

(3)由题意可知:当图象G 与x 轴有两个交点时,m >0

当抛物线顶点在x 轴上时,2

2

=4(6)42()=0b ac m m -=--⨯⨯-△ 解得:m=0(舍去)或29

m =-

由题意可知抛物线的对称轴为直线x=3

2

m 且x ≥3m

∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是

相关文档
最新文档