不等式恒成立求参数的取值范围
高中数学 专题不等式恒成立、能成立、恰成立问题 含答案
不等式恒成立、能成立、恰成立问题一、不等式恒成立问题的处理方法 1、转换求函数的最值:(1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,⇔()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x 2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。
例2、已知(),22xax x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 例3、R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.例4、已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间;(3)若对任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围。
2、主参换位法例5、若不等式a 10x -<对[]1,2x ∈恒成立,求实数a 的取值范围例6、若对于任意1a ≤,不等式2(4)420x a x a +-+->恒成立,求实数x 的取值范围例7、已知函数323()(1)132a f x x x a x =-+++,其中a 为实数.若不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围.3、分离参数法(1) 将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值;(3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。
(完整)高中数学恒成立问题中求含参范围的方法总结,推荐文档
恒成立问题中含参范围的求解策略数学中含参数的恒成立问题,几乎覆盖了函数,不等式、三角,数列、几何等高中数学的所有知识点,涉及到一些重要的数学思想方法,归纳总结这类问题的求解策略,不但可以让学生形成良好的数学思想,而且对提高学生分析问题和解决问题的能力是很有帮助的,下面就几种常见的求解策略总结如下,供大家参考。
一、分离参数——最值化1 在给出的不等式中,如果能通过恒等变形分离出参数,即:a ≥f(x)恒成立,只须求出 ,则a ≥ ;若a ≤f(x)恒成立, 只须求出 ,则a ≤转化为函数求最值.例1 已知函数f(x)= ,若任意x ∈[2 ,+∞)恒有f(x)>0,试确定a 的取值范围. 解:根据题意得,x+−2>1在x ∈[2 ,+∞)上恒成立,即a>−+3x 在x ∈[2 ,+∞)上恒成立.设f(x)=-+3x .则f(x)=−+ ,当x=2时,=2 ,所以a>22在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若f(a)≥g(x)恒成立,只须求出g(x)最大值 ,则f(a)≥ .然后解不等式求出参数a 的取值范围; :若f(a)≤g(x)恒成立,只须求出g(x)最小值 ,则f(a)≤ .然后解不等式求出参数a 的取值范围.问题还是转化为函数求最值.例2 已知x ∈(−∞ ,1]时,不等式1++(a −)>0恒成立,求a 的取值范围.解 令=t ,∵x ∈(−∞ ,1] ∴t ∈(0 ,2].所以原不等式可化为<,要使上式在t ∈(0 ,2]上恒成立,只须求出f(t)=在t ∈(0 ,2]上的最小值即可. ∵f(t)==+=− 又t ∈(0 ,2] ∴∈[) ∴=f(2)=∴< , ∴−<a<例3 设c b a >>且ca mc b 1b a 1-≥-+-恒成立,求实数m 的取值范围。
解析:由于c a >,所以0c a >-,于是⎪⎭⎫ ⎝⎛-+--≤c b 1b a 1)c a (m 恒成立,因+≥⎪⎭⎫⎝⎛--+--++=⎪⎭⎫ ⎝⎛-+--+-=⎪⎭⎫ ⎝⎛-+--2c b b a b a c b 11c b 1b a 1)]c b ()b a [(c b 1b a 1)c a (.4cb b a b ac b 2=--⋅-- (当且仅当b a c b -=-时取等号),故4m ≤。
含参不等式恒成立问题中-求参数取值范围一般方法
含参不等式恒成立问题中,求参数取值范围一般方法温州中学 叶昭蓉恒成立问题是数学中常见问题,也是历年高考的一个热点。
大多是在不等式中,一个变量的取值范围,求另一个变量的取值范围的形式出现。
下面介绍几种常用的处理方法。
一、别离参数在给出的不等式中,如果能通过恒等变形别离出参数,即:假设()a f x ≥恒成立,只须求出()max f x ,那么()max a f x ≥;假设()a f x ≤恒成立,只须求出()min f x ,那么()min a f x ≤,转化为函数求最值。
例1、函数()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭,假设对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。
解:根据题意得:21ax x+->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立,设()23f x x x =-+,那么()23924f x x ⎛⎫=--+ ⎪⎝⎭当2x =时,()max 2f x = 所以2a >在给出的不等式中,如果通过恒等变形不能直接解出参数,那么可将两变量分别置于不等式的两边,即:假设()()f a g x ≥恒成立,只须求出()max g x ,那么()()max f a g x ≥,然后解不等式求出参数a 的取值范围;假设()()f a g x ≤恒成立,只须求出()min g x ,那么()()min f a g x ≤,然后解不等式求出参数a 的取值范围,问题还是转化为函数求最值。
例2、(],1x ∈-∞时,不等式()21240x x a a ++-⋅>恒成立,求a 的取值范围。
解:令2xt =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:221t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()21t f t t+=在(]0,2t ∈上的最小值即可。
高考数学一轮复习专题训练—不等式恒成立或有解问题
微课2 不等式恒成立或有解问题题型一 分离法求参数的取值范围【例1】(2020·全国Ⅰ卷)已知函数f (x )=e x +ax 2-x . (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.解 (1)当a =1时,f (x )=e x +x 2-x ,x ∈R , f ′(x )=e x +2x -1.故当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-∞,0)单调递减,在(0,+∞)单调递增. (2)由f (x )≥12x 3+1得,e x +ax 2-x ≥12x 3+1,其中x ≥0,①当x =0时,不等式为1≥1,显然成立,此时a ∈R . ②当x >0时,分离参数a ,得a ≥-e x -12x 3-x -1x 2,记g (x )=-e x -12x 3-x -1x 2,g ′(x )=-(x -2)⎝⎛⎭⎫e x -12x 2-x -1x 3.令h (x )=e x -12x 2-x -1(x >0),则h ′(x )=e x -x -1,令H (x )=e x -x -1, H ′(x )=e x -1>0,故h ′(x )在(0,+∞)上是增函数,因此h ′(x )>h ′(0)=0,故函数h (x )在(0,+∞)上递增, ∴h (x )>h (0)=0,即e x -12x 2-x -1>0恒成立,故当x ∈(0,2)时,g ′(x )>0,g (x )单调递增; 当x ∈(2,+∞)时,g ′(x )<0,g (x )单调递减. 因此,g (x )max =g (2)=7-e 24,综上可得,实数a 的取值范围是⎣⎡⎭⎫7-e 24,+∞. 感悟升华 分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实数)恒成立问题中参数取值范围的基本步骤(1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式. (2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围. 【训练1】已知函数f (x )=ax -1-ln x (a ∈R ). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围. 解 (1)f (x )的定义域为(0,+∞),且f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,∴f (x )在(0, +∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ,由f ′(x )>0得x >1a ,∴f (x )在⎝⎛⎭⎫0,1a 上递减,在⎝⎛⎭⎫1a ,+∞上递增,即f (x )在x =1a处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点,当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值, ∴a =1,∴f (x )≥bx -2⇒1+1x -ln xx≥b ,令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2,令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上递减,在(e 2,+∞)上递增, ∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2,故实数b 的取值范围为⎝⎛⎦⎤-∞,1-1e 2. 题型二 等价转化法求参数范围 【例2】函数f (x )=x 2-2ax +ln x (a ∈R ).(1)若函数y =f (x )在点(1,f (1))处的切线与直线x -2y +1=0垂直,求a 的值; (2)若不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立,求实数a 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=2x -2a +1x ,f ′(1)=3-2a ,由题意f ′(1)·12=(3-2a )·12=-1,解得a =52.(2)不等式2x ln x ≥-x 2+ax -3在区间(0,e]上恒成立等价于2ln x ≥-x +a -3x ,令g (x )=2ln x +x -a +3x,则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2,则在区间(0,1)上,g ′(x )<0,函数g (x )为减函数; 在区间(1,e]上,g ′(x )>0,函数g (x )为增函数. 由题意知g (x )min =g (1)=1-a +3≥0,得a ≤4, 所以实数a 的取值范围是(-∞,4].感悟升华 根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问题,如f (x )≥a 恒成立,则f (x )min ≥a ,然后利用最值确定参数满足的不等式,解不等式即得参数范围. 【训练2】已知f (x )=e x -ax 2,若f (x )≥x +(1-x ) e x 在[0,+∞)恒成立,求实数a 的取值范围. 解 f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x ,即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0), 当a ≤1时,由x ≥0知h ′(x )≥0,∴在[0,+∞)上h (x )≥h (0)=0,原不等式恒成立. 当a >1时,令h ′(x )>0,得x >ln a ; 令h ′(x )<0,得0≤x <ln a . ∴h (x )在[0,ln a )上单调递减, 又∵h (0)=0,∴h (x )≥0不恒成立, ∴a >1不合题意.综上,实数a 的取值范围为(-∞,1].题型三 可化为不等式恒成立求参数的取值范围(含有解问题) 【例3】已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=xe x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.解 (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立, 即a ≥-(x +1)2+1在[1,+∞)上恒成立, 而函数y =-(x +1)2+1在[1,+∞)单调递减, 则y max =-3,所以a ≥-3,所以a 的最小值为-3. (2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2, 使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.因为f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增,所以f ′(x )max =f ′(2)=8+a . 而g ′(x )=1-xe x,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1, 所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. 所以当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e . 由8+a ≤1e ,得a ≤1e-8,所以实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8. 感悟升华 含参不等式能成立问题(有解问题)可转化为恒成立问题解决,常见的转化有: (1)∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min . (2)∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max . (3)∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)min . (4)∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max . 【训练3】已知函数f (x )=ax -e x (a ∈R ),g (x )=ln xx .(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围. 解 (1)因为f ′(x )=a -e x ,x ∈R .当a ≤0时,f ′(x )<0,f (x )在R 上单调递减; 当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a ); 由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间; 当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞).(2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x , 则ax ≤ln x x ,即a ≤ln x x2.设h (x )=ln xx 2,则问题转化为a ≤⎝⎛⎭⎫ln x x 2max . 由h ′(x )=1-2ln xx 3,令h ′(x )=0,得x = e. 当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 的变化情况如下表:x (0,e) e (e ,+∞)h ′(x ) + 0 - h (x )极大值12e由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e .故a 的取值范围是⎝⎛⎦⎤-∞,12e .1.已知函数f (x )=ax -1+ln x ,若存在x 0>0,使得f (x 0)≤0有解,则实数a 的取值范围是( )A.a >2B.a <3C.a ≤1D.a ≥3答案 C解析 函数f (x )的定义域是(0,+∞),不等式ax -1+ln x ≤0有解,即a ≤x -x ln x 在(0,+∞)上有解.令h (x )=x -x ln x ,则h ′(x )=-ln x . 由h ′(x )=0,得x =1.当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0. 故当x =1时,函数h (x )=x -x ln x 取得最大值1, 所以要使不等式a ≤x -x ln x 在(0,+∞)上有解, 只要a ≤h (x )max 即可,即a ≤1.2.已知a ∈R ,设函数f (x )=⎩⎪⎨⎪⎧x 2-2ax +2a ,x ≤1,x -a ln x ,x >1.若关于x 的不等式f (x )≥0在R 上恒成立,则a 的取值范围为( ) A.[0,1] B.[0,2]C.[0,e]D.[1,e]答案 C解析 当x ≤1时,由f (x )=x 2-2ax +2a ≥0恒成立,而二次函数f (x )图象的对称轴为直线x =a , 所以当a ≥1时,f (x )min =f (1)=1>0恒成立, 当a <1时,f (x )min =f (a )=2a -a 2≥0,∴0≤a <1. 综上,a ≥0.当x >1时,由f (x )=x -a ln x ≥0恒成立, 即a ≤xln x恒成立.设g (x )=xln x (x >1),则g ′(x )=ln x -1(ln x )2.令g ′(x )=0,得x =e ,且当1<x <e 时,g ′(x )<0,当x >e 时,g ′(x )>0, ∴g (x )min =g (e)=e ,∴a ≤e. 综上,a 的取值范围是[0,e].3.已知函数f (x )=m ⎝⎛⎭⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,求实数m 的取值范围. 解 依题意,不等式f (x )<g (x )在[1,e]上有解, ∴mx <2ln x 在区间[1,e]上有解,即m 2<ln xx 能成立.令h (x )=ln xx ,x ∈[1,e],则h ′(x )=1-ln x x 2.当x ∈[1,e]时,h ′(x )≥0,h (x )在[1,e]上是增函数,∴h (x )的最大值为h (e)=1e.由题意m 2<1e ,即m <2e 时,f (x )<g (x )在[1,e]上有解.∴实数m 的取值范围是⎝⎛⎭⎫-∞,2e . 4.设f (x )=x e x ,g (x )=12x 2+x .(1)令F (x )=f (x )+g (x ),求F (x )的最小值;(2)若任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,求实数m 的取值范围.解 (1)因为F (x )=f (x )+g (x )=x e x +12x 2+x ,所以F ′(x )=(x +1)(e x +1), 令F ′(x )>0,解得x >-1, 令F ′(x )<0,解得x <-1,所以F (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增. 故F (x )min =F (-1)=-12-1e.(2)因为任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立, 所以mf (x 1)-g (x 1)>mf (x 2)-g (x 2)恒成立.令h (x )=mf (x )-g (x )=mx e x -12x 2-x ,x ∈[-1,+∞),即只需h (x )在[-1,+∞)上单调递增即可.故h ′(x )=(x +1)(m e x -1)≥0在[-1,+∞)上恒成立,故m ≥1e x ,而1e x ≤e ,故m ≥e ,即实数m 的取值范围是[e ,+∞). 5.已知函数f (x )=m e x -x 2.(1)若m =1,求曲线y =f (x )在(0,f (0))处的切线方程;(2)若关于x 的不等式f (x )≥x (4-m e x )在[0,+∞)上恒成立,求实数m 的取值范围.解 (1)当m =1时,f (x )=e x -x 2,则f ′(x )=e x -2x . 所以f (0)=1,且斜率k =f ′(0)=1.故所求切线方程为y -1=x ,即x -y +1=0. (2)由m e x -x 2≥x (4-m e x )得m e x (x +1)≥x 2+4x . 故问题转化为当x ≥0时,m ≥⎝ ⎛⎭⎪⎫x 2+4x e x (x +1)max . 令g (x )=x 2+4xe x (x +1),x ≥0,则g ′(x )=-(x +2)(x 2+2x -2)(x +1)2e x .由g ′(x )=0及x ≥0,得x =3-1.当x ∈(0,3-1)时,g ′(x )>0,g (x )单调递增; 当x ∈(3-1,+∞)时,g ′(x )<0,g (x )单调递减. 所以当x =3-1时,g (x )max =g (3-1)=2e 1-3.所以m ≥2e 1-3.即实数m 的取值范围为[2e 1-3,+∞).。
不等式恒成立求参数的取值范围
不等式恒成立求参数的取值范围武汉市第四十九中学 李清华邮政编码;430080一、 教学目标1、 知识目标;掌握不等式恒成立问题求参数的范围的求解方法并会运用2、 能力目标;培养学生分析问题解决问题的能力3、情感目标;优化学生的思维品质二、 教学重难点1、教学的重点;不等式恒成立问题求参数的范围的求解方法并会运用2、教学的难点;不等式恒成立问题求参数的范围的求解方法的选择 三、 教学方法:高三复习探究课:学生研讨探究----学生归纳小结-----学生巩固练习----学生变式探究---学生总结 四、 教学过程1、 引人 高三数学复习中的不等式恒成立问题,涉及到函数的性质、图象, 渗透着换元、化归、数形结合、函数方程等思想方法,有利于考查学生的综合解题能力,因此备受命题者的青睐,也成为历年高考的一个热点。
我们今天这堂课来研究不等式恒成立求参数的取值范围问题的求解方法。
引入课题2、新课 下面我们来看例1例1、对一切实数x ]1,1[-∈,不等式a x a x 24)4(2-+-+>0恒成立,求实数a 的取值范围(由学生完成)由一个基本题得到不等式恒成立问题求参数的范围的求解方法 解法一;分离参数 由原不等式可得:a(x-2) > -x 2+4x-4 , 又因为x ∈[-1,1] ,x-2∈[-3,-1] a<2-x又因为x∈[-1,1],所以a<1.解法二;分类讨论、解不等式(x-2)[x-(2-a)]>0当a=0时不等式恒成立当a<0 时x>2-a 或x<2 不等式恒成立当a>0时x>2 或x<2-a 所以2-a>1 即a<1所以a<1时不等式恒成立解法三;构造函数求最值设f(x)=x2+(a-4)x+4-2a当(4-a)/2∈[-1,1],即a∈[2,6]时-a2<0 不成立,舍弃;当a>6时,f(-1)=1-a+4+4-2a>0a<3 不成立,舍弃;当a<2时,f(1)=1+a-4+4-2a=1-a>0 a<1综上得:a<1解法四;构造方程用判别式韦达定理根的分布设x2+(a-4)x+4-2a=0方程无实根或有两实根两根小于-1或两根大于1△=(a-4)2-4(4-2a)=a2≥0所以1-(a-4)+4-2a>0且(4-a)/2<-1 或1+(a-4)+4-2a>0 且(4-a)/2>16且a<3 或a<1且a<2, 所以a<1解法五;数形结合(用动画来演示a(x-2)>-x2+4x-4 设y=a(x-2) 和y=-x2+4x-4分别作两函数的图象当x∈[-1,1]时,总有y=a(x-2)的图象在y=-x2+4x-4图象的上方由图象可得a<1归纳总结(由老师板书)1、如果作图较易,也可用数形结合。
恒成立不等式中参数问题
浅谈恒成立不等式中的参数问题摘要:关于恒成立不等式的问题既含变量又含有参数,又有许多知识的交汇,因此与其相关的命题综合性比较强,题型也多种多样,这就需要我们在平时学习时用好转化思想,多归纳,多总结,多体会。
关键词:不等式恒成立参数恒成立不等式中的参数的取值范围问题,是近年来高考的热点之一,也是学生学习的难点之一。
它涉及的知识面比较广,并且综合性也比较强。
它往往与函数、数列、方程、立体几何、解析几何、复数以及应用型问题结合起来,题型形式灵活多变,而且语言也比较抽象。
那么哪些数学思想能解决此类问题呢?笔者下面就结合自己的教学经验,举一些具体的例子来讨论这类参数问题的处理方法。
例1.若不等式(a-2)x2+2(a-2)x-4∴a的取值范围为:-2说明:对于有关一元二次不等式ax2+bx+c0)的问题,可以设二次函数f(x)=ax2+bx+c,由a的符号确定其抛物线的开口方向,再根据它的图象与x轴的交点问题,由判别式进行解决。
例2.设对于所有的实数x,不等式x2log24(a+1)/a+2xlog22a/(a+1)+log2(a+1)2/4a2>0,都恒成立,求a的取值范围。
解法一:(利用代换,结合判别式)令u=log2(a+1)/2a,则:(3+u)x2- 2ux+2u>0∴ 3+u>0 (1)4u2-8u(u+3)0∴(a+1)/2a>1,解得:0解法二:(分离参数,利用最值法)原不等式可以化为:x2[3+log2(a+1)/2a]-2xlog2(a+1)/2a+2log2(a+1)/2a>0 即:(x2-2x+2)*log2(a+1)/2a+3x2>0∵ x2-2x+2=(x+1)2+1>0∴原不等式可化为:log2(a+1)/2a>(-3x2)/[(x-1)2+1]要使原不等式恒成立,当且仅当log2(a+1)/2a>0解得:0评述:涉及恒成立不等式中变量的取值范围问题,可以根据a>f(x)恒成立等价于a>f(x)max, a(-1+■)/2解(2)得,(1-■)/2<x<(1+■)/2由(1)(2)得:(-1+■)/2<x<(1+■)/2∴ x的取值范围为(-1+■)/2<x<(1+■)/2说明:利用转换思想解决恒成立问题,一定要搞清楚谁是自变量,谁是参数。
高考数学复习考点知识与题型专题讲解11--- 导数-恒成立问题(解析版)
1 / 31高考数学复习考点知识与题型专题讲解专题11导数-恒成立问题1.高考对本部分的考查一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义; (2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题. 2.恒成立问题的解法(1)若()f x 在区间D 上有最值,则恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)若能分离常数,即将问题转化为()a f x >(或()a f x <),则 恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.1.已知函数()sin ,[0,],0x f x ae x x x a π=++∈<. (1)证明:当1a =-时,函数()f x 有唯一的极大值; (2)当()21f x x <-恒成立,求实数a 的取值范围.【试题来源】百师联盟2020-2021学年高三下学期开年摸底联考考试卷(全国Ⅰ卷) 【答案】(1)证明见解析;(2)1a <-.【分析】(1)对函数求导,讨论函数的单调区间,进而可证明结果.(2)构造函数()e sin 10=+-+<x h x a x x ,只需函数最大值小于0即可得出结果.【解析】(1)证明:()e cos 1x f x a x '=++, 因为[]0,x π∈,所以1cos 0x +≥, 当1a =-时,()cos 1x f x e x '=-++, 令()e cos 1,()e sin 0x x g x x g x x '=-++=--<,()g x 在区间[]0,π上单调递减;(0)121,()e 0g g ππ=-+==-<, 存在()00,π∈x ,使得()00f x '=,所以函数()f x 递增区间是[]00,x ,递减区间是[]0,x π. 所以函数()f x 存在唯一的极大值()0f x . (2)由()21f x x <-,即令()e sin 10,0,()e cos 10'=+-+<<∴=+-<x x h x a x x a h x a x ,()h x ∴在区间[]0,π上单调减函数,()(0)1≤=+h x h a ,只要10a +<即可,即1a <-.2.已知函数()()2112f x x alnx a x =-+-. (1)讨论函数()f x 的单调性;(2)若()22a f x >恒成立,求正实数a 的取值范围、【试题来源】吉林省长春市2021届高三质量监测(二)【答案】(1)当0a ≤时,()f x 在定义域(0,)+∞上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(,)a +∞上单调递增;(2)01a <<. 【分析】(1)求出导函数()()()1x x a f x x+-'=,讨论0a ≤或0a >,利用函数的单调性与导数之间的关系即可求解.(2)令()()2 2a g x f x =-,结合(1)不等式等价于()0g a >,只需10lna a +-<,令()1h x lnx x =+-,根据函数为增函数即可求解.3 / 31【解析】()1定义域为()0,-∞, ()()()()2111x a x a x x a af x x a x x x+--+-'=-+-==当0a ≤时,在(0,)+∞上()0,f x '≥所以()f x 在定义域(0,)+∞上单调递增; 当0a >时,令()'0f x >有,x a >令()'0f x <有0,x a << 所以()f x 在()0,a 上单调递减,在(,)a +∞上单调递增.()2令()()2 2a g x f x =-,由()1及a 为正数知,()()22ag x f x =-在x a =处取最小值,所以()22a f x >恒成立等价于()0g a >,即()10alna a a -+->,整理得10lna a +-<,令()1h x lnx x =+-, 易知()h x 为增函数,且()10,h =所以10lna a +-<的a 的取值范围是01a <<.3.已知函数1()ln ()f x a x a R x=+∈.(1)讨论函数()f x 在区间[1,2]上的最小值;(2)当1a =时,求证:对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【试题来源】河北省张家口市2021届高三一模 【答案】(1)答案见解析;(2)证明见解析. 【解析】(1)函数1()ln =+f x a x x的定义域是(0,)+∞, 2211()a ax f x x x x-'=-=.当0a 时,2110,0ax ax x --<<,则()0f x '<,则函数()f x 在(0,)+∞上单调递减,即函数()f x 在区间[1,2]上单调递减, 故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+. 当0a >时,令()0f x '<,得10x a <<;令()0f x '>,得1x a>;故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.当11a,即1a 时,函数()f x 在区间[1,2]上单调递增, 故函数()f x 在区间[1,2]上的最小值为(1)1f =; 当12a,即102a <时,函数()f x 在区间[1,2]上单调递减,故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+; 当112a <<,即112a <<时,函数()f x 在11,a ⎡⎫⎪⎢⎣⎭上单调递减,在1,2a ⎛⎤ ⎥⎝⎦上单调递增, 此时函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭.综上,当12a时,函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+;当112a <<时,函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭;当1a 时,函数()f x 在区间[1,2]上的最小值为(1)1f =. (2)当1a =时,1()ln f x x x=+, 要证cos ()x e x f x x +<,即证1cos ln x e xx x x++<,因为0x >,所以两边同时乘x ,得ln 1cos x x x e x +<+, 即证ln cos 1x x x e x <+-.当01x <时,ln 0x x ,而cos 11cos11cos10x e x +->+-=>,所以ln cos 1xx x e x <+-成立,即cos ()x e xf x x+<成立.当1x >时,令()cos ln 1(1)x h x e x x x x =+-->, 则()sin ln 1x h x e x x '=---.5 / 31设()sin ln 1(1)xg x e x x x =--->,,则因为1()cos x g x e x x'=--.因为1x >,所以1()cos 110xg x e x e x'=-->-->,所以当1x >时,()g x 单调递增,所以()sin110g x e >-->,即()0h x '>,所以()h x 在(1,)+∞上单调递增,所以()cos110h x e >+->,即cos ()x e xf x x +<成立.综上,对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【名师点睛】此题考查导数的应用,利用导数求函数的最值,考查分类讨论的数学思想,第2问解题的关键是把cos ()x e x f x x+<等价转化为ln cos 1x x x e x <+-,然后构造函数,利用导数证明即可,属于中档题 4.已知函数f (x )=ax -ln x -1. (1)若f (x )≥0恒成立,求a 的最小值;(2)求证:xe x-+x +ln x -1≥0;(3)已知k (x e -+x 2)≥x -x ln x 恒成立,求k 的取值范围. 【试题来源】2021年高考二轮复习讲练测(浙江专用) 【答案】(1)1;(2)证明见解析;(3)[1,+∞).【解析】(1)f (x )≥0等价于a ≥ln 1x x+. 令g (x )=ln 1x x+ (x >0),则g ′(x )=2ln xx -,所以当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0,则g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )max =g (1)=1,则a ≥1, 所以a 的最小值为1.(2)证明:当a =1时,由(1)得x ≥ln x +1,即t ≥ln t +1(t >0).令x e x -=t ,则-x -ln x =ln t ,所以x e x -≥-x -ln x +1,即x e x -+x +ln x -1≥0.(3)因为k (xe -+x 2)≥x -x ln x 恒成立,即k x e x x -⎛⎫+ ⎪⎝⎭≥1-ln x 恒成立, 所以k ≥1ln xx e x x--+=-ln 1xx e x x x e x x--++-++1,由(2)知x e x-+x +ln x -1≥0恒成立,所以-+ln 1x x ex x x ex x--+-++1≤1,所以k ≥1.故k 的取值范围为[1,+∞).【名师点睛】不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明. 5.已知函数()()1ln 2f x x mx m R =-∈,()()0ag x x a x=->. (1)求函数()f x 的单调区间. (2)若212m e=,对2122,2,x x e ⎡⎤∀∈⎣⎦都有()()12g x f x ≥成立,求实数a 的取值范围. 【试题来源】2021年高考数学二轮复习讲练测 【答案】(1)答案见解析;(2)(]0,3.【分析】(1)函数的定义域为()0,∞+,求导得()1'2f x m x=-,再分0m ≤和0m >两种情况讨论求解即可;(2)根据题意,问题转化为对2122,2,x x e ⎡⎤∀∈⎣⎦都满足()()min max g x f x ≥,再根据导数研究函数的最值即可. 【解析】(1)()()1ln ,02f x x mx m R x =-∈>,所以()1'2f x m x=-, 当0m ≤时,()0f x >′,()f x 在()0,∞+上单调递增.7 / 31当0m >时,由()0f x '=得12x m=; 由()'00f x x ⎧>⎨>⎩得102x m <<;由()'00f x x ⎧<⎨>⎩得12x m >.综上所述,当0m ≤时,()f x 的单调递增区间为()0,∞+;当0m >时,()f x 的单调递增区间为10,2m ⎛⎫ ⎪⎝⎭,单调递减区间为1,2m ⎛⎫+∞⎪⎝⎭. (2)若212m e =,则()211ln 22f x x x e =-. 对2122,2,x x e ⎡⎤∀∈⎣⎦都有()()12g x f x ≥成立,等价于对2122,2,x x e ⎡⎤∀∈⎣⎦都()()min max g x f x ≥,由(1)知在22,e ⎡⎤⎣⎦上单调递增,在22,2e e ⎡⎤⎣⎦上单调递减,所以()f x 的最大值为()212f e =, ()()2'100a g x a x=+>>,22,2x e ⎡⎤∈⎣⎦, 函数()g x 在22,2e ⎡⎤⎣⎦上是增函数,()()222mina g x g -==, 所以1222a -≥,解得3a ≤,又0a >,所以(]0,3a ∈.所以实数a 的取值范围是(]0,3.【名师点睛】本题考查利用导数研究函数单调区间,不等式恒成立问题,考查运算求解能力,回归转化思想,分类讨论思想,是中档题.本题第二问解题的关键在于根据已知将问题转化为对2122,2,x x e ⎡⎤∀∈⎣⎦都满足()()min max g x f x ≥,再研究函数的最值求解.6.已知函数()axf x e x =-.(1)若曲线()y f x =在点()()0,0f 处切线的斜率为1,求()f x 的单调区间;(2)若不等式()2ln ax f x e x ax ≥-对(]0,x e ∈恒成立,求a 的取值范围.【试题来源】云南西南名校2021届高三下学期联考【答案】(1)单调递减区间为ln 2,2⎛⎫-∞- ⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭;(2)1,e ⎡⎫+∞⎪⎢⎣⎭.【分析】(1)由题设()1axf x ae '=-,根据导数的几何意义有()01f '=,可求a ,即()221x f x e '=-,进而可求()f x 的单调区间;(2)由题意,函数不等式恒成立可转化为(]0,x e ∈上ln 1ln 1ax ax xe e x --≥恒成立,构造函数()ln 1x g x x -=,应用导数研究其单调性可得ln x a x ≥在(]0,x e ∈上恒成立,即在(]0,x e ∈上max ln ()xa x≥即可求a 的取值范围. 【解析】(1)()1axf x ae '=-,则()011f a '=-=,即2a =. 所以()221xf x e '=-,令0fx ,得ln 22x =-. 当ln 22x <-时,0f x ;当ln 22x >-时,0f x .故()f x 的单调递减区间为ln 2,2⎛⎫-∞- ⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭.(2)由()2ln ax f x e x ax ≥-,即()2ln 1ax ax x e x -≥-,有1ln 1ax a x e x x --≥,故仅需ln 1ln 1ax axxe e x --≥即可. 设函数()ln 1x g x x -=,则ln 1ln 1ax axxe e x --≥等价于()()axg e g x ≥. 因为()22ln x g x x -'=, 所以当(]0,x e ∈时,0g x ,则()g x 在(]0,e 上单调递增,所以当(]0,x e ∈时,()()axg e g x ≥等价于当(]0,x e ∈时,()()ax g e g x ≥,ax e x ≥,即ln xa x≥恒成立. 设函数()ln x h x x =,(]0,x e ∈,则()21ln 0xh x x -'=≥, 即()h x 在(]0,x e ∈递增,所以()()max 1h x h e e==,则1a e ≥即可,所以a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭.【名师点睛】(1)应用导数的几何意义求参数值,进而讨论对应函数的单调性确定单调9 / 31区间;(2)构造函数()ln 1x g x x-=,将不等式恒成立问题转化为利用函数()g x 单调性得ax e x ≥,应用参变分离判断(]0,x e ∈上max ln ()xa x≥,确定参数范围. 7.设函数()1()x xa a f x e -=+>. (1)求证:()f x 有极值点;(2)设()f x 的极值点为0x ,若对任意正整数a 都有()0,x m n ∈,其中,m n Z ∈,求n m -的最小值.【试题来源】江苏省盐城市、南京市2021届高三下学期第一次模拟考试 【答案】(1)证明见解析;(2)2.【解析】(1)由题意得()ln x xf x a a e -'=-,所以()()2ln 0x x f x a a e -''=+>,所以函数()f x '单调递增,由()0f x '=,得()()ln 1,1ln xxae a ae a==. 因为1a >,所以1ln 0a>,所以1log ln ae x a =.当1log ln aex a >时,()()0,f x f x '>单调递增; 当1log ln ae x a<时,()()0,f x f x '<单调递减.因此,当1log ln ae x a=时函数()f x 有极值.(2)由(1)知,函数()f x 的极值点0x (即函数()f x '的零点)唯一, 因为ln (1)af e a'-=-.令()ln a g a a =,则()21ln 0a a g a '-==,得a e =. 当a e >时,()()0,g a g a '<单调递减;当0a e <<时,()()0,g a g a '>单调递增, 所以()()1g a g e e ≤=,所以()ln 10af ae '-=-<. 而()0ln 1f a '=-,当2a =时,()00f '<,当3a ≥时,()00f '>.又()1ln 1a ef a '=-.因为a 为正整数且2a ≥时,所以ln 2ln 121a a e≥>>. 当2a ≥时,()10f '>.即对任意正整数1a >,都有()10f '-<,()10f '>,所以()01,1x ∈-恒成立, 且存在2a =,使()00,1x ∈,也存在3a =,使()01,0x ∈-. 所以n m -的最小值为2.【名师点睛】本题考查导数的应用,解题的关键是利用导数结合零点存在性定理得出()10f '-<,()10f '>,得出,m n 的可能值. 8.已知函数2()2ln 43()f x x ax ax a a =+-+∈R . (1)讨论函数()f x 的单调性;(2)对(1,)x ∈+∞,都有()0f x >成立,求实数a 的取值范围. 【试题来源】山西省晋中市2021届高三下学期二模 【答案】(1)答案见解析;(2)01a .【分析】(1)求出函数的导数,令2()21(0)g x ax ax x =-+>,分段讨论a 的值,判断()g x 的正负情况可得出单调性;(2)可得当01a 时,()f x 在(1,)+∞上单调递增,所以()(1)0f x f >=成立;当0a <时,可得存在x ,使得()(1)0f x f <=,即可得出结论.【解析】(1)()22212()24(0)ax ax f x ax a x x x'-+=+-=>,令2()21(0)g x ax ax x =-+>, ①当0a =时,()10g x =>,在(0,)+∞上,()0f x '>,所以()f x 单调递增.②当0a <时,2444(1)0a a a a ∆=-=->,令()0g x =,得12x x ==,且120x x >>,11 / 31所以当()10,x x ∈时,()0f x '>,所以()f x 单调递增; 当()1,x x ∈+∞时,()0f x '<,所以()f x 单调递减. ③当0a >时,4(1)a a ∆=-, 当01a <时,4(1)0a a ∆=-,在(0,)+∞上,()0f x '>,所以()f x 单调递增. 当1a >时,2444(1)0a a a a ∆=-=->,令()0g x =,得12a a x x a a==,且120x x <<, 所以当()10,x x ∈或()2,x x ∈+∞时,()0f x '>,所以()f x 单调递增; 当()12,x x x ∈时,()0f x '<,所以()f x 单调递减.综上可得当0a <时,()f x 在()10,x 上单调递增,在()1,x +∞上单调递减; 当01a 时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减.(2)因为(1)0f =,根据(1)的讨论可知,当01a 时,()f x 在(0,)+∞上单调递增,所以()f x 在(1,)+∞上单调递增,所以()(1)0f x f >=成立. 当0a <时,()f x 在()1,x +∞上单调递减,x →+∞时,()f x →-∞, 所以存在()1,x x ∈+∞使得()0f x <,故此时不成立.当1a >时,()f x 在()()120,,,x x +∞上单调递增;在()12,x x 上单调递减,而121x x =<<=,所以当()21,x x ∈时,()f x 单调递减,此时()(1)0f x f <=,不合题意.综上可得01a .【名师点睛】本题考查利用导数讨论含参函数的单调性问题,解题的关键是根据导数情况观察参数,对参数进行分段讨论,便于得出导数正负. 9.已知函数()e ln ax f x x x =-,其中e 是自然对数的底数,0a >.(1)若曲线()y f x =在点(1,(1))f 处的切线斜率为21e -,求a 的值; (2)对于给定的常数a ,若()1f x bx ≥+对(0,)x ∈+∞恒成立,求证:b a ≤. 【试题来源】江苏省苏州市2021届高三下学期期初 【答案】(1)1a =;(2)证明见解析.【分析】(1)求出()'f x ,根据导数的几何意义可得(1)21k f e '==-建立方程,求解方程即可得到答案.(2)不等式()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立,先证明1t e t ≥+恒成立,由此结论可得ln ln 1ln 1ax ax x xe x e x a x x+----=≥,从而可证明.【解析】(1)因为1()(1)axf x ax e x'=+-,所以切线斜率为(1)(1)121a k f a e e '==+-=-,即(1)20a a e e +-=.设()(1)2x h x x e e =+-, 由于()(2)0xh x x e '=+>,所以()h x 在(0,)+∞上单调递增,又(1)0h =,由(1)()02a a e h a e +-==可得1a =. (2)设()1t u t e t =--,则()1t u t e '=-, 当0t >时,()0u t '>,当0t <时,()0u t '<,所以()u t 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 所以min()(0)0u t u ==,即()0u t ≥,所以1(*)t e t ≥+.若()1f x bx ≥+对(0,)x ∈+∞恒成立,即ln 1ax xe x bx --≥对(0,)x ∈+∞恒成立,即ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立.13 / 31设ln 1()ax xe x g x x--=,由(*)可知ln ln 1ln 1ln 1ln 1()ax ax x xe x e x ax x x g x a x x x+----++--==≥=,当且仅当()ln 0x ax x ϕ=+=时等号成立. 由()1()00x a x xϕ'=+>>,所以()ϕx 在()0+∞,上单调递增, 又()()1aaa eaea a e ϕ---=-=-,由0a >,所以10a e --<,即()0a e ϕ-<()10a ϕ=>,则存在唯一()0,1a x e -∈使得0()=0x ϕ即方程()ln 0x ax x ϕ=+=有唯一解()0,1ax e -∈,即()g x a ≥(对于给定的常数a ,当0x x =,()0,1ax e -∈时取等号)由ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立, 所以b a ≤.【名师点睛】本题考查根据切线的斜率求参数和利用导数证明不等式,解答本题的关键是先证明辅助不等式1te t ≥+,然后将问题转化为由ln 1ln 1ax axx xe x b e x x x--≤--=对(0,)x ∈+∞恒成立,由辅助不等式可得ln ln 1ln 1ln 1ln 1ax ax x xe x e x ax x x a x x x+----++--=≥=,从而使得问题得证,属于难题.10.已知函数3()2x f x e x mx =+++.(1)若x 轴为曲线()y f x =的切线,试求实数m 的值;(2)已知()()xg x f x e =-,若对任意实数x ,均有()1e ()x g g x +,求m 的取值范围.【试题来源】福建省名校联盟优质校2021届高三大联考 【答案】(1)e 3m =--;(2)[1,)m ∈-+∞ 【解析】(1)由2()e 3x f x x m '=++,设曲线()y f x =与x 轴相切于()0,0P x ,则()00f x =,()00f x '=.所以0030020e 20e 30x x x mx x m ⎧+++=⎪⎨++=⎪⎩,代入整理得()()020001e 210x x x x ⎡⎤-+++=⎣⎦, 由0e 0x >,22000131024x x x ⎛⎫++=++> ⎪⎝⎭,所以01x =,此时e 3m =--.经检验,当e 3m =--时,x 轴为曲线()y f x =的切线.(2)由3()()e 2x g x f x x mx =-=++,记1()e x h x x +=-,1()e 1x h x +'=-(,1)x ∈-∞-时,()0h x '<;(1,)x ∈-+∞时,()0h x '>,故()y h x =在(,1)-∞-上单调递减,在(1,)-+∞上单调递增. 所以()(1)2h x h ≥-=,不妨设1e x x t +-=(2t ≥),则()1e ()()()x g g x g x t g x +-=+-()33()()22x t m x t x mx ⎡⎤=++++-++⎣⎦221324t t x t m ⎡⎤⎛⎫=+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦因为[2,)t ∈+∞时,要满足()()g x t g x +≥恒成立,则2222121331212424t x t ⎛⎫⎛⎫++≥⨯-++⨯= ⎪ ⎪⎝⎭⎝⎭(2t =时,1x =-,能同时取等号).即10m +≥即可,解得[1,)m ∈-+∞. 综上,[1,)m ∈-+∞时符合题意.【名师点睛】本题考查根据曲线的切线方程求参数值及根据不等式恒成立求参数的取值范围问题,难度较大,解答的主要思路如下:(1)当已知曲线的切线方程时,可先设切点的坐标为()00,x y ,然后格据导数的几何意义使()0f x '与所给切线的斜率相等,使点()00,x y 在所给切线上,列出方程组求解即可;(2)当已知不等式恒成立求解参数的取值范围时,可直接构造函数,利用导数分析函数的最值,使其最值符合条件即可;也可以15 / 31采用参数分离法,将问题转化为讨论不含参函数的最值问题求解. 11.已知实数0a ≠,设函数()e ax f x ax =-. (1)当1a =时,求函数()f x 的极值; (2)当12a >时,若对任意的[1,)x ∈-+∞,均有()2()12a f x x ≥+,求a 的取值范围. 【试题来源】广西桂林、崇左市2021届高三联合调研考试(二模) 【答案】(1)极小值(0)1f =,无极大值;(2)122a <≤. 【分析】(1)由1a =,求导()1x f x e =-',再利用极值的定义求解; (2)将()2()12a f x x ≥+,转化为2(1)2axa e x ≥+,易知0x =,1x =-时,a 的范围,当(1,)x ∈-+∞时,两边取对数,转化为2ln(1)ln 2aax x ≥++恒成立,令()2ln(1)ln 2aF x x ax =+-+,用导数法由()0F x ≤在(1,)-+∞内恒成立求解即可.【解析】(1)当1a =时,由()10x f x e '=-=,解得0x =. 当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞内单调递增; 当(,0)x ∈-∞时,()0f x '<,故()f x 在(,0)-∞内单调递减.∴函数()f x 在0x =取得极小值(0)1f =,无极大值. (2)由()2()12a f x x ≥+,则有2(1)2axa e x ≥+. 令0x =,得11,222a a ≥<≤.当1x =-时,不等式2(1)2ax a e x ≥+显然成立,当(1,)x ∈-+∞时,两边取对数,即2ln(1)ln 2aax x ≥++恒成立. 令函数()2ln(1)ln2a F x x ax =+-+, 即()0F x ≤在(1,)-+∞内恒成立.由22(1)()011a x F x a x x '-+=-==++,得211x a =->-.故当21,1x a ⎛⎫∈-- ⎪⎝⎭时,()0,()F x F x '>单调递增;当21,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0,()F x F x '<单调递减.因此22()12ln 2ln 2ln 22a a F x F a a a a ⎛⎫≤-=-++=-- ⎪⎝⎭.令函数()2ln 2ag a a =--,其中122a <≤, 则11()10a g a a a='-=-=,得1a =, 故当1,12a ⎛⎫∈ ⎪⎝⎭时,()0,()g a g a '<单调递减;当(1,2]a ∈时,()0,()g a g a '>单调递增.又13ln 40,(2)022g g ⎛⎫=-<= ⎪⎝⎭,故当122a <≤时,()0g a ≤恒成立,因此()0F x ≤恒成立, 即当122a <≤时,对任意的[1,)x ∈-+∞,均有()2()12a f x x ≥+成立. 12.已知函数()2()2ln 1f x x x =--,()()21g x k x =-.(1)当1k =时,求函数()()()F x f x g x =-的极值;(2)若存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立,求实数k 的取值范围. 【试题来源】云南省昆明市第一中学2021届高三第六次复习检测 【答案】(1)()0F x =极大值,()F x 无极小值;(2)(),1-∞. 【分析】(1)2()2ln 1F x x x =-+,求导得22(1)(1)()2x x F x x x x-+-'=-=,显然()0,1x ∈时,()F x 为增函数,()1,x ∈+∞时,()F x 为减函数,所以()F x 在1x =处取得极大值,无极小值,然后计算()1F 即可;(2)()()f x g x >恒成立即()()0f x g x ->恒成立,也即()0F x >恒成立,结合(1)的结论对k 分类讨论,当1k 时,不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立;当1k <时,22(1)1()x k x F x x⎡⎤-+--⎣⎦'=,令()0F x '=,得211(1)40k k x ---+=<,17 /3121x =>,可证得函数()F x 在()21,x 上是增函数,所以存在021x x <≤,使得当()01,x x ∈时,()()10F x F >=.【解析】(1)当1k =时,22()2ln (1)2(1)2ln 1F x x x x x x =----=-+,()F x 的定义域为()0,∞+,22(1)(1)()2x x F x x x x-+-'=-=, 当()0,1x ∈时,()0F x '>,()F x 为增函数, 当()1,x ∈+∞时,()0F x '<,()F x 为减函数, 所以()()10F x F ==极大值,()F x 无极小值;(2)由(1)可知,若1k =,则当1x >时,()()10F x F <=,即()()f x g x <, 所以不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立,若1k >,则当1x >时,22()2ln (1)2(1)2ln (1)2(1)0F x x x k x x x x =----<----<, 即不存在01x >,使得当()01,x x ∈时,()()f x g x >恒成立; 若1k <,2()2ln (1)2(1)F x x x k x =----,22(1)12()222x k x F x x k x x⎡⎤-+--⎣⎦'=-+-=, 令()0F x '=,得10x =<,21x =>,所以当()20,x x ∈时,()0F x '>,()F x 为增函数, 即函数()F x 在()21,x 上是增函数,所以存在021x x <≤,使得当()01,x x ∈时,()()10F x F >=, 即()()f x g x >成立,综上,所以实数k 的取值范围是(),1-∞.13.已知函数()ln a ef x x x-=+,其中e 是自然对数的底数. (1)设直线22y x e=-是曲线()()1y f x x =>的一条切线,求a 的值;(2)若a R ∃∈,使得()0f x ma +≥对()0x ∀∈+∞,恒成立,求实数m 的取值范围. 【试题来源】备战2021年高考数学全真模拟卷(山东高考专用)【答案】(1)0a =;(2)1m e≥-.【分析】(1)设切点坐标为()()00,x f x ,根据题意只需满足()02f x e'=,()00002ln 2a e f x x x x e-=+=-,然后求解方程组得出a 的值及0x 的值; (2)记()()ln a eg x f x ma x ma x-=+=++,求导讨论函数()g x 的单调性,确定最值,使()min 0g x ≥成立,得到关于参数m 的不等式,然后利用参数分离法求解参数m 的取值范围.【解析】(1)设切点为()()00,x f x ,其中01x >, 有()020012a e f x x x e -'=-=,且()00002ln 2a e f x x x x e-=+=- 得0021x a e x e -=-,所以004ln 30x x e+-=,易解得0x e =,则0a =; (2)记()()ln a e g x f x ma x ma x -=+=++,有()2x a eg x x -+'=, 当a e ≤,()20x a eg x x -+'=>恒成立,则函数()g x 在()0,∞+上递增,无最小值,不符合题意;当a e >时,当(),x a e ∈-+∞时,()0g x '>,当()0,x a e ∈-时,()0g x '<,所以函数()g x 在()0,a e -上递减,在(),a e -+∞上递增,所以()g x 在x a e =-处取得最小值,()()()min ln 10g x g a e a e ma =-=-++≥, 则有()1ln a e m a +--≤,记()()()1ln a e h a a e a+-=>,19 / 31有()()2ln ea e a e h a a ---'=, 易知()h a 在(),2e e 单调递增,在()2,e +∞单调递减,则()()max 12h a h e e ==,所以1m e-≤,得1m e ≥-.【名师点睛】本题考查导数的几何意义,考查根据不等式恒成立问题求参数的取值范围,求解的一般方法如下:(1)直接构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;(2)采用参数分离法,然后构造函数,直接将问题转化为函数最值的求解即可.14.已知函数()()2ln 21f x x mx m x =+++,其中0m <.(1)若()f x 在区间()2,+∞上单调递减,求m 的取值范围; (2)若不等式()f x n ≤对0x >恒成立,证明:30n m ->.【试题来源】“超级全能生”2021届高三全国卷地区1月联考试题(丙卷)【答案】(1)14m ≤-;(2)证明见解析.【分析】(1)对函数求导,求出单调减区间,列不等式,即可的出结果.(2)求出函数求导,求出单调减区间,求出函数的最大值,列不等式12f n m ⎛⎫-≤ ⎪⎝⎭,211111ln 222222⎛⎫⎛⎫⇒-≥--+-+ ⎪ ⎪⎝⎭⎝⎭n m m m m m ,记102t m=->,构造函数()21ln 2g t t t t t =+-, 求出()g t 最小值()200012=--g t t t ,()0 2n g t m -≥,()()0312g t g >=-,即可得出结果. 【解析】(1)函数()()2ln 21f x x mx m x =+++,其中0m <,0x >,()()()211122?1mx x f x mx m x x++'=+++=. 令()0f x '<得12x m>-.令122m -≤,解得14m ≤-. (2)函数()()2ln 21f x x mx m x =+++,其中0m <,0x >,()()()121x mx f x x++'=.令()0f x '=得12x m=-, 当102x m<<-时,()0f x '>,()f x 是增函数: 当12x m>-时,()0f x '<,()f x 是减函数,. 所以当12x m=-时,()f x 既是极大值也是最大值,11121ln 2242m f m m m m +⎛⎫⎛⎫-=-+- ⎪ ⎪⎝⎭⎝⎭11ln 124m m⎛⎫=--- ⎪⎝⎭. 令12f n m ⎛⎫-≤ ⎪⎝⎭,所以211111ln 222222n m m m m m⎛⎫⎛⎫-≥--+-+ ⎪ ⎪⎝⎭⎝⎭成立. 记102t m=->,()21ln 2g t t t t t =+-,()ln g t t t '=+,当0t >时,()g t '是增函数,1110g e e ⎛⎫'=-+< ⎪⎝⎭,()110g '=>,所以存在()00,1t ∈使000()ln 0g t t t '=+=. 当00t t <<时,()0g t '<,()g t 是减函数: 当0t t >时,()0g t '>,()g t 是增函数,所以当t t =0时,()g t 既是极小值也是最小值,()000001ln 2g t t t t t =+-. 又00ln t t =-,所以()200012=--g t t t ,则()0 2ng t m-≥成立, 当001t <<时,()0g t 是减函数, 所以()()0312g t g >=-,则322n m ->-,所以30n m ->. 【名师点睛】12f n m ⎛⎫-≤ ⎪⎝⎭211111ln 222222⎛⎫⎛⎫⇒-≥--+-+ ⎪ ⎪⎝⎭⎝⎭n m m m m m ,记102t m=->,构造函数()21ln 2g t t t t t =+-是解题的关键.本题考查了运算求解能力和逻辑推理能力,属于难题.15.已知函数()()()2(ln ,)xf x x kx k Rg x x e =-∈=-.(1)若()f x 有唯一零点,求k 的取值范围;21 / 31(2)若()()1g x f x -≥恒成立,求k 的取值范围. 【试题来源】山东省菏泽市2021届高三下学期3月一模【答案】(1)1k e=或0k ≤;(2)1k .【分析】(1)转化为ln x k x =有唯一实根,构造函数()ln x h x x=,利用导数研究函数的性质,得到函数的图象,根据图象可得结果;(2)转化为1ln 2xx k e x+≥-+恒成立,构造函数()1ln 2x xx e xϕ+=-+,利用导数求出其最大值,利用最大值可得解. 【解析】(1)由()ln f x x kx =-有唯一零点,可得方程ln 0x kx -=,即ln xk x=有唯一实根, 令()ln x h x x =,则()21ln ,xh x x -'=由()0h x '>,得0,x e <<由()0h x '<,得,x e >()h x ∴在()0,e 上单调递增,在(,)e +∞上单调递减.()()1h x h e e∴≤=, 又()10,h =所以当01x <<时,()0h x <; 又当x e >时,()ln 0,xh x x=>由()ln x h x x =得图象可知,1k e=或0k ≤. (2)()2ln 1()xx e x kx ---≥恒成立,且0x >,1ln 2xx k e x+∴≥-+恒成立, 令()1ln 2xx x e xϕ+=-+,则()22221(l l n n 1)x x x x e x x x e x x ϕ--'⋅==-+-,令()2ln x x x x e μ=--,则211()(2)(2)0x x xx xe x e xe x x xμ'=--+=--+<(0)x >,()x μ∴在(0,)+∞单调递减,又()12110,10e e e e μμ-⎛⎫=->=-< ⎪⎝⎭,由零点存在性定理知,存在唯一零点01,1x e ⎛⎫∈ ⎪⎝⎭,使()0,o x μ=即0200ln xx x e -=,两边取对数可得()000ln ln 2ln ,x x x -=+即()()0000ln ln ln ln ,x x x x -+-=+ 由函数ln y x x =+为单调增函数,可得00ln x x =-,所以当00x x <<时,()0x μ>,()0x ϕ'>,当0x x >时,()0x μ<,()0x ϕ'<, 所以()x ϕ在()00,x 上单调递增,在0(,)x +∞上单调递减,()()00000001ln 11221x x x x x e x x x ϕϕ+-∴≤=-+=-+=, 所以()1,o k x ϕ≥=即k 的取值范围为1k .16.已知函数f (x )=2e x +a ln(x +1)-2.(1)当a =-2时,讨论f (x )的单调性;(2)当x ∈[0,π]时,f (x )≥sin x 恒成立,求a 的取值范围.【试题来源】2021年高考数学二轮复习热点题型精选精练(新高考地区专用) 【答案】(1)函数()f x 在(-1,0)单调递减,在()0,∞+单调递增;(2)[)1,-+∞. 【分析】(1)将2a =-代入,求出导函数,利用导数与函数单调性之间的关系即可求解.(2)令()()()[]sin 2ln 12sin ,0,xg x f x x e a x x x π=-=++--∈,等价于()()00g x g ≥=恒成立,求出()g x ',讨论0a ≥或0a <,判断函数的单调性,其中0a <时,可得()0211g a a '=+-=+,讨论10a +≥或10+<a ,证明函数的单调性即可证明.【解析】(1)当2a =-时()(),22ln 12,1x f x e x x =-+->-.23 / 31()()22,1x f x e f x x '+'=-在()1,-+∞单调递增,且()00.f '= 当()1,0x ∈-时,()0f x '<;当()0,x ∈+∞时(),0f x '>. 所以函数()f x 在(-1,0)单调递减,在()0,∞+单调递增.(2)令()()()[]sin 2ln 12sin ,0,xg x f x x e a x x x π=-=++--∈当[]0,x π∈时,()sin f x x ≥恒成立等价于()()00g x g ≥=恒成立.由于()()[]cos 2cos ,0,1xag x f x x e x x x π=-=+-∈+'', 所以(1)当0a ≥时,()210,xg x e '≥->函数()y g x =在[]0,π单调递增,所以()()00g x g ≥=,在区间[]0,π恒成立,符合题意.(2)当0a <时,()2cos 1xag x e x x =+-+'在[]0,π单调递增,()0211g a a '=+-=+. ①当10a +即10a -≤<时,()()010,g x g a ≥=+≥''函数()y g x =在[]0,π单调递增,所以()()00g x g =在[]0,π恒成立,符合题意.②当10+<a 即1a <-时()(),010,211ag a g e πππ=+<=++'+', 若()0g π'≤,即()()121a e ππ≤-++时(),g x '在()0,π恒小于0则()g x 在()0,π单调递减,()()00g x g <=,不符合题意.若()0,g π'>即()()1211e a ππ-++<<-时,存在()00,x π∈使得()00.g x '=所以当()00,x x ∈时,()0,g x '<则()g x 在()00,x 单调递减,()()00,g x g <=不符合题意. 综上所述,a 的取值范围是[)1,.∞-+【名师点睛】本题考查了利用导数研究函数的单调性,利用导数研究不等式恒成立,解题的关键是构造函数()()[]2ln 12sin ,0,xg x e a x x x π=++--∈,不等式等价转化为()()00g x g ≥=恒成立,考查了分析能力、计算能力以及分类讨论的思想. 17.设()()ln a f x ax x =+,()11ln xg x b e x x-=⋅+,其中,a b ∈R ,且0a ≠.(1)试讨论()f x 的单调性;(2)当1a =时,()()ln f x xg x x -≥恒成立,求实数b 的取值范围. 【试题来源】广西玉林市2021届高三下学期第一次适应性测试 【答案】(1)答案见解析;(2)(],e -∞.【分析】(1)分别在0a <和0a >两种情况下,结合定义域,根据导函数的正负可确定原函数的单调性;(2)将不等式化为11ln xbxex x-≤-,利用导数和复合函数单调性可确定min 11ln 1x x ⎛⎫-= ⎪⎝⎭,进而转化为x e b x≤,利用导数可求得()x em x x =的最小值,由()min b m x ≤可得结果.【解析】(1)()221a x af x x x x'-=-=, ①当0a <时,由0ax >得0x <,即()f x 定义域为(),0-∞;∴当(),x a ∈-∞时,()0f x '<;当(),0x a ∈时,()0f x '>;()f x ∴在(),a -∞上单调递减,在(),0a 上单调递增; ②当0a >时,由0ax >得0x >,即()f x 定义域为()0,∞+;∴当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>;()f x ∴在()0,a 上单调递减,在(),a +∞上单调递增;综上所述:当0a <时,()f x 在(),a -∞上单调递减,在(),0a 上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增.(2)由()()ln f x xg x x -≥得11ln ln ln x x bxe x x x -+--≥,即11ln x bxe x x -≤-, 设()ln h t t t =-,则()111t h t t t-'=-=,∴当()0,1t ∈时,()0h t '>;当()1,t ∈+∞时,()0h t '<;()h t ∴在()0,1上单调递增,在()1,+∞上单调递减;25 / 31又1t x=在()0,∞+上单调递减, 11ln y x x ∴=-在()0,1上单调递减,在()1,+∞上单调递增,min 11ln 1ln11xx ⎛⎫∴-=-= ⎪⎝⎭;1xbxe -∴≤在()0,∞+上恒成立,xe b x ∴≤;设()xe m x x =,则()()21x e x m x x-'=, ∴当()0,1x ∈时,()0m x '<;当()1,x ∈+∞时,()0m x '>;()m x ∴在()0,1上单调递减,在()1,+∞上单调递增, ()()min 1m x m e ∴==,b e ∴≤, 即实数b 的取值范围为(],e -∞.【名师点睛】本题考查恒成立问题的求解,解题关键是能够通过分离变量的方式,将问题转化为函数最值的求解问题,进而利用导数求解函数最值得到结果.18.已知函数()()1ln x af x x e x -=--.(1)当1a =时,求()f x 的最小值;(2)证明:当01a <≤时,()ln f x a ≥恒成立.【试题来源】湖北省武汉市2021届高三下学期3月质量检测 【答案】(1)0;(2)证明见解析. 【分析】(1)1a =时,1()(1)ln x f x x ex -=--,求导1)1(x xe xf x -'=-,利用导函数研究函数的单调区间,从而求出函数的最小值;(2)要证当01a <≤时,()ln f x a ≥恒成立,即证(1)ln ln 0x a x e x a ----≥,构造函数()(1)ln ln x a h a x e x a -=---,即证()0h a ≥恒成立,研究该函数在(0,)+∞上单调区间,求函数()0h a ≥.【解析】(1)1a =时,1()(1)ln x f x x e x -=--,定义域为(0,)+∞,求导1)1(x xe x f x -'=-,设()()g x f x '=, 121(1)0()x g x x e x-+=+'>,()f x '∴在(0,)+∞单调递增.又()10f '=,故当01x <<时,()0f x '<,()f x ∴单调递减; 当1x >时,'()0f x >,()f x 单调递增. 故()f x 在1x =处取得最小值()10f =. (2)设()(1)ln ln x a h a x e x a -=---,求导()(1)11(1)x a xaa x e e x e e a e h a a '⎡⎤-=-=--⎢⎥⎣⎦. 设()()1xs x x e =-,()xe t x x=,()0x s x xe '=-<,所以0x >时,()s x 单调递减,()()01s x s <=.21()xx t x e x-'=,令()0t x '=,得1x =, 当01x <<时,()0t x '<,()t x 单调递减;当1x >时,()0t x '>,()t x 单调递增,()()1t x t e ∴≥=,故0a >,0x >时,()11axe x e e a-<<≤.即()0h a '<,()h a ∴在(0,)+∞上单调递减, 则01a <≤时,()()()111ln x h a h x e x -≥=--.由(1)知,()11ln 0x x e x ---≥,故01a <≤时,()0h a ≥.即()1ln ln x ax ex a ---≥恒成立.【名师点睛】本题考查利用导数研究函数的最小值及利用导数证明不等式,利用导数证明不等式的方法:证明()()),,(f x g x x a b <∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知,(,)x a b ∈时,有()0F x <,即证明了()()f x g x <.19.已知函数()()22x f x xe ax ax a =--∈R .27 / 31(1)当0a >时,讨论()f x 的单调性;(2)若关于x 的不等式()()f x f x ≥--在(),-∞+∞上恒成立,求实数a 的取值范围. 【试题来源】2021年高考二轮复习讲练测(浙江专用) 【答案】(1)答案见解析;(2)(],1-∞【分析】(1)先求出()f x ',令()0f x '=,比较两根大小,结合二次函数图象,即可判断()f x 的单调性;(2)将()f x 代入化简得到()220x x x e e ax ---≥,对x 进行分类讨论,易知0x =,a R ∈,0x ≠,令x e t =,根据()()0,1g t t ≥≠恒成立,对a 进行分类讨论即可求解. 【解析】(1)()()22x f x xe ax ax a =--∈R ,()()()2212x x x f x e xe ax a x e a '∴=+--=+-,x ∈R ,当0a >时,令()0f x '=,解得ln 2x a =或1x =-, 当ln 21a <-,即102a e<<, 则当(),ln 2x a ∈-∞时,()0f x '>,()f x 单调递增; 当()ln 2,1x a ∈-时,()0f x '<,()f x 单调递减; 当()1,x ∈-+∞时,()0f x '>,()f x 单调递增; 当ln 21a =-,即12a e=, 则()0f x '≥,等号不恒成立,()f x 在R 上单调递增; 当ln 21a >-,即12a e>, 则当(),1x ∈-∞-时,()0f x '>,()f x 单调递增; 当()1,ln 2x a ∈-时,()0f x '<,()f x 单调递减; 当()ln 2,x a ∈+∞时,()0f x '>,()f x 单调递增. 综上所述:当102a e<<时,()f x 在(),ln2a -∞上单调递增,在()ln 2,1a -上单调递减,在()1,-+∞上单调递增;当12a e=时,()f x 在R 上单调递增; 当12a e>时,()f x 在(),1-∞-上单调递增,在()1,ln 2a -上单调递减,在()ln2,a +∞上单调递增;(2)()()f x f x ≥--,即()2222x x xe ax ax xe a x ax -⎡⎤--≥----+⎣⎦, 即()220x x x e e ax ---≥,即()22x x x e e ax --≥①, 当0x =时,①式恒成立,a ∈R ; 当0x >时,x x e e ->,()0x x x e e -->, 当0x <时,x x e e -<,()0x x x e e -->, 故当0a ≤时,①式恒成立,;以下求当0x ≠时,不等式20x x e e ax ---≥恒成立时正数a 的取值范围, 令x e t =,则()()0,11,t ∈+∞,()12ln g t t a t t=--, 则()22212211a t at g t t t t -+'=+-=,令()221h t t at =-+,则244a ∆=-,当01a <≤时,0∆≤,()2210h t t at =-+≥,()0g t '≥,等号不恒成立,故()g t 在()0,∞+上单调递增,又()10g =,故1t >,()()10g t g >=,01t <<时,()()10g t g <=, 即当01a <≤时,①式恒成立;当1a >时,0∆>,()010h =>,()1220h a =-<, 故()h t 的两个零点,即()g t '的两个零点()10,1t ∈和()21,t ∈+∞,在区间()12,t t 上,()0h t <,()0g t '<,()g t 是减函数,。
不等式恒成立求参数的范围
不等式恒成立求参数的范围一、最值的直接应用例1、已知函数f(X)= (x-k)29⑴求/(x)的单调区间;⑵若对于任意的都有/求k的取值范围.例久已知函数f(x)=x + - + b(x^0)9其中a^beR.x⑴若曲线y = /(Q在点P(2,/⑵)处切线方程为>'=3x +1,求函数/⑴的解析式;(2)讨论函数/⑴的单调性;⑶若对于任意的占訶,不等式几讥1°在刖上恒成立,求b的取值范围.例3、已知函数f(x) = (x 2-a)e\⑴若“ =3,求/W 的单调区间;⑵已知X p X 2是/(A)的两个不同的极值点, 33/(") <(e+-a 2-3a + b 恒成立,求实数的取值范围。
二、恒成立之分离常数例4.已知函数/(x) = - + lnx-l,« e R ・ x(1)若.v = fW 在P(l,儿)处的切线平行于直线y = -x + \ 间; ⑵ 若G>0,且对.2 (0,2刃时,/(A ) > 0恒成立,求实数"的取值范围.且 1召 +x 21>1^%21 ,若 求函数y = /(X )的单调区Y"例5、已知函数f(x ) = e x - — -ax-i,(其中"ER,为自然对数的底数).⑴当« = 0时,求曲线y = /(劝在(0,/(0))处的切线方程;(2)当x Ml 时,若关于x 的不等式/(A ) M0恒成立,求实数Q 的取值范围.(1) 求/(x)的单调区间;(2) 求/(x)的取值范围;(3) 已知2占>仁+ 1)川对任意"(7°)恒成立,求实数加的取值范围。
例人已知函数/(劝=匕旦.(I )若函数在区间(G4 + 】)其中">0,上存在极值,求实数&的取值范围;2(H)如果当x>\时,不等式fM>^-恒成立,求实数励取值范围;例6. 设函数/(A)=(x + l)ln(x + l) 2—1且心0)x + 1例&已知函数f(x) = x2+bx + c(b,ceR).对任意的xeR.恒有广(x)W/(x).⑴证明:当/(x)^(x + c)2;(2)若对满足题设条件的任意从6不等式f(c)-/0)WM(c2-庆)恒成立,求确最小值。
求不等式恒成立问题中参数的取值范围的两种途径
思路探寻∵sin C =sin ()A +B =sin A cos B +sin B cos A =2sin C cos A ,∴cos A =12,∵a sin A =b sin B =c sin C,∴bc =B C =163sin B sin æèöø2π3-B =83sin æèöø2B -π6+43,∵0<B <2π3,∴-π6<2B -π6<7π6,当2B -π6=π2,即B =π3时,bc 取最大值4,∵S △ABC =12bc sin A ≤3,∴△ABC 面积的最大值为3.解答本题,需先运用正弦定理进行边角互化,将a cos B =()2c -b cos A 等价转化为sin A cos B =(2sin C -)sin B cos A ,求得角A ,再根据正弦定理求得bc ,便可根据公式S =12ab sin C 求得三角形面积的表达式,最后根据三角函数的有界性求得最值.可见,求解与三角形有关的最值问题,关键要运用正余弦定理进行边角互化,求得角、周长、面积的表达式,然后运用基本不等式、三角函数的有界性来求得最值.一般地,可运用正弦定理来将角化为边,运用余弦定理来将边化为角.在解题的过程中,要注意挖掘一下隐含条件:(1)三角形的内角和为180o ;(2)三角形的两边之和大于第三边;(3)三角形的三边、三角均为正数.这些条件都是隐含在题目当中,若没有挖掘出来,便会缺少解题的条件,得出错误的答案.(作者单位:安徽省蚌埠第二中学)在学习中,我们经常会遇到求不等式恒成立问题中参数的取值范围.此类问题一般较为复杂,通常要求根据含有参数的不等式、方程、函数求使不等式恒成立时参数的取值范围.由于这类问题涉及的知识点较多,所以其求解途径多种多样.本文结合例题,谈一谈求参数的取值范围的两种常用途径:分离参数、数形结合.一、分离参数分离参数法是求不等式恒成立问题中参数的取值范围的重要方法.其大致的解题步骤为:①对含有参数的不等式、方程、函数进行变形,使参数单独置于一侧,变量置于另一侧,如a ≥f ()x 、a ≤f ()x ;②将问题转化为函数的最值问题,如a ≥f ()x 等价于a ≥f ()x max ,a ≤f ()x 等价于a ≤f ()x min ;③根据函数的单调性求得其最值;④建立新不等式,求出参数的取值范围.例1.已知f ()x =x ln x +a x,g ()x =x -e x -1+1.若∀x 1∈éëùû12,3,x 2∈()-∞,+∞,f ()x 1≥g ()x 2恒成立,则实数a 的取值范围为______.解:由题意可知,∀x 1∈éëùû12,3,x 2∈()-∞,+∞,f ()x 1≥g ()x 2等价于f ()x 1min ≥g ()x 2max ,∵g '()x =1-ex -1,当g '()x =0时,x =1,当x 2∈()-∞,1时,g '()x >0,g ()x 单调递增;当x 2∈()1,+∞时,g '()x <0,g ()x 单调递减,∴g ()x 2max =g ()1=1,∴f ()x =x ln x +a x ≥1在x ∈éëùû12,3上恒成立,即a ≥x -x 2ln x 在x ∈éëùû12,3上恒成立,令h ()x =x -x 2ln x ,x ∈éëùû12,3,朱红玉48思路探寻∴实数a 的取值范围为a >1.在解答该题时,需首先对函数f ()x =x 3+2判断出函数的单调性,求得其最值,这样便可将问题转化为在x ∈()0,+∞上ax >e x -1恒成立.然后构造-1,画出其图象,O。
不等式恒成立问题中的参数求解技巧
不等式恒成立问题中的参数求解技巧在不等式中,有一类问题是求参数在什么范围内不等式恒成立。
恒成立条件下不等式参数的取值范围问题,涉及的知识面广,综合性强,同时数学语言抽象,如何从题目中提取可借用的知识模块往往捉摸不定,难以寻觅,是同学们学习的一个难点,同时也是高考命题中的一个热点。
其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解。
本文通过实例,从不同角度用常规方法归纳,供大家参考。
一、用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。
例1 对于x∈R,不等式恒成立,求实数m的取值范围。
解:不妨设,其函数图象是开口向上的抛物线,为了使,只需,即,解得。
变形:若对于x∈R,不等式恒成立,求实数m的取值范围。
变形:此题需要对m的取值进行讨论,设。
①当m=0时,3>0,显然成立。
②当m>0时,则△<0。
③当m<0时,显然不等式不恒成立。
由①②③知。
关键点拨:对于有关二次不等式(或<0)的问题,可设函数,由a的符号确定其抛物线的开口方向,再根据图象与x轴的交点问题,由判别式进行解决。
例2 已知函数,在时恒有,求实数k的取值范围。
例2 解:令,则对一切恒成立,而是开口向上的抛物线。
①当图象与x轴无交点满足△<0,即,解得-2<k<1< span="">。
</k<1<>②当图象与x轴有交点,且在时,只需由①②知关键点拨:为了使在恒成立,构造一个新函数是解题的关键,再利用二次函数的图象性质进行分类讨论,使问题得到圆满解决。
二、参数大于最大值或小于最小值如果能够将参数分离出来,建立起明确的参数和变量x的关系,则可以利用函数的单调性求解。
恒成立,即大于时大于函数值域的上界。
含参不等式恒成立问题中参数范围的确定
【 。≥ 。
注 : 次 函数 f ) k 一 ( = x+b k 0 在 [ , ] ( ≠ ) 上
恒 _) 的要件 { ; 有(> 充条为 ; 厂 0 ;
・ 1 + +
何构造一次 、 二次函数模 型 , 并利用它们的性 质来 确
定 参 数 的取 值 范 围 。 ( ) 造 一 次 函数 1构 例 3 在不等式 中出现 3个字母 : 、 , m、 a 已知 函数 厂 是定 义在 [一1 1 上 的奇 函数 , f 1 = ( ) ,】 且 ()
U
I 一 , 。
。
难点剖析
49
分析 : 同一 直 角坐标 系 中作 出 f ) g( 在 ( 及 )
的图象 。 如 图 2 示 ,( 的 图象 是 半 圆 ( +2 +Y = 所 厂 ) ) 4 y ) ( >0 。
’・1 1 1 1 ‘一2≤ 。 一 ・
曰, 则
:
n 十 1
n Z +
+ j
n
> 于 于1 一 自 数n 成 ,实 萎对 大 的 切 然 都 立求 数m
的取值范 围。 解: 要使不等式成立 , 只要使左边 的最小值大 于
,
由 a 。吉= - )号最 值 一 ++ 一a吉 ,小 为 2 +
又 a 一 。+ 2 1
[ 1 +厂 一 ) >0 ) l 2 ] 。又 ’f( 是奇 函数 ,. l ( . ) ’ .( . — 2) (1一 ( ) 2) 0 . ) 一11上单调 , )> ・ . 在[ , ]
递增。
②解 :. ( ≤m 一2 m +l 所有 E[一1 。- ) a ‘ 厂 对 ,
难点剖析
S
摘要 :含 参 不等 式恒 成立 问题 ” “ 把不 等式 、 函 数、 三角 、 几何等 内容有 机地结 合起来 , 以覆盖 知 其 识点 多, 综合性强 , 解法 灵活 等特点而 备受高 考 、 竞 赛命题者的青睐。另一方 面 , 在解决这 类 问题的过 程中涉及 “ 函数 与 方 程” “ 归 与转 化 ” “ 、化 、 数形 结 合” “ 、分类讨论” 等数学恩想对锻炼学生的综合解题 能力 , 培养其思维 的灵活性 、 创造性都有着独到的作 用。本文就结合实例谈这类 问题 的一般求解策略。 关键词 : 参数 范围 策略 分 离 参 数 法 例 1 若 不等式 +— 1 1 +… 1
不等式恒成立,求参数的取值范围——洛必达法则
洛必达法则简介法则1 若函数f(x) 和g(x)满足下列条件: (1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x a f x l g x →'=',那么 ()()lim x a f x g x →=()()limx a f x l g x →'='。
法则2 若函数f(x) 和g(x)满足下列条件: (1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A ∃,f(x) 和g(x)在(),A -∞-与(),A +∞上可导,且g '(x)≠0;(3)()()lim x f x l g x →∞'=',那么 ()()lim x f x g x →∞=()()limx f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件: (1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g '(x)≠0;(3)()()lim x af x lg x →'=',那么 ()()lim x af xg x →=()()lim x af xl g x →'='。
利用洛必达法在解题中应注意:○1将上面公式中的x→a,x→∞换成x→+∞,x→-∞,x a+→,x a -→洛必达法则也成立。
○2洛必达法则可处理00,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
○3在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,0∞,00,型定式,否则滥用洛必达法则会出错。
当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
含参数不等式恒成立问题中参数范围的确定(专题)
含参数不等式恒成立问题中参数范围的确定确定恒成立不等式中参数的取值范围需灵活应用函数与不等式的基础知识,并时常要在两者间进行合理的交汇,因此此类问题属学习的重点;然而,怎样确定其取值范围呢?课本中却从未论及,但它已成为近年来命题测试中的常见题型,因此此类问题又属学习的热点;在确定恒成立不等式中参数的取值范围时,需要在函数思想的指引下,灵活地进行代数变形、综合地运用多科知识,方可取得较好的效益,因此此类问题的求解当属学习过程中的难点.基于此,下文试对此类问题的求解策略与方法作一提炼总结. 1 分离参数法例 1:设()()()⎥⎦⎤⎢⎣⎡+-+++=n an n x f x x x 121lg ,其中a 是实数,n 是任意给定的自然数且n ≥2,若()x f 当(]1,∞-∈x 时有意义, 求a 的取值范围。
该题题型新颖,许多学生对函参数的不等式如何确定参数取值范围茫然不知所措。
因为这类问题涉及到高中数学的各个分支,在代数,三角,几何,解析几何等的知识,而且这类问题思维要求高,解法也较灵活,故学生难以掌握。
但若我们能认真观察分析一下这类问题的特征,其实这类题目的规律性是较强的。
下面就结合例子给出解决此类问题的几种方法:例如上面的这道高考题,我们根据其特征可以用分离参数法来解决。
所谓分离参数法也就是将参数与未知量分离于表达式的两边,然后根据未知量的取值范围情况决定参数的范围。
这种方法可避免分类讨论的麻烦,使问题得到简单明快的解决。
我们来分析一下这道题的特征:因为分母n 是正数,要使得()x f 当(]1,∞-∈x 有意义,分子()()a n n x xx+-+++121 就必须也是正数。
并容易看出,可以将a 分离出来。
分析: 当(]1,∞-∈x 时,()x f 有意义,故有()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛->⇔>+-+++xx x xxx n n n a a n n 11210121令()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=xx x n n n x 1121 ϑ,只要对()x ϑ在(]1,∞-上的最大值,此不等式成立即可。
不能分离求参数范围之不等式恒成立问题解题模板
不能分离求参数范围之不等式恒成立问题解题模板1、已知函数322()f x x ax bx a =+++(2) 当1a =-时,若(,0)x ∀∈-∞都有()xf x e <恒成立,求b 的取值范围 解:依题意(,0)x ∀∈-∞,都有3210x x x bx e -++-<恒成立 令()g x =321xx x bx e -++-且(0)0g =∴等价于(,0)x ∀∈-∞都有()(0)g x g <由2'()32xg x x x b e =-+-=232xx x e b --+∴ ''()62xg x x e =--易知(,0)x ∀∈-∞,''()g x <0, ∴ '()g x 在(,0)-∞单调递减 ∴(,0)x ∀∈-∞,'()g x >'(0)g 即'()1g x b >-① 当10b -≥即1b ≥时(,0)x ∀∈-∞,'()1g x b >-0≥ ∴()g x 在(,0)-∞单调递增∴(,0)x ∀∈-∞都有()(0)g x g < 符合题意 0 ② 当10b -<即1b <时,由2'()32xg x x x b e =-+-在(,0)-∞单调递减且'(0)10g b =-<又当0x <时,1xe ->-,230x > ∴ '()g x >21x b --+又1b <时12b -<0 且'(1)2(1)11022b bg b ->---+=>∴'(0)'(1)02bg g -< ∴由零点存在性定理可知 0(1,0)2bx ∃∈-,使得0'()0g x =x 0(,)x -∞ 0x 0(,0)x '()g x + 0 —()g x 递增 0()g x 递减由表可知 (0)g 不是()g x 的最大值不符合题意,综上所述b 的取值范围为[1,)+∞状态2含参不等式恒成立问题,分离后用洛必达法则得正确结果,书写按套路等价转化语言一次求导正负不清二次求导正负清 怎么减,哪种状态,讨论端点处正负放缩找点,弄清目标函数单调区间此点不清要说明存在,故要取点论证状态12(2018•四川模拟)已知函数f (x )=e x +lnx .(2)若对任意x ∈[1,+∞)恒有f (x )≥e +m (x ﹣1),求实数m 的取值范围 (个人解法)解:依题意[1,)x ∀∈+∞,ln (1)x e x m x e +--≥恒成立令()ln (1)xg x e x m x =+-- 且(1)g e =∴等价于[1,)x ∀∈+∞都有()(1)g x g ≥恒成立,由1'()xg x e m x=+- ∴22211''()x xx e g x e x x -=-=易知[1,)x ∀∈+∞都有21x x e ->0∴[1,)x ∀∈+∞,''()0g x >∴ 1'()xg x e m x=+-在[1,)+∞上单调递增∴[1,)x ∀∈+∞ ,'()'(1)g x g ≥即 '()1g x e m ≥+-①当10e m +-≥即1m e ≤+时,1[1,)x ∀∈+∞,'()10g x e m ≥+-≥∴ ()g x 在[1,)+∞单调递增∴ [1,)x ∀∈+∞,()(1)g x g ≥ 符合题意②当10e m +-<即1m e >+时由1'()x g x e m x=+-在[1,)+∞上单调递增且'(1)10g e m =+-<1 m又当1x >时,1xe x >+,10x > 第②点也可这样证(∴1'()xg x e m x=+-1x m >+-又11m e >+>∴'()10g m m m >+-> ∴'(1)'()0g g m <∴由零点存在性定理可知 存在0(1,)x m ∈,使得0'()g x =0当x ∈(1,0x )时,g′(x )<0,当x ∈(0x ,+∞)时,g′(x )>0, 此时(1)g 不是()g x 的最小值 不符合题意,综上m 的取值范围为(,1]e -∞+ 3(2010新课标理数)设函数f (x )=e x ﹣1﹣x ﹣ax 2.状态1含参不等式恒成立问题,分离后用洛必达法则得正确结果,书写按套路等价转化语言一次求导正负不清二次求导正负清怎么增,哪种状态,讨论端点处正负弄清目标函数的单调性是求出最值得关键放缩找点,弄清目标函数单调区间此点不清要说明存在,故要取点论证状态2(2)若当x ≥0时f (x )≥0,求a 的取值范围. 解:(2)由2()1x f x e x ax =---且(0)0f = 则题意等价于[0,)x ∀∈+∞,()(0)f x f ≥恒成立由'()12xf x e x ax =--- 则''()2x f x e a =-易知''()x f x e a =-在[0,)+∞单调递增∴''()''(0)f x f ≥即''()12f x a ≥-① 当120a -≥即12a ≤时, 由''()12f x a ≥-0≥则'()12xf x e x ax =---在[0,)+∞单调递增∴'()'(0)f x f ≥即'()0f x ≥ ∴()f x 在[0,)+∞单调递增∴[0,)x ∀∈+∞,()(0)f x f ≥ 符合题意② 当120a -<即12a >时,令''()0f x =即20xe a -=解得ln 2x a =∴当(0,ln 2)x a ∈,''()f x < 0ln2a∴'()f x 在(0,ln 2)a 单调递减,∴'()f x <'(0)f 即'()0f x <∴()f x 在(0,ln 2)a 递减∴(0)f 不是()f x 的最小值 不符合题意综上所述a 的取值范围为.附:常见的放缩类型第一组:对数放缩(放缩成一次函数)ln 1x x ≤-,ln x x <, 第二组:指数放缩(放缩成一次函数)1x e x ≥+,x e x >,x e ex ≥, 第三组:指对放缩()()ln 112x e x x x -≥+--=第五组:以直线1y x =-为切线的函数ln y x =,11x y e-=-,2y x x =-,11y x=-,ln y x x =.含参不等式恒成立问题,分离后用洛必达法则得正确结果,书写按套路一次求导正负不清二次求导单调性清,但正负不清二次导函数正负讨论可清怎么增,哪种状态,看端点处正负此点清,单调区间可知状态1状态2(2018•宁德)4、已知函数()ln 1af x b x x =++,曲线()y f x =在点(1,(1))f 处的切线方程为10x y -+=.(Ⅰ)求a ,b 的值; (Ⅱ)当(1,)x ∈+∞时,ln ()21k xf x x >++恒成立,求实数k 的取值范围. 解:(II)由(I )可知4()2ln 1f xx =++ln k x 等价于22(22)ln 0x x k x -++->设()22(22)lng x x x k x =-++-且(1)g ∴ 等价于(1,)x ∀∈+∞,()(1)g x g >由'()g x =令()h x =则'()2ln 2h x x =+ 当1x >,'()0h x >∴()22ln h x x x =+∴ ()(1)h x h >即 ①当20k -≥即k ≤由()22ln h x x x =+∴22ln '()x x kg x x+-=0>∴()g x 在(1,)+∞单调递增∴(1,)x ∀∈+∞,()(1)g x g > 符合题意① 当20k -<即2k >时由()22ln h x x x k =+-在(1,)+∞单调递增且(1)2h =-又当1x >时,ln 1x x x >-∴()22ln h x x x k =+->22(x +∴ ()220h k k k k =-=>>∴(1)()0h h k <由零点存在性定理可知存在0(1,)x k ∈,使得0()h x =0当x ∈(1,0x )时,由()0h x <得g′(x )<0,当x ∈(0x ,+∞)时,由()0h x >得g′(x )>0,此时(1)g 不是()g x 的最小值不符合题意综上k 的取值范围为(,2]-∞。
恒成立问题中参数范围的求解方法
恒成立问题中参数范围的求解方法作者:范增康来源:《中学课程辅导·教学研究》2013年第13期摘要:恒成立问题在高中数学中较为常见。
这类问题的解决渗透着换元、化归、数形结合、函数与方程等思想方法,实际上只要紧紧抓住“题型”,这类求恒成立时的参数范围的问题便将迎刃而解。
关键词:恒成立;参数范围;取值范围;求解方法中图分类号:G633.6 文献标识码:A 文章编号:1992-7711(2013)13-0123恒成立问题,在高中数学中较为常见。
这类问题的解决渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
此类问题解法灵活、综合性强,部分考生常感到无从下手,茫然不知所措,那么到底如何解决这类问题呢?实际上只要紧紧抓住“题型”,这类求恒成立时的参数范围的题目便将迎刃而解。
一、数形结合数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。
我们知道,函数图象和不等式有着密切的联系:1. f(x)>g(x)函数f(x)图象恒在函数g(x)图象上方;2. f(x)函数f(x)图象恒在函数图象g(x)下上方。
例1. 设x∈[0,4],若不等式≥ax恒成立,求a的取值范围。
解析:设y1=x(4-x),则(x-2)2+y2=4(y1≥0),它表示的是圆心为(2,0),半径为2的半圆(如图所示)。
另设y2=ax,它的几何意义是一条经过原点,斜率为a的直线,将两者图象画在同一坐标系下,根据不等式≥ax的几何意义,要使得半圆恒在直线l的上方(包括相交),当且仅当时a例2.设f(x)=, g(x)=x+1-a,若恒有f(x)≤g(x)成立,求实数a的取值范围。
解析:在同一直角坐标系中作出f(x)及g(x)的图象,如图所示,f(x)的图象是半圆(x+2)2+y2=4(y≥0),g(x)的图象是平行的直线系4x-3y+3-3a=0。
含参不等式恒成立问题中参数取值范围的求解策略
含参不等式恒成立问题中参数取值范围的求解策略作者:刘飞来源:《理科考试研究·高中》2016年第01期含参不等式恒成立问题是高考中的热点问题,此类问题由于题型多样,有利于考查学生的综合解题能力,解答此类问题主要通过转化来解决问题.下面举几种常见的解答方法.一、分离参数此法是把不等式中的参数t与未知数x分离出来,得到t>f(x)或tf(x)max,或t例1已知对于任意x∈(0,1),不等式|loga(2-x)|>|loga(2+x)|-1恒成立,求实数a 的取值范围.解显然a>0且a≠1,当x∈(0,1)时,loga(2+x)>0,loga(2-x)>0,原不等式可化为lg2+x2-x所以2+x2-x=42-x-1∈(1,3),所以lg2+x2-x∈(0,lg3),因为对于任意的x∈(0,1),不等式lg2+x2-x所以|lga|≥lg3,解得a的范围是:a≥3或0二、联系二次函数如果原不等式可化为二次不等式型,可充分联系二次函数的图象及性质解决问题.例2当x∈[-2,2]时,不等式x2+ax+3-a≥0恒成立,求实数a的范围.解构造二次函数f(x)=x2+ax+3-a=(x+a2)2-a24-a+3.当-a2-a2f(-2)=(-2)2+a(-2)+3-a≥0,解集为空集.当-2≤-a2≤2时,原不等式等价于:-2≤-a2≤2,f(-a2)=(-a2)2+a(-a2)+3-a≥0,解得-4≤a≤2.当-a2>2时,原不等式等价于:-a2>2,f(2)=22+2a+3-a≥0.解得-7≤a≤-4.综上,a的取值范围为-7≤a≤2.三、数形结合某些不等式的恒成立问题,可通过构造函数,借助函数的图象来研究.例3当x∈(1,2)时,不等式(x-1)2解设f(x)=(x-1)2,g(x)=logax.当x∈(1,2)时,不等式(x-1)2当0当a>1时,画出f(x)及g(x)的图象,由图象可得,当x∈(1,2)时,要使不等式f(x)则需要f(2)≤g(2),即(2-1)2≤loga2,解得a≤2,故1综上,a的取值范围为1四、变更主元将不等式中的参数与变量地位互换,反客为主,实现难题巧解.例4若x∈(0,13],不等式1+x+(a-a2)x2>0恒成立,求实数a的取值范围.解原不等式可化为关于a的不等式:x2a2-x2a-(x+1)即[ax-(x+1)](ax+1)因为x∈(0,13],所以不等式的解为-1x由条件知[-1x]max所以-3。
恒成立问题与能成立问题
第9练 恒成立问题与能成立问题[考情分析] 恒成立问题(能成立问题)多与参数的取值范围问题联系在一起,是近几年高考的热门题型,难度大,一般为高考题中的压轴题.一、恒成立问题例1 (2020·全国Ⅰ)已知函数f (x )=e x +ax 2-x .(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1恒成立,求a 的取值范围. 解 (1)当a =1时,f (x )=e x +x 2-x ,f ′(x )=e x +2x -1,令φ(x )=e x +2x -1,由于φ′(x )=e x +2>0,故f ′(x )单调递增,注意到f ′(0)=0,故当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减,当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.(2)由f (x )≥12x 3+1得, e x +ax 2-x ≥12x 3+1,其中x ≥0, ①当x =0时,不等式为1≥1,显然成立,符合题意;②当x >0时,分离参数a 得,a ≥-e x -12x 3-x -1x 2, 记g (x )=-e x -12x 3-x -1x 2(x >0), 则g ′(x )=-(x -2)⎝⎛⎭⎫e x -12x 2-x -1x 3, 令h (x )=e x -12x 2-x -1(x >0), 则h ′(x )=e x -x -1,令t (x )=e x -x -1(x >0),则t ′(x )=e x -1>0,故h ′(x )单调递增,h ′(x )>h ′(0)=0,故h (x )单调递增,h (x )>h (0)=0,由h (x )>0可得e x -12x 2-x -1>0恒成立, 故当x ∈(0,2)时,g ′(x )>0,g (x )单调递增;当x ∈(2,+∞)时,g ′(x )<0,g (x )单调递减,因此,g (x )max =g (2)=7-e 24, 综上可得,a 的取值范围是⎣⎢⎡⎭⎪⎫7-e 24,+∞. 规律方法 (1)由不等式恒成立求参数的取值范围问题的策略①求最值法,将恒成立问题转化为利用导数求函数的最值问题.②分离参数法,将参数分离出来,进而转化为a >f (x )max 或a <f (x )min 的形式,通过导数的应用求出f (x )的最值,即得参数的范围.(2)不等式有解问题可类比恒成立问题进行转化,要理解清楚两类问题的差别.(3)判断含x ,ln x ,e x 的混合式的函数值的符号时,需利用x 0=0ln e x 及e x ≥x +1,ln x ≤x -1对函数式放缩,有时可放缩为一个常量,变形为关于x 的一次式或二次式,再判断符号. 跟踪训练1 (2022·青海模拟)已知函数f (x )=a (x -1)-e x (a ∈R ),k (x )=ln x -e ,e 为自然对数的底数.(1)讨论f (x )的单调性;(2)当x >1时,不等式f (x )≤k (x )恒成立,求a 的取值范围.解 (1)f ′(x )=a -e x ,x ∈R ,①当a ≤0时,f ′(x )<0,f (x )在R 上单调递减.②当a >0时,令f ′(x )<0,得x >ln a ,令f ′(x )>0,得x <ln a ,所以当x ∈(-∞,ln a )时,f ′(x )>0,f (x )单调递增;当x ∈(ln a ,+∞)时,f ′(x )<0,f (x )单调递减.(2)当x >1时,f (x )≤k (x )恒成立,即a (x -1)-e x -ln x +e ≤0在(1,+∞)上恒成立,令g (x )=a (x -1)-e x -ln x +e ,x >1,则g ′(x )=a -e x -1x, 令h (x )=g ′(x )=a -e x -1x,x >1, 则h ′(x )=-e x +1x 2, 易知h ′(x )在(1,+∞)上单调递减,∴h ′(x )<h ′(1)=-e +1<0,∴g ′(x )在(1,+∞)上单调递减,∴g ′(x )<g ′(1)=a -e -1.①当a -e -1≤0,即a ≤e +1时,g ′(x )<0,∴g (x )在(1,+∞)上单调递减,此时g (x )<g (1)=0,符合题意;②当a -e -1>0,即a >e +1时,g ′(1)>0,当x →+∞时,g ′(x )<0,∴∃x 0∈(1,+∞),使得g ′(x 0)=0,则当x ∈(1,x 0)时,g ′(x )>0,g (x )单调递增,当x ∈(x 0,+∞)时,g ′(x )<0,g (x )单调递减,∴g (x 0)>g (1)=0,不符合题意.综上所述,a 的取值范围为(-∞,e +1].二、能成立问题例2 (2022·北京第十二中学模拟)已知函数f (x )=ln x +a x,a ∈R . (1)当a =1时,求函数f (x )的单调区间;(2)设函数g (x )=f (x )-1x,若g (x )在[1,e 2]上存在极值,求a 的取值范围.解 (1)当a =1时,函数f (x )=ln x +1x,其定义域为(0,+∞), 可得f ′(x )=1x -1x 2=x -1x 2, 当x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,所以函数f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞).(2)由g (x )=f (x )-1x =ln x x +a x 2-1x,x ∈[1,e 2], 可得g ′(x )=1-ln x x 2+1x 2-2a x 3=2x -x ln x -2a x 3, 设h (x )=2x -x ln x -2a ,则h ′(x )=2-(1+ln x )=1-ln x ,令h ′(x )=0,即1-ln x =0,解得x =e ,当x ∈[1,e)时,h ′(x )>0;当x ∈(e ,e 2]时,h ′(x )<0,所以h (x )在区间[1,e)上单调递增,在区间(e ,e 2]上单调递减,且h (1)=2-2a ,h (e)=e -2a ,h (e 2)=-2a ,显然h (1)>h (e 2),若g (x )在[1,e 2]上存在极值,则满足⎩⎨⎧ h (e )>0,h (1)<0或⎩⎪⎨⎪⎧h (1)≥0,h (e 2)<0,解得0<a <e 2, 所以实数a 的取值范围为⎝⎛⎭⎫0,e 2. 规律方法 (1)含参数的不等式能成立(存在性)问题的转化方法若a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ;若a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .(2)不等式能成立问题的解题关键点跟踪训练2 (2022·淮南模拟)已知函数f (x )=ln x x -1. (1)讨论函数f (x )的单调性;(2)已知λ>0,若存在当x ∈(1,+∞)时,不等式λx 2-λx ≥(e λx -1)ln x 成立,求λ的取值范围. 解 (1)y =f (x )的定义域为(0,1)∪(1,+∞),且f ′(x )=1-1x -ln x (x -1)2. 令g (x )=1-1x-ln x , 则g ′(x )=1-x x 2, 当x ∈(0,1)时,g ′(x )>0,g (x )单调递增;当x ∈(1,+∞)时,g ′(x )<0,g (x )单调递减.又因为g (1)=0,所以当x ∈(0,1)∪(1,+∞)时,g (x )<0,即f ′(x )<0,所以函数y =f (x )在区间(0,1),(1,+∞)上均单调递减.(2)因为λx 2-λx ≥(e λx -1)ln x ,所以(x -1)ln e λx ≥(e λx -1)ln x ,当λ>0,x >1时,x -1>0,所求不等式可化为ln e λx e λx -1≥ln x x -1, 即f (e λx )≥f (x ).由λ>0易知e λx ∈(1,+∞),由(1)知,y =f (x )在(1,+∞)上单调递减,故只需e λx ≤x 在(1,+∞)上能成立.两边同取自然对数得λx ≤ln x ,即λ≤ln x x在(1,+∞)上能成立. 令φ(x )=ln x x(x >1), 则φ′(x )=1-ln x x 2, 当x ∈(1,e)时,φ′(x )>0,函数y =φ(x )单调递增; 当x ∈(e ,+∞)时,φ′(x )<0,函数y =φ(x )单调递减,所以φ(x )max =φ(e)=1e, 所以λ≤1e, 又λ>0,故λ的取值范围是⎝⎛⎦⎤0,1e .。
高中数学恒成立问题中参数范围的求法
一、变换主元法
2
例1、已知函数f(x)=x+(a-6)x+9-3a,当-1≤a≤1时,f(x)>0恒成立,求x的取值范围。
二、判别式法
2 2
例2、已知函数f(x)=lg[x+(a-1) x+a 的定义域是实数集R,求实数a的取值范围
三、分离参数法例3、不等式x+ax+1≥0,对x (0, ]恒成立,求实数a 的取值范围221
四、利用根的分布例4(同例3)、不等式x+ax+1≥0,对x (0, ]恒成立,求实数a 的取值范围
212
五、数形结合法
x
例5、若函数f(x)=a-x-a(a>0,且a≠1)恒有两个零点,求实数a的取值范围
2
例6、当1<x<2时,不等式(x-1)<logx恒成立,求实数a的取值范围
六、根据函数的奇偶性、周期性等性质•若函数f(x)是奇(偶)函数,则对一切定义域中的x ,f(-x)=-f(x)•(f(-x)=f(x))恒成立;若函数y=f(x)的周期为T,则对一切定义域•中的x,f(x)=f(x+T)恒成立。
分析:告诉我们偶函数的条件,即相当于告诉我们一个恒成立问题。
一元二次不等式恒成立求参数范围
一元二次不等式恒成立求参数范围1. 什么是一元二次不等式?大家好,今天咱们来聊聊一元二次不等式这个概念。
简单来说,就是形如ax² + bx + c < 0 或者ax² + bx + c > 0 的数学表达式。
听起来有点复杂,但其实不难!你可以把它想象成一场数学派对,参与者是 a、b 和 c,而我们要确定的是这些数字在什么情况下可以让这个表达式总是成立。
就像朋友聚会,总得找个地方,确保大家都能开心,不被拒之门外。
1.1 一元二次不等式的基本形式那么,一元二次不等式的基本形式是什么呢?其实就是我们常见的ax² + bx + c =0 的变种。
只不过在不等式中,我们要考虑的可不仅仅是等号。
这里有个小秘诀,如果我们想让这个不等式始终成立,得确保它的图像——也就是抛物线——要始终在 x 轴的某一侧。
你想想,像一条潇洒的鱼,在水里游来游去,却总是浮在水面上,那才是我们想要的状态。
1.2 抛物线的开口方向说到抛物线,咱们不得不提它的开口方向。
如果 a > 0,那么抛物线开口向上;如果 a < 0,抛物线开口向下。
这就好比一位厨师做菜,开口向上的抛物线像是炒菜时的锅,得不断向上翻动食材,才会把菜做得恰到好处。
而开口向下的抛物线就像是让食材在锅里“趴着”,时间久了可就没味道了。
所以,搞清楚这点对我们求解不等式至关重要。
2. 如何求解不等式的参数范围?接下来,我们要深入探讨一下,如何求解一元二次不等式的参数范围。
首先,我们要确定不等式成立的条件。
咱们常说,做事得讲究个“门道”,同样,解决这个问题也得用点技巧。
我们通常会用到判别式D = b² 4ac 这个小工具。
这个工具就像是你出门前的晴雨表,能帮你判断天气,确保你带上伞或者把雨衣收起来。
2.1 判别式的作用如果判别式 D < 0,那就意味着我们的抛物线与 x 轴没有交点,也就是我们的不等式永远成立。
恒成立一元二次不等式中参数范围的求解策略
恒成立一元二次不等式中参数范围的求解策略
1.将一元二次不等式化为标准形式:将不等式移项,将等式化为0的形式。
2. 求解方程:将一元二次不等式中的不等号改为等号,求解得到方程的根。
3. 根据方程的根划分区间:根据方程的解,将实数轴分为不同的区间。
4. 判断不等式的符号:在每个区间内选取一个测试点,代入原不等式,判断不等式的符号。
5. 根据符号确定参数的范围:根据测试点的结果和实数轴的划分确定参数的取值范围。
需要注意的是,对于一元二次不等式中存在绝对值的情况,可以将其分解为两个不等式,进而求解参数的范围。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式恒成立求参数的取值范围
武汉市第四十九中学 李清华
邮政编码;430080
一、 教学目标
1、 知识目标;掌握不等式恒成立问题求参数的范围的求解方法并会运用
2、 能力目标;培养学生分析问题解决问题的能力
3、
情感目标;优化学生的思维品质
二、 教学重难点
1、教学的重点;不等式恒成立问题求参数的范围的求解方法并会运用
2、教学的难点;不等式恒成立问题求参数的范围的求解方法的选择 三、 教学方法:高三复习探究课:学生研讨探究----学生归纳小结-----学生巩固
练习----学生变式探究---学生总结 四、 教学过程
1、 引人 高三数学复习中的不等式恒成立问题,涉及到函数的性质、图象, 渗透着换元、化归、数形结合、函数方程等思想方法,有利于考查学生的综合解题能力,因此备受命题者的青睐,也成为历年高考的一个热点。
我们今天这堂课来研究不等式恒成立求参数的取值范围问题的求解方法。
引入课题
2、新课 下面我们来看例1例1、对一切实数x ]1,1[-∈,不等式
a x a x 24)4(2-+-+>0恒成立,求实数a 的取值范围(由学生完成)
由一个基本题得到不等式恒成立问题求参数的范围的求解方法 解法一;分离参数 由原不等式可得:a(x-2) > -x 2+4x-4 , 又因为x ∈[-1,1] ,x-2∈[-3,-1] a<2-x
又因为x∈[-1,1],所以a<1.
解法二;分类讨论、解不等式
(x-2)[x-(2-a)]>0
当a=0时不等式恒成立
当a<0 时x>2-a 或x<2 不等式恒成立
当a>0时x>2 或x<2-a 所以2-a>1 即a<1
所以a<1时不等式恒成立
解法三;构造函数求最值
设f(x)=x2+(a-4)x+4-2a
当(4-a)/2∈[-1,1],即a∈[2,6]时
-a2<0 不成立,舍弃;
当a>6时,f(-1)=1-a+4+4-2a>0
a<3 不成立,舍弃;
当a<2时,f(1)=1+a-4+4-2a=1-a>0 a<1
综上得:a<1
解法四;构造方程用判别式韦达定理根的分布
设x2+(a-4)x+4-2a=0
方程无实根或有两实根两根小于-1或两根大于1
△=(a-4)2-4(4-2a)=a2≥0
所以1-(a-4)+4-2a>0且(4-a)/2<-1 或1+(a-4)+4-2a>0 且(4-a)/2>16且a<3 或a<1且a<2, 所以a<1
解法五;数形结合(用动画来演示
a(x-2)>-x 2+4x-4 设y=a(x-2) 和 y=-x 2+4x-4 分别作两函数的图象
当x ∈[-1,1]时,总有y=a(x-2)的图象 在y=-x 2+4x-4图象的上方 由图象可得 a<1 归纳总结(由老师板书)
1、如果作图较易,也可用数形结合。
2、分离参数;转化为f(x)≤a 或f(x) ≥ a(x ∈D)
恒成立.即f(x)max (x ∈D)≤a;或f min (x) ≥a3、解不等式利用集合间子集关系。
4、分类讨论
5、构造函数求最值。
6、构造方程用判别式、韦达定理、根的分布。
老师进行补充说明用什么方法求解要看题意例题1中用数形结合、参数分离、解不等式较为简单。
这是我们平时解这类题时须要积累的东西。
用最简单的方法求解出正确的结果就是最好的方法。
下面看练习1。
3、练习1探究思辨 (2006年,上海卷,理,12)
三个同学对问题“关于x 的不等式x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”.
乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”.
丙说:“把不等式两边看成关于x 的函数,作出函数图像”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是
【分析及解】关键在于对甲,乙,丙的解题思路进行思辨,这一思辨实际上是函数思想的反映.
设()()232255,f x x x x g x ax =++-=.
甲的解题思路是对于[][]121,12,1,12x x ∈∈,若()()12f x g x ≥恒成立,求a 的取值范围.与题目[]1,12x ∈,()()f x g x ≥恒成立,求a 的取值范围的要求不一致.因而, 甲的解题思路不能解决本题.
按照丙的解题思路需作出函数()()232255,f x x x x g x ax =++-=的图象,然而,函数()f x 的图象并不容易作出.
由乙的解题思路,本题化为
()
f x a x
≥在[]1,12x ∈上恒成立,等价于[]1,12x ∈时, ()min
f x a x ⎡⎤≥⎢⎥⎣⎦成立.
由()25
5f x x x x x x
=++-在[]51,12x =∈时,有最小值10,于是,10a ≤. 练习2、
(07福州,21)已知两个函数f (x )=7x 2-28x-c ,g (x )=2x 3+4x 2-40x 若对任意x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围;解:设h (x )=g (x )-f (x )=2x 3-3x 2-12x+c 则h ’(x )=6x 2-6x-12 =6(x+1)(x-2), 由h ’(x )=0得,x=-1或x=2.
当x ∈[-3,3],h min (x)=h(-3)=c-45,不等式f (x )≤g (x )在[-3,3]上恒成立,等价于h min (x)≥0,
∴c-45≥0,即c ≥45,∴c 的取值范围为[45,+∞]变式1、若对任意的x 1∈[-3,3],
x -3 (-3,-1-1 (-1,2) 2 (2,3) 3
h’
+
0 -
0 +
h (x ) c-4
↑
C+
↓ c-2
↑
c-9
x2∈[-3,3],都有f(x1)≤g(x2)
成立,求实数c的取值范围
解;对任意的x1∈[-3,3],x2∈[-3,3],f(x1)≤g(x2)恒成立,等价x∈[-3,3],f(x)max ≤g min(x).
∵f(x)=7(x-2)2-c-28,x∈[-3,3],
∴f max(x)=f(-3)=147-C.
g’(x)=6 x2+8x-40=2(3x+10)(x-2),
g’(x)=0在[-3,3]上只有一个解x=2,
∵当-3<x<2时,g’(x)<0;当2<x<3时,g’(x)>0,
∴g(x)在[-3,3]上只有一个极值g(2),且为极小值,
∴g min(x)= g(2)=-48.
∴147-c≤-48,即c≥195,∴c的取值范围为[195,+∞]变式2、已知两个函数f(x)=7x2-28x-c,g(x)=2x3+4x2-40x
若存在x∈[-3,3],有f(x)≤g(x)成立,求实数c的取值范围;变式3、任意x ∈R,都有f(x)=g(x)有三个解,求实数c的取值范围
让学生讨论这四种题型的关系及区别归纳其求解的方法。
5、课后小结
(1)、知识要点
f(x)≥a 恒成立f(x) min≥a
f(x)≤a 恒成立f(x) max≤a
(2)、解题方法数形结合、分离参数、解不等式分类讨论、构造函数、构造方程(3)数学思想函数方程思想转化思想数形结合分类讨论。