角动量与角动量定理

合集下载

角动量和角动量守恒定律

角动量和角动量守恒定律

恒矢量
M 0
质点或质点系所受对参考点 O 的合外力矩为零 时,质点或系统对该参考点 O 的角动量为一恒矢量 . (1) 不受外力
(2) 力臂 d 0 (3) F // r
3 – 2 角动量 角动量守恒动量守恒。
质点在有心力作用下的运动:r 与 F 同向或
第三章 刚体力学
dp dL F, ? Lrp dt d t dL d dp dr (r p) r p dt dt d t dt dr dL dp v, v p 0 r r F dt dt dt 作用于质点的合力对参考点 O dL 的力矩 ,等于质点对该点 O 的角 M dt 动量随时间的变化率 .


L mR
2 32 12
2g 12 ( sin ) R
L mR (2g sin )
Lx 、Ly 、Lz 质点对x、y、z 轴的角动量 M y、 M x、 M z 质点对x、y、z 轴的力矩
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
1)求角动量和力矩某一方向的分量的方法
L ( xi yj zk ) ( pxi py j pz k ) M (xi yj zk) (Fxi Fy j Fz k)
rb
通过一点(力心)—— 力对力心的力矩为零。
当力 F 的作用线始终
vb
ra mva rb mvb ra v b va va rb
ra
r
F
3 – 2 角动量 角动量守恒定律
第三章 刚体力学
举例: 将一个质量为m的小球系在轻绳的一端,放在 光滑的水平桌面上,轻绳的另一端从桌面中间的一 光滑小孔穿出。先使小球以一初速度在水平桌面上 作圆周运动,然后向下拉绳。 动画演示:模拟实验

刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律

刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。

2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。

(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。

3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。

练习:1角动量守恒的条件是 。

0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。

角动量 角动量守恒定律

角动量 角动量守恒定律

角动量与线动量关系
角动量与线动量的关系
角动量是线动量在物体绕某点或某轴 转动时的表现形式,二者之间存在密 切关系。
动量守恒定律
在不受外力作用的情况下,物体的总 动量(包括线动量和角动量)保持不 变,即动量守恒定律。
02
角动量守恒定律
守恒条件及适用范围
守恒条件
当系统不受外力矩作用时,系统的角动量守恒。即在没有外力矩的情况下,系统内部各部分之间的相 互作用力不会导致系统总角动量的改变。
06
总结与展望
课程内容回顾与总结
角动量的定义与性

角动量是物体绕某点或某轴转动 的动量,具有矢量性质,其大小 与物体的质量、速度和转动半径 有关。
角动量守恒定律的
表述
在没有外力矩作用的情况下,系 统内的角动量保持不变,即角动 量守恒。
角动量守恒定律的
应用
角动量守恒定律在天体物理、刚 体转动、分子运动等领域有广泛 应用,如行星运动、陀螺仪工作 原理等。
对未来研究方向的展望
角动量守恒定律在复 杂系统较成熟,但在复 杂系统中的应用还有待深入研究, 如多体问题、非线性问题等。
角动量与其他物理量 的关系研究
角动量与能量、动量等物理量之 间存在一定的联系,未来可以进 一步探讨它们之间的关系,以及 如何利用这些关系解决实际问题。
在机械工程中,飞轮储能系统被应用 于能量回收和节能领域。飞轮储能系 统利用刚体定轴转动的角动量守恒定 律,通过加速和减速飞轮来储存和释 放能量。这种储能方式具有高效率、 环保等优点,在电动汽车、风力发电 等领域具有广阔的应用前景。
04
质点和质点系相对于固定 点角动量守恒
质点相对于固定点角动量定义和性质
双星系统由两颗互相绕转的恒星组成。在双星系统中,两颗恒星的角动量守恒,因此它们的轨道周期、距离和质量之 间存在一定关系。

大学物理(上册)角动量 角动量守恒定律(3)

大学物理(上册)角动量 角动量守恒定律(3)
- 4
,已足以盖过整个银河发光的总和。 ( 10
?
第二篇 实物的运动规律 第五章 角动量 角动量守恒定律
第五章第三讲
本章共3讲
§5.3 角动量守恒定律 一. 角动量守恒定律 研究对象:
dL M外 dt
质点系
由角动量定理: 得:当M 外 0时,L 恒矢量 分量式:
Mx 0 My 0 Mz 0 时 时 时 Lx 恒量 L y 恒量 Lz 恒量
F轴 0 m M系统 p 不守恒; M轴 0 m M系统 对O点角动量守恒 m 2 gh R m M vR
回顾习题( p84 4 -11)
C B Ny
o
Nx
A
F轴 0
M轴 0
A、B、C系统 p 不守恒;
A、B、C系统对 o 轴角动量守恒
应用广泛,例如:
天体运动
(行星绕恒星、卫星绕行星...) 微观粒子运动 (电子绕核运动;原子核中质子、中子的运动一级 近似;加速器中粒子与靶核散射...)
[例2] 已知:地球 R=6378 km
卫星 近地:h1= 439 km v1=8.1 km.s-1
远地: h2= 2384 km
求: v2=?
严格同步条件
卫星轨道平面与地球赤道平面倾角为零
轨道严格为圆形
运行周期与地球自转周期完全相同 (23小时56分4秒)
地球偏心率,太阳、月球摄动引起同步卫星星下点漂 移,用角动量、动量守恒调节 ~ 定点保持技术
•研究微观粒子相互作用规律
自学教材P108[例4]
第五章
角动量
角动量守恒
习题课
复习提要:三个概念,两条规律
mA mB v1 R mA mB mc vR

5.2 质点的角动量定理与角动量定理定律

5.2 质点的角动量定理与角动量定理定律

M r F M r F i j k
x Fx
y Fy
z Fz
L r p r mv Lrp i j k x y z p x p y pz
15
5.2 质点的角动量定理与角动量守恒定律
dp dL F, ? Lrp dt dt dL d dp dr ( r p) r p dt dt dt dt dr dL dp υ, υ p 0 r r F dt dt dt 表述: 作用在质点上的合力对某参 dL M 考点 的力矩 ,等于质点对同一参考 dt 点的角动量随时间的变化率。
(质点角动量定理的微分形式)
16
三、质点的角动量定理
5.2 质点的角动量定理与角动量守恒定律
在实际过程中,要研究的是力矩对时间的积累效应。
dL M dt

t2
t1
M dt L2 L1
冲量矩:
t1
t2
M dt
质点的角动量定理:质点所受合力矩的冲量矩 等于质点角动量的增量。 注意:定理中的力矩和角动量都必须是相对于同 一参考点而言的。 说明:
解: 摆球受力如图。
1)以O为参考点。
c l

T 重力矩: M R mg 逆时针方向。 m R o M Rmg υ 张力矩:M R T 顺时针方向。 mg
M RT sin( 900 ) RT cos θ Rmg
对O点的合力矩为零,角动量守恒。
M x yFz zFy M y zFx xFz M xF yF y x z

物理学概念知识:动量定理和动量角动量定理

物理学概念知识:动量定理和动量角动量定理

物理学概念知识:动量定理和动量角动量定理动量定理和动量角动量定理是物理学中非常基本的两个概念。

它们的内容涉及到我们对物体运动规律的认识,不仅有助于我们更好地理解物理学知识,还可以应用于现实生活中的一些问题。

下面,我们将分别介绍这两个概念及其应用。

一、动量定理动量定理是描述物体运动过程中动量变化的一个基本定理。

它指出:在总外力作用下,物体的动量就会发生变化,这种变化的大小跟作用力和时间的乘积成正比。

这个定理的表达方式为:Δp=Ft其中,Δp表示物体动量的变化量,F表示物体所受的总外力,t 表示外力作用的时间。

式子的意义是:在总外力作用下,物体动量的变化量等于总外力作用时间的乘积。

重物移动时,如果外力越大,或者作用时间越长,那么物体的动量就会发生更大的变化。

从而可以更快地推动物体运动起来。

同样,如果要让运动中的物体停下来,也可以利用动量定理的知识。

通过对物体施加一个与它的运动方向相反的恒定力,也就是反向加速度,可以让物体的动量逐渐减小,直到物体停下来。

二、动量角动量定理动量角动量定理是物理学中另一个基本的概念。

它是通过描述物体绕某一点旋转的行为,来了解物体运动过程中动量变化的定理。

它指出:在物体绕某一点旋转时,物体的角动量就会发生变化,这种变化的大小跟作用力矩和时间的乘积成正比。

这个定理的表达方式为:ΔL=Mt其中,ΔL表示物体角动量的变化量,M表示作用力矩,t表示外力作用的时间。

式子的意义是:在物体绕某一点旋转时,物体角动量的变化量等于力矩作用时间的乘积。

个陀螺时,如果外力越大,或者作用时间越长,那么陀螺的角动量也会发生更大的变化。

从而可以更快地让陀螺旋转。

同样,如果要让旋转中的陀螺停下来,也可以利用动量角动量定理的知识。

通过对陀螺施加一个与它的旋转方向相反的外力矩,也就是反向加速度矩,可以让陀螺的角动量逐渐减小,直到陀螺停下来。

总之,动量定理和动量角动量定理是物理学中非常重要的两个概念。

它们既可以帮助我们更好地理解物理学知识,也可以用于实际生活中的问题解决。

角动量及角动量定理

角动量及角动量定理
dt
dL
vi
mivi
ri
L r p
Fi Mi
~角动量
dt
在惯性系中,作用于质点的合外力对某定点的力矩 等于质点对该点的角动量的时间变化率。
1
二、质点的角动量守恒定律

M 0 M
dL dt
t2
M
d
t
t
1
t2 t
d
L
0
L2
L1
1
在惯性系中,如果作用于质点的合外力对某定点的 力矩恒为零,则质点对于该点的角动量恒定。
例六:对于质量为 m 的质点的匀速直线运动的情形。
解①:如图选择惯性系中的定点,
r
M 0 L r mvsin mvh o
解②:如图选择惯性系中的定点,
mv
h
M 0 L r mvsin 0
r
mv
2
三、质点系的角动量定理及其守恒定律 i fij
1. 角动量定理:
ri
Mi ri(Fi
i j
fij
)
d Li dt
f ji
o
rj
j
ri f ij
M
rj f ji Mi
ri f ij r j ri Fi
f ij
d Li dt
( ri d
dt
(
r j)
Li)
f ij
0 dL dt
在惯性系中,作用于质点系的诸外力对某定点的力 矩和等于各质点对该点的角动量和的时间变化率。
§2.3 角动量定理及角动量守恒定律
一、质点的角动量定理
对于标量,定义了第一质量矩: miri M rc
对于矢量,有力矩:Mi
ri F

4-4 角动量与角动量定理

4-4 角动量与角动量定理

设固定轴为 z 轴
z
F F⊥
r⊥sinα Mz
r ˆ Mz = M ⋅ z r r ˆ = (r × F ) ⋅ z r r = r⊥ × F⊥
r⊥
d Lz Mz = dt
α
平面 ⊥ z 轴
M
O
·
r
——质点对轴的转动定律 质点对轴的转动定律 若绕固定轴的力矩为 0,即 ,
力对轴的力矩:力对 力对轴的力矩 力对 某点的力矩在过此点 的某轴上的投影
r F = 0 , r r M = 0 F 过 O点 : 有 心 力 ( 如 行 星 受 中心恒星的万有引力)
r r r L = r × (m v ) = 常 矢 量
第4章 动量和角动量
开普勒第 二定律
α (1) mv r sin =const ) (2)轨道在同一平面内 )
4-4 角动量与角动量定理来自m2R o m 1
第4章 动量和角动量
4-4 角动量与角动量定理
解: 有心力场中, 有心力场中 , 运 用角动量守恒和(m 用角动量守恒和 1 ,m2 m2 )系统机械能守恒 系统机械能守恒 定律: 定律:
R o m 1
3Gm1 1 2 1 ⇒ sin θ = (1 + ) 2 4 2 Rv0
3Gm1 1 2 ) v = v0 (1 + 2 2 Rv0
r L r L0
r v v dL = L − L0
质点的角动量定理:对同一参考点O,质点所受的 质点的角动量定理:对同一参考点 , 冲量矩等于质点角动量的增量. 冲量矩等于质点角动量的增量
第4章 动量和角动量
4-4 角动量与角动量定理
四 角动量守恒定律 由角动量定理
r 当M =0

大学物理-角动量定理和角动量守恒定律

大学物理-角动量定理和角动量守恒定律
当系统所受外力矩为零时,系统内各物体角动量 之和保持不变。
系统内物体之间的相互作用力矩不会改变系统的 总角动量。
角动量守恒的应用举例
天体运动
行星绕太阳公转、卫星绕地球运 行等天体运动中,角动量守恒定
律是重要的理论基础。
陀螺仪
陀螺仪利用角动量守恒原理,通过 高速旋转来保持方向稳定,广泛应 用于导航、制导和控制系统。
机械系统
在机械系统中,如旋转机械、齿轮 传动等,角动量守恒定律用于分析 系统的动态平衡和稳定性。
04 角动量定理与守恒定律的 实际意义
在天文学中的应用
描述行星和卫星的运动
角动量定理和守恒定律在天文学中用于描述行星和卫星围绕中心天体的运动。 这些定律帮助科学家理解天体的旋转和轨道运动,以及它们之间的相互作用。
预测天文现象
通过应用角动量定理和守恒定律,科学家可以预测天文现象,如行星的轨道变 化、卫星的旋转等。这些预测有助于更好地理解宇宙的演化。
在航天工程中的应用
航天器姿态控制
角动量定理和守恒定律在航天工程中用于控制航天器的姿态 。通过合理地布置航天器上的动量轮,可以调整航天器的角 动量,实现姿态的稳定和控制。
L = m × v × r,其中L是 角动量,m是质量,v是 速度,r是转动半径。
角动量单位
在国际单位制中,角动量 的单位是千克·米²/秒 (kg·m²/s)。
角动量定理表述
角动量定理
01
对于一个封闭系统,其总角动量保持不变,即系统内力的力矩
之和为零。
表述形式
02
dL/dt = ΣM = 0,其中dL/dt表示角动量的时间变化率,ΣM表
角动量守恒的应用
角动量守恒定律在许多物理现 象中都有应用,如行星运动、 陀螺仪等。

角动量定理、角动量守恒定律

角动量定理、角动量守恒定律

在 M d L 中 ,若 M 0 dt
即:J J
1
2
M 0 的原因可能有:
则 L常量
(1) F 0 (不受外力)
(2)外力作用于转轴上
(3)外力作用线通过转轴
(4)外力作用线与转轴平行
以上几种情况对定轴转动均没有作用,则刚
体对此轴的角动量守恒。
角动量守恒定律也适用于定轴转动系统。
例1:一个人站在有光滑固定转轴的转动平台上,双臂伸 直水平地举起两哑铃,在该人把此二哑铃水平收缩 到胸前的过程中,人、哑铃与转动平台组成的系统 的:
(A)机械能守恒,角动量守恒 (B)机械能守恒,角动量不守恒 (C)机械能不守恒,角动量守恒 (D)机械能不守恒,角动量不守恒
选C
像其他所有行星一样,太阳是由大量的灰尘雾和早 先充满宇宙空间的气体所组成。在几十亿年的时间内, 这些物质在引力的吸引下,慢慢缩聚起来,刚开始的时 候,这些气体团旋转的很慢,后来随着它们体积的缩小, 旋转速度不断提高,这个道理就和滑冰运动员把自己的 双臂逐渐收拢起来的时候,她的旋转速度就会不断加快 的道理一样。缩聚和旋转速度的加快,使组成太阳的物 质变成一个碟子般的东西。
2、刚体的角动量定理 在定轴转动中
MJaJddJ
dt dt
积分形式:
0 tM d tL L 1 2d L L 2 L 1 J2 J1
左边为对某个固定转轴的外力矩的作用在某段时间内 的积累效果,称为冲量矩。 右边为刚体对同一转动轴的角动量的增量。
3、角动量守恒定律
盘状星系——角动量守恒的结果
例2:有一个半径为R的水平圆转台,可绕通过其中心的竖 直固定光滑轴转动,转动惯量为J,开始时转台以匀 角速度 0 转动,此时有一质量为m的人站在转台中 心。随后人沿半径向外跑去,当人到达转台边缘时 转台的角速度为:

角动量 角动量定理

角动量 角动量定理

d M (r P) dt
定义: L r P ——角动量
——角动量定理
第2章 运动定律与力学中的守恒定律
2–5 角动量 角动量定理
3
作用在质点上的力矩等于质点角动量对时间的变化率。 此即质点对固定点的角动量定理。

t
t0
Mdt L L0

t
t0
Mdt
叫冲量矩
2–5 角动量 角动量定理
2
2 质点的角动量定理
M r F
dP F dt
dP d dr M r (r P) P dt dt dt
P mv
dr v dt
dL M dt
dr P v mv 0 dt
角动量
1. L r P
L 的方向符合右手法则.
L m vrsin
第2章 运动定律与力学中的守恒定律
z L mv

r
2–5 角动量 角动量定理
4
2.质点在垂直于 z 轴平面
上以角速度
作半径为 r
的圆运动,相对圆心
z

o r
90
A
L r p r mv
mv0 (m M )v1
第2章 运动定律与力学中的守恒定律
2–5 角动量 角动量定理
9
在由A→B的过程中,子弹、木块系统机械能守恒
1 1 1 2 2 (m M) v 1 (m M) v 2 k (l l0 ) 2 2 2 2
在由A→B的过程中木块在水平面内只受指向O点的 弹性有心力,故木块对O点的角动量守恒,设 v2 与OB方向成θ角,则有

角动量定理和角动量守恒定律

角动量定理和角动量守恒定律

O
M
l
l /2
1 1 2 2 l 0 = Ml ω + (Mg ) 2 3 2
3g ω= l
m
第二阶段:碰撞瞬间角动量守恒(不是动量守恒) 第二阶段:碰撞瞬间角动量守恒(不是动量守恒) 1 1 2 1 2 ′ + mVl = ( M + m)lV , V = ω′l Ml ω = Ml ω 3 3 3
t2

例:水平面内,均质杆 (M, l) 水平面内, 子弹 (m,V ) 击穿杆的 自由端后速度降为 V / 2 求:杆转动的角速度 ω 解:角动量守恒 3mV V 1 2 mVl = m l + Ml ω , ω = 2Ml 2 3
O
M
l
ω
m
V /2
V
例:rA = 0.2m ,mA = 2kg
ω0A = 50rads rB = 0.1m ,mB = 4kg ω0B = 200rads 1
dL d dω = (Iω) = I = Iβ = M dt dt dt dL = M :角动量定理 dt dL = Mdt
L = ∫ Mdt
t1 t2
y
x
如果 M = 0 ,则 L = C :角动量守恒定律 非刚体, 一般随时间变化, 非刚体, I 一般随时间变化, M = Iβ 不成立 角动量定理及角动量守恒定律仍成立! 角动量定理及角动量守恒定律仍成立! 定轴转动, dL = M , dL = Mdt , L = Mdt 定轴转动, dt t1 L = C , L = Iω , M = Iβ
如果合外力矩 M = 0
例:圆锥摆球在水平面内匀速转动 分别对固定点 A和 O ,讨论 小球受到的张力矩,重力矩, 小球受到的张力矩,重力矩, LA 合力矩和角动量 对 A: M = R ×T = 0

角动量定理和角动量守恒定律

角动量定理和角动量守恒定律

角动量定理和角动量守恒定律
角动量定理和角动量守恒定律是描述刚体运动时的两个基本定律。

下面进行简单的介绍:
1. 角动量定理
角动量定理是描述角动量变化的定律。

它表示为:物体所受外力矩等于物体角动量对时间的变化率。


I*ω= ΔL/Δt
其中,I 为物体的转动惯量,ω为物体的角速度,L 为物体的角动量。

这个定理表明了一个物体的角动量发生变化时,必定受到了外部的力矩作用,即力矩等于角动量的变化率。

2. 角动量守恒定律
角动量守恒定律是描述角动量不变的定律,即如果没有外部力矩作用,系统的总角动量保持不变。

即:
L = L0
其中,L 为系统的总角动量,L0 为系统在某一时刻的总角动量。

这个定律表明,如果没有外部力矩作用,那么系统的总角动量保持不变。

如果一个物体在自由运动时,角动量发生变化,那么它将会改变自身的旋转状态(比如转速、方向等)。

总之,角动量定理和角动量守恒定律是描述刚体运动和角动量变化的基本定理,可以帮助我们更好地理解物体的运动和变化规律。

4-3角动量 角动量守恒定律

4-3角动量  角动量守恒定律
in
M L 常量
ex
角动量守恒定律是自然界的一个基本定律.
自然界中存在多种守恒定律
动量守恒定律 能量守恒定律 角动量守恒定律 电荷守恒定律 质量守恒定律 宇称守恒定律等
许多现象都可 以用角动量守恒来 说明. 花样滑冰 跳水运动员跳水
跳水运动员
茹可夫斯基凳
例3 质量很小长度为l 的均匀细杆,可 绕过其中心 O并与纸面垂直的轴在竖直平面 内转动.当细杆静止于水平位置时,有一只 小虫以速率 v 0 垂直落在距点O为 l/4 处,并背 离点O 向细杆的端点A 爬行.设小虫与细杆 的质量均为m.问:欲使细杆以恒定的角速 度转动,小虫应以多大速率向细杆端点爬行?
解 设飞船在点 A 的速度 v 0 , 月球质 量 mM ,由万有引力和 牛顿定律
vB
R
B
vA
v0
v
O h A
u
v mM m G m 2 ( R h) Rh mM g G 2 2 R R g
2 0
v0 (
Rh
)
12
1 612 m s
1
质量 m' 在 A 点和 B 点只受有心力作用 , 角动量守恒
d r mv r F dt
所以
dL M= dt
dL M dt

t2
t1
M dt L2 L1
冲量矩
t1
t2
M dt
对同一参考点O,质点所受的冲量矩 等于质点角动量的增量.——质点的角动 量定理
3、质点的角动量守恒定律
若质点所受的合外力矩为零,即 M=0,
4-3 角动量 角动量守恒定律
力对时间累积效应: 冲量、动量、动量定理. 力矩对时间累积效应: 冲量矩、角动量、角动量定理.

物理-角动量定理与角动量守恒定律

物理-角动量定理与角动量守恒定律

dt
dt
i
当质点系相对惯性系中某给定参考点的合外力 矩为零时,该质点系对同一参考点的总角动量保持 不变。
——角动量守恒定律
当 M Mi 0,则L Li 恒矢量
Hale Waihona Puke 说明1、同一问题中应 用角动量定理或判断角动量守恒时, M 与 L 必须相对同一参考点计算!
2、如果相对某一特殊参考点,合外力矩为零,系统只 只对这一特殊点角动量守恒,但相对其他参考点的 角动量不一定也守恒;
当 M Mi 0,则L Li 恒矢量
说明
3、关于角动量守恒与动量守恒的条件:
一般地
(ri Fi ) 0 与
Fi 0 彼此独立!
角动量守恒与动量守恒也是相互独立的。
例:行星在绕太阳的公转过程:动量不守恒,
但对太阳的角动量守恒。
MS
rF
0
z LS
LS
r m
恒矢量
S
如直角坐标系中。沿 z 轴分量式为:
当 Mz Miz 0,则Lz Liz 恒量
5. 适用范围:惯性系;
讨论:为什么许多星系是扁盘状旋转结构?
银河系
讨论:为什么许多星系是扁盘状旋转结构?
初始角动量
径向
轴向
引力 收缩
L守恒
引力 收缩
速度增大 离心力增大
引力 收缩
达到平衡
高速旋转的盘形结构
dL L2 (t2 ) L1(t1 )
t1
L1 (t1 )
—— M在时间t t2 t1内的角冲量(冲量矩)
(积分式)
对同一参考点,质点所受合力在某一时间内的 角冲量等于同时间内角动量的增量 。
说明
•直角坐标系中的分量式(如Z轴分量式):

角动量定理角动量守恒定律

角动量定理角动量守恒定律
应用牛顿第二定律
在系统整体上应用牛顿第二定律,得到系统受到的合外力矩为零时 的角动量守恒条件。
推导角动量守恒定律
根据系统总角动量和角动量守恒的条件,推导出角动量守恒定律, 即在合外力矩为零时,系统总角动量保持不变。
推导过程中的注意事项与难点解析
注意事项
在推导过程中,需要注意定义和计算过程中的符号约定,以及正确应用牛顿第二 定律。
角动量定理与守恒定律的适用范围
角动量定理适用于描述物体在受到外 力矩作用下的旋转运动,特别是需要 分析力矩对旋转运动的影响时。
角动量守恒定律适用于描述某些特定 条件下物体的旋转运动,如系统不受 外力矩作用或系统内力的力矩相互抵 消等。
04
角动量定理与守恒定律的 推导过程
角动量定理的推导过程
定义角动量
03
角动量守恒定律则是在一定条件下,物体的角动量保持不变 。
角动量定理与守恒定律的区别
角动量定理是一个运动方程,用于描 述旋转运动的物体在外力矩作用下的 运动规律,而角动量守恒定律则是一 个守恒条件,用于描述某些特定情况 下旋转运动的物体角动量的保持。
VS
角动量定理是一个瞬时规律,关注的 是物体在某一时刻的运动状态,而角 动量守恒定律则是一个时间平均规律, 关注的是物体在一段时间内的平均运 动状态。
矩作用会导致旋转物体角动量的增加或减少。
02
揭示旋转运动的本质
角动量定理阐明了旋转运动的本质特征,即旋转物体的角动量是守恒的,
但可以通过力矩作用进行改变。
03
指导设计旋转机械
角动量定理在旋转机械设计和运行中具有指导意义,例如在电动机、发
电机、陀螺仪等设备的设计中,需要考虑力矩作用和角动量的变化。
角动量守恒定律的物理意义

角动量及角动量定理

角动量及角动量定理
本文首先回顾了功、势能、动能等基本概念,以及质点的动能定理,为后续引入角动量概念打下基础。接着,通过讨论绕固定轴转动的圆盘系统总动量为零的问题,指出不宜使用动量来量度转动物体的机械运动量,从而引入了与动量对应的角量——角动量。详阐述了角动量的定义、物理意义及计算方法,包括质点对点的角动量、质点对参考点的角动量等,并讨论了不同运动情况下角动量的变化特性。进一步,本文推导了角动量定理的微分形式和积分形式,揭示了力矩与角动量变化之间的关系。此外,还将角动量定理推广至质点系,得到了质点系角动量定理,并辨析了总外力矩与合外力力矩的区别。最后,本文探讨了刚体定轴转动的角动量,展示了角动量在刚体转动中的应用。通过本文的阐述,读者可以全面深入地理解含角动量的动能定理及其相关概念。

5 刚体的角动量定理和角动量守恒定律

5 刚体的角动量定理和角动量守恒定律
§4-5 刚体的角动量定理和
角动量守恒定律
一.刚体的角动量定理
dL 刚体转动定理的 M dt 可以改写为 Mdt dL
对上式积分,得 式中 t
t2
1

t2
t1
t2 Mdt dL L2 L1
t1
Mdt
叫做合外力矩在
t 2 t1
时间内的冲量矩。上式表明:刚体所受合外力矩 的冲量矩,等于刚体在这段时间内刚体的角动量 的增量,这就是刚体的角动量定理。 在SI制中,冲量矩的单位式 N m s
I1 2kg m2 。 在外力推动后, 此系统开始以 n1 15 转/分转动, 转动中摩擦力矩忽略不计。
2 I 0 . 80 kg m 当人的两臂收回, 使系统的转动惯量就为 2 时, 它的转速 n2

光滑的水平桌面上有一长 2l、质量为 m 的匀质细杆,可绕过其中心、垂直于杆的竖直轴自 由转动。开始杆静止在桌面上。有一质量为 m 的小球沿桌面以速度 v 垂直射向杆一端,与 杆发生完全非弹性碰撞后,粘在杆端与杆一起转动。求碰撞后系统的角速度。
2 rel dt
0 T T 0
M 2m M
2M 因此,在此时间内,人相对ห้องสมุดไป่ตู้地面转过的角度为0 d t M 2m
T
M 2m M 2m T dt dt 0 M M
转台相对于地面转动的角度为

T
0
2m T 4m dt dt M 0 M 2m
2
二.角动量守恒定律 由刚体的角动量定理可见,当刚体所受的合外 力矩为零,则
L I 常量
3
上式说明,当刚体所受的合外力矩为零,或者不受外 力距的作用时,刚体的角动量保持不变,这就是角动量 守恒定律。 必须指出,这个定律不仅对一个刚体有效,对转动 惯量I会变化的物体,或者绕定轴转动的力学系统仍然 成立。如果转动过程中,转动惯量保持不变,则物体 以恒定的角速度转动;如果转动惯量发生改变,则物 体的角速度也随之改变,但两者之积保持恒定。 应用角动量守恒定律时,还应该注意的是,一个系 统内的各个刚体或质点的角动量必须是对于同一个固 定轴说的。

大学物理——角动量定理和角动量守恒定律

大学物理——角动量定理和角动量守恒定律

解:把飞船和排出的 废气看作一个系统, 废气质量为m。可以 认为废气质量远小于 飞船的质量,
dm/2
u
Lg
r

L0
u dm/2
上页 下页 返回 退出
所以原来系统对于飞船中心轴的角动量近似地等 于飞船自身的角动量,即
L0=J
在喷气过程中,以dm表示dt时间内喷出的气体
, 这 些 气 体 对 中 心 轴 的 角 动 量 为 dm·r(u+v) , 方 向
量为JB=20kgm2 。开始时A轮的转速为600r/min,B
轮静止。C为摩擦啮合器。求两轮啮合后的转速;在 啮合过程中,两轮的机械能有何变化?
A
B
C
A
B
C
A

上页 下页 返回 退出
解:以飞轮A、B和啮合器C作为一系统来考虑,在
啮合过程中,系统受到轴向的正压力和啮合器间的 切向摩擦力,前者对转轴的力矩为零,后者对转轴 有力矩,但为系统的内力矩。系统没有受到其他外 力矩,所以系统的角动量守恒。按角动量守恒定律 可得
由匀减速直线运动的公式得
0 v2 2as
亦即 v 2 2gs
(3)
(4)
由式(1)、(2)与(4)联合求解,即得

3gl 3 2gs
l
(5)
上页 下页 返回 退出
当’取正值,则棒向左摆,其条件为
3gl 3 2gs 0
亦即l >6s;当’取负值,则棒向右摆,其条件
上页 下页 返回 退出
数为 。相撞后物体沿地面滑行一距离s而停止。
求相撞后棒的质心C 离地面的最大高度h,并说明
棒在碰撞后将向左摆或向右摆的条件。
解:这个问题可分为三个阶段
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rr pr
1
L
dt 2 dt 2 dt 2
2m
2m
太阳对行星的引力总是指向太阳,因而行星对太阳
中心的角动量守恒,L为常量,所以得证。
L rmv mr2
方向 垂直于圆面
② 质点作匀速直线运动时,角 动量守恒。
L rmv sin mvd
方向始终垂直纸面向外
r L
r pr r
O
Or
r
d
pr
③ 角动量与参考点的位置有关。
r L
因而在说明一个质点的角动量
pr
时,必须指明是相对于哪一个 参考点而言的。
O
rr
θ m
锥摆 O
l
m
O
v
且在高速低速范围均适用。
例题1:
证明行星运动的开普勒第二定律:行星对太阳
的矢径在相等的时间内扫过的面积相等。
r
L
解:行星位矢扫过的面积dS
dS
1
r
r dr
sin
1
rr drr
dS r
2
2
单位时间行星位矢扫过的面积

drr
dS 1 rr drr 1 rr drr 1 rr vr 1
vr
y
xp z
L z
xp y
yp x
L , L , L 分别称为角动量在x、y、z轴上的分 x yz
量式,或称为对x、y、z轴的角动量。
二、力矩
1、定义

r F
对参考点O

rr
r F
r
M
r
rr
F
θ
Or
m
大小:
M
rF
sin
rF
(
r
---力臂)
方向:右手螺旋法则判定
单位:N·m
说明:力矩与参考点的位置有关。
讨论
r M
rr
r F
力矩为零的情况:
⑴ 当 F 0 时,M 0
r
M
rr
r F
θ
Or
m
⑵ 有心力对力心的力矩恒为零。
有心力:若一物体所受的力始终指向或背离某 一固定点,这种力称为有心力,这一固定点称 为力心。
2、力矩在直角坐标系中的表达形式
rrr
r M
rr
r F
i x
jk yz
FFF
x
y
z
力矩在各坐标轴上的投影(分量 )为:
d
(rv
pv)
rr
dpr
drr
pr
dt dt
dt dt
Q drv pr vr mvr 0 dt
v dL dt
rv
dpv dt
rv
v F
v M
v dL
角动量定理微分式:作用于质点的
合力对参考点O 的力矩,等于质点
dt 对该点的角动量随时间的变化率.
2、质Mv点的dL角v 动量Mv定dt理
v dL
LO
rom
mv
LO lmv
方向变化
LO
rom
mv
LO (l sin )mv
方向竖直向上不变
④ 角动量是物理学的基本概念之一。
2、角动量在直角坐标系中的表达形式
rrr
r L
rr
pr
i x
jk yz
ppp
x
y
z
角动量在各坐标轴上的投影(分量 )为:
L yp zp
x
L y
z
zp x
v L
t1
2
1
四、质点的角动量守恒定律

M
0
,则
r L
rr
pr
恒矢量。
角动量守恒定律:当质点所受的对某参考点的合外
力矩为零时,质点对该参考点的角动量为恒矢量。
⑴质点所受合外力为零时,质点角动量守恒。 讨 ⑵在有心力的作用下,质点对力心角动量守恒。
⑶角动量守恒定律是物理学的基本定律之一,它 论 不仅适用于宏观体系,也适用于微观体系,而
5.1 质点的角动量定理
一、质点的角动量(动量矩)
1、定义
质点对参考点O 的角
动量
r L
为:
ur r r r r
L r p r mv
r L
r p
O
rr
θ m
大小: L rmv sin
方向:右手螺旋法则判定 单位:kgm2/s
说明:
ur L
rr
pr
rr
mvr
① 作圆周运动的质点相对圆心 O的角动量大小
解:rr
r 3i
8
r j
r L
rr
mvr
r (3i
8
r j
)
r (5i
6
r j
)
3
(SI)
r 174k (kg m2/s)
r M
r r
r F
r (3i
8
r j
r ) (7i )
(SI)
r 56k (N m)
三、质点的角动量定理
1、角动量定理的微分形式
v L
rv
pv
对等式两边求时间的导数
v dL
dt
t2
v Mdt
v L
v L
t1
2
1
t2
v Mdt
r L2 r
v dL
t1
L1
t2
v Mdt
--角冲量
t1
(冲量矩)
质点的角动量定理:对同一参考点O,质点
所受的角冲量等于质点角动量的增量.
说明:
在应用角动量定理时,一定要注意等式两边 的力矩和角动量必须都是对同一固定点。
t2
v Mdt
v L
M yF zF
M
x y
z
zF x
y
xF z
Mz
xF y
yF x
M
,M
,M
分别称为
r M
对x、y、z轴的力矩。
x
y
z
例题1:
质 为量vv为 53ivkg的6 vj质(m点/ 位s) 于,x作=用3m于, 质y=点8m上处的时力速大度小为7N,
沿负X方向,求:以原点为参考点时,质点在此时
的角动量和所受的力矩。
相关文档
最新文档