2019-2020年高二数学数学归纳法公开课教案 人教版

合集下载

数学归纳法 教学设计 高二下学期数学人教A版(2019)选择性必修第二册

数学归纳法 教学设计 高二下学期数学人教A版(2019)选择性必修第二册

数学归纳法教学目标:(1)通过实例及合作探究,了解数学归纳法的产生过程,并理解数学归纳法的原 理与实质;(2)掌握数学归纳法证明问题的三个步骤,初步会用“数学归纳法”证明与自然 数有关的简单命题;(3)通过数学归纳法进一步反思归纳法的思想,并理解数学归纳法的核心—递推 思想。

(4)通过师生、生生的互动交流过程,从各层次认识所学问题和方法的本质,享 受这个过程所带来的各种认识和收获,在学习交流中不断提高辨证思维素质以及发现问题、提出问题的意识和数学交流的能力. 为下一步的学习奠定良好的基础。

教学重点:数学归纳法的原理及步骤教学难点:数学归纳法中递推思想的理解教 具:多媒体教学方法:合作探究、分层推进教学法教学过程:一、复习回顾,引入新课:从前,有个小孩叫万百千,他开始上学识字了。

第一天先生教给他个“一”字。

第二天先生又教了个“二”字。

第三天,他想先生一定是教“三”字了,并预先在纸上划了三横。

果然这天教了个“三”字。

于是他得了一个结论:“四”一定是四横,“五”一定是五横,以此类推就可以了。

从此,他决定不再去上学了,父母问他为何不去上学,他自豪地说:“我都学会了”。

父母要他写出自己的名字“万百千”,你能猜想出他会怎么去写自己的名字吗?让学生通过故事分析出归纳推理得到的结论是不可靠的。

我们知道对于数列{a n },已知a 1=1,且11n n na a a +=+(n =1,2,3…)通过对n =1,2,3,4,前4项的归纳,我们可以猜想出其通项公式为1n a n=,但归纳推理得出的猜想不一定成立,必须通过严格的证明.要证明这个猜想,同学们自然就会从n =5开始一个个往下验证,当n 较小时可以逐个验证,但当n 较大时,逐个验证起来会很麻烦,特别是证明n 取所有正整数时,逐个验证是不可能的.能不能寻求一种方法,通过有限个步骤的推理,证明n 取所有正整数都成立.二、 创设情境 合作探究 :【创设情景】同学们都见过或玩过多米诺骨牌游戏,(播放多米诺骨牌录像)大家想一下满足怎样的条件,所有多米诺骨牌就都能倒下:(1) 第 块骨牌倒下; (2) 任意 的两块骨牌, 块倒下一定导致 倒下。

人教版数学高二教学设计12.3数学归纳法

人教版数学高二教学设计12.3数学归纳法

2.3 数学归纳法【教学目标】 (1)知识与技能:①理解数学归纳法的原理与实质,掌握数学归纳法证题的两个步骤; ②会用数学归纳法证明某些简单的与正整数有关的命题; ③能通过“归纳、猜想”的过程得出结论并用数学归纳法证明结论. (2)过程与方法:努力创设愉悦的课堂气氛,使学生处于积极思考,大胆质疑的氛围中,提高学生学习兴趣和课堂效率,让学生经历知识的构建过程,体会归纳递推的数学思想. (3)情感态度与价值观:通过本节课的教学,使学生领悟数学归纳法的思想,由生活实例,激发学生学习的热情,提高学生学习的兴趣,培养学生大胆猜想,小心求证,以及发现问题、提出问题,解决问题的数学能力. 【教学重点】借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,能熟练运用它证明一些简单的与正整数n 有关的数学命题; 【教学难点】数学归纳法中递推关系的应用. 【辅助教学】多媒体技术辅助课堂教学. 【教学过程】一、创设问题情境,启动学生思维(说明引入数学归纳法的必要性) (情景一)问题1:大球中有5个小球,如何证明它们都是绿色的?问题2: 如果{}n a 是一个等差数列,怎样得到()11n a a n d =+-? (情境二)数学家费马运用不完全归纳法得出费马猜想的事例.【设计意图:】以上两个情境分别是完全归纳法和不完全归纳法的体现,发现其结论正确性不同,而这里实际上体现了数学中的归纳思想.归纳法分为“不完全归纳法(只验证几个个体成立,得到一般性结论,但结论不一定正确)”和“完全归纳法(验证每个个体都成立,得到一般性结论,其结论一定正确)”.(情景三)问题:如何解决不完全归纳法存在的问题呢?如何保证骨牌一一倒下?需要几个步骤才能做到?二、搜索生活实例,激发学生兴趣展示多米诺骨牌的动画,探究多米诺骨牌如何才能全部倒下?(由多米诺骨牌游戏的原理启发学生探索数学方法,解决情境三的问题.)三、师生合作,形成概念.一般地,证明一个与正整数n 有关的命题,可以按照以下步骤进行: (1)(归纳奠基)证明当n 取第一个值()*00 n n N ∈时命题成立;(2)(归纳递推)假设()*0 , n k k n k N =≥∈时命题成立,证明当1n k =+命题也成立. 完成这两个步骤后, 就可以断定命题对从0n 开始的所有正整数n 都成立. 上述这种证明方法叫做数学归纳法. 四、讲练结合,巩固概念 类型一 用数学归纳法证明等式 例1:用数学归纳法证明:2222(1)(21)1236n n n n ++++++=证明:(1)当1n =时,左边:211=,右边:1(11)(21)16⨯+⨯+=,左边=右边,等式成立.(2)假设当*()n k k N =∈时等式成立,即2222*(1)(21)123... ()6k k k k k N ++++++=∈则当()*1 n k k N =+∈时, 左边()()()()222222121123116k k k k k k ++=++++++=++(1)(2)(23)=6k k k +++=右边即当1n k =+时,等式也成立.由(1),(2)得:对*n N ∀∈,等式2222(1)(21)1236n n n n ++++++=成立【方法技巧】证明中的几个注意问题:(1)在第一步中的初始值不一定从1取起, 证明应根据具体情况而定.(找准起点,奠基要稳)(2)在第二步中,证明1n k =+命题成立时,必须用到n k =命题成立这一归纳假设,否则就打破数学归纳法步骤之间的逻辑严密关系,造成推理无效. (用上假设,递推才真) (3)明确变形目标(写明结论,才算完整) 变式训练:用数学归纳法证明:1122334(1)(1)(2)3n n n n n ⨯+⨯+⨯+++=++证明: (1)当1n =时,左边122=⨯=,右边112323=⨯⨯⨯=,左边=右边,等式成立;(2)假设当n k =时,等式成立,即()()()11223341123k k k k k ⨯+⨯+⨯+++=++,则当1n k =+时()()()122334112k k k k ⨯+⨯+⨯++++++()()()()112123k k k k k =+++++ ()()11123k k k ⎛⎫=+++ ⎪⎝⎭()()()1111123k k k =+++++⎡⎤⎡⎤⎣⎦⎣⎦ 所以1n k =+,公式成立, 由(1)(2)可知,当*n N ∈时, 公式1122334(1)(1)(2)3n n n n n ⨯+⨯+⨯+++=++成立.类型二 归纳——猜想——证明 例2:已知数列()()1111,,,,,14477103231n n ⨯⨯⨯-+ n S 为该数列的前n 项和,计算1234,,,S S S S ,根据计算结果,猜想n S 的表达式,并用数学归纳法进行证明. 解:111144S ==⨯, 2118247287S S =+==⨯ 3212137107010S S =+==⨯, 43131404101310101313013S S =+=+==⨯⨯ 根据上述结果,猜想31n nS n =+.证明:(1)当1n =时,左边114S ==,右边113114==⨯+,猜想成立, (2)假设当()* n k k N =∈时猜想成立,即()()11111447710323131k kS k k k =++++=⨯⨯⨯-++, 那么,当1n k =+时,()()()()11111114477103231312311k S k k k k +=+++++⨯⨯⨯-++-++⎡⎤⎡⎤⎣⎦⎣⎦()()1313134k k k k =++++()()()()()234134131343134k k k k k k k k ++++==++++ ()()()()()()13111313434311k k k k k k k k ++++===+++++, 所以,1n k =+时,猜想成立,由(1)(2)可知,对于n N ∈,猜想成立,即,*,31n nn N S n ∀∈=+ 【方法技巧】 “归纳—猜想—证明”的一般环节 学生总结 课件展示 框图呈现 变式训练:设0,()ax a f x a x>=+,令111,(),n n a a f a n N *+==∈, (1)写出123,,a a a ,并猜想出数列{}n a 的通项公式;(2)用数学归纳法证明你的结论. 五、课堂小结1.归纳法:完全归纳法和不完全归纳法;2.用数学归纳法证明等式:①找准基础,奠基要稳.②用上假设,递推才真.③写明结论,才算完整 3.归纳——猜想——证明 六、当堂检测1.用数学归纳法证明212*122221()n n n N ++++++=-∈的过程中,在验证1n =时,左端计算所得的项为( C )A.1B.12+C.2122++ D. 231222+++ 2.用数学归纳法证明*(1)(2)()213(21)()n n n n n n n N +++=⨯⨯⨯⨯-∈,“从k 到1k +”左端增乘的代数式为221k +()3.已知数列{}n a 的前n 项和2(2)n n S n a n =≥,而11a =,通过计算234,,a a a ,猜想n a =( B )A.22(1)n + B. 2(1)n n + C. 221n - D. 221n -设计意图:检测学生对本节课内容的掌握程度,锻炼实际应用能力.。

高二新课程数学《2.3.1数学归纳法》教案2(新人教A版)选修2-2

高二新课程数学《2.3.1数学归纳法》教案2(新人教A版)选修2-2

数学归纳法一、教学目标:1.了解数学归纳法的原理,理解数学归纳法的一般步骤。

2.掌握数学归纳法证明问题的方法,能用数学归纳法证明一些简单的数学命题3.能通过“归纳-猜想-证明”处理问题。

二、教学重点:能用数学归纳法证明一些简单的数学命题。

难点:归纳→猜想→证明。

三、教学过程:【创设情境】问题1:数学归纳法的基本思想?以数学归纳法原理为依据的演绎推理,它将一个无穷归纳(完全归纳)的过程,转化为一个有限步骤的演绎过程。

(递推关系)问题2:数学归纳法证明命题的步骤?(1)递推奠基:当n取第一个值n0结论正确;(2)递推归纳:假设当n=k(k∈N*,且k≥n0)时结论正确;(归纳假设)证明当n=k+1时结论也正确。

(归纳证明)由(1),(2)可知,命题对于从n0开始的所有正整数n都正确。

数学归纳法是直接证明的一种重要方法,应用十分广泛,主要体现在与正整数有关的恒等式、不等式;数的整除性、几何问题;探求数列的通项及前n项和等问题。

【探索研究】问题:用数学归纳法证明:能被9整除。

法一:配凑递推假设:法二:计算f(k+1)-f(k),避免配凑。

说明:①归纳证明时,利用归纳假设创造条件,是解题的关键。

②注意从“n=k到n=k+1”时项的变化。

【例题评析】例1:求证:能被整除(n∈N+)。

例2:数列{a n}中,,a1=1且(1)求的值;(2)猜想{a n}的通项公式,并证明你的猜想。

说明:用数学归纳法证明问题的常用方法:归纳→猜想→证明变题:(2002全国理科)设数列{a n}满足,n∈N+,(1)当a1=2时,求,并猜想{a n}的一个通项公式;(2)当a1≥3时,证明对所有的n≥1,有①a n≥n+2 ②例3:平面内有n条直线,其中任何两条不平行,任何三条直线不共点,问:这n条直线将平面分成多少部分?变题:平面内有n个圆,其中每两个圆都相交与两点,且每三个圆都不相交于同一点,求证:这n个圆把平面分成n2+n+2个部分。

人教版数学高二教学设计22.3数学归纳法

人教版数学高二教学设计22.3数学归纳法

2.3 数学归纳法【教学目标】知识与技能:1. 了解由归纳法得出的结论具有不可靠性, 理解数学归纳法的原理与本质;2. 掌握数学归纳法证题的两个步骤及其简单应用;3. 培养学生观察、探究、分析、论证的能力, 体会类比的数学思想.过程与方法:1.创设情境,激发学生学习兴趣,让学生体验知识的发生与发展过程;2.通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生严谨的逻辑推理意识,并初步掌握论证方法;3.通过发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力.情感与价值观:1. 通过对数学归纳法原理的探究,培养学生严谨的科学态度和勇于探索的精神;2.通过对数学归纳法原理和本质的讨论,培养学生团结协作的精神;3.通过置疑与探究,培养学生独立的人格与敢于创新的精神;【教学重点】数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用.【教学难点】数学归纳法中两个条件的归纳,提炼和理解,及数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法【教学手段】多媒体辅助课堂教学【教学过程】一、创设情境,引入课题情境一、“摸球实验”这盒子中装的不是糖,而是乒乓球,下面抽几个同学从盒中分别摸出一个球,并判断乒乓球的颜色,由此猜想这盒子中所有乒乓球的颜色.问:这个猜想对吗?答:不对问:怎样判断这个猜想是对的?答:把它全部倒出来看或一个一个摸出来看.问:为什么可以一个一个摸出来看?答:因为是有限的.问:如果是无限的呢?答:不能采用一个一个摸出来看.再看一个数学问题:情境二:已知=(),(1) 分别求;;.(由学生齐答;;的值,老师播放幻灯片)(2) 由此猜想出的值?这个猜想正确吗?检验:所以这个猜想是错的.(的值是对的,就接着检验后面的,不要一检验就是错的)由上面两个例子看出:由几个特殊的事例得出一般的结论有时是对的,有时是错的.由此引出归纳法的定义:归纳法:由一些特殊事例推出一般结论的推理方法. 分为完全归纳法和不完全归纳法.完全归纳法: 把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法;不完全归纳法: 根据事物的部分(而不是全部)特例得出一般结论的推理方法.下面看一个比较熟悉的数学问题:等差数列的通项公式:(由学生齐答,老师在黑板上书写)回顾等差数列通项公式推导过程:(学生齐答,老师放幻灯)问:这个猜想对吗?学生答:不一定对但我们已把它当成一个公式在用,说明这个猜想是对的,怎样证明?法一:一个一个的检验,由于n是无限的,这个方法不可行,除非我们把有限的生命投入到无限的验算中去.问:有没有更好的方法呢?从而引出课题:数学归纳法.(放幻灯片)二、师生互动,探究知识先看一个大家比较熟悉的游戏:演示多米诺骨牌游戏视频.我们把刚才的视频简化一下,得到这样的一个实验(老师弹出事先准备好的简化的多米诺骨牌游戏的动画,并再次演示一遍)提问:满足什么条件能使所有的骨牌全部倒下?(把学生按前后四个同学分组,每组选一个代表发言,讨论时间大约3分钟左右)学生代表发言(老师在黑板上书写):条件1:第一块要倒下;条件2:当前面一块倒下时,后面一块必须倒下问:其它组还有其它意见吗?(给学生提出的条件老师进行归纳整理)问:是否满足这两个条件就可以保证所有的骨牌倒下?给出推理(播放幻灯片):第1块倒下第2块倒下第3块倒下第n块倒下所有的骨牌全部倒下.对多米诺骨牌游戏的原理进行推广:因为骨牌是1块,2块,……,无数块,而我们要这么的等差数列的通项公式也是要证明成立,所以可将多米诺骨牌游戏的原理类比到与正整数有关的数学命题上.多米诺骨牌游戏的原理与正整数有关的数学命题(1)第一块要倒下(1)时命题成立(2) 当前面一块倒下时,后面一块必须倒下;(2)假设成立,则时接结论也成立.根据(1)和(2),可知无论多少块骨牌都能全部倒下根据(1)和(2),可知对任意的正整数n,命题都成立.(全部由学生总结提炼,老师播放幻灯片)进一步总结数学归纳法的两个步骤:(1)时命题成立;(2)假设成立,则时接结论也成立.我们把用这种模式来证明与正整数有关的数学命题叫作数学归纳法.下面解释一下用数学归纳法来证题是可行的,有效的:1.推理过程:成立成立成立……对所有的正整数n都成立.2.假设成立的依据根据第1步,成立,取,这时假设成立就不是假设而是一个已经成立的事实了,再根据第2步,由成立就可推出成立,再取,这时假设成立就不是假设而是一个已经成立的事实了;如此取下去,每一个假设成立都是有依据的.所以用数学归纳法来证明数学问题是有效的和可靠的,大家可以放心大胆使用.三、通过实例,运用知识例:用数学归纳法证明等差数列通项公式(师生共同完成,老师在黑板上书写并强调步骤及注意点)证明:(1) 当n=1时,左=,右=,所以左=右,即n=1时结论成立;(2) 假设当时结论成立, 即,则时,=,即n=k+1时等式也成立.综合(1),(2), 对一切的,成立.数学归纳法原理的强调(学生表述,教师补正):(1)(递推奠基):验证时命题成立;(2)(递推根据):假设时结论正确;去证明当时结论也正确.(一定要用到假设)数学归纳法的本质:无穷的归纳→有限的演绎(递推关系)四、反馈练习, 巩固知识用数学归纳法证明:多边形的内角和为.(学生独立完成,通过投影仪指出学生在书写过程中的不足,最后老师播放幻灯片写出规范的解答)通过这个练习,我们发现数学归纳法的第一步不一定是从开始的,所以对数学归纳法的两步略作改动:(1)时命题成立;(2)假设成立,则时结论也成立.改为:(1)验证时命题成立;(2)假设成立,则时结论也成立.五、总结归纳,加深理解(先由学生总结,最后老师再总结,最后播放幻灯片)1、两个方法:归纳法和数学归纳法;2、归纳法是一种由特殊到一般的推理方法,它可以分为完全归纳法和不完全归纳法两种.归纳法的本质:特殊到一般归纳法的作用:发现规律归纳法的缺陷:具有不可靠性3、数学归纳法基本思想:递推的思想适用范围:与正整数有关的数学命题两个步骤:(1)验证时命题成立;(递推的基础)(2)假设成立,则时接结论也成立.(递推的依据)两个条件缺一不可,相互依存.附数学归纳法打油诗一首:两个步骤一结论,递推基础不可少,归纳假设要用到,结论写明莫忘掉.数学归纳法的应用是非常广泛的,用数学归纳法证题的关键是如何由成立去证明成立,有那些方法和技巧,且听下回分解.。

2019-2020年高中数学教案精选数学归纳法2

2019-2020年高中数学教案精选数学归纳法2

2019-2020年高中数学教案精选数学归纳法2教学目标:理解“归纳法”和“数学归纳法”的含意和本质;掌握数学归纳法证题的两个步骤一个结论;会用“数学归纳法”证明简单的恒等式。

初步掌握归纳与推理的方法;培养大胆猜想,小心求证的辩证思维素质。

培养学生对于数学内在美的感悟能力。

教学重点:使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤(特别要注意递推步骤中归纳假设的运用和恒等变换的运用)。

教学难点:如何理解数学归纳法证题的有效性;递推步骤中如何利用归纳假设。

教学过程:一、引入:问题1:这个盒子里有十个乒乓球,如何证明里面的球全为橙色?问题2:请大家回忆,课本是如何得出等差数列的通项公式的?二、归纳法:教师引导学生明了以上两个问题的异同点。

由此,得出归纳法的概念:由一系列有限的特殊事例得出一般结论的推理方法。

同时指明了完全归纳法与不完全归纳法的区别。

[投影]通过数学家费马运用不完全归纳得出错误结论的事例来说明不完全归纳法的缺憾之处仅根据一系列有限的特殊事例得出一般结论是要冒很大风险的,因为有可能产生不正确的结论。

[提问]如何解决不完全归纳法存在的问题呢?引导学生得出:只有经过严格的证明,不完全归纳得出的结论才是正确的。

三、数学归纳法:[提问]若盒子里的乒乓球有无数个,如何证明它们全是橙色球呢?在学生讨论未果的基础上,教师给出方法供学生参考:①证明第一次拿出的乒乓球是橙色的;②构造一个命题并证明,此命题的题设是:“若某一次拿出的球是橙色的”,结论是:“下次拿出的球也是橙色的”。

以上两步都被证明,则盒子中的乒乓球全是橙色的。

(该命题并不是孤立地研究“某一次”、“下一次”取的是橙球,而且由“某次取出的是橙球”来得到“下一次取出的也是橙球”的逻辑必然性,即一种递推关系)教师引导学生讨论:以上两个步骤如果都得到证明,是否能说明全部的乒乓球都是橙色的?由此,得出数学归纳法的基本概念:它是自然数相关问题的一种证明方法。

人教版高中数学《数学归纳法》教学案例

人教版高中数学《数学归纳法》教学案例

《数学归纳法》教学案例(第一课时)一、设计思想:根据新课程标准的基本理念-----倡导积极主动、勇于探索的学习方式,设置恰当的教学情景,并通过亲自动手做实验(多米诺骨牌实验),感受事实,发现本质,提高数学的学习兴趣,体会数学推理的严谨性,发展学生的数学思维能力。

二、教材分析:本内容在选修2-2模块中的“推理与证明”这一章中,它的要求是:了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

另外,数学归纳法内容抽象,思想新颖,通过对该部分的学习,对培养学生的逻辑思维能力与创新能力,全面提高学生的数学素质有十分重要的意义.三、学情分析:学生在此之前,已了解合情推理和演绎推理,并能用归纳和类比等进行简单的推理,他们虽然知道从特殊的几个事例推出一般结论不一定合理,但对如何为什么不一定明白。

再就是数学归纳法原理的理解上有一定困难,这就要教师创设教学情景,让学生经历数学发现、实验、观察,共同交流合作,寻求解决问题的办法。

四、教学目标:(1)知识与技能:了解“归纳法”和“数学归纳法”的原理;体会用数学归纳法证明的合理性;学会用“数学归纳法”证明的“两个步骤一个结论”的书写格式;初步掌握用“数学归纳法”证明简单的恒等式的方法。

(2)过程与方法:通过列举具体事例,亲自操作并仔细观察多米诺骨牌实验,发现数学归纳法的基本原理,将感性认识上升到理性认识,类比归纳出“数学归纳法”的基本步骤。

(3)情感、态度与价值观:培养大胆猜想,严格论证的辩证思维素质,感受数学推理的严谨性,培养学生对于数学内在美的感悟能力,提高学生学习数学的兴趣。

五、教学重点与难点:(1)重点:对“数学归纳法”的原理的理解,明白“两步一结论的重要性”,特别是第一第二步的辨证关系的理解。

(2)难点:如何理解用“数学归纳法”证题的可靠性和有效性。

六、教学策略与手段:数学实验法,引导发现法、感性体验法,学生合作交流、自主探索,再配合教师适时的引导、点拨、启发,从而使学生获得知识和能力上的发展。

高中数学选择性必修二 4 4数学归纳法 教案

高中数学选择性必修二 4 4数学归纳法 教案

4.4数学归纳法教学设计
情景1:某人看到树上有一只乌鸦,深有感触“天下乌鸦一般黑”这个结论是否正确呢?
情景2:《田舍翁之子学书》(明朝刘元卿的《贤弈篇·应谐录》)即财主的儿子学写字. 文中财主的儿子得出“四就是四横、五就是五横……”这个结论是否正确呢?
情景3:如果{a n}是一个等差数列,怎样得到a n=a1+(n−1)d?
等差数列{a n}的首项为a1,公差为d. 那么
a1=a1=a1+0∙d,
a2=a1+d=a1+1×d,
a3=a2+d=a1+2×d,
a4=a3+d=a1+3×d,
……
骨牌原理猜想的证明步骤(1)第一块骨牌倒下;(1)n=1时,猜想正确
(2)证明“如果前一块倒下,则后一块也跟着倒下”.这句话是真实的(2)证明“当n=k时猜想成立,则n=k+1时猜想也成立”是真命题
根据(1)(2),所有的骨牌都能倒下.根据(1)(2),这个猜想对一切正整数n都成立
通过上面的类比,我们找到了“通过有限个步骤的推理,证明n取所有正整数时命题都成立.”的方法,这个方法就叫做数学归纳法。

一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当n=n0(n∈N∗)时命题成立;
(2)(归纳递推)以“当n=k(k∈N∗,k≥n0)时命题成立”为条件,推出“当n=k+1时命题也成立”.
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立,这种证明方法称为数学归纳法,用框图表示就是:
1数学归纳法
2例题
3课堂练习。

数学归纳法教学设计 高二上学期数学人教A版(2019)选择性必修第二册

数学归纳法教学设计 高二上学期数学人教A版(2019)选择性必修第二册

4.4 数学归纳法 教学设计 课程基本信息学科数学 年级 高二 学期 秋季课题 4.4 数学归纳法教学目标1.了解数学归纳法原理,会用数学归纳法原理证明一些简单的与正整数有关的命题;2.通过对多米诺骨牌全部倒下的条件的类比和迁移,归纳得到数学数学归纳法的两个步骤,提高学生数学表达能力和推理论证能力;3.体会从特殊到一般、无穷到有限的辩证思维过程,发展数学抽象素养.教学重难点教学重点:数学归纳法原理的理解及简单应用.教学难点: 理解数学归纳法中两个步骤的作用.教学过程一、创设情境,问题导入问题1 (1)对于一切n ∈N *,n 2+n +11是质数吗?(2)对于数列{a n },已知a 1=1,a n +1=a n 1+a n(n ∈N *),它的通项公式是a n =1n 吗? 给n 赋值计算,写出你的猜想,并试着证明你的猜想.师生活动 对于(1),学生一般会令n =1,2,3,4,5…,得12+1+11=13,22+2+11=17,32+3+11=23,42+4+11=31,52+5+11=41…,于是猜想对于一切n ∈N *,n 2+n +11是质数成立.对于(2)令n =1,2,3…,由a 1=1⇒a 2=12⇒a 3=13 ⇒a 4=14 …,于是猜想a n =1n成立. 追问1 这两个猜想一定成立吗?师生活动 教师引导学生认识到,题(1) 中,若令n =10,得102+10+11=121=112, 所以猜想不成立.对于(2),即使举不出反例, 但是通过不完全归纳得到的结论,也不能说明对于任意n ∈N *,都成立.追问2 如果(2)的结论是成立的,如何证明它呢?设计意图 通过设置具体问题,发现运用现有的方法不能证明涉及一切自然数都成立的命题,从而需要研究新的证明方法,引发学习新知识的必要性.同时让学生看到,用不完全归纳得到的结论不一定成立.二、经验提炼,探究规律问题2 题(2)中,由a 1=1⇒a 2=12⇒a 3=13 ⇒a 4=14…,这是一个无穷步骤的问题,我们能否通过有限的步骤来解决这一无穷的问题呢?师生活动 教师引导学生思考,因为n ∈N *,,我们要达到证明的目的,必须用有限的步骤完成.这就需要我们思考,怎样将“无限”转化为“有限”,通过有限步骤,证明n ∈N *,时,命题成立.追问 你在学过的知识里,有将“无限”转化为“有限”的实例吗?你认为什么能够实现 这样的转化?师生活动 学生回顾,教师适时引导,立体几何中,直线与平面的垂直的定义为:如果一条直线垂直于平面内的任意一条直线,则这条直线与这个平面垂直.直线与平面垂直的判定定理为:一条直线与平面内的两条相交直线都垂直,则该直线与这个平面垂直.其定义是“无限”,判定则是“有限”.之所以能够实现转化,是因为一个平面可以由两条相交直线确定,所以一条直线与两条相交直线垂直就能保证直线与平面垂直.设计意图 类比无限到有限的转化,实现知识的迁移.情景 观看多米诺骨牌游戏视频,思考以下问题:问题3 要想保证骨牌全部倒下去,需要具备哪些条件呢?师生活动 教师组织学生重复观看视频,引导学生讨论交流归纳,得到骨牌要全部倒下去,需要具备两个条件:①第一块骨牌要倒下;②如果某一张骨牌倒下,要能保证它的后一张骨牌也倒下(用数学语言表述:如果第k 张倒下,则要使第k +1张也倒下).设计意图 通过“多米诺骨牌”视频游戏,引导学生理解从有限递推到到无穷所需满足的两个条件,逐渐实现问题情景数学化的过渡;同时体会方法的探究过程是来源于生活实践,并接受实践的经验.三、类比分析,形成原理问题4 你认为上述题(2)猜想,与多米诺骨牌有相似性吗?请你完成下表.师生活动 学生合作完成下表:多米诺骨牌题(2)解答 条件一:第一块牌倒下;步骤一:证明n =1时,a 1=1,结论成立; 条件二:任意一块牌倒下,它的后一块牌也倒下(如果第k 张倒下,则要使第k +1张也倒下).步骤二:如果n =k 时结论成立,即a k =1k, 那么有a k +1=1k +1,即n =k +1时结论也成立. 结果:所有骨牌都倒下. 结果:结论对一切正整数n 都成立.设计意图 通过对多米诺骨牌全部倒下的两个条件的类比分析,得到完成题(2)解答过程应有的两个主要步骤,实现了知识的迁移.追问1 你能完成上述a k =1k a k +1=1k +1的证明吗? 师生活动 学生独立完成.如果n =k ,即a k =1k成立,那么有 a k +1=a k 1+a k =1k 1+1k =1k +1, 即n =k +1时a k +1=1k +1也成立. 追问2 如何解释题(2)猜想的合理性?师生活动 由学生解释,由n =1时,a 1=1成立,根据步骤二的证明过程知道,就可以得到n =2时,a 2=12成立;由n =2时,a 2=12成立,就可以得到n =3时,a 3=13成立;…… 所以,对于任意的n ∈N *,a n =1n成立. 设计意图 由多米诺骨牌全部倒下的条件分析,迁移到对数学命题的证明过程探究,得到了证明方法.既体现了知识来源于实践,又通过由猜想到理性分析,培养学生的逻辑推理能力.设计问题追问,也为原理归纳作好铺垫.问题5 从题(2)猜想的解答过程中,你能归纳出证明一个与正整数n 有关的命题的一般步骤吗?师生活动 师生共同归纳,证明与一个与正整数有关的命题,可按下列步骤进行:这种证明方法叫做数学归纳法.师生活动 师生共同理解数学归纳法原理:对于一个与正整数有关的命题,如果①当n 取第一个值n 0(例如n 0=1,2等)时结论正确;②假设当n =k (k ∈N *,且k ≥n 0)时结论正确,证明当n =k +1时结论也正确,那么,命题对于从n 0开始的所有正整数n 都成立.追问1 数学归纳法的适用范围是什么?追问2 如果n 取的第一个数是5,那么结论又是什么?追问3 第二步证明过程中的条件和结论分别是什么?追问4两个步骤中是否可以省略一个?为什么?设计意图 :教师引导学生归纳数学归纳法的一般步骤及其数学归纳法原理的形式化表达.然后设置问题串,抓住学生思维的起点,逐层剖析,让学生真正理解数学归纳法的第一步是证明奠基性,第二步是证明递推性,这样既突破了难点,又突出了重点.四、数学应用,评析强化例题 用数学归纳法证明12+22+32+…+n 2=n (n +1)(2n +1)6(n ∈N *) 师生活动 教师引导学生规范表达,运用数学归纳法证明与正整数n 有关的命题. 证明:(1)当n =1时,12 =1×2×36 ,等式成立. (2)假设n =k 时等式成立,即12+22+32+…+k 2=k (k +1)(2k +1)6, 那么,当n =k +1时,有12+22+32+…+k 2+(k +1)2=k (k +1)(2k +1)6+(k +1)2 结论:对一切正整数 n ,命题都成两者缺一不可! 归纳递推归纳奠基(1)验证:当 n = 1 时, 命题成立; (2)证明:假设当 n = k 时命题成立,那么当 n = k + 1 时命题也成立;=(k+1)(2k2+k+6k+6)6=(k+1)(2k2+7k+6)6=(k+1)(k+2)(2k+3)6=(k+1)[(k+1)+1][2(k+1)+1]6所以当n=k+1时,等式成立.根据(1)(2)可知,对任何n∈N*,等式都成立.巩固练习观察下列命题及运用数学归纳法的证明过程,谈谈你的理解:(1)设n∈N*,求证:2+4+6+…+2n=n2+n+1.证明假设当n=k时等式成立,即2+4+6+…+2k=k2+k+1,那么,当n=k+1时,有2+4+6+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1,即当n=k+1时,等式成立.因此,当n∈N*时,等式2+4+6+…+2n=n2+n+1成立.(2)证明:当n∈N*时,1+3+5+…+(2n-1)=n2.证明①当n=1时,左边=1,右边=1,等式成立.②假设当n=k时等式成立,即1+3+5+…+(2k-1)=k2,那么,当n=k+1时,有1+3+5+…+(2k-1)+[2(k+1)-1]=(1+2k+1) (k+1)2=(k+1)2,即当n=k+1时,等式成立.因此,对于当n∈N*时,1+3+5+…+(2n-1)=n2.设计意图:通过例题展示对数学归纳法的理解应用及规范书写,既强调了学生的主体地位,又突出了教学的针对性.通过巩固练习辨析,强化理解两个主要步骤缺一不可:(1)证明奠基性,(2)证明递推性.帮助学生进一步深刻理解数学归纳法的本质.五、课堂巩固,总结提升本节课我们发现、归纳、运用了一种新的方法-数学归纳法,通过以下问题谈谈你的收获与体会.(1)数学归纳法能够解决哪一类问题?(2)数学归纳法证明命题的步骤有哪些?(3)我们是怎么发现和归纳出这种方法的?设计意图通过以问题形式进行总结,既梳理数学归纳法的内容,又提炼了数学归纳法的发生发展过程及其蕴含的思想方法.附:数学归纳法的发展历程数学归纳法从萌芽到应用,有着悠久的历史,凝聚了众多中外数学家的精力和智慧。

【教案】人教版高中《数学》选修2-2《数学归纳法》教学设计

【教案】人教版高中《数学》选修2-2《数学归纳法》教学设计

人教版高中《数学》选修2-2§2.3 数学归纳法(第一课时)一、教学目标:1、了解数学归纳法,理解数学归纳法的原理与实质,掌握归纳法证明的两个步骤;2、会证明简单的与正整数有关的命题。

二、教学重点、难点:1、重点:借助具体实例,了解数学归纳法的基本思想,掌握基本步骤,会用它证明一些与正整数n 有关的命题;2、难点:(1)学生不易理解数学归纳法的思想实质,具体表现在不了解第二步的作用,不易根据归纳假设作出证明;(2)运用数学归纳法时,在“归纳递推”的步骤中发现具体问题的递推关系。

三、教学手段:借助多媒体呈现多米诺骨牌等生活素材辅助课堂教学;四、教学过程:(一)创设情境,引入课题师:前面我们学习推理,并且知道由推理得到的结论是否正确,需要我们进一步验证。

我们来看这样的一道题目:已知数列{}n a 中,*111,()1n n na a a n N a +==∈+,试猜想数列的通项公式n a = 生:分别求出12341111,,,234a a a a ====,从而猜测1n a n=。

师:那么这个猜想是否正确?我们又该如何证明这个猜想?生:方法1:从n=5逐个验证?(由于n 为正整数,为无限个,所以可行性不高)方法2:通过构造新数列{}n b ,其中1n nb a =,先求出数列{}n b 的通项公式,从而得到{}n a 的通项公式;(技巧性较高,且有时新数列{}n b 不易构造)方法3:能否通过有限个步骤的推理,证明n 取所有正整数时,通项公式都成立? 师:带着这个问题,我们来观察一个关于多米诺骨牌游戏的视频。

(二)观看视频,动手实验观看多米诺骨牌游戏视频后,由学生来展示骨牌游戏:实验步骤:1、摆好骨牌,并由教师动手轻轻碰了第一块(并未推倒),发现实验不成功;2、由学生自己动手推倒骨牌,实验成功;3、再次摆好骨牌,教师调整最后3块的距离,发现并未全部倒下,实验失败。

师:我们一起来总结3次实验,那么要使游戏成功,所需条件有哪些?生:(1)第一块骨牌要倒下;(2)相邻的两块骨牌,前一块倒下一定导致后一块也倒下;师:若将每一块骨牌相应的看成数列的1234,,,a a a a ,那么这两个条件分别相当于:(1)首项1a 要符合n a 的通项公式;(2)假设n=k 时猜想成立,则必将导致n=k+1时猜想也成立;这样一来,就可以发现由n=1成立,就有n=2成立;n=2成立,就有n=3成立;n=3成立,就有n=4成立;n=4成立,就有n=5也成立……,所以对任意的正整数n ,猜想都成立。

2019-2020学年高二数学人教A版选修2-2课件:2.3 数学归纳法 Word版含解析

2019-2020学年高二数学人教A版选修2-2课件:2.3 数学归纳法 Word版含解析

答案:3
第五页,编辑于星期日:点 十八分。
-5-
目标导航
知识梳理
知识梳理
重难聚焦
典例透析
2.数学归纳法的框图表示
第六页,编辑于星期日:点 十八分。
-6-
目标导航
知识梳理
重难聚焦
典例透析
1.如何理解数学归纳法?
剖析数学归纳法是专门证明与正整数有关的命题的一种方法,证
明分两步,其中第一步是命题成立的基础,称为“归纳奠基”;第二步解决
(4)证明当n=k+1命题成立时,要明确求证的目标形式,一般要凑出假
设里给出的形式,以便使用假设,然后再去凑出当n=k+1时的结论,这样就
能有效减少论证的盲目性.
第七页,编辑于星期日:点 十八分。
-7-
目标导航
知识梳理
重难聚焦
典例透析
2.运用数学归纳法要注意哪些?
剖析正确运用数学归纳法应注意以下几点:
1
= (2k+1)[k(2k-1)+3(2k+1)]
3
1
= 3 (2k+1)(2k2+5k+3)
1
= (2k+1)(k+1)(2k+3)
3
1
1
= 3 (k+1)(4k2+8k+3) = 3 (k+1)[4(k+1)2-1],
即当n=k+1时,等式也成立.
由(1)(2)可知,对一切n∈N*等式成立.
-13-
(n∈N*)
证明:∵f'(x)=x2-1,
∴an+1≥(an+1)2-1 = 2 + 2an.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高二数学数学归纳法公开课教案人教版一教学目标1、知识和技能目标(1)了解数学推理的常用方法(归纳法)(2)理解数学归纳法原理和其本质的科学性(3)初步掌握数学归纳法证题的两个步骤和一个结论。

(4)会用数学归纳法证明简单的恒等式。

2、过程与方法目标通过对归纳法的引入,说明归纳法的两难处境,引出数学归纳法原理,使学生理解理论与实际的辨证关系。

在学习中培养学生探索发现问题、提出问题的意识,解决问题和数学交流的能力,学会观察——归纳——猜想——证明的思想方法,能用总结、归纳、演绎类比探求新知识。

3.情感态度价值观目标通过对问题的探究活动,亲历知识的构建过程,领悟其中所蕴涵的数学思想和辨证唯物主义观点;体验探索中挫折的艰辛和成功的快乐,感悟“数学美”,激发学习热情,培养他们手脑并用,多思勤练的好习惯和勇于探索、锲而不舍的治学精神。

初步形成正确的数学观,创新意识和科学精神。

二教学重点和难点教学重点(1)使学生理解数学归纳法的实质。

(2)掌握数学归纳法证题步骤,尤其是递推步骤中归纳假设和恒等变换的运用。

教学难点:(1)使学生理解数学归纳法证题的有效性;(2)递推步骤中归纳假设的利用和代数恒等变换。

三教学方法:引导发现法.讲练结合法.四教学手段:利用计算机多媒体课件、投影仪讲解教学。

五教学过程:(一)创设情景、探究原理、激起兴趣问题情境一:问题(1)大球中有5个小球,如何验证它们都是绿色的?(课件演示)问题(2):若a n=(n2- 5n+5)2,则a n=(n2-5n+5)2=1问题(3):若-1+3= 2-1+3-5= -3-1+3-5+7= 4-1+3-5+7-9=-5可猜想:-1+3-5+…+(-1)n(2n-1)=(-1)n n吗问题情境二:投影:数学家费马运用不完全归纳得出费马猜想的事例。

小结归纳法:由一系列有限的特殊事例得出一般结论的推理方法归纳法分为完全归纳法和不完全归纳法①完全归纳法:考察全体对象,得到一般结论的推理方法(结论一定可靠,但需逐一核对,实施较难)②不完全归纳法,考察部分对象,得到一般结论的推理方法(结论不一定可靠,但有利于发现问题,形成猜想)问题情境三:如何解决不完全归纳法存在的问题呢?多米诺骨牌操作实验问题(4)如何保证任何条件下骨牌一一倒下?需要几个步骤才能做到?①处理第一个问题;(相当于推倒第一块骨牌)②验证前一问题与后一问题有递推关系;(相当于前牌推倒后牌)。

(二)导入课题,例练结合,激发思维数学归纳法定义:对于由不完全归纳法得到的某些与自然数有关的数学命题我们常采用下面的方法来证明它们的正确性:(1) 先证明当n取第一个值n0(例如n=1) 时命题成立,(2) 然后假设当n=k(k∈N+,k≥n0)时命题成立证明当n=k+1时命题也成立,这种证明方法叫做数学归纳法.【回顾问题(3)】例1:用数学归纳法证明:-1+3-5+…+(-1)n(2n-1)=(-1)n n (*)证明: (1)当n=1时,左边=-1,右边=-1,∴当n=1时,结论成立(2)假设当n=k时结论成立,即-1+3-5+…+(-1)k(2k-1)=(-1)k k在这个假设下再考虑当n=k+1时式(*)的左右两边。

左边=-1+3-5+…+(-1)k(2k-1)+(-1)k+1 [2(k+1)-1] =(-1)k k +(-1)k+1 [2(k+1)-1]=(-1)k+1 [-k+2(k+1)-1]凑假设从n=k到n=k+1 有什么变化= (-1)k +1 (k+1)=右边 所以当n=k+1时等式(*)成立。

由(1)(2)可知,-1+3-5+ …+(-1)n (2n -1)=(-1)n n数学归纳法是一种证明与正整数有关的数学命题的重要方法。

主要有两个步骤、一个结论:(1)证明当n 取第一个值n 0(如 n 0=1或2等)时结论正确(找准起点,奠基要稳) (2)假设n=k 时结论正确,证明n=k+1时结论也正确(用上假设,递推才真) (3)由(1)、(2)得出结论(结论写明,才算完整)其中第一步是递推的基础,解决了特殊性;第二步是递推的依据,解决了从有限到无限的过渡。

这两步缺一不可。

只有第一步,属不完全归纳法;只有第二步,假设就失去了基础。

例2用数学归纳法证明:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2(分析见课件)(三)练习巩固,展示强化,激活思维1、某个命题与自然数n 有关, 如果当n = k ( k ∈N + ) 时该命题成立 , 那么可推得当n = k + 1 时该命题也成立. 现在已知n = 5 时该命题不成立, 那么请判断以下各命题的正确性: (1) n = 4 时该命题不成立; (2) n = 6 时该命题不成立; (3) n = 1 时该命题可能成立;(4) n = 6 时该命题可能成立. 如果n = 6 时该命题成立, 那么对于任意n ≥6 ,该命题都成立.+=+++++++=+k k k s s kk k k s 121312111.2,那么设 解析: ○1观察 , 1)各项分母都是连续的自然数 2)第一项的分母分别是 3)最后一项的分母分别是○2从n=k 到n=k+1项数上有什么变化,多了那些项,少了项呢? 3.如下用数学归纳发证明对吗?证明:①当n=1时,左边=,右边=②设n=k 时,有当n=k+1时,有211211])21(1[21212121211112+++-=--=++++k k k k )(即n=k+1时,命题成立。

由①②可知,对n ∈N +,等式成立4. 用数学归纳法证明:1×2+2×3+3×4+…+n(n +1)=. (四)归纳小结,自我整合,激升思维.1.用数学归纳法证明恒等式的步骤及注意事项: ① 明确初始值n 0并验证真假。

(必不可少)凑结论n n 21(12121212132-=++++求证: k k )21(12121212132-=++++② “假设n=k 时命题正确”并写出命题形式。

③ 分析“n=k+1时”命题是什么,并找出与“n=k ”时 命题形式的差别。

弄清左端应增加的项。

④ 明确等式左端变形目标,掌握恒等式变形常用的 方法:乘法公式、因式分解、添拆项、配方等, 并 用上假设。

可明确为重点:两个步骤、一个结论;注意:递推基础不可少,归纳假设要用到, 结论写明莫忘掉。

2.数学归纳法的核心思想: 数学归纳法是一种完全归纳法 ,它是在可靠的基础上,利用命题自身具有的传递性,运用“有限”的手段,来解决“无限”的问题。

它克服了完全归纳法的繁杂、不可行的缺点,又克服了不完全归纳法结论不可靠的不足,使我们认识到事情由简到繁、由特殊到一般、由有限到无穷。

(五)布置作业,综合延伸,激动思维 1.课本作业 p 50. 习题4. 1 1,2 2.补充作业:用数学归纳法证明(3) 已知函数)(,1;22)(11-==+=n n x f x x x xx f ○1求 ; ○2猜测并用数学归纳法证明. (4) θθθθθcot ).2tan()2cos 11)....(4cos 11)(2cos 11(nn=+++3.预习课本P 49例1和例2(六)课后反思,德育欣赏,激励思维2)1()1()1(4321).1(1-n 21222+=+++-n n n n ---- nn n n n 212111211214131211).2(+++++=+++ ----❖德国数学家哥德巴赫经过观察,发现一个有趣的现象:任何大于5的整数,都可以表示为三个质数的和,他猜想这个命题是正确的,但他本人无法给予证明.1742年6月6日,哥德巴赫去求教当时颇负盛名的瑞士数学家欧拉,欧拉经过反复研究,发现问题的关键在于证明任意大于2的偶数能表示为两个质数的和.于是,欧拉对大于2的偶数逐个加以验算,最后欧拉猜想上述结论是正确的。

6月30日,他复信哥德巴赫,信中指出:“任何大于2的偶数都是两个质数的和,虽然我还不能证明它,但我确信无疑这是完全正确的定理。

”这就是著名的哥德巴赫猜想.(七)教学设计思想1、“数学归纳法”既是高中代数中的一个重点和难点内容,也是一种重要的数学方法。

它贯通了高中代数的几大知识点:不等式,数列,三角函数……在教学过程中,教师应着力解决的内容是:使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤(特别要注意递推步骤中归纳假设的运用和恒等变换的运用)。

只有真正了解了数学归纳法的实质,掌握了证题步骤,学生才能信之不疑,才能用它灵活证明相关问题。

2、本节课是数学归纳法的第一节课,有两大难点:使学生理解数学归纳法证题的有效性;递推步骤中归纳假设的利用。

不突破以上难点,学生往往会怀疑数学归纳法的可靠性,或者只是形式上的模仿而不知其所以然。

这会对以后的学习造成极大的阻碍。

3、根据本节课的教学内容和学生实际水平,本节课采用“引导发现法”和“讲练结合法”。

通过课件的动画模拟展示,引发和开启学生的探究热情,通过“师生”和“生生”的交流合作,掌握概念的深层实质。

努力使课堂充满平等、民主、和谐的研究气氛,并充分重视全体学生的全面发展,采用模式为(1)创设情景、探究原理,激起兴趣;(2)导入课题,例练结合,激发思维;(3)练习巩固、展示强化、激活思维;(4)归纳小结、自我整合,激升思维;(5)布置作业、综合延伸、激动思维;(6)课后反思、德育欣赏、激励思维。

4、教学过程中的主要环节1)创设情景,回顾旧知识,并引入新问题,导出“归纳法”的概念,经历数学家的小故事,反衬不完全归纳法的缺憾,引起矛盾冲突,引发学生探索解决的需要,但问题又过于抽象,学生思维受阻,故由多米诺骨牌的课件展示,引导推其一把,在以实践问题解决为主线下,使学生带着问题去主动思考,交流合作,讨论,进而达到对知识的“发现”和主动“接受”。

完成知识的内化,使书本知识成为自己的知识。

2)抽象的概念教学,在以上的铺垫下得以顺畅进行,突出强调归纳法的“两个步骤、一个结论”,并在例练中强调“数归法”的程序化重点“凑假设”和“凑结论”。

3)选择系列由易到难的练习巩固题组,力求让学生提高证明简易恒等式的能力.数学能力的提高离不开解题,所以在解题教学过程中,重点是向学生暴露思维过程和展示学生的思维过程,并重点展示学生发生错误、产生障碍、克服困难、由失败走向成功的经历,解题切入点或突破口的选定要舍得花时间分析引导,解题的每一步深入要真正落实到位,弄清运用到的基本数学方法,提炼数学思想。

只有这样才不至于浮于表面现象,把握问题的本质,才能发现解题前预想不到的深层次的很多问题,使思维的深刻性和批判性得到有效训练。

相关文档
最新文档