膜片弹簧离合器的设计与分析

合集下载

车辆离合器膜片弹簧的设计与优化.

车辆离合器膜片弹簧的设计与优化.

车辆离合器膜片弹簧的设计与优化摘要: 膜片弹簧是汽车离合器的重要部件,是由弹簧钢板冲压而成,形状呈碟形。

膜片弹簧结构紧凑且具有非线性特性,高速性能好,工作稳定,踏板操作轻便,因此得到广泛使用。

本文通过对膜片弹簧建立数学模型,特别通过引入加权系数同时对两个目标函数进行比例调节,并用MATLAB编程来优化设计参数。

通过举例,结果证明在压紧力稳定性,分离力及结构尺寸上优化结果较为理想。

关键词: 膜片弹簧;优化设计;MATLAB1.引言1.1离合器膜片弹簧弹性特性的数学表达式膜片弹簧是汽车离合器中重要的压紧组件,结构比较复杂,内孔圆周表面上有均布的长径向槽,槽根为较大的长圆形或矩形窗孔,这部分称为分离指;从窗孔底部至弹簧外圆周的部分像一个无底宽边碟子,其截面为呈锥形,称之为碟簧。

膜片弹簧的结构如图1-1所示。

图1-1 膜片弹簧结构示意图图1-2 膜片弹簧结构主要参数、膜片弹簧主要结构参数如图2所示。

R是自由状态下碟簧部分大端半径。

R1r分别是压盘加载点和支承环加载点半径,H是自由状态下碟簧部分的内截锥高1度。

膜片弹簧在自由、压紧和分离状态下的变形如图1-3所示。

图1-3 膜片弹簧在不同工作状态下的变形 膜片弹簧大端的压紧力F 1与大端变形量1λ之间的关系为:()()()⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛--⋅-⎪⎪⎭⎫ ⎝⎛--⋅-⋅-⋅-=21111112112112/ln 16E F h r R r R H r R r R H r R r R h λλμλπ(1) 式中,r 为自由状态碟簧部分小端半径(mm);h 为膜片弹簧钢板厚度(mm)。

显然,膜片弹簧大端的压紧力F 1与大端变形量1λ的函数关系为非线性关系。

由式(1)可以看出膜片弹簧大端的压紧力F 1分别为R 、r 、H 、h 、R 1、r 1等参数有关,故膜片弹簧弹性特性较一般螺旋弹簧要复杂得多。

以某国产小轿车离合器为例,离合器主要性能结构参数为:最大摩擦力矩为700N ·m 。

汽车膜片式弹簧离合器的设计

汽车膜片式弹簧离合器的设计

膜片式离合器的设计离合器装在发动机与变速器之间,汽车从启动到行驶的整个过程中,经常需要使用离合器。

它的作用是使发动机与变速器之间能逐渐接合,从而保证汽车平稳起步;暂时切断发动机与变速器之间的联系,以便于换档和减少换档时的冲击;当汽车紧急制动时能起分离作用,防止变速器等传动系统过载,起到一定的保护作用。

离合器类似开关,接合或断离动力传递作用,因此,任何形式的汽车都有离合装置,只是形式不同而已。

现在,电子技术也进入了离合器系统。

一种由控制单元(ECU)控制的离合器已经应用在多款的轿跑车上。

一离合器简介1.1离合器的功用汽车传动系的基本功用是将发动机发出的动力传给驱动轮。

离合器是汽车传动系中直接与发动机相联系的部件。

在汽车起步前,先要起动发动机,这时应使变速器处于空挡位置,将发动机与驱动轮之间联系断开,以卸除发动机负荷。

待发动机已起动并开始正常的转速运转后,方可将变速器挂上一定档位,使汽车起步。

汽车起步时,汽车是从完全静止的状态逐步加速的。

如果传动系(它联系着整个汽车)与发动机刚性地联系,则变速器一挂上档,汽车将突然向前冲动一下,但并未能起步。

这是因为汽车从静止到前冲时,产生很大惯性力。

对发动机造成很大的阻力矩。

在这惯性阻力矩作用下,发动机在瞬时间转速急剧下降到最低转速(一般为300-500r/min)以下,发动机即熄火而不能工作,当然汽车也不能起步。

离合器的首要功用是保证汽车平稳起步。

在传动系中装设了离合器后,在发动机起动后,汽车起步之前,驾驶员先踩下离合器踏板,将离合器逐渐接合,在离合器逐渐接合过程中,发动机所受阻力矩也逐渐增加,故应同时逐渐踩下加速踏板,即逐步增加对发动机的燃料供给量,使发动机的转速始终保持在最低稳定转速以上,不致熄火。

由于离合器的接合紧密程度增大,发动机经传动系传给驱动车轮的转矩便逐渐增加。

到牵引力足以克服起步阻力时,汽车即从静止开始运动并逐步加速。

离合器的另一项功用是保证传动系换档时工作平稳。

膜片弹簧离合器的设计

膜片弹簧离合器的设计

河南科技大学膜片弹簧离合器的设计目录第一章概述 (3)第二章离合器的结构方案分析 (5)§2.1离合器的主要结构 (5)§2.2离合器的工作原理 (6)§2.3离合器的功用及其结构方案的选择 (7)第三章离合器主要参数的选择 (11)§3.1离合器参数的选择 (11)§3.2摩擦片的约束计算 (12)第四章离合器主要零部件的设计计算 (15)§4.1膜片弹簧的设计 (15)§4.2扭转减震器的设计计算 (22)第五章主要零件的设计计算 (25)§5.1从动盘总成设计计算 (25)§5.2轴径的计算 (27)§5.3压盘和离合器盖得设计 (27)第六章离合器的操纵系统设计 (30)结论 (32)参考文献 (33)致谢 (34)第一章概述汽车诞生之前马车是人类最好的陆上交通工具。

1770年法国人呢古拉斯古诺将蒸汽机装在板车上,制造出第一辆蒸汽板车,这是世界上第一辆利用机器为动力的车辆。

1769年,瑞士军官普兰捷尔也造出一辆以蒸汽机为动力的自由行驶的板车,于是又人将普兰捷尔也认定为汽车的始祖之一。

1860年,法国人艾迪勒努瓦发明了一种内部燃烧的汽油发动机,1885年德国工程师卡尔奔驰在曼海姆制成一部装有0.85马力汽油机的三轮车。

德国另一位工程师戈特利布戴姆勒也同时造出了一辆用1.1马力汽油机作动力的三轮车。

他们两被公认为以内燃机为动力的现代汽车的发明者,1886年1月29日也被公认为汽车的诞生日。

汽车从无到有并迅猛发展。

从20世纪初到20世纪50年代,汽车产量大幅增加,汽车技术也有很大进步,相继出现了高速汽油机、柴油机:弧齿锥齿轮和准双面锥齿轮传动、带同步器的齿轮变速器、化油器、差速器、摩擦片式离合器、等速万向节、液压减震器、石棉制动片、充气式橡胶轮胎等。

20世纪50年代到70年代,汽车的主要技术是高速、方便、舒适、流线型车身、前轮独立悬架、液力自动变速器、动力转向、全轮驱动、低压轮胎、子午线轮胎都相继出现。

汽车膜片弹簧离合器设计---设计说明书

汽车膜片弹簧离合器设计---设计说明书

课程设计汽车膜片弹簧离合器设计姓名:学号:指导教师:专业班级:汽车膜片弹簧离合器设计---课程设计任务书汽车离合器是发动机与变速箱之间的连接装置,起连接或断开动力的作用。

离合器类型有多种,本课程设计要求设计膜片弹簧离合器,这种离合器是目前汽车上应用最多的一类离合器。

要求通过学习掌握汽车膜片弹簧离合器的原理,结构和设计知识,用所给的基本设计参数进行汽车膜片弹簧离合器设计,绘制主要的零部件图纸,写出内容详细的设计说明书。

一、基本设计参数:1.发动机型号: TJ370Q2.发动机最大扭矩: 58.8/3200 Nm/(r/min)3.传动系统传动比: 1挡:3.966主减速比:5.1254.驱动轮类型与规格:5.00-12-8PR 145/70SR125.汽车总质量: 1429KG二、设计内容及步骤1、离合器主要参数的确定(1)根据基本设计参数确定离合器主要参数:①后备系数;②单位压力;③摩擦片内外径D、d和厚度b;④摩擦因素f、摩擦面数Z等。

(2)摩擦片尺寸校核与材料选择。

2、扭转减震器的设计(1)确定扭转减震器结构(2)确定扭转减震器主要参数(3)确定减震弹簧尺寸3、从动盘总成设计(1)从动片设计(2)从动盘毂设计(3)确定从动盘摩擦材料4、离合器盖总成的设计(1)选择压盘内外径、厚度及材料,并进行校核(2)离合器盖设计(3)支撑环设计5、膜片弹簧的设计(1)膜片弹簧基本参数选择(2)膜片弹簧强度计算三、设计成果要求1、设计计算说明书(1)设计计算说明书要包括:封面、课程设计任务书、目录、中英文摘要、正文、参考文献等。

(2)正文主要体现:进行各零部件的参数选择与计算时的理论依据、计算步骤及对计算结果合理性的阐述。

(3)课程设计说明书统一用A4纸打印或撰写,要求排版整洁合理,字迹工整,图文并貌。

2、设计图纸(1)零件图纸包括: 磨擦片、从动片、从动盘毂、压盘、膜片弹簧图(2)离合器总成结构装配图尺寸标注、公差标注、技术要求、明细栏等完整。

第三章 膜片弹簧离合器第一节膜片式离合器的结构与工作原理

第三章  膜片弹簧离合器第一节膜片式离合器的结构与工作原理

第三章膜片弹簧离合器第一节膜片式离合器的结构与工作原理膜片弹簧离合器第一节膜片式离合器的结构与工作原理膜片式离合器是一种常见的离合器类型,广泛应用于各种机械设备中。

本节将详细介绍膜片式离合器的结构和工作原理。

一、膜片式离合器的结构膜片式离合器主要由以下几个部分组成:1. 飞轮:飞轮是膜片式离合器的主要部件之一,它连接在发动机的曲轴上。

飞轮具有一定的质量和惯性,能够提供足够的动力传递和储存能量。

2. 隔离器:隔离器位于飞轮和离合器盖之间,起到隔离发动机和变速器的作用。

它通常由金属材料制成,具有一定的强度和刚度,能够承受一定的扭矩和振动。

3. 膜片弹簧:膜片弹簧是膜片式离合器的核心部件,位于隔离器的内侧。

它由多个弯曲的金属片组成,形状类似于扇形。

膜片弹簧具有很强的弹性和柔韧性,能够承受和传递扭矩。

4. 离合器盖:离合器盖是膜片式离合器的外壳,起到保护内部零件和固定膜片弹簧的作用。

它通常由铸铁或铝合金制成,具有一定的强度和刚度。

二、膜片式离合器的工作原理膜片式离合器的工作原理可以分为两个阶段:接合阶段和分离阶段。

1. 接合阶段:当离合器踏板被松开时,发动机的动力通过曲轴传递到飞轮上。

膜片弹簧受到发动机的扭矩作用,产生弯曲变形。

这个变形使得膜片弹簧的外径变小,内径变大,从而使离合器盖向离合器盘方向移动。

离合器盖和离合器盘之间的摩擦力逐渐增大,最终使得离合器盖和离合器盘完全接触,实现动力传递。

2. 分离阶段:当离合器踏板被踩下时,离合器盖和离合器盘之间的摩擦力减小。

膜片弹簧的变形恢复到初始状态,离合器盖向发动机方向移动,与离合器盘分离。

这样,发动机的动力不再传递到变速器,实现离合器的分离。

膜片式离合器通过膜片弹簧的变形来实现离合和接合的功能。

膜片弹簧的设计和材料选择非常重要,它们直接影响离合器的工作性能和寿命。

三、膜片式离合器的优点和应用膜片式离合器相比其他类型的离合器具有以下优点:1. 结构简单:膜片式离合器的结构相对简单,易于制造和维修。

汽车膜片弹簧离合器设计

汽车膜片弹簧离合器设计

汽车膜片弹簧离合器设计第1章绪论1.1 概述在以内燃机作为动力的机械传动汽车中,无论是AMT或MT,离合器都作为一个独立部件而存在,它是汽车传动系中直接与发动机相连接的总成。

目前,各种汽车广泛采用的摩擦离合器是依靠主、从动部分之间的摩擦来传递动力且能分离的装置。

随着汽车发动机转速、功率的不断提高和汽车电子技术的高速发展,人们对离合器的要求越来越高。

从提高离合器工作性能角度出发,传统的推式膜片弹簧离合器正逐步地向拉式膜片弹簧离合器结构发展,传统的操纵形式正向自动操纵的形式发展。

因此,提高离合器的可靠性和延长其使用寿命,适合发动机的高转速,增加离合器传递转矩的能力和简化操纵,已成为离合器发展趋势。

1.2 汽车离合器结构的发展在早期研发的离合器结构中,锥形离合器最为成功。

它的原形设计曾装在1889年德国戴姆勒公司生产的钢质车轮的小汽车上。

它是将发动机飞轮的内孔做成锥体作为离合器的主动件。

对当时来说锥形离合器的制造比较容易,摩擦面容易修复。

它的摩擦材料曾用过驼毛带、皮革带等。

那时也曾出现过蹄-鼓式离合器来代替锥形离合器。

但无论锥形离合器、还是蹄-鼓式离合器,都容易造成分离不彻底甚至出现主、从动件根本无法分离的自锁现象。

现在所有的盘片式离合器的先驱是多片盘式离合器,它是直到1925年以后才出现的。

多片离合器最主要的优点是,在汽车起步时离合器的结合比较平顺,无冲击。

早期的设计中,多片按成对布置设计,一个钢盘片对着一青铜盘片。

采用纯粹的金属对金属的摩擦副,把它们浸在油中工作,能达到更加满意的性能。

浸在油中的盘式离合器,盘子直径不能太大,以避免在高速时把油甩掉。

此外,油也容易把金属盘片粘住,不易分离。

但毕竟还是优点大于缺点。

因为在当时,许多其他离合器还在原创阶段,性能很不稳定。

石棉基摩擦材料的引入和改进,使得盘式离合器可以传递更大的转矩,能耐受更高的温度。

此外,由于采用石棉基摩擦材料后可用较小的摩擦面积,因而可以减少摩擦片数,这是由多片离合器向单片离合器转变的关键。

离合器设计(推式膜片弹簧)

离合器设计(推式膜片弹簧)

辽宁工业大学汽车设计课程设计(论文)题目: 1.6LMT马自达3轿车离合器设计院(系):汽车与交通工程学院专业班级:车辆工程075学号:071201127学生姓名:张相坤指导教师:王天利教师职称:教授起止时间:2012.1.8~2012.2.25课程设计(论文)任务及评语目录第1章离合器设计的目的和要求 (1)1.1离合器设计的目的 (1)1.2离合器设计的要求 (1)第2章离合器设计的内容和方案的分析与确定 (2)2.1离合器设计的内容 (2)2.2离合器方案的分析与确定 (2)第3章主要零部件设计计算和验算的简要过程 (5)3.1 摩擦片的设计 (5)3.2 离合器基本参数的优化 (7)3.3 膜片弹簧的设计 (10)第4章主要部件结构设计说明 (15)4.1从动盘总成的设计 (15)4.2离合器盖和压盘的方式选择 (16)4.3分离轴承的选择 (17)4.4离合器的通风散热 (17)4.5扭转减振器的设计 (17)4.6离合器的操纵机构选择 (21)第5章经济、技术分析及对设计所作的简要评语 (22)5.1经济、技术分析 (22)5.2简评 (22)参考文献 (23)致谢 (24)附录 (25)第1章离合器设计的目的和要求1.1离合器设计的目的离合器是汽车传动系统中直接与发动机相联系的部件,按其功能要求,在结构上主要由主动部分 (发动机飞轮、离合器盖和压盘等)、从动部分 (从动盘)压紧机构 (压紧弹簧)和操纵机构 (分离叉、分离轴承、离合器踏板及传动部件等)等组成。

主要作用是保证汽车起步平稳,保证传动系统换挡时工作平顺,防止传动系统过载等,本次马自达3轿车离合器设计的目的是通过本课程设计,掌握膜片弹簧压紧型式的离合器的设计方法、步骤,进一步了解离合器的工作状况和性能,提高机械产品的设计能力。

1.2离合器设计的要求摩擦式离合器的结构类型非常多,而且有多种组合方式,但不管哪种结构类型,也不管什么组合方式,对它们的使用要求是一致的。

毕设膜片弹簧离合器设计

毕设膜片弹簧离合器设计

毕设膜片弹簧离合器设计膜片弹簧离合器是一种常见的机械传动装置,广泛应用于汽车和工程机械等领域。

它通过操纵离合器踏板来实现发动机和传动系统的分离和连接。

本文将从设计原理、材料选择、结构设计和制造工艺等方面进行详细阐述。

首先,膜片弹簧离合器的设计原理基于膜片弹簧的力学特性。

膜片弹簧是一种平面弹簧,具有较大的变形能力和较小的刚度。

当施加外力时,膜片弹簧会发生弹性变形,从而产生恢复力。

利用这种力学特性,可以实现离合器的分离和连接。

其次,材料的选择对于膜片弹簧离合器的设计至关重要。

由于膜片弹簧在工作过程中需要承受较大的压力和变形,因此材料的强度和韧性是关键考虑因素。

常用的膜片弹簧材料有合金钢、不锈钢和铝合金等。

根据具体要求和工作环境选择合适的材料。

接下来是结构设计。

膜片弹簧离合器的结构包括主动盘、从动盘、膜片和压盘等组成部分。

主动盘与发动机相连,从动盘与传动系统相连。

膜片被夹在主动盘与从动盘之间,通过与压盘的接触实现传递动力。

为了提高离合器的传递效率和使用寿命,结构设计应考虑传递能力、热稳定性、振动和噪声控制等因素。

最后是制造工艺。

膜片弹簧的制造主要包括材料切割、冷冲压和热处理等工艺。

材料切割可以采用激光切割或机械切割,确保膜片弹簧的尺寸和形状精确。

冷冲压工艺是将切割好的膜片进行冷变形,形成所需的结构和形状。

热处理可以提高膜片弹簧的硬度和韧性,并消除内部应力,改善材料的机械性能。

综上所述,膜片弹簧离合器的设计考虑了力学特性、材料选择、结构设计和制造工艺等方面。

通过合理设计和优化,可以获得性能稳定、安全可靠的离合器产品。

对于长时间运行的汽车和工程机械等设备来说,膜片弹簧离合器的设计是非常重要的。

汽车膜片弹簧离合器设计

汽车膜片弹簧离合器设计

汽车膜片弹簧离合器设计
首先,汽车膜片弹簧离合器的设计需要考虑的主要因素包括传动扭矩、离合器片数量、弹簧刚度和角位移。

传动扭矩是离合器设计的重要指标,
它直接决定了离合器的传动能力。

离合器片的数量决定了离合器的接触面积,从而影响了传动扭矩的大小。

弹簧刚度和角位移决定了离合器的操作
力和行程。

其次,汽车膜片弹簧离合器的设计需要考虑弹簧的选材和结构。

弹簧
的选材应具有良好的弹性和疲劳寿命,一般采用高强度钢材制作。

弹簧的
结构通常采用平面圆弧形,以适应膜片的变形。

此外,弹簧的结构设计还
需要考虑到对称性、刚性和可靠性等因素。

然后,汽车膜片弹簧离合器的设计需要考虑刹车器的布置和操作方式。

刹车器通常布置在离合器外圈,以实现离合器的快速刹车功能。

操作方式
通常采用机械操作或液压操作,具体选择取决于汽车传动系统的要求和设计。

最后,汽车膜片弹簧离合器的设计需要进行系统的动力学分析和实验
验证。

动力学分析可以通过建立离合器的动力学模型来实现,以评估离合
器的传动能力、动态响应和可靠性等性能指标。

实验验证可以通过制作样
品离合器进行试验,以验证设计的正确性和可行性。

综上所述,汽车膜片弹簧离合器的设计是一个综合性的工程问题,需
要综合考虑传动扭矩、离合器片数量、弹簧刚度、角位移、弹簧的选材和
结构、刹车器布置和操作方式等因素。

通过系统的动力学分析和实验验证,可以获得满足汽车传动系统要求的离合器设计。

膜片弹簧离合器毕业设计_概述说明以及解释

膜片弹簧离合器毕业设计_概述说明以及解释

膜片弹簧离合器毕业设计概述说明以及解释1. 引言1.1 概述在现代机械设计中,离合器是一种关键的传动装置,其作用是实现发动机与传动系统之间的连接和断开。

膜片弹簧离合器作为一种常见的离合器类型,在汽车、摩托车等交通工具中得到广泛应用。

本文将详细介绍膜片弹簧离合器的构造、工作原理以及其在毕业设计中的应用。

通过对膜片弹簧离合器的探究,我们可以更好地理解其内部结构、力学特性及运行机制,并且能够应用于毕业设计项目中。

1.2 文章结构本文共分为五个主要部分:引言、膜片弹簧离合器的构造和工作原理、膜片弹簧离合器在毕业设计中的应用、实验与结果分析以及结论和展望。

首先,在引言部分,我们将给出本文的概述,并介绍文章的整体结构,帮助读者对全文有一个清晰的认识。

接下来,在第二部分,我们将详细讨论膜片弹簧离合器的构造和工作原理。

首先进行概述,介绍膜片弹簧离合器的基本概念和重要性。

然后,我们将详细探讨膜片弹簧离合器的组成部分以及各个部分的功能。

最后,我们将深入了解膜片弹簧离合器的工作原理,解释其如何实现发动机与传动系统之间的连接和断开。

第三部分将重点讨论膜片弹簧离合器在毕业设计中的应用。

我们将介绍毕业设计的背景,并详细描述在该设计中选择和参数设定膜片弹簧离合器的过程。

此外,我们还会探讨如何利用仿真和优化技术来改善毕业设计中膜片弹簧离合器的性能。

在第四部分,我们将进行实验与结果分析。

我们将设计实施一系列实验,并对实验结果进行详细分析。

通过这些实验与结果分析,我们可以评估膜片弹簧离合器在毕业设计中的性能表现,并更好地了解其优势和局限性。

最后,在第五部分,我们将总结全文并给出结论和展望。

我们会总结本次毕业设计取得的成果,并阐明其对相关领域的贡献。

同时,我们也会指出一些存在的问题,并提出未来改进的方向和展望。

1.3 目的本文的主要目的是全面介绍膜片弹簧离合器的构造、工作原理以及其在毕业设计中的应用。

同时,通过对膜片弹簧离合器进行实验与结果分析,探究其性能表现和优化空间。

轿车膜片弹簧离合器的设计

轿车膜片弹簧离合器的设计

轿车膜片弹簧离合器的设计一、绪论随着现代汽车工业的飞速发展,轿车作为交通工具已经深入到人们生活的方方面面。

作为轿车核心部件之一的离合器,其性能直接影响到车辆的驾驶舒适性、安全性和经济性。

在众多离合器类型中,膜片弹簧离合器因其结构简单、可靠性高、维护方便等优点,在轿车领域得到了广泛应用。

本文旨在对轿车膜片弹簧离合器的设计进行深入探讨,分析其工作原理、设计要点及优化方向,为我国轿车离合器设计领域提供理论参考和技术支持。

膜片弹簧离合器作为一种典型的轿车离合器,其主要功能是连接和断开发动机与变速器之间的动力传递。

当离合器接合时,发动机的动力通过离合器传递给变速器,进而驱动车轮当离合器分离时,发动机与变速器之间的动力传递中断,使车轮得以自由转动。

膜片弹簧离合器的设计涉及到多个方面,包括弹簧材料的选择、弹簧的形状和尺寸、离合器片的材料及热处理工艺等。

这些设计要素对离合器的性能有着至关重要的影响。

本文将从以下几个方面对轿车膜片弹簧离合器的设计进行论述:介绍膜片弹簧离合器的工作原理和结构特点分析影响离合器性能的关键设计因素探讨如何通过优化设计提高离合器的性能结合实际案例,分析现有膜片弹簧离合器设计的优点和不足,并提出改进方向。

二、轿车离合器设计基础理论离合器是汽车传动系统中的重要组成部分,其性能直接影响到汽车的动力传递和行驶平稳性。

轿车膜片弹簧离合器作为现代轿车的主流选择,其设计理论涉及力学、材料学、摩擦学等多个领域。

力学原理:离合器的主要功能是在发动机与传动系统之间传递或切断动力。

当离合器结合时,膜片弹簧的弹性变形产生的压力使摩擦片紧密结合,从而传递扭矩当离合器分离时,膜片弹簧恢复形变,摩擦片之间的压力减小,实现动力的切断。

离合器的设计必须确保在各种工作条件下,膜片弹簧能够提供稳定且足够的压力。

材料学考虑:膜片弹簧和摩擦片是离合器的关键部件,其材料的选择直接影响到离合器的性能和寿命。

膜片弹簧通常采用高强度、高弹性的合金钢材料,以确保在承受大负荷时仍能保持稳定的弹性变形摩擦片则要求具有良好的摩擦性能、耐磨性和热稳定性,以保证离合器在高速、高温、高负荷条件下仍能正常工作。

膜片弹簧离合器设计说明书解析

膜片弹簧离合器设计说明书解析

摘要汽车离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。

在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。

其功用为:(1)使汽车平稳起步;(2)中断给传动系的动力,配合换档;(3)防止传动系过载。

膜片弹簧离合器是近年来在轿车和轻型汽车上广泛采用的一种离合器,它的转矩容量大而且较稳定,操作轻便,平衡性好,也能大量生产,对于它的研究已经变得越来越重要。

此设计说明书详细的说明了轻型汽车膜片弹簧离合器的结构形式,参数选择以及计算过程。

本文主要是对载重2吨轻型汽车的膜片式弹簧离合器进行设计。

根据车辆使用条件和车辆参数,按照离合器系统的设计步骤和要求,主要进行了以下工作:选择相关设计参数主要为:摩擦片外径D的确定,离合器后备系数 的确定,单位压力p的确定。

并进行了总成设计主要为:分离装置的设计,以及从动盘设计(从动盘毂的设计)和圆柱螺旋弹簧设计等。

关键词:离合器, 膜片弹簧, 从动盘, 压盘, 摩擦片ABSTRACTAutomobile Clutch in the engine and gearbox between the flywheel shell, with screw will be fixed in the clutch assembly after the plane of the flywheel, clutch gearbox output shaft is the input shaft。

In the process of moving vehicle, the driver may need Pedal or release the clutch pedal so that the engine and gearbox temporary separation and progressive joint, to cut off the engine or transmission to the transmission input power. Its function as: (1) the car a smooth start, (2) to interrupt the transmission of power to meet the shift, (3) to prevent transmission of the overload.In recent years theca spring clutch is a kind of clutch that widely Adopted in vehicle and light vehicle . It has great capacity of torque And more stabley ,manipulate easy and convenient ,well equilibrium ,And also can produce batch .so the research of the clutch is more and more important . This design manual elaborated on the construction form,parametre choose and process of calculate of the light vehicle.This paper is the single-car theca spring clutch design. According to traffic conditions and vehicle parameters, in accordance with the clutch system of steps and requirements, mainly for the following work:Select the design for the main parameters: the determination of friction-diameter D, the determining factor clutch reserve , the pressure on the units identified P. And the design of the main assembly: the separation device design, set design and follower (the hub-driven design) and cylindrical coil spring design,and so on.KEY WDRDS: clutch , theca spring, driven plate , friction discII绪言汽车是重要的交通运输工具,是科学技术发展水平的标志,随着现代生活的节奏越来越快,人们对交通工具的要求也越来越高。

(完整版)膜片弹簧离合器的设计与分析

(完整版)膜片弹簧离合器的设计与分析

(完整版)膜⽚弹簧离合器的设计与分析膜⽚弹簧离合器的设计与分析第⼀章离合器概述1.1离合器的简介:联轴器、离合器和制动器是机械传动系统中重要的组成部分,共同被称为机械传动中的三⼤器。

它们涉及到了机械⾏业的各个领域。

⼴泛⽤于矿⼭、冶⾦、航空、兵器、⽔电、化⼯、轻纺和交通运输各部门。

离合器是⼀种可以通过各种操作⽅式,在机器运⾏过程中,根据⼯作的需要使两轴分离或结合的装置。

对于以内燃机为动⼒的汽车,离合器在机械传动系中是作为⼀个独⽴的总成⽽存在的,它是汽车传动系中直接与发动机相连的总成。

⽬前,各种汽车⼴泛采⽤的摩擦离合器是⼀种依靠主从动部分之间的摩擦来传递动⼒且能分离的装置。

它主要包括主动部分、从动部分、压紧机构、和操纵机构等四部分。

离合器作为⼀个独⽴的部件⽽存在。

它实际上是⼀种依靠其主、从动件之间的摩擦来传递动⼒且能分离的机构,见图1-1离合器⼯作原理图图1-1离合器⼯作原理图1—飞轮;2—从动盘;3—离合器踏板;4—压紧弹簧;5—变速器第⼀轴;6—从动盘毂1.2汽车离合器的主要的功⽤:1.保证汽车平稳起步:起步前汽车处于静⽌状态,如果发动机与变速箱是刚性连接的,⼀旦挂上档,汽车将由于突然接上动⼒突然前冲,不但会造成机件的损伤,⽽且驱动⼒也不⾜以克服汽车前冲产⽣的巨⼤惯性⼒,使发动机转速急剧下降⽽熄⽕。

如果在起步时利⽤离合器暂时将发动机和变速箱分离,然后离合器逐渐接合,由于离合器的主动部分与从动部分之间存在着滑动磨擦的现象,可以使离合器传出的扭矩由零逐渐增⼤,⽽汽车的驱动⼒也逐渐增⼤,从⽽让汽车平稳地起步。

2.便于换档:汽车⾏驶过程中,经常换⽤不同的变速箱档位,以适应不断变化的⾏驶条件。

如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传动⼒齿轮会因载荷没有卸除,其啮合齿⾯间的压⼒很⼤⽽难于分开。

另⼀对待啮合齿轮会因⼆者圆周速度不等⽽难于啮合。

即使强⾏进⼊啮合也会产⽣很⼤的齿端冲击,容易损坏机件。

膜片弹簧离合器设计说明书

膜片弹簧离合器设计说明书

膜片弹簧离合器设计说明书简介膜片弹簧离合器作为一种常用的传动装置,广泛应用于各种各样的机械设备中,其主要功能就是实现不同轴之间的连接与分离。

在这篇说明书中,我们将会详细介绍膜片弹簧离合器的设计原理和设计要点,并详细地讲解其具体实现方法和操作注意事项。

设计原理膜片弹簧离合器是通过借助膜片弹性变形来实现轴之间的连接、分离和变速的一种离合器,其主要原理可以概括为以下几点:•在膜片上注入压力,通过其弹性变形机制,使离合器连接。

•在膜片表面施加分离力,使离合器断开。

•在膜片变形时,通过制动软件来调整离合器的变速特性。

设计要点为了保证膜片弹簧离合器的正常工作和良好的性能,需要对其设计时要注意以下要点:驱动扭矩的确定要根据所要应用的机器设备的具体需求来确定膜片弹簧离合器的驱动扭矩。

这一点需要仔细地进行测试和计算,以确保其能够满足实际需求。

膜片的选择膜片是膜片弹簧离合器的核心部件,其质量和强度直接影响整个离合器的性能。

膜片的选择需要根据需求来确定其尺寸、材料和型号等参数。

制动软件的选用制动软件是膜片弹簧离合器的重要组成部分,其质量和设计直接影响离合器的变速特性。

因此,在设计时必须详细考虑制动软件的参数、工艺和质量问题。

具体实现方法了解了膜片弹簧离合器的设计要点之后,下面我们将介绍一下具体的实现方法和操作流程。

装配前的准备工作在进行装配工作之前,我们需要对膜片弹簧离合器的各个部件进行检查和清洁,以确保其质量和工作安全。

同时,也需要对装配环境进行清洁和消毒,以保证零部件不受到污染。

确定膜片的安装位置膜片的安装位置必须要确定,一般是在离合器盘板的中心位置。

在安装之前,需要将膜片按照设计要求进行预弯曲处理。

检查膜片的合适性在安装膜片之前,需要检查膜片的质量和合适性。

在检查时,需要检查其外观、尺寸、弹性检测等行为。

安装制动软件安装制动软件是整个装配过程中非常关键的一个环节,需要认真按照设计要求进行操作。

在安装制动软件时,需要掌握正确的操作方法,以确保制动软件安装的稳定性和可靠性。

膜片弹簧离合器概述及设计

膜片弹簧离合器概述及设计

膜片弹簧离合器概述膜片弹簧离合器是用膜片弹簧代替了一般螺旋弹簧以及分离杆机构而做成的离合器,因为它布置在中央,所以也可算中央弹簧离合器。

根据对膜片弹簧与螺旋弹簧特性曲线的对比,膜片弹簧分离时的压力小于接合时的压力。

当摩擦片变薄,螺旋弹簧弹性下降,而膜片弹簧弹力几乎不变,膜片弹簧具有自动调节压紧力的特点膜片弹簧的弹性压力几乎与转速无关,具有高速时压紧力稳定的特点。

膜片弹簧的轴向尺寸较小而径向尺寸很大,这有利于在提高离合器传递转矩能力的情况下减小离合器的轴向尺寸。

膜片弹簧的分离指起分离杠杆的作用,故不需要专门的分离杠杆,使离合器的结构大大简化,零件数目减少,质量轻。

由于膜片弹簧轴向尺寸小,所以可以适当增加压盘的厚度,提高热容量;而且还可以在压盘上增设散热筋及在离合器盖上开设较大的通风孔来改善热条件。

膜片弹簧离合器的主要部件形状简单,可以采用冲压加工,大批量生产时可以降低成本。

由于膜片弹簧离合器具有上述一系列优点,并且制造膜片弹簧离合器的工艺水平在不断提高,因此这种离合器在轿车及微型、轻型客车上得到广泛运用,而且正大力扩展到载货汽车和重型汽车上,国外已经设计出了传递转矩为80~~2000N.m、最大摩擦片外径达420的膜片弹簧离合器系列,广泛用于轿车、客车、轻型和中型货车上。

甚至某些总质量达28~32t 的重型汽车也有采用膜片弹簧离合器的,但膜片弹簧的制造成本比圆柱螺旋弹簧要高。

膜片弹簧离合器的操纵曾经都采用压式机构,即离合器分离时膜片弹簧弹性杠压杆内端的分离指处是承受压力。

当前膜片弹簧离合器的操纵机构已经为拉式操纵机构所取代。

后者的膜片弹簧为反装,并将支承圈移到膜片弹簧的大端附近,使结构简化,零件减少、装拆方便;膜片弹簧的应力分布也得到改善,最大应力下降;支承圈磨损后仍保持与膜片的接触使离合器踏板的自由行程不受影响。

而在压式结构中支承圈的磨损会形成间隙而增大踏板的自由行程。

拉式膜片弹簧离合器的优点与推式相比,拉式膜片弹簧离合器具有许多优点:取消了中间支承各零件,并不用支承环或只用一个支承环,使其结构更简单、紧凑,零件数目更少,质量更少;拉式膜片弹簧是中部与压盘相压在同样压盘尺寸的条件下可采用直径较大的膜片弹簧,提高了压紧力与传递转矩的能力,且并不增大踏板力,在传递相同的转矩时,可采用尺寸较小的结构;在接合或分离状态下,离合器盖的变形量小,刚度大,分离效率更高;拉式的杠杆比大于推式的杠杆比,且中间支承减少了摩擦损失,传动效率较高,踏板操纵更轻便,拉式的踏板力比推式的一般可减少约;无论在接合状态或分离状态,拉式结构的膜片弹簧大端与离合器盖支承始终保持接触,在支承环磨损后不会形成间隙而增大踏板自由行程,不会产生冲击和哭声;使用寿命更长。

膜片式弹簧离合器的设计说明书1

膜片式弹簧离合器的设计说明书1

目录前言 (2)一、离合器概述 (3)1.1离合器设计的基本要求 (3)1.2膜片弹簧离合器结构 (3)1.3膜片弹簧离合器的优点 (4)二、离合器摩擦片参数的确定 (4)2.1摩擦片参数的选择 (4)2.2摩擦片基本参数的约束条件 (8)三、膜片弹簧的设计 (10)3.1膜片弹簧基本参数的选择 (10)3.2膜片弹簧的弹性特性曲线 (11)3.3膜片弹簧基本参数的约束条件 (13)3.4膜片弹簧强度计算与校核 (14)四、扭转减振器的设计 (15)4.1扭转减振器主要参数 (15)4.2减振弹簧的计算 (17)五、离合器其他主要部件的结构设计 (19)5.1从动盘毂的设计 (20)5.2从动片的设计 (20)5.3离合器盖结构设计 (20)5.4压盘的设计 (21)六、离合器的操纵机构 (22)6.1离合器操纵机构的要求 (22)6.2操纵机构型式的选择 (22)七、设计小结 (22)八、参考文献 (23)前言对于以内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,它是汽车传动系中直接与发动机相连接的总成。

目前,各种汽车广泛采用的摩擦离合器是一种依靠主、从动部分之间的摩擦来传递动力且能分离的装置。

它主要包括主动部分、从动部分、压紧机构和操纵机构等四部分。

主、从动部分和压紧机构是保证离合器处于接合状态并能传递动力的基本结构,操纵机构是使离合器主、从动部分分离的装置。

随着我国自动档轿车的增加,我国传统离合器行业的发展前景日益担忧,不少企业都在寻求新的持续发展的途径。

DCT技术在中国良好的发展前景,将使我国摩擦片汽车离合器行业获得新的发展机遇。

但是,市场竞争也很激烈,长春一东是国内汽车离合器制造行业龙头企业,已形成75万套的生产力,是国内规模最大,系列最宽的离合器生产厂家,行业地位较高。

公司在主机配套市场处于龙头地位,面向全国64家主机厂供货,占领了国内中重型商用车市场的半壁江山。

第三章 膜片弹簧离合器第一节膜片式离合器的结构与工作原理

第三章  膜片弹簧离合器第一节膜片式离合器的结构与工作原理

第三章膜片弹簧离合器第一节膜片式离合器的结构与工作原理陕汽新M3000系列重卡选用膜片弹簧离合器。

所谓膜片弹簧离合器就是用一个整体式的膜片弹簧代替螺旋弹簧和分离杠杆(分离压爪)°WP10系列发动机选装直径©430毫米的膜片弹簧离合器,WP6、WP7系列发动机选装直径©395毫米的膜片弹簧离合器,就是说新M3000重卡的离合器的从动盘(摩擦片)直径为©430毫米或©395毫米。

图3-0离合器操作系统整体空间布局图踏板紧固螺栓拧紧力矩为:21-25Nm,分泵安装螺栓拧紧力矩为:41-51Nm。

一、膜片弹簧离合器结构和工作原理膜片弹簧离合器有两种操纵形式,一种是推式,另一种是拉式。

所谓推式离合器,就是与常规离合器相同,离合器分离轴承向前推动膜片弹簧使离合器分离,而拉式离合器是分离轴承向后拉动膜片弹簧使离合器分离图3-1就是推式离合器的压盘总成,图3-2所示为拉式离合器压盘总成。

图3-1推式离合器压盘总成图3-2拉式离合器压盘总成1、推式离合器1.从动盘2.飞轮3.压盘4.膜片弹簧5.分离轴承6.分离拐臂7.压盘壳8.分离轴承壳9.飞轮壳10.离合器工作缸(分泵)11•推杆图3-3推式离合器结构示意图图3-3和3-4分别给出推式离合器结构和原理简图。

如图3-3,推式离合器与常规的螺旋弹簧离合器结构相近,只是用一只膜片弹簧代替了螺旋弹簧和分离杠押分离压爪)。

膜片弹簧4是一个鼓形弹簧,在内圈圆周上开有若干槽,它一方面起到将压盘3紧紧地将从动盘1压紧在飞轮2上的作用,同时又起到分离杠杆的作用。

如图3-5,与常规螺旋弹簧离合器不同的是,膜片弹簧离合器在圆周上布置有四片联接压盘壳和压盘的传动片。

每个传动片都是由四片弹性刚片组成。

它的作用是将发动机旋转的动力传递给压盘,从而使压紧的压盘和飞轮共同带动从动盘摩擦片共同旋转。

1.从动盘2.飞轮3.压盘4.膜片弹簧5.分离轴承6.分离拐臂7.压盘壳8.分离轴承壳9.飞轮壳10.离合器工作缸(分泵)11•推杆图3-4推式离合器工作原理图图3-5压盘壳与压盘之间的传动片如图3-3和3-4,膜片4靠弹力将压盘3和从动盘摩擦片1紧紧地压紧在飞轮2的表面上。

汽车膜片弹簧离合器的设计

汽车膜片弹簧离合器的设计

汽车膜片弹簧离合器的设计一、引言汽车膜片弹簧离合器是汽车传动系统的重要组成部分,其设计关系到汽车的性能和安全。

本文将从以下几个方面对汽车膜片弹簧离合器的设计进行详细介绍。

二、汽车膜片弹簧离合器的原理汽车膜片弹簧离合器是利用摩擦力传递动力的装置,其主要由压盘、隔板、摩擦片和膜片等部分组成。

当驾驶员将离合器踏板松开时,压盘受到弹簧力的作用向前移动,摩擦片与飞轮之间断开接触,发动机与变速器之间不再传递动力。

当驾驶员将离合器踏板踩下时,压盘受到液压或机械作用向后移动,摩擦片与飞轮之间接触,发动机与变速器之间开始传递动力。

三、汽车膜片弹簧离合器的设计参数1. 接触面积:接触面积决定了摩擦力大小和分布均匀性。

一般情况下,接触面积越大,摩擦力越大,但过大的接触面积会导致磨损加剧和传动效率降低。

2. 压力角:压力角是指摩擦片与飞轮之间的夹角。

一般情况下,压力角越小,摩擦力越大。

但过小的压力角会导致离合器打滑和磨损加剧。

3. 离合器行程:离合器行程是指压盘移动的距离。

一般情况下,离合器行程越小,踏板力度越轻。

但过小的离合器行程会导致离合器不灵敏或打滑。

4. 离合器扭矩容量:离合器扭矩容量是指离合器能够承受的最大扭矩。

一般情况下,离合器扭矩容量越大,车辆性能越好。

但过大的离合器扭矩容量会导致传动系统抗拉强度不足和零部件寿命缩短。

四、汽车膜片弹簧离合器的设计流程1. 确定设计参数:根据车辆类型、发动机功率和扭矩等因素,确定离合器的设计参数。

2. 选取材料:根据离合器的工作环境和要求,选取适当的材料。

一般情况下,离合器压盘和隔板采用高强度钢板,摩擦片采用高温耐磨材料,膜片采用高强度橡胶材料。

3. 绘制图纸:根据设计参数和选取的材料绘制离合器的图纸。

4. 制造样品:根据绘制的图纸制造离合器样品,并进行试验验证。

5. 优化设计:根据试验结果对离合器进行优化设计,直至达到预期效果。

五、汽车膜片弹簧离合器的常见问题及解决方法1. 离合器打滑:可能是由于接触面积过小、压力角过小或摩擦片磨损等原因导致。

答辩轻型载货汽车膜片弹簧离合器设计

答辩轻型载货汽车膜片弹簧离合器设计

优化设计
根据分析结果,对膜片弹簧的形状和尺寸 进行优化设计,以提高其性能和可靠性。
优化结果和改进
01
02
03
04
提高传递扭矩
通过优化膜片弹簧的形状和材 料,提高了离合器的传递扭矩
,减少了打滑现象。
降低重量
采用轻量化材料和优化结构, 成功降低了离合器的重量,提
高了整车的燃油经济性。
减小尺寸
优化后的膜片弹簧尺寸减小, 使离合器更加紧凑,方便了安
性能测试方法
01
02
03
摩擦性能测试
通过在实验室条件下对离 合器摩擦片进行摩擦系数 和磨损率的测试,以评估 离合器的摩擦性能。
强度和疲劳测试
通过施加循环载荷来测试 离合器的强度和疲劳寿命, 以评估离合器在不同工况 下的耐用性。
振动和噪声测试
通过测量离合器在不同工 作状态下的振动和噪声水 平,以评估离合器的动态 特性。
建立膜片弹簧离合器的数学模型,进 行静力学和动力学分析,优化设计参 数。
试验验证
制作样机并进行试验验证,对试验结 果进行分析和评估,对设计方案进行 优化和改进。
设计结果和特点
轻量化设计
高传递效率和稳定性
采用轻量化材料和结构优化设计,降低离 合器的重量,提高车辆的燃油经济性。
膜片弹簧离合器具有较高的传递效率和稳 定性,能够满足轻型载货汽车在各种工况 下的动力传递需求。
低生产成本。
设计需求和目标
满足轻型载货汽车的动力传递需求
01
膜片弹簧离合器需要能够承受轻型载货汽车在各种工况下的动
力传递,确保稳定性和可靠性。
优化离合器性能
02
通过设计优化,提高膜片弹簧离合器的使用寿命、传递效率和

膜片弹簧最大磨损压紧力会

膜片弹簧最大磨损压紧力会

膜片弹簧最大磨损压紧力会一、引言膜片弹簧作为离合器的重要组成部分,其性能对离合器的使用效果具有重大影响。

其中,膜片弹簧的最大磨损压紧力是一项关键参数,直接关系到离合器的使用寿命和驾驶性能。

本篇文档将对膜片弹簧的最大磨损压紧力进行详细分析。

二、膜片弹簧的结构与工作原理膜片弹簧采用碟形设计,通过圆锥形的弹性变形实现压紧力。

当离合器结合时,膜片弹簧将压盘压向从动盘,从而实现动力的传递。

膜片弹簧的优点在于其结构简单、压紧力稳定且重量轻。

三、膜片弹簧最大磨损压紧力的影响因素1.材料质量:膜片弹簧的材料决定了其耐磨性和耐久性。

高品质的材料能够提高膜片弹簧的最大磨损压紧力,从而延长离合器的使用寿命。

2.制造工艺:制造过程中的热处理、表面处理等工艺对膜片弹簧的性能有重要影响。

合理的工艺控制可以提高膜片弹簧的硬度和耐磨损性能,从而提高其最大磨损压紧力。

3.使用环境:使用环境中的温度、湿度、污染物等因素都会对膜片弹簧的磨损产生影响。

高温、高湿度和污染物会增加膜片弹簧的磨损速度,降低其最大磨损压紧力。

四、提高膜片弹簧最大磨损压紧力的措施1.选用优质材料:采用高强度、耐磨性好的材料,如特殊合金钢或钛合金等,能够显著提高膜片弹簧的最大磨损压紧力。

2.优化制造工艺:通过优化热处理和表面处理工艺,提高膜片弹簧的硬度和耐磨损性能,从而提高其最大磨损压紧力。

3.加强使用维护:定期更换润滑油和清洗离合器,保持使用环境的清洁,可以有效减缓膜片弹簧的磨损速度,延长离合器的使用寿命。

五、结论通过对膜片弹簧最大磨损压紧力的分析,我们可以了解其影响因素和优化措施。

在实际应用中,应综合考虑材料质量、制造工艺和使用环境等多个因素,以提高膜片弹簧的最大磨损压紧力,从而延长离合器的使用寿命并保障驾驶性能。

未来,随着新材料和新工艺的发展,膜片弹簧的性能将得到进一步提升,为离合器的优化提供更多可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

膜片弹簧离合器的设计与分析第一章离合器概述1.1离合器的简介:联轴器、离合器和制动器是机械传动系统中重要的组成部分,共同被称为机械传动中的三大器。

它们涉与到了机械行业的各个领域。

广泛用于矿山、冶金、航空、兵器、水电、化工、轻纺和交通运输各部门。

离合器是一种可以通过各种操作方式,在机器运行过程中,根据工作的需要使两轴分离或结合的装置。

对于以内燃机为动力的汽车,离合器在机械传动系中是作为一个独立的总成而存在的,它是汽车传动系中直接与发动机相连的总成。

目前,各种汽车广泛采用的摩擦离合器是一种依靠主从动部分之间的摩擦来传递动力且能分离的装置。

它主要包括主动部分、从动部分、压紧机构、和操纵机构等四部分。

离合器作为一个独立的部件而存在。

它实际上是一种依靠其主、从动件之间的摩擦来传递动力且能分离的机构,见图1-1离合器工作原理图图1-1离合器工作原理图1—飞轮;2—从动盘;3—离合器踏板;4—压紧弹簧;5—变速器第一轴;6—从动盘毂1.2汽车离合器的主要的功用:1.保证汽车平稳起步:起步前汽车处于静止状态,如果发动机与变速箱是刚性连接的,一旦挂上档,汽车将由于突然接上动力突然前冲,不但会造成机件的损伤,而且驱动力也不足以克服汽车前冲产生的巨大惯性力,使发动机转速急剧下降而熄火。

如果在起步时利用离合器暂时将发动机和变速箱分离,然后离合器逐渐接合,由于离合器的主动部分与从动部分之间存在着滑动磨擦的现象,可以使离合器传出的扭矩由零逐渐增大,而汽车的驱动力也逐渐增大,从而让汽车平稳地起步。

2.便于换档:汽车行驶过程中,经常换用不同的变速箱档位,以适应不断变化的行驶条件。

如果没有离合器将发动机与变速箱暂时分离,那么变速箱中啮合的传动力齿轮会因载荷没有卸除,其啮合齿面间的压力很大而难于分开。

另一对待啮合齿轮会因二者圆周速度不等而难于啮合。

即使强行进入啮合也会产生很大的齿端冲击,容易损坏机件。

利用离合器使发动机和变速箱暂时分离后进行换档,则原来啮合的一对齿轮因载荷卸除,啮合面间的压力大大减小,就容易分开。

而待啮合的另一对齿轮,由于主动齿轮与发动机分开后转动惯量很小,采用合适的换档动作就能使待啮合的齿轮圆周速度相等或接近相等,从而避免或减轻齿轮间的冲击。

3.防止传动系过载:汽车紧急制动时,车轮突然急剧降速,而与发动机相连的传动系由于旋转的惯性,仍保持原有转速,这往往会在传动系统中产生远大于发动机转矩的惯性矩,使传动系的零件容易损坏。

由于离合器是靠摩擦力来传递转矩的,所以当传动系内载荷超过摩擦力所能传递的转矩时,离合器的主、从动部分就会自动打滑,因而起到了防止传动系过载的作用。

膜片弹簧离合器的优点:(1)、弹簧压紧力均匀,受离心力影响小(2)、即使摩擦片磨损,压紧负荷也不减小(3)、离合器结构简单,轴向尺寸小,动平衡性能好由于离合器上述三方面的功用,使离合器在汽车结构上有着举足轻重的地位。

然而早期的离合器结构尺寸大,从动部分转动惯量大,引起变速器换档困难,而且这种离合器在结合时也不够柔和,容易卡住,散热性差,操纵也不方便,平衡性能也欠佳。

因此为了克服上述困难,可以选择膜片弹簧离合器,它的转矩容量大且较稳定,操纵轻便,平衡性好,也能大量生产,对于它的研究已经变得越来越重要。

第二章膜片弹簧离合器结构分析与计算2.1膜片弹簧离合器的结构:图2-1 膜片弹簧离合器(剖视图1)图2-2 膜片弹簧离合器(剖视图2)图2-3膜片弹簧离合器的工作原理图(a ) 自由状态; (b )压紧状态; (c )分离状态(a) 一般压式操纵 (b)拉式操纵图2-42.2 设计变量:后备系数β取决于离合器工作压力F 和离合器的主要尺寸参数D 和d 。

单位压力P 也取决于离合器工作压力F 和离合器的主要尺寸参数D 和d 。

因此,离合器基本参数的优化设计变量选为:TT FDd x x x X ][][321==2.3 目标函数:离合器基本参数优化设计追求的目标,是在保证离合器性能要求的条件下使其结构尺寸尽可能小,即目标函数为:)](4min[)(22d D x f -=π2.4 约束条件1.最大圆周速度:根据《汽车设计》(王望予编著,机械工业出版社出版)式(2-10)知:sm D n v e D /70~6510603max ≤⨯=-π式中,D v 为摩擦片最大圆周速度(m/s ); max e n为发动机最高转速(r/min )所以:sm s m D n v e D /70/6810225580060106033max <≈⨯⨯⨯=⨯=--ππ,故符合条件。

2.摩擦片内、外径之比cc=667.0225150==D d ,满足0.5370.0≤≤c 的条件范围。

3.后备系数β对于1.8L 排量的小轿车,初选后备系数β=1.3 4.扭转减振器的优化对于摩擦片内径d=150mm, 而减振器弹簧位置半径R0=(0.6~0.75)d/2,故取:R0=0.65d/2=0.6575.482150=⨯(mm),取:R0为48mm所以:d-2R0=150-2×48=54mm>50mm故符合d>2R0+50mm 的优化条件 5.单位摩擦面积传递的转矩c0Tc0T =][)(4022c T d D Z Tc≤-π根据《汽车设计》(王望予编著,机械工业出版社出版)式(2-7)知,Tc=max e T β=1.3×195=253.5(N ·m)故:c0T =)150225(25.253422-⨯⨯⨯π0057.0≈(N·m /2mm )根据根据《汽车设计》(王望予编著,机械工业出版社出版)表(2-5)知, 当摩擦片外径D>210-225mm 时,]Tc0[=0.30 N ·m /2mm >0.0057 N ·m /2mm ,故符合要求 6.单位压力P为降低离合器滑磨时的热负荷,防止摩擦片损伤,选取单位压力0P 的最大范围为0.15~.35Mpa ,由于已确定单位压力0P =0.25Mpa ,在规定范围内,故满足要求第三章 膜片弹簧的设计3.1膜片弹簧的基本参数的选择1.比值h H和h 的选择:为了保证离合器压紧力变化不大和操纵轻便,汽车离合器用膜片弹簧的hH一般为1.5~2.0,板厚h 为2~4mm故初:h=2.6mm, h H=1.54则H=1.54h=4.3mm.2.r R比值和R 、r 的选择:由于摩擦片平均半径:Rc=)(75.9341502254mm d D =+=+,对于推式膜片弹簧的R 值,应满足关系R ≥Rc=93.75mm. 故取R=105mm,再结合实际情况取R/r=1.257,则r=83.5mm 。

3.α的选择:α=arctanH/(R-r)=arctan4.3/(105-83.5)≈11.46°,满足9°~15°的范围。

4.分离指数目n 的选取取:n=18。

5.膜片弹簧小端内半径0r 与分离轴承作用半径f r 的确定0r 由离合器的结构决定,其最小值应大于变速器第一轴花键的外径。

由《机械设计》d=Kd 3max Te 公式,可求得d=24.355mm,则取0r =25mm,再取分离轴承f r =30mm.6.切槽宽度δ1、δ2与半径e r取:δ1=3.2mm, δ2=10mm, e r 满足r-e r >=δ2,则e r <=r-δ2=83.5-10=73.5mm故取:e r =72mm.7.压盘加载点半径R1和支承环加载点半径r1的确定根据《汽车设计》(王望予编著,机械工业出版社出版)知,R1和r1需满足下列条件:711≤-≤R R610≤-≤r r故选择R1=103mm , r1=84mm.3.2 膜片弹簧的弹性特性曲线假设膜片弹簧在承载过程中,其子午线刚性地绕上地某中性点转动。

设通过支承环和压盘加载膜片弹簧上地载荷P1(N)集中在支承点处,加载点间的相对轴向变形为x1(mm),则膜片弹簧的弹性特性如下式表示:⎥⎦⎤⎢⎣⎡+-------⎥⎦⎤⎢⎣⎡-==222)1121)(111()11()/ln()1(61)1(1h r R r R x H r R r R x H r R r R b Ehx x f P π式中:E ――弹性模量,钢材料取E=2.0×510Mpa ;b ――泊松比,钢材料取b=0.3;R ――自由状态下碟簧部分大端半径,mm ;r ――自由状态下碟簧部分小端半径,mm ;R1――压盘加载点半径,mm;r1――支承环加载点半径,mm;H――自由状态下碟簧部分内截锥高度,mm;h――膜片弹簧钢板厚度,mm。

利用Matlab软件进行P1-x1特性曲线的绘制,程序和图形如下:程序如下:x1=0:0.2:7;%x1为膜片弹簧在压盘接触点处的轴向变形E=2.0*10^5;%弹性模量(Mpa)b=0.3;%泊松比R=105;%自由状态下碟簧部分大端半径(mm)r=83.5;%自由状态下碟簧部分小端半径(mm)H=4.3;%自由状态下碟簧部分内截锥高度(mm)h=2.6;%膜片弹簧钢板厚度(mm)R1=103;%压盘加载点半径(mm)r1=84;%支承环加载点半径(mm)P1=(pi*E*h*x1/(6*(1-b^2)))*log(R/r)/((R1-r1)^2).*((H-x1*((R-r)/( R1-r1))).*(H-(x1/2)*(R-r)/(R1-r1))+h^2);以下用于绘图clfplot(x1,P1,'-b');axis([0,7,0,8000]);%设置坐标hold onhold off,grid onxlabel('变形x1/mm')ylabel('工作压力P1/N')title('P1-x1特性曲线')图形如下:图3-2 P1-x1特性曲线确定膜片弹簧的工作点位置:可以利用Matlab 软件寻找P1-x1特性曲线中M,N的位置坐标,具体程序如下:x1=0:0.2:7;%x1为膜片弹簧在压盘接触点处的轴向变形E=2.0*10^5;%弹性模量(Mpa)b=0.3;%泊松比R=105;%自由状态下碟簧部分大端半径(mm)r=83.5;%自由状态下碟簧部分小端半径(mm)H=4.3;%自由状态下碟簧部分内截锥高度(mm)h=2.6;%膜片弹簧钢板厚度(mm)R1=103;%压盘加载点半径(mm)r1=84;%支承环加载点半径(mm)P1=(pi*E*h*x1/(6*(1-b^2)))*log(R/r)/((R1-r1)^2).*((H-x1*((R-r)/( R1-r1))).*(H-(x1/2)*(R-r)/(R1-r1))+h^2);以下用于绘图clfplot(x1,P1,'-b');axis([0,7,0,8000]);%设置坐标hold onhold off,grid onxlabel('变形x1/mm')ylabel('工作压力P1/N')title('P1-x1特性曲线')zoom out[x,y]=ginput(1)x =2.6694y =5.2515e+003[x,y]=ginput(1)x =4.9767y =4.5195e+003则可知:=M 1λ 2.6694mm ,=M P 1 5.2515003e N +114.9767, 4.5195003N N mm P e N λ==+上述曲线的拐点H 对应着膜片弹簧的压平位置,而且2/)(111N M H λλλ+=则:H 1λ=2.6694 4.9767 3.82302mm +≈ 新离合器在接合状态时,膜片弹簧工作点B 一般取在凸点M 和拐点M 之间,且靠近或在H 点处,一般H B 11)0.1~8.0(λλ= 则取:110.90.9 3.82 3.44B H mm λλ==⨯=则此时校核后备系数β: βmax 52520.2593.752 1.26195000c c e P R Z T μ∑⨯⨯⨯==≈ 满足要求离合器彻底分离时,膜片弹簧大端的变形量为:fM N 111λλλ+=(f 1λ即为压盘的行程)f ∆ 故:11 4.9767 2.6694 2.3073N M f mm λλ∆=-=-=压盘刚开始分离时,压盘的行程:'11 3.8230 2.6694 1.1536H M f mm λλ∆=-=-=3.3 强度校核膜片弹簧大端的最大变形量1 4.9767N mm λ=,由公式:()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⋅+-⨯⎪⎪⎭⎫ ⎝⎛-⋅--⨯⎪⎪⎪⎪⎭⎫ ⎝⎛---+⋅-⋅=11111111122222211ln 13r R r h r R r R r R H r R r r R E h P r r r N N N f B λλλμβπσ得:1626B MPa σ=第四章扭转减振器的设计4.1 扭转减振器主要参数:1.极限转矩Tj根据《汽车设计》(王望予编著,机械工业出版社出版)式(2-31)知,极限转矩受限于减振弹簧的许用应力等因素,与发动机最大转矩有关,一般可取:TTj=(1.5~2.0)maxe对于乘用车,系数取2.0。

相关文档
最新文档