一次函数与一元一次不等式(提高)知识讲解

合集下载

一次函数与一元一次方程不等式

一次函数与一元一次方程不等式

数学集体备课教案
不等式ax+b>c的解集就是使函数y =ax+b 的函数值大于c的对应的自变量取值范围;
不等式ax+b<c的解集就是使函数y =ax+b 的函数值小于c的对应的自变量取值范围.
三、互学展示
例2 画出函数y=-3x+6的图象,结合图象求:
(1)不等式-3x+6>0 和-3x+6<0的解集;
(2)当x取何值时,y<3?
做一做
如图,已知直线y=kx+b与x轴交于点(- 4,0),则当y>0时,x的取值范围是()
归纳总结
求kx+b>0(或<0)(k≠0)的解集,从“函数值”看y=kx+b的值大于(或小于)0时,x的取值范围
求kx+b>0(或<0)(k≠0)的解集, 从“函数图象”看确定直线y=kx+b在x轴上方(或下方)的图象所对应的x 取值范围
四、帮学提升
1.一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为 .
2.学习之友p60第2题学生自行回答
组内练习,组长帮助组员解决问题
x −3
y。

一元一次不等式与一次函数

一元一次不等式与一次函数
(1)设:根据已知条件写出含有待定系数的函数关系式;
(2)列:将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
(3)解:解方程得出未知系数的值;
(4)答:将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.
二、典型例题:
1、若点 在函数 的图象上,则 的值是
(1)当x分别取何值时,y1=y2,y1<y2,y1>y2?
(2)在同一坐标系中,分别作出这两个函数的图像,请你说说(1)中的解集与函数图像之间的关系.
6、某企业急需一辆汽车,但无资金购买,公司经理决定租一辆汽车,使用期限为一个月.甲汽车出租公司的出租条件为每千米的租车费为1.2元,乙汽车出租公司的条件是每月须支付司机800元的工资,另外每千米的租车费为1元,设在这一个月中汽车行驶x(km),租用甲公司的费用为y1(元),租用乙公司的费用为y2(元).
增减性
k>0,y随x的增大而增大;(从左向右上升)
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
4、用待定系数法确定函数解析式的一般步骤:( 设、列、解、答 )
自变量
范 围
x为全体实数
图 象
一条直线
必过点
(0,0)、(1,k)
(0,b)和(- ,0)
走 向
k>0时,直线经过一、三象限;
k<0时,直线经过二、四象限
k>0,b>0,直线经过第一、二、三象限

19.2.3.1一次函数与一元一次方程、不等式教案

19.2.3.1一次函数与一元一次方程、不等式教案
五、教学反思
在今天的教学过程中,我发现学生们对一次函数与一元一次方程、不等式的关系掌握得还算不错。在导入新课环节,通过提问方式引起学生的兴趣,他们能够积极参与,分享自己在生活中遇到的相关问题。但在新课讲授环节,我发现有些学生对一次函数图像与一元一次方程之间的联系还不够理解,需要我在这里多花一些时间进行讲解和举例。
-举例:在计算成本问题时,学生需将问题抽象为一次函数y=2x+3(成本=固定成本+变动成本),然后根据实际问题求解方程或不等式。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《一次函数与一元一次方程、不等式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数关系的问题?”比如,买东西时,如何根据总价和数量来确定单价。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数与一元一次方程、不等式的奥秘。
19.2.3.1一次函数与一元一次方程、不等式教案
一、教学内容
本节课选自教材第19章第2节第3小节,主题为“一次函数与一元一次方程、不等式”。教学内容主要包括以下三个方面:
1.一次函数与一元一次方程的关系ห้องสมุดไป่ตู้引导学生理解一次函数图像上的点都满足一元一次方程,反之亦然。
2.一次函数与一元一次不等式的关系:探讨一次函数图像在不同区间内的取值情况,从而引出一元一次不等式的概念。
2.在实践活动和小组讨论中,部分学生的依赖性较强,需要我多关注并引导他们独立思考。
3.学生在分析问题时容易忽视细节,导致结论不准确,我需要在教学中加强训练学生的观察能力和逻辑思维能力。
针对今天的课堂教学,我认为在今后的教学中,可以从以下几个方面进行改进:

一元一次不等式与一次函数

一元一次不等式与一次函数

一元一次不等式与一次函数【基础知识精讲】1.一元一次不等式与一次函数的关系。

两个一次函数有时根据需要,要比较其函数值的大小,这时问题就转化为一元一次不等式的问题。

另一方面,利用解不等式的方法也可以求出两个一次函数的值的大小。

事实上,不等式与函数和方程是紧密联系的一个整体。

2.一次函数的图象与一元一次不等式的关系。

一次函数y=kx+b(k≠0)的图像是一条直线,当kx+b>0时,表示图像在x轴上方的部分;当kx+b=0时,表示直线与x轴的交点;当kx+b<0时,表示图像在x轴下方的部分。

【考点聚焦】本章一元一次不等式与一次函数是中考热点,随着素质教育的逐步发展,突出了对创新意识的考查,加大了对“三个一次”(即一元一次方程,一次函数,一元一次不等式)综合应用考查及解决实际问题的考查。

题型有选择题、填空题及解决实际问题(多为压轴题)。

【典例精析】例1作出函数y=x-3的图象如图所示,并观察图象回答下列问题:(1)x取哪些值时,y>0;(2)x取哪些值时,y<0;(3)x取哪些值时,y>3。

思路点拨:首先要认清一次函数的图象是一条直线,两点确定一条直线,所以需要知图象上两点的坐标,可取(3,0)和(0,-3)。

解:由图象可知:(1)当x>3时,y>0;(2)当x<3时,y<0;(3)当x>6时,y>3。

评注:(1)两点确定一条直线。

(2)大于往右看,小于往左看。

【试解相关题】兄弟俩赛跑,哥哥先让弟弟跑9米,然后自己才开始跑。

已知弟弟每秒跑3米,哥哥每秒跑4米,列出函数关系式,画出函数图象,观察图象回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?思路点拨:此题两问均牵扯到不等式问题,但需先列函数关系式。

解:设当时间为x秒时,跑过的路为y米,则y哥哥=4x,y弟弟=3x+9如图所示,由图象知9秒前弟弟跑在哥哥前面;9秒后,哥哥跑在弟弟前面。

评注:通过以上两例,体会:刻画运动变化的规律需要用函数模型;刻画运动变化过程中的某一瞬间需要用方程模型。

一次函数的图象和性质(提高)知识讲解

一次函数的图象和性质(提高)知识讲解

= 300 −900
所以 s2 =300 t -900(6<t≤10).
(2)李明返回时所用的时间为 (2100-900)÷(900÷6)+900÷[(2100-900)÷(10-6)]=8+3=11(分钟). 因此,李明返回时所用的时间为 11 分钟.
【总结升华】从图象中获得点的坐标,再用待定系数法求出函数解析式是解题的关键.注意放学途中上 坡路程和下坡路程分别是上学时下坡路程和上坡路程.
在直线 l2 上,点 P2 (x2 , y2 ) 为直线 l1 、 l2 的交点.其中 x2 < x1 , x2 < x3 则( )
A. y1 < y2 < y3 B. y3 < y1 < y2 C. y3 < y2 < y1 D. y2 < y1 < y3
【答案】A; 提示:由于题设没有具体给出两个一次函数的解析式,因此解答本题只能借助于图象.观察直
全体实数
过(0, b )和( − b ,0)点的一条直线 k
k >0
k <0
b>0
b<0
b>0
b<0
经过一、二、三 经过一、三、四 经过一、二、四 经过二、三、四
位置
象限
象限
象限
象限
趋势
从左向右上升
从左向右下降
函数 变化规律
y 随 x 的增大而增大
y 随 x 的增大而减小
3. k 、 b 对一次函数 =y kx + b 的图象和性质的影响:
∴k + b =1.
∴当 k = 1 时, b = 2 , A(−2, 0) ;
3
3
当 k = − 1 时, b = 4 , A(4, 0) .

一元一次不等式与一次函数讲解

一元一次不等式与一次函数讲解

一元一次不等式与一次函数讲解一元一次不等式与一次函数是数学中非常重要的概念,它们在我们的生活中都有广泛的应用。

本文将从定义、性质、解法等多个方面介绍一元一次不等式与一次函数,帮助读者更加深入地理解这两个概念。

一、一元一次不等式一元一次不等式,简单来说,就是只有一个未知量的一次不等式。

比如:ax + b > c,其中a、b、c是已知实数,x是未知实数。

一元一次不等式常常用于解决一些实际问题,比如数量关系、利润计算等。

一、一元一次不等式的性质1. 对于一元一次不等式ax + b > c,如果a > 0,则当x > (c-b)/a时,不等式成立;如果a < 0,则当x < (c-b)/a时,不等式成立。

2. 对于一元一次不等式ax + b < c,如果a > 0,则当x < (c-b)/a时,不等式成立;如果a < 0,则当x > (c-b)/a时,不等式成立。

上述性质可以帮助我们更好地解决一元一次不等式的问题。

二、一次函数一次函数,是指一个函数的自变量只有一个,且函数的表达式是一个一次多项式。

一次函数通常表示成f(x) = kx + b的形式,其中k 和b为常数。

一次函数在实际问题中经常被用到,比如直线运动、物品价格变化等,因为它的表达式简单,易于计算,而且有明确的几何意义。

二、一次函数的性质1. 一次函数的图像是一条直线。

2. 当k > 0时,函数图像单调递增;当k < 0时,函数图像单调递减。

3. 如果k = 0,则函数是一个常函数,图像为一条水平直线;如果b = 0,则函数是一个零函数,图像过原点。

4. 一次函数的x轴截距为-b/k,y轴截距为b。

上述性质有助于我们更好地理解一次函数的性质,同时也为我们解决一些实际问题提供了帮助。

三、一元一次不等式的解法对于一元一次不等式ax + b > c,我们可以通过以下几个步骤来解决:1. 将不等式移项得到ax > c-b。

2023年一次函数与一元一次不等式说课稿

2023年一次函数与一元一次不等式说课稿

2023年一次函数与一元一次不等式说课稿2023年一次函数与一元一次不等式说课稿1一、教材分析(说教材):1、教材所处的地位和作用:本节内容在全书及章节的地位是:《一元一次不等式、一元一次方程、一次函数》是苏科版八下第七章第七节内容。

在此之前,学生已学习了一元一次不等式、一元一次方程、一次函数基础上,这为过渡到本节的学习起着铺垫作用。

本节内容在初中数学学习阶段中,占据重要的`地位,以及为其他学科和今后高中数学学习打下基础。

2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:认识并理解一元一次不等式、一元一次方程、一次函数的内在联系及在解决问题时的不同作用。

(2)、过程与方法通过用一元一次不等式、一元一次方程、一次函数解决问题,培养学生用联系变化的观点看问题的意识及数形结合的解题能力。

(3)情感、态度与价值观通过对解决实际问题的教学,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:本课中一元一次不等式、一元一次方程、一次函数的内在联系是重点,灵活使用一元一次不等式、一元一次方程、一次函数解决实际问题是本课的难点,下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:二:教学策略:教法:据本节课教学内容和八年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,让学生的知识形成网状结构,使知识能相互交融,培养学生触类旁通的能力。

学法:建构主义教学构想的核心思想是:通过问题的解决来学习。

根据本节课的特点,采用自主探究、合作交流的探究式学习方法。

一元一次不等式与一次函数整理

一元一次不等式与一次函数整理

一元一次不等式与一次函数整理一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。

本文将从概念、性质、解法和应用四个方面来介绍一元一次不等式和一次函数。

一、概念一元一次不等式是指只含有一个未知数的一次不等式,例如:ax+b>c,其中a、b、c为已知数,x为未知数。

一次函数是指函数的表达式为y=kx+b,其中k、b为常数,x、y为自变量和因变量。

二、性质1. 一元一次不等式的解集是一个区间,可以用数轴表示出来。

2. 一次函数的图像是一条直线,斜率k表示函数的增长速度,截距b表示函数的起点。

3. 一元一次不等式和一次函数都具有可加性和可减性,即若a>b,则a+c>b+c,a-c>b-c。

三、解法1. 一元一次不等式的解法有两种:图像法和代数法。

图像法是将不等式转化为数轴上的图形,通过观察图形来确定解集。

代数法是通过移项、化简等代数运算来求解。

2. 一次函数的解法是通过求出函数的斜率和截距,然后画出函数的图像,根据图像来确定函数的性质和解析式。

四、应用1. 一元一次不等式和一次函数在经济学中有着广泛的应用,例如:利润、成本、收益等问题都可以用一次函数来描述。

2. 一元一次不等式和一次函数在物理学中也有着重要的应用,例如:速度、加速度、力等问题都可以用一次函数来描述。

3. 一元一次不等式和一次函数在生活中也有着实际的应用,例如:购物打折、优惠券等问题都可以用一元一次不等式来描述,而房价、工资等问题都可以用一次函数来描述。

一元一次不等式和一次函数是初中数学中的重要内容,它们在实际生活中有着广泛的应用。

掌握一元一次不等式和一次函数的概念、性质、解法和应用,对于提高数学素养和解决实际问题都有着重要的意义。

一元一次不等式与一次函数的关系

一元一次不等式与一次函数的关系

一元一次不等式与一次函数的关系
一元一次不等式与一次函数之间有着密切的联系,这一联系表现在以下几个方面:
一、当令一元一次不等式中等号左边的表达式为一次函数时,可以将其化简为一次函数形式:
1. 一元一次方程组:
a. 当一元一次方程组中等式左右两边分别为一次函数时,可以将其化简为一次函数形式。

b. 两个一次方程涉及到同一个未知数时,可以最终得出结果,即将一元一次不等式化简为一次函数的形式。

2. 一元二次不等式:
a. 当一元二次不等式左边为一次函数时,也可以将其化简为一次函数形式。

b. 二次不等式的解也可以表现为一次函数的形式,即分段函数。

二、求解一元一次不等式可以利用一次函数的性质:
1. 关于一元一次方程:
a. 利用一次函数求函数图像实现一元一次方程的求解,从而得到不
等式的解。

b. 利用一次函数的性质验证不等式的正确性,从而得到不等式的解。

2. 关于一元二次方程:
a. 利用一次函数的对称性,判断不等式的大小,从而得到不等式的解。

b. 利用一次函数的单调性,得到不等式上下界,从而得到不等式的解。

综上所述,一元一次不等式与一次函数有着密切的联系,一元一次不
等式可以化简为一次函数形式,求解一元一次不等式也可以利用一次
函数的性质。

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

11.3.1 -11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=-ba。

2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=-3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。

评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y>0时,x的取值范围为x<4,∴不等式-3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式-3x+12≤0的解集为x≥4.(3)当-6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y>0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y<0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x-4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3<3x-4,解得x>74,∴当x>74时,y1<y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:(1)解不等式:5x+4>2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x-6>0,画出直线y=3x-6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6>0,所以不等式的解集为x>2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h 行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x.当y=10时,10=1003x.所以经过0.3h,甲摩托车行驶到A,B两地的中点.评注本题第(1)题是比较速度的大小,这一点可以通过图像提供的数量直接分析出来.第(2)题的关键是要分析出甲摩托车行驶到中点时所行驶的路程为10km.例2已知y=12x-2.(1)x取何值时,y>0?(2)x取何值时,y<0?(3)当x>4时,求y的取值范围.解析作出y=12x-2的图像,如图所示.(1)当x>4时,y>0.(2)当x<4时,y<0.(3)当x>4时,y的取值范围是y>0.评注本题可以通过图像直观地得出结论.综合应用题例1某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~20人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,•甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,再给其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解析设该单位参加这次旅游的人数是x人,选择甲旅行社时所需的费用为y1元,选择乙旅行社时所需的费用为y2元,则y1=200×0.75x,即y1=150x;y2=200×0.8(x-1),即y2=160x-160.由y1=y2,得150x=160x-160,解得x=16;由y1>y2,得150x>160x-160,解得x<16;由y1<y2,得150x<160x-160,解得x>16.因为参加旅游的人数估计为10~20人,所以,当x=16时,甲、•乙两家旅行社的收费相同;当17≤x≤20时,选择甲旅行社费用较少;当10≤x≤15时,选择乙旅行社费用较少.评注已知前提条件,设计方案是解决实际问题的一种常见形式.明确每一种收费方式占优势时对应的自变量的取值范围是解决此类问题的关键,•借助不等式就可确定自变量的取值范围.例2兄弟俩赛距,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,•哥哥每秒跑4m.列出函数关系式,作出函数图像,观察图像回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?解析设哥哥跑了ts,则哥哥所跑的路程与时间的关系式为s1=4t;弟弟所跑的路程与时间的关系为s2=3t+9.图像如图所示.当s1=s2时,4t=3t+9,t=9.(1)当0≤t<9时,弟弟跑在哥哥的前面.(2)当t>9时,哥哥跑在弟弟的前面.(3)∵20<36,∴弟弟先跑过20m.∵100>36,∴哥哥先跑过100m.评注本题可以从时间或路程两个角度进行分析.在同一时间内,谁跑的路程远,谁就在前面,谁就先跑过20m,100m.也可比较他们各自所用的时间,谁用的时间短,•谁就先跑过.本题既可以通过计算来进行比较,也可通过图像直观地进行判断.创新题例(探究题)我边防局接到情报,在离海岸5海里处有一可疑船只A•正向公海方向行驶,边防局迅速派出快艇B追赶.图中L1,L2分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪一个的速度快?(2)至少要用多长时间才能追上可疑船只A?解析由图像可确定L表示快艇B的图像,L表示可疑船只A的图像.(1)快艇10min行驶了5海里,所以其速度为5÷10=0.5(海里/min).可疑船只10min行驶了7-5=2(海里),所以其速度为2÷10=0.2(海里/min).所以快艇B的速度快.(2)设L1的关系式为y1=kx,把(10,5)代入,得5=10k,解得k=0.5,∴y1=0.5x.设L2的关系式为y2=kx+5,把(10,7)代入,得7=10k+5,解得k=0.2,∴y2=0.2x+5.当y1≥y2,即0.5x≥0.2x+5时,0.3x≥5,x≥503.所以至少需要503min,快艇才能追上可疑船只.中考题例(2004年苏州卷)如图,平面直角坐标系中画出了函数y=kx+b的图像.(1)根据图像,求k和b的值.(2)在图中画出函数y=-2x+2的图像.(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.解析(1)∵直线y=kx+b经过点(-2,0),(0,2).∴02,20,k bb=-+⎧⎨=+⎩解得1,2,kb=⎧⎨=⎩∴y=x+2.(2)y=-2x+2经过(0,2),(1,0),图像如图所示.(3)当y=kx+b 的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,•即x 的取值范围为x>0.11.3.1 一次函数与一元一次方程同步练习[要点再现]1.由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。

一元一次不等式与一次函数教案

一元一次不等式与一次函数教案

一元一次不等式与一次函数教案第一章:引言1.1 学习目标理解一元一次不等式与一次函数的概念掌握一元一次不等式与一次函数的关系1.2 教学内容介绍一元一次不等式与一次函数的定义解释一元一次不等式与一次函数的关系1.3 教学活动引入一元一次不等式与一次函数的概念通过实例解释一元一次不等式与一次函数的关系第二章:一元一次不等式的解法2.1 学习目标学会解一元一次不等式2.2 教学内容介绍一元一次不等式的解法讲解解一元一次不等式的步骤2.3 教学活动讲解解一元一次不等式的步骤学生分组练习解一元一次不等式第三章:一次函数的图像3.1 学习目标学会绘制一次函数的图像3.2 教学内容介绍一次函数的图像讲解绘制一次函数图像的方法3.3 教学活动讲解绘制一次函数图像的方法学生分组练习绘制一次函数图像第四章:一元一次不等式与一次函数的应用4.1 学习目标学会应用一元一次不等式与一次函数解决实际问题4.2 教学内容介绍一元一次不等式与一次函数的应用讲解一元一次不等式与一次函数在实际问题中的应用4.3 教学活动讲解一元一次不等式与一次函数在实际问题中的应用学生分组练习解决实际问题5.1 学习目标复习一元一次不等式与一次函数的知识点5.2 教学内容5.3 教学活动进行复习测试,巩固所学知识第六章:一元一次不等式的应用举例6.1 学习目标学会使用一元一次不等式解决实际问题。

6.2 教学内容通过实例讲解一元一次不等式在实际问题中的应用。

分析并解决实际问题。

6.3 教学活动分析实际问题,引导学生运用一元一次不等式进行解决。

学生分组讨论并练习解决实际问题。

第七章:一次函数的性质7.1 学习目标理解一次函数的性质,包括斜率和截距。

7.2 教学内容介绍一次函数的斜率和截距。

讲解一次函数的性质及其影响因素。

7.3 教学活动讲解一次函数的性质及其影响因素。

学生分组练习分析一次函数的性质。

第八章:一次函数图像的变换8.1 学习目标学会分析一次函数图像的平移变换。

八下一元一次不等式与一次函数

八下一元一次不等式与一次函数

一、概述不等式与一次函数作为初中数学的重要内容,是数学中的基础知识之一。

通过学习不等式与一次函数,可以帮助学生更好地理解数学知识,提高数学运算能力,培养数学思维。

在八年级下册中,不等式与一次函数的学习也是一个重点内容,本文将重点介绍八下一元一次不等式与一次函数的相关知识。

二、一元一次不等式的基本概念1. 一元一次不等式的定义一元一次不等式是指一个未知数的一次方程,且不等式关系为大于、小于、大于等于或小于等于。

2. 一元一次不等式的解集一元一次不等式的解集是使不等式成立的所有实数的集合。

解集一般用数轴上的区间表示。

3. 一元一次不等式的性质一元一次不等式的性质包括加减法性质、乘除法性质以及绝对值性质。

这些性质在求解一元一次不等式时起着重要作用。

三、一元一次不等式的解法1. 一元一次不等式的解法求解一元一次不等式时,可以通过加减法、乘除法性质,或者通过绝对值性质来进行变形。

然后求出不等式的解集。

2. 一元一次不等式的解集表示一元一次不等式的解集表示在数轴上的区间,可以用不等号的方向和顶点来表示。

3. 一元一次不等式的解的检验求解一元一次不等式后,需要进行解的检验,即将得到的解集带入不等式中,验证所求解是否正确。

四、一次函数的基本概念1. 一次函数的定义一次函数是指函数y=kx+b,其中k和b是常数,且k≠0。

一次函数的图像是一条直线。

2. 一次函数的图像特征一次函数的图像是一条直线,其斜率k决定了直线的斜率和方向,常数b决定了直线的截距。

3. 一次函数的性质一次函数的性质包括增减性、奇偶性、零点、定义域、值域等。

五、一元一次不等式与一次函数的通联1. 一元一次不等式与一次函数的关系一元一次不等式与一次函数之间存在着密切的通联,通过不等式解的方法可以求出一次函数的定义域和值域,通过一次函数的图像可以帮助理解不等式解集的表示。

2. 一元一次不等式与一次函数的应用一元一次不等式与一次函数的知识可以相互应用,通过一次函数的图像特征可以帮助理解不等式的解集表示,通过不等式解的方法可以求出一次函数的定义域和值域。

一次函数一元一次方程和一元一次不等式讲解

一次函数一元一次方程和一元一次不等式讲解

一次函数一元一次方程和一元一次不等式讲解1.什么是一次函数一次函数,也称为一次多项式函数或线性函数,是指形如$y=a x+b$的函数,其中$a$和$b$是常数,$x$是自变量,$y$是因变量。

一次函数的图像为一条直线,具有特定的斜率和截距。

一次函数的基本形式为$y=ax+b$,其中$a$表示斜率,决定了函数图像的倾斜程度,$b$表示截距,决定了函数图像与$y$轴的交点。

2.一元一次方程的求解等式性质一元一次方程是指只含有一个变量的一次方程。

解一元一次方程的核心思想是通过运用和**方程统一变形原则**,将方程逐步化简,最终得到变量的解。

求解一元一次方程的一般步骤如下:1.对方程中的项进行整理和合并,使得方程成为$a x+b=0$的形式;2.根据方程统一变形原则,将方程中的常数项移至方程的右侧,得到$a x=-b$;3.利用解方程的等式性质,将方程两边同时乘以$\fr ac{1}{a}$,得到$x=\f ra c{-b}{a}$;4.化简得到最终解,即$x$的值。

通过以上步骤,可以求得一元一次方程的解。

3.一元一次不等式的求解等式性质一元一次不等式是指只含有一个变量的一次不等式。

求解一元一次不等式的方法与求解一元一次方程类似,同样可以运用和**不等式统一变形原则**。

求解一元一次不等式的一般步骤如下:1.对不等式中的项进行整理和合并,使得不等式成为$a x+b<c$或$a x+b>c$的形式;2.根据不等式的性质,将常数项移至不等式的右侧;3.根据不等式统一变形原则,将不等式两边同时乘以正数或除以负数,注意在乘或除的过程中要考虑到反号问题;4.根据不等式的性质,得到不等式的最终解。

需要注意的是,在进行不等式符号的翻转时,需要根据乘或除的正负进行对应,以确保不等式符号的方向正确。

4.总结一次函数、一元一次方程和一元一次不等式在数学中起着重要的作用。

掌握了一次函数的概念和性质,以及求解一元一次方程和不等式的方法,能帮助我们更好地理解和解决数学问题。

一次函数与一元一次不等式(基础)知识讲解

一次函数与一元一次不等式(基础)知识讲解

一次函数与一元一次不等式(基础)【学习目标】1.能用函数的观点认识一次函数、一次方程(组)与一元一次不等式之间的联系,能直观地用图形(在平面直角坐标系中)来表示方程(或方程组)的解及不等式的解,建立数形结合的思想及转化的思想.2.能运用一次函数的性质解决简单的不等式问题及实际问题.【要点梳理】要点一、一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点诠释:求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0?从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.要点二、一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.要点三、如何确定两个不等式的大小关系ax b cx d +>+(a ≠c ,且0ac ≠)的解集⇔y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围⇔直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.【典型例题】类型一、一次函数与一元一次不等式1、如图,直线y kx b =+交坐标轴于A (-3,0)、B (0,5)两点,则不等式kx b--<0的解集为( )A .x >-3B .x <-3C .x >3D .x <3【思路点拨】kx b --<0即kx b +>0,图象在x 轴上方所有点的横坐标的集合就构成不等式kx b +>0的解集.【答案】A ;【解析】观察图象可知,当x >-3时,直线y kx b =+落在x 轴的上方,即不等式kx b +>0的解集为x >-3,∵kx b --<0∴kx b +>0,∴kx b --<0解集为x >-3.【总结升华】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.举一反三:【变式】如图,直线y kx b =+与坐标轴的两个交点分别为A (2,0)和B (0,-3),则不等式kx b ++3≥0的解集是( )A .x ≥0B .x ≤0C .x ≥2D .x ≤2【答案】A ;提示:从图象上知,直线y kx b =+的函数值y 随x 的增大而增大,与y 轴的交点为B (0,-3),即当x =0时,y =-3,所以当x ≥0时,函数值kx b +≥-3.2、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为( ).A .1->xB .1-<xC .2-<xD .无法确定【答案】B ;【解析】从图象上看x k b x k 21>+的解,就是找到1l 在2l 的上方的部分图象,看这部分图象自变量的取值范围.当1-<x 时,x k b x k 21>+,故选B.【总结升华】本题考察了用数形结合的方法求解不等式的大小关系,解题的关键是找出表示两条直线的交点的横坐标,再根据在上方的图象表示的函数值大,下方的图象表示的函数值小来解题.举一反三:【变式】直线1l :1y k x b =+与直线2l :2y k x c =+在同一平面直角坐标系中的图象如图所示,则关于x 的不等式1k x b +<2k x c +的解集为( )A .x >1B .x <1C .x >-2D .x <-2【答案】B ;提示:1y k x b =+与直线2l :2y k x c =+在同一平面直角坐标系中的交点是(1,-2),根据图象得到x <1时不等式1k x b +<2k x c +成立.3、画出函数21y x =+的图象,并利用图象求:(1)方程2x +1=0的解;(2)不等式2x +1≥0的解集;(3)当y ≤3时,x 的取值范围;(4)当-3≤y ≤3时,x 的取值范围.【思路点拨】可用两点法先画出函数21y x =+的图象,方程2x +1=0的解从“数”看就是自变量x 取何值时,函数值是0,从“形”看方程2x +1=0的解就相当于确定直线21y x =+与x 轴的交点,故图象与x 轴交点的横坐标就是方程2x +1=0的解.同理:图象在x 轴上方所有点的横坐标的集合就构成不等式2x +1>0的解集.【答案与解析】解:列表:在坐标系内描点(0,1)和1,02⎛⎫-⎪⎝⎭,并过这两点画直线,即得函数21y x =+的图象.如图所示.(1)由图象可知:直线21y x =+与x 轴交点1,02⎛⎫-⎪⎝⎭, ∴ 方程2x +1=0的解为12x =-; (2)由图象可知:直线21y x =+被x 轴在1,02⎛⎫-⎪⎝⎭点分成两部分,在点1,02⎛⎫- ⎪⎝⎭右侧,图象在x 轴的上方.故不等式2x +1≥0的解集为12x ≥-; (3)过点(0,3)作平行于x 轴的直线交直线21y x =+于点M ,过M 点作x 轴的垂线,垂足为N .则N 点坐标为(1,0);从图象上观察,在点(1,0)的左侧,函数值y ≤3,则当y ≤3时,自变量x 的取值范围是x ≤1;(4)过(0,-3)作x 轴的平行线交直线21y x =+于点P ,过P 作x 轴的垂线,垂足为H ,则点H 的坐标为(-2,0).观察图象,在(-2,0)的右侧,在(1,0)的左侧,函数值-3≤y ≤3.∴ 当-3≤y ≤3时,自变量的取值范围是-2≤x ≤1.【总结升华】仔细体会一次函数与一元一次方程及一元一次不等式之间的内在联系:(1)一元一次方程0kx b y +=(0y 是已知数)的解就是直线y kx b =+上0y y =这点的横坐标;(2)一元一次不等式1y ≤kx b +≤2y (1y ,2y 是已知数,且1y <2y )的解集就是直线y kx b =+上满足1y ≤y ≤2y 那条线段所对应的自变量的取值范围;(3)一元一次不等式kx b +≤0y (或kx b +≥0y )(0y 是已知数)的解集就是直线y kx b =+上满足y ≤0y (或y ≥0y )那条射线所对应的自变量的取值范围.举一反三:【变式】(2015春•东城区期末)已知直线y=kx+b 经过点A (5,0),B (1,4).(1)求直线AB 的解析式;(2)若直线y=2x ﹣4与直线AB 相交于点C ,求点C 的坐标;(3)根据图象,写出关于x 的不等式2x ﹣4>kx+b 的解集.【答案】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.类型二、用一次函数的性质解决不等式的实际问题4、(2015•新疆)某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价T恤全部卖出,获得的总利润为W元.(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价﹣进价)【思路点拨】(1)由总利润=A品牌T恤的利润+B品牌T恤的利润就可以求出w关于x的函数关系式;(2)根据“两种T恤的总费用不超过9500元”建立不等式求出x的取值范围,由一次函数性质就可以求出结论.【答案与解析】解:(1)设购进A种T恤x件,则购进B种T恤(200﹣x)件,由题意得:w=(80﹣50)x+(65﹣40)(200﹣x),w=30x+5000﹣25x,w=5x+5000.答:w关于x的函数关系式为w=5x+5000;(2)∵购进两种T恤的总费用不超过9500元,∴50x+40(200﹣x)≤9500,∴x≤150.∵w=5x+5000.∴k=5>0∴w随x的增大而增大,∴x=150时,w的最大值为5750.∴购进A种T恤150件.∴购进A种T恤150件,购进B种T恤50件可获得最大利润,最大利润为5750元.【总结升华】本题考查了由销售问题的数量关系求函数的解析式的运用,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.。

一元一次不等式与一次函数题型及做题技巧

一元一次不等式与一次函数题型及做题技巧

一元一次不等式与一次函数题型及做题技巧一、引言在数学学习过程中,一元一次不等式与一次函数题型是我们经常会遇到的内容。

它们不仅在中学阶段占据着重要的位置,而且在后续学习中也有着深远的影响。

本文将以一元一次不等式与一次函数为主题,探讨其相关的题型及做题技巧,帮助读者更好地理解和掌握这一部分内容。

二、一元一次不等式的基础概念在开始探讨一元一次不等式的题型及做题技巧之前,我们首先需要了解一元一次不等式的基础概念。

一元一次不等式是指形如ax+b>c或ax+b<c的不等式,其中a、b、c均为实数,且a ≠ 0。

在解一元一次不等式时,我们需要找到不等式的解集,即满足不等式的实数的集合。

针对一元一次不等式,我们通常会涉及到一些常见的题型,例如绝对值不等式、含参数的不等式等。

在解题过程中,需要根据不等式的特点选取合适的解法,以便快速有效地求解不等式。

三、一元一次不等式题型及做题技巧1. 绝对值不等式绝对值不等式是一种常见的不等式类型,它的形式通常为|ax+b|>c或|ax+b|<c。

在解绝对值不等式时,我们需要将不等式分为两种情况讨论,即当ax+b>0时和ax+b<0时。

对于不等式|ax+b|>c,我们需要分别解出ax+b>c和ax+b<-c的不等式组,并将其合并得到最终的解集。

而对于不等式|ax+b|<c,我们同样需要分别解出ax+b<c和ax+b>-c的不等式组,然后得到最终的解集。

在解绝对值不等式时,我们需要注意 |ax+b| = a * x + b 或者 |ax+b| = -a * x - b ,然后分别进行讨论。

2. 含参数的不等式含参数的不等式是指不等式中存在未知参数的情况,通常我们需要根据参数的取值范围来求解不等式。

在解含参数的不等式时,我们需要分情况讨论参数的取值范围,然后分别求解不等式并得出最终的解集。

与绝对值不等式类似,在解含参数的不等式时,我们需要将不等式分为不同情况进行讨论,以免遗漏某些情况带来的解集。

一次函数与一元一次不等式知识讲解

一次函数与一元一次不等式知识讲解

一次函数与一元一次不等式知识讲解一次函数是指变量的最高次数为1的函数,表达式一般为f(x) = ax + b,其中a和b为常数,且a不等于0。

一元一次不等式是指一个未知数的一次函数与一个不等式关系。

一次函数与一元一次不等式是二元关系,它们在数学中具有重要的意义和应用。

一次函数的性质与特点:1.常数项b表示函数在y轴上的截距,在函数图像上表示函数曲线与y轴的交点。

2.系数a表示函数的斜率,代表了函数图像的倾斜程度。

当a>0时,函数是增函数;当a<0时,函数是减函数。

3.函数曲线是一条直线,通过两个点即可确定一条直线。

因此,一次函数的图像是一条直线。

一元一次不等式的性质与特点:1.不等式中的未知数只有一个,并且只有一次。

2.不等式关系可能是大于、小于、大于等于、小于等于等形式,根据实际问题选择不同的不等号。

3.解不等式的方法与解方程类似,但需要注意不等号的取等情况。

下面通过一个具体的例子来进一步讲解一次函数与一元一次不等式的应用。

例子:家庭的月度水费与用水量x的关系可以用一次函数表示,已知该家庭用水量每增加10立方米,水费增加12元。

如果一个月的水费超过100元,那么最少要用多少立方米的水?解析:设该家庭每个月用水量为x立方米,月度水费为f(x)元。

根据题意,我们可以列出一次函数的表达式:f(x)=12/10x+b其中,12/10x表示每增加10立方米,水费增加12元,b表示常数项。

根据题目中提到的条件,水费超过100元,即f(x)>100。

将f(x)代入不等式中,得到不等式:12/10x+b>100解不等式的步骤如下:1.将不等式转化为等式,得到12/10x+b=100。

2.消去分数,得到12x+10b=1000。

3.根据题意,b为常数项,所以可将10b看作常数C,得到12x+C=1000。

4.求解x,得到x=(1000-C)/12、由于x代表用水量,所以要求最少用水量,即x的值应该尽量小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与一元一次不等式(提高)
【学习目标】
1.能用函数的观点认识一次函数、一次方程(组)与一元一次不等式之间的联系,能直观地用图形(在平面直角坐标系中)来表示方程(或方程组)的解及不等式的解,建立数形结合的思想及转化的思想.
2.能运用一次函数的性质解决简单的不等式问题及实际问题.
【要点梳理】
要点一、一次函数与一元一次不等式
由于任何一个一元一次不等式都可以转化为>0或<0或≥0或≤0(、为常数,≠0)的形式,所以解一元一次不等式可以看作:当一次函数
的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范
围.
要点诠释:求关于的一元一次不等式>0(≠0)的解集,从“数”的角度
看,就是为何值时,函数的值大于0.从“形”的角度看,确定直线
在轴(即直线=0)上方部分的所有点的横坐标的范围.
要点二、一元一次方程与一元一次不等式
我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.
要点三、如何确定两个不等式的大小关系
(≠,且)的解集的函数值大于的函数值时的自变量取值范围直线在直线的上方对应的点的横坐
标范围.
【典型例题】
类型一、一次函数与一元一次不等式
1、已知一次函数的图象过第一、二、四象限,且与轴交于点(2,0),则关于的不等式>0的解集为()
A.<-1 B.>-1 C.>1 D.<1
【答案】A;
【解析】∵一次函数的图象过第一、二、四象限,∴>0,<0,把(2,0)代入解析式得:0=2+,
解得:=-2,∵>0,
∴,
∴-1<,
∴<-1,
【总结升华】本题主要考查对一次函数与一元一次不等式的关系,一次函数的性质,一次函数图象上点的坐标特征,解一元一次不等式等的理解和掌握,能根据一次函数的性质得出、的正负,并正确地解不等式是解此题的关键.
举一反三:
【变式】如图,直线与坐标轴的两个交点分别为A(2,0)和B(0,-3),则不
等式+3≥0的解集是()
A.≥0 B.≤0 C.≥2 D.≤2
【答案】A;
提示:从图象上知,直线的函数值随的增大而增大,与轴的交点
为B(0,-3),即当=0时,=-3,所以当≥0时,函数值≥-3.
2、(2015•武汉模拟)已知:一次函数y=kx+b中,当自变量x=3时,函数值y=5;当x=﹣4时,y=﹣9.
(1)求这个一次函数解析式;
(2)解关于x的不等式kx+b≤7的解集.
【思路点拨】(1)把两组对应值分别代入y=kx+b得到关于k、b的方法组,然后解方程组求出k和b,从而可确定一次函数解析式;(2)解一元一次不等式2x﹣1≤7即可.
【答案与解析】
解:(1)根据题意得,解得,
所以一次函数解析式为y=2x﹣1;
(2)解2x﹣1≤7得x≤4.
【总结升华】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
举一反三:
【变式】(2015春•成武县期末)如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,(1)求直线y=kx+b的表达式;
(2)求不等式x>kx+b>﹣2的解集.
【答案】解:(1)∵直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,
∴代入得:,
解得:k=1,b=﹣1.
∴直线y=kx+b的表达式为y=x﹣1;
(2)由(1)得:x>x﹣1>﹣2,
即,
解得:﹣1<x<2.
所以不等式x>kx+b>﹣2的解集为﹣1<x<2.
3、(2016春•乳山市期末)如图,直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3);直线y=1﹣mx分别与x轴交于点C,与直线AB交于点D,已知关于x的不等
式kx+b>1﹣mx的解集是x>﹣.
(1)分别求出k,b,m的值;
(2)求S△ACD.
【思路点拨】(1)首先利用待定系数法确定直线的解析式,然后根据关于x的不等式kx+b >1﹣mx的解集是x>﹣得到点D的横坐标,进而确定点D的坐标,再代入解析式求m 的值.
(2)收下确定直线与x轴的交点坐标,然后利用三角形的面积公式计算即可.
【答案与解析】
解:(1)∵直线y=kx+b分别与x轴、y轴交于点A(﹣2,0),B(0,3),
,解得:k=,b=3,
∴y=x+3
∵关于x的不等式kx+b>1﹣mx的解集是x>﹣,
∴点D的横坐标为﹣,
将x=﹣代入y=x+3,得:y=,
强x=﹣,y=代入y=1﹣mx,
解得:m=1;
(2)对于y=1﹣x,令y=0,得:x=1,
∴点C的坐标为(1,0),
∴S△ACD=×[1﹣(﹣2)]×=.
【总结升华】本题考查了一次函数与一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.
类型二、用一次函数的性质解决不等式的实际问题
4、某电信公司开设了甲、乙两种市内移动通信业务,甲种使用者每月需缴15元月租
费,然后通话每分钟再付话费0.3元,乙种使用者不缴月租费,通话每分钟付费
0.6元,若一个月内通话时间为分钟,甲、乙两种业务的费用分别为和元.
(1)试分别写出、与之间的函数关系式;
(2)画出、的图象;
(3)利用图象回答,根据一个月的通话时间,你认为选哪种通信业务更优惠?
【思路点拨】收费与通话时间有关,分别写成两种收费方式的函数模型(建立函数关系式),然后再考虑自变量为何值时两个函数值相等,从而做出选择.
【答案与解析】
解:(1)根据题意可得:(≥0),(≥0).
(2)利用两点可画(≥0)和(≥0)的图象,如下图所示.
(3)由图象可知:两个函数的图象交于点(50,30),这表示当=50时,两个函数的值
都等于30.因此一个月内,通话时间为50分钟.选哪一种通话业务都行,因为付费都是30元,当一个月内通话时间低于50分钟时,选乙种业务更优惠,当一个月内通话时间大于50分钟时,选甲种业务更优惠.
【总结升华】解决这类问题首先根据题意确定函数解析式,然后在坐标系内画出函数,找到它们的交点,从而得函数值相等时的自变量的取值,然后根据这一取值就可作出正确的选择.。

相关文档
最新文档