信号与线性系统重点知识共31页文档

合集下载

(完整版)信号与系统知识要点

(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。

信号与线性系统分析第三章

信号与线性系统分析第三章

系统描述 分析方法
连续系统 微分方程 卷积积分 变换域(傅氏、s) 系统函数
离散系统 差分方程 卷积和 变换域(离散傅氏、z) 系统函数
第 2页
§2.1 LTI离散系统的响应
• 差分与差分方程 —前向差分、后向差分以及差分方程
• 差分方程解 —数值解、经典解,以及不同特征根对应的齐 次解和不同激励对应的特解
yzi (-2) = y(-2)
-----------
yzi (n) = ?
----------------yzi (-n) = y(-n)
第 13 页
零输入举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;初始状态 y(–1)=0, y(–2)=1/2 求系统的零输入响应
解:yzi(k)零输入响应满足:
yzi(k) + 3yzi(k –1)+ 2yzi(k –2)= 0
yzi(–1)= y(–1)= 0 yzi(–2) = y(–2) = 1/2 递推求 yzi(0)、 yzi(1) yzi(k)= – 3yzi(k –1) –2yzi(k –2)
yzi(0)= –3yzi(–1) –2yzi(–2)= –1
yzs(0)、yzs(1)、---yzs(n)=? 借助微分方程
n
若其特征根均为单根: yzk (k ) Czsjkj y p (k ) j 1
第 16 页
零状态举例
例1:系统方程为 y(k) + 3y(k –1) + 2y(k –2) = f(k) 已知激励f(k)=2k , k≥0;求系统的零状态响应 解:零状态响应yzs(k) 满足

总复习(信号与线性系统必过知识点)

总复习(信号与线性系统必过知识点)
总复习(信号与线性系统必过知识 点)
目录
• 信号与系统基本概念 • 线性时不变系统 • 信号的变换 • 系统的变换 • 信号与系统的应用
01 信号与系统基本概念
信号的描述与分类
信号的描述
信号是信息的载体,可以通过时间或空间的变化来传递信息 。信号的描述包括信号的幅度、频率、相位等特征。
信号的分类
拉普拉斯变换
拉普拉斯变换的定义
将一个信号从时域转换到复频域的过 程,通过将信号表示为无穷积分的形 式来实现。
拉普拉斯变换的性质
拉普拉斯变换的应用
在控制系统分析、电路分析等领域有 广泛应用,如系统稳定性分析、传递 函数求解等。
包括线性性、时移性、复频域平移性、 收敛性等。
Z变换
Z变换的定义
01
将一个序列信号从时域转换到复平面的过程,通过将信号表示
因果性
线性时不变系统的输出仅与当 前和过去的输入有关,而与未 来的输入无关。
稳定性
如果系统对所有非零输入信号 的响应最终都趋于零,则称该
系统是稳定的。
线性时不变系统的分析方法
01
02
03
频域分析法
通过傅里叶变换将时域信 号转换为频域信号,然后 分析系统的频率响应。
时域分析法
通过求解差分方程或常微 分方程来分析系统的动态 行为。
系统分析方法
系统分析是对系统进行建模、分析和综合的方法。常用的系统分析方法包括传递 函数分析、状态方程分析、根轨迹分析等。
02 线性时不变系统
线性时不变系统的性质
线性性
线性时不变系统对输入信号的 响应与输入信号的强度无关,
只与输入信号的形状有关。
时不变性
线性时不变系统的特性不随时 间变化,即系统对输入信号的 响应不会因为时间的推移而改 变。

信号与线性系统知识点总复习

信号与线性系统知识点总复习

信号与线性系统知识点总复习1.信号的基本概念信号是电子信息工程中的重要概念,简单来说就是随时间(或空间)变化的物理现象。

信号可以分为连续信号和离散信号两种。

连续信号可以用函数表示,离散信号可以用数列表示。

2.常见信号的分类常见的信号类型包括连续时间信号、离散时间信号、周期信号、非周期信号、奇函数信号、偶函数信号等。

不同类型的信号在数学表示和性质上有所差异。

3.连续时间信号的基本性质连续时间信号可以通过振幅、频率、相位等参数来描述。

它们具有线性性质、时移性、尺度变换性质和时间反转性质。

这些性质对于信号的分析和处理都是重要的基础。

4.离散时间信号的基本性质离散时间信号是在离散时间点上取值的信号,通常用数列表示。

离散时间信号具有线性性质、时移性、尺度变换性质和时间反转性质。

此外,离散时间信号还有抽样定理、离散时间傅立叶变换等重要概念。

5.线性系统的基本概念线性系统是输入和输出之间存在线性关系的系统,可以用线性常微分方程或差分方程表示。

线性系统具有叠加原理、时不变性、因果性等基本特性。

线性系统的频率响应是分析系统特性的重要工具。

6.线性时不变系统的冲激响应冲激响应是线性时不变系统的重要性质,它描述了系统对单位冲激输入的响应。

从冲激响应可以得到系统的频率响应、相位响应等信息。

7.线性时不变系统的频率响应频率响应描述了线性时不变系统对不同频率的输入信号的响应特性。

它可以通过线性时不变系统的冲激响应来计算,常用的方法有离散时间傅立叶变换、连续时间傅立叶变换、z变换等。

8.线性系统的稳定性分析稳定性是线性系统分析中的重要性质。

对于连续时间系统,稳定性可以通过系统的传递函数的极点位置来判断。

对于离散时间系统,稳定性可以通过系统的差分方程的极点位置来判断。

9.线性系统的频域分析频域分析是信号与系统分析中的重要方法,可以通过傅立叶变换、拉普拉斯变换和z变换等来将信号从时域转换到频域。

频域分析可以得到信号的频谱特性、频率响应等信息。

信号与线性系统第一章

信号与线性系统第一章
根据系统的数学描述方式,线性时不变系统可以分为时域系统和频域系统。时域系统是用微分方程描述的,而频域系统则是通过传递函数来描述的。
线性时不变系统的特性主要包括线性性和时不变性。
线性时不变系统的输出信号与输入信号之间满足线性关系,即输出信号是输入信号的线性组合。同时,系统的参数不随时间变化,即系统在各个时刻的行为保持一致。
系统的定义与分类
线性时不变系统具有叠加性、均匀性和稳定性等基本性质。
总结词
线性时不变系统的叠加性是指多个输入信号同时作用于系统时,输出信号是各个输入信号单独作用于系统的输出的线性组合。均匀性是指当输入信号的尺度发生变化时,输出信号的尺度相应地按比例变化。稳定性则是指当输入信号随时间推移逐渐消失时,输出信号也相应地趋于零。
信号的基本属性
02
线性时不变系统
总结词
详细描述
总结词
详细描述
总结词
详细描述
线性时不变系统是信号处理中一类重要的系统,具有线性性和时不变性。
线性时不变系统是指系统的输出信号与输入信号之间满足线性关系,且系统参数不随时间变化的系统。这类系统在信号处理、控制系统等领域有着广泛的应用。
线性时不变系统可以分为时域系统和频域系统两类。
在信号处理、通信、图像处理等领域有广泛应用,如频谱分析、滤波器设计等。
傅里叶变换的定义
傅里叶变换的性质
傅里叶变换的应用
傅里叶变换的性质
包括线性性质、时移性质、频移性质、共轭性质等,这些性质有助于理解和分析信号的特性。
傅里叶变换的应用
在信号处理中,傅里叶变换被广泛应用于频谱分析和滤波器设计等领域。通过傅里叶变换,可以分析信号在不同频率域的特性,从而实现对信号的优化和处理。
傅里叶级数的展开

总复习(信号与线性系统必过知识点)

总复习(信号与线性系统必过知识点)
n 0,1,2, ,
( t0,t0 +T )
2)指数函数集 ejnt n 0,1,2, ,
( t0,t0 +T )
3.2 周期信号的傅里叶级数展开
(1) f(t)为奇函数 正弦分量
(2) f(t)为偶函数 (3) f(t)为奇谐函数 (4) f(t)为偶谐函数
余弦分量+直流分量 奇次谐波 偶次谐波+直流分量
rzi (0 ), r 'zi (0 ), rz(in1) (0 )
4) 将初值带入rzi(t)的通解表达式,求出待定系数。
例1:已知某系统激励为零,初始值r(0)=2, r’(0)=1,r”(0)=0,描述系统的传
输算子为 解:
H(
p)

2p2 8p 3 ( p 1)( p 3)2
当激励e(t)=3 ε(t) ,初始状态保持不变时,响应 r2(t)=(8e-2t -7e-3t) ε(t)。
求:(1)激励e(t)=0,初始状态x1(0-)=1, x2(0-)=2时的响应 r3(t)=? (2)激励e(t)=2 ε(t),初始状态为零时的响应r4(t)=?
解:
当激励e(t)= ε(t) ,初始状态x1(0-)=1, x2(0-)=2时, 响应
2
2
2
例2:计算
4
(2 4t)(t 2)dt
1
解:4 (2 4t)(t 2)dt 1
4 1 (t 1)(t 2)dt 0
14
2
注意积 分区间
1. 2 信号的运算
1)折叠:y(t)=f (-t) 2)时移:y(t)=f (t-to) 3)倒相:y(t)=-f (t) 4)展缩:y(t)=f (at) 其中:a>0

《信号与线性系统》总复习(信息)#优选.

《信号与线性系统》总复习(信息)#优选.

信号与线性系统总复习信号分析一、 信号的时域分析 1、 常见信号①单位冲激函数:)(t δ 定义:抽样性:②单位阶跃函数:)(t ε 定义:阶跃与冲激的关系:③斜变函数:)()(t t t R ε=斜变与阶跃的关系:④指数函数:)(t e tεα-)(t f )(k f ⎩⎨⎧=01)(t ε0<>t t ⎪⎩⎪⎨⎧==⎰∞∞-0)(1)(t dt t δδ0≠t ⎪⎩⎪⎨⎧==⎰∞-t d t dt t d t ττδεεδ)()()()()()0()()(t f t t f δδ⋅=⋅)0()()0()0()()()(f dt t f dt f t dt t f t ==⋅=⋅⎰⎰⎰∞∞-∞∞-∞∞-δδδ⎪⎩⎪⎨⎧==⎰∞-t d t R dt t dR t ττεε)()()()(⑤门函数:)(t G τ ⑥余弦函数:t 0cos ω ⑦正弦函数:t 0sin ω ⑧冲激序列:∑∞-∞=-=n T nT t t )()(δδ2、 信号的运算:3、 信号的变换: 移位:反折: 展缩: 倍乘:4、 卷积: 连续:离散:性质:(1)延时特性:连续:)()()(212211t t t f t t f t t f --=-*- 离散:112212()()()f k k f k k f k k k -*-=--(2)微积分特性:)(0t t f ±)(t f -)(at f )(t af ∑∞-∞=-=*i i k f i f k f k f )()()()(2121⎰∞∞--=*τττd t f f t f t f )()()()(2121)()(21t f t f ±)()(21t f t f •t t df )(121()[()]tdf t f d dt ττ-∞=*⎰)()(21t f t f *二、 信号的频域分析(傅立叶变换分析法) 1、 定义:2、 性质:设)()(11ωj F t f ↔;)()(22ωj F t f ↔;)()(ωj F t f ↔①线性:)()()()(22112211ωωj F a j F a t f a t f a +↔+ ②对称性:)(2)(ωπf jt F ↔③延时:0)()(0tj e j F t t f ωω±↔±④移频:)()(00ωωωj j F e t f t j ↔±⑤尺度变换:)(1)(a j F a at f ω↔;)(1)(aj F e a b at f a bj ωω-↔-⑥奇偶特性:若)(t f 为实偶函数,则)(ωj F 也为实偶函数;若)(t f 为实偶函数,则)(ωj F 也为实偶函数;⑦时域微分:)()()(ωωj F j dtt df ↔; )()()(ωωj F j dtt f d nnn ↔ ⑧时域积分:)(1)()0()(ωωωδπττj F j F d f t+↔⎰∞- ⎰∞∞--=dte tf j F t j ωω)()(⎰∞∞-=ωωπωd e j F t f t j )(21)(⑨频域微分:ωωd j dF t f jt )()()(↔-;nn nd j F d t f jt ωω)()()(↔-⑩频域积分:⎰∞-↔-ωΩΩδπd F t f jtt f )()(1)()0(⑾卷积定理:)()()()(2121ωωj F j F t f t f ↔* )()(21)()(2121ωωπj F j F t f t f *↔⋅3、 常见信号的傅立叶变换 1)(↔t δωωπδεj t 1)()(+↔)]()([cos 000ωωδωωδπω++-↔t)]()([sin 000ωωδωωδπω--+↔j tωαεαj t e t +↔-1)(22sin )2()(τωτωττωττ=↔Sa t Gωj t 2)sgn(↔2222sin )2(01)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡↔⎪⎩⎪⎨⎧><-=τωτωττωττττSa t t t t fTn nT t t n n T πΩΩωδΩωδΩδδΩ2)()()()(=-=↔-=∑∑∞-∞=∞-∞=4、 周期信号的频谱①性质:离散性,谐波性,收敛性 ②级数展开:∑∞=++=1)sin cos (2n n n t n b t n a a ΩΩ)(t f ∑∞=-+=10)cos(2n n n t n A a ΦΩ∑∞-∞=•=n tjn n e A Ω21∑∞-∞==n t jn n e c Ω⎰+=Tt t n tdt n t f T b 11sin )(2Ωtdt n t f T a Tt t n Ωcos )(211⎰+=⎰+-•=Tt t tjn n dtet f TA 11)(2Ω⎰+-=Tt t t jn n dte tf Tc 11)(1Ωnj n n e A A φ-•=nn A c •=2122nn n b a A +=nn n a b arctg=φ③频谱:n A •与)(Ωωn =之间的关系图称频谱图; n A 与)(Ωωn =之间的关系图称为振幅频谱图; n ϕ与)(Ωωn =之间的关系图称为相位频谱图;信号时域特性和频域特性关系:时域 频域 周期 离散 离散 周期 时域有限 频域无限 时域无限 频域有限5、 帕色伐尔定理[]⎰⎰∞∞-∞∞-=ωωπd j F dt t f 22)(21)(6、 取样定理 ①频带有限信号 ②满足关系:m s f f 2≥三、 信号的复频域分析(拉普拉斯变换分析法) 1、 定义:⎰∞-=)()(dte tf s F st⎰∞+∞-=j j st dse s F jt f σσπ)(21)(2、 性质:①线性: )()()()(22112211s F a s F a t f a t f a +↔+②时移:0)()()(00st e s F t t t t f -↔--ε ③频移:)()(00s s F et f ts -↔④尺度变换:)(1)(asF a at f ↔⑤时域微分:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d ⑥时域积分:)(1)(s F sd f t↔⎰∞-ττ ⑦复频域微积分: ds s dF t tf )()(-↔;⎰∞↔s ds s F t f t)()(1⑧初、终值定理:)(lim )0(s sF f s ∞→+=;()(s F 为真分式))(lim )(0s sF f s →=∞⑨卷积定理:)()()()(2121s F s F t f t f ↔* )()(21)()(2121s F s F jt f t f *↔⋅π3、 常见信号的拉氏变换1)(↔t δ,st 1)(↔ε,a s t e t-↔1)(εα,1!+↔n nsn t ,22sin ωωω+↔s t ,22cos ωω+↔s st4、 反变换(1).部分分式展开法n n s s k s s k s s k s F -++-+-= 2211)()()()(2121t e k e k e k t f t s n t s t s n ε+++=(2).留数法∑==ni i s t f 1Re )(①单根is 处的留数 Re [()()]i stii s s s F s e s s ==- ②p 重根i s 处的留数111Re [()()](1)!i p st pi i s s p d s F s e s s p s-=-=--四、(离散)信号的Z 域分析1、 定义:∑∞-∞=-=K kz K F Z F )()( 2、 性质:① 线性线性:)()()()(22112211z F a z F a k f a k f a +↔+ ② 移序: 单边z 变换∑-=--↔+1)()()(n k k nn z k f zz F z n k f)()()(z F z n k n k f n-↔--ε双边z 变换)()(z F z n k f n ↔+ )()(z F z n k f n-↔-③ 尺度变换:)()(az F k f a k ↔ ④z 域微分特性:)()(z F dzdz k kf -↔ ⑤ 卷积定理:)()()()(2121z F z F k f k f ↔*)()(21)()(2121s F s F jt f t f *↔⋅π⑥ 初、终值定理:)(lim )0(z F f z ∞→= 3、 常见序列的Z 变换1)(↔k δ ,1)(-↔z zk ε ,γγ-↔z zk,2)1(-↔z zk4、 反Z 变换 (1) 长除法 (2) 部分分式法nn z B z B z B z B z z F γγγ-++-+-+= 22110)( nn z z B z zB z z B B z F γγγ-++-+-+= 22110)()()()()(22110k B B B k B k f kn n k k εγγγδ++++= (3) 留数法1()Re nii f k s ==∑①单根iz 处的留数 1Re [()()]i k ii z z s F z z z z -==- ②p 重根i z 处的留数 1111Re [()()](1)!i p k p i i z z p d s F z z z z p z--=-=--系统分析卷积+三大变换(时域、频域、复频域、Z 域)一、 系统的时域分析 1、 描述:(1) 连续系统--微分方程(2) 离散系统—差分方程)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n nn +++=++++------ )t )k e )()1()()()1()1()(01011k e b k e b m k e b k y a k y a n k y a n k y m n +++++=++++-+++-3、全响应的求解连续: 离散:(1) 零输入响应 )(t r zi 、)(k y zi 特征方程:特征根:零输入响应:代定常数C 由初始条件决定:)()()(t r t r t r zs zi +=)()()(k y k y k y zs zi +=00111=++++--a a c n n n λλλ 00111=++++--a a c n n n γγγ 0)())((21=---n λλλλλλ 0)())((21=---n γγγγγγ knn k k zi c c c k y γγγ+++= 221)(tn ttzi n ec ec e c t r λλλ+++= 2121)()1()1(),0(-n y y y )0()0(),0()1(-'n zi zi zi r r r nγγγ,,,21 nλλλ,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++='+++=----1122111)1(221121)0()0()0(n n n n n n n n n c c c r c c c r c c c r λλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'----n n n n n n n c c c rr r211121121)1(111)0()0()0(λλλλλλ(2) 零状态响应 )(t r zs 、)(k y zs4、解的分解零输入响应+零状态响应 自然响应+受迫响应 暂态响应+稳态响应二、系统的频域分析1、频域系统函数2、系统特性011101)(a p a p a p b p b p b p H n n nm m +++++++=-- )(t h 011101)(a S a S a S b S b S b S H n n nm m +++++++=-- )(k h )()()(k e k h k y zs *=)()()(t e t h t r zs *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----)0()0()0(111)1(1112112121n n n n n n n rr r c c cλλλλλλnnij A AA)(11=-)()()(ωϕωωj e j H j H =)()()(ωωωj E j R j H zs =幅频特性: 相频特性:3、信号通过线性系统不产生失真的条件时域:频域:三、系统的复频域分析法1、微分方程的拉氏变换分析法 利用拉氏变换的微分特性:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d 把微分方程:变为代数方程,其过程为:①)()()0()0()0()()()1(21s P s R s r r s r s s R s dtt r d k kk k k k kk -=--'--↔------)0()0()0()()1(21------++'+=k k k k r r s r s s P是与初始条件有关的关于s 的k 次多项式②)(ωj H )(ωφ)()(0t t Ke t r -=0)(t j Ke j H ωω-=)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------)()()0()0()0()()()1(21s Q s E s e e s e s s E s dtt e d l ll l l l ll -=--'--↔------0)0()0()0()()1(21=++'+=------l l l l e e s e s s Q因为)(t e 是有始信号:0)0()0()0()1(==='=----l e e e 所以:)()(s E s dtt e d l l l ↔③把以上结果代入微分方程得:)()()()()()()(01111111s R a s P a s sR a s P a s R s a s P s R s n n n n n n +-++-+----- )()()(01s E b s sE b s E s b m m +++=)()()()()(010111s E b s b s b s M s R a s a s a s m m n n n +++=-++++-- )()()()()(s E s N s M s R s D =-其中:0111)(a s a s a s s D n n n ++++=-- 01)(b s b s b s N m m +++=)()()()(1111s P a s P a s P s M n n n +++=-- )()()()()()()()(s R s R s D s M s E s D s N s R zi zs +=+=可求得全响应:2、电路S 域模型等效法3、系统函数与系统的稳定性011101)(a s a s a s b s b s b s H n n n m m +++++++=-- )())((2101n m m s s s b s b s b λλλ---+++= 若极点n λλλ 21,均在s 平面的左半平面,则系统稳定。

(完整版)信号与系统知识要点.doc

(完整版)信号与系统知识要点.doc

信号与系统知识要点第一章信号与系统, t 01,t 0(t )0, t 0单位阶跃信号(t) u(t )0 单位冲激信号0,t(t ) 1d (t ) (t )dtt( )d (t )(t ) 的性质:f (t ) (t ) f (0) (t )f (t ) (t t 0 )f (t 0 ) (t t 0 )f (t ) (t)dtf (0)f (t ) (t t 0 )dt f (t 0 )(t ) ( t )(tt 0 ) [ (t t 0 )]1 (t)(at )a(at t 0 )1 (t t)aa 单位冲激偶信号(t)(t )d (t )dt(t ) ( t)(t t 0 )[ (t t 0 )](t )dt 0t( )d (t )f (t ) (t)f (0) (t) f (0) (t)f (t ) (t t 0 )f (t 0 ) (t t 0 ) f (t 0 ) (t t 0 )f (t ) (t) dt f (0)f (t ) (t t 0 ) dtf (t 0 )符号函数 sgn(t )1,tsgn(t )0, t 0 或 sgn(t ) u(t ) u( t ) 2u(t ) 11,t单位斜坡信号r (t)0, t 0 tdr (t) r (t ) tu(t)r (t )u( )du(t)t,tdt门函数 g (t )g (t)1, t2 0, 其他取样函数 Sa(t ) sin ttsin t lim Sa(t)Sa(0) lim 1tt 0t 0当 t k(k1, 2,ggg)时, Sa(t ) 0Sa(t)dtsin t dt lim sin t 0ttt第二章连续时间信号与系统的时域分析1 、基本信号的时域描述( 1 )普通信号普通信号可以用一个复指数信号统一概括,即f (t ) Ke st ,t 式中 sj , K 一般为实数,也可以为复数。

根据与 的不同情况, f (t ) 可表示下列几种常见的普通信号。

(完整版)信号与线性系统管致中第1章信号与系统

(完整版)信号与线性系统管致中第1章信号与系统

N
x(n) 2

x(n) 2
在无限区间内的平均功率可定义为:
x(t) P
lim 1 T 2T
T T
2
dt
1 N
P

lim
N
2N
1
N
x(n) 2
三类重要信号: 1. 能量信号——信号具有有限的总能量,
即: E , P 0
2. 功率信号——信号有无限的总能量,但平均功率 有限。即:
1.2 自变量变换
如果有 x(t) x(t) 则称该信号为奇信号
x(n) x(n)
(镜像奇对称)
对复信号而言:
x(t) x(t) 如果有 x(n) x(n) 则称该信号为共轭偶信号。
x(t) x(t)
如果有
则称为共轭奇信号。
x(n) x(n)
1.2 自变量变换

x (n)]
例1:
x(t)
2 1
-2 -1 0

t
12
-2
xe (t)
1

t
02
xo (t)
1
-1
t
1 -1
例2. 信号的奇偶分解:
1.3 指数信号与正弦信号
(Exponential and Sinusoidal Signals ) 1.3.1. 连续时间复指数信号与正弦信号
x(t) Ceat 其中 C, a 为复数
确定的定义。
x(n) c 可以视为周期信号,其基波周期 N0 。1
1.2 自变量变换
非周期信号
周期信号
1.2.3. 奇信号与偶信号: odd Signals and even Signals 对实信号而言:

信号与系统各章重点内容整理

信号与系统各章重点内容整理

第一章信号与系统
第二章线性时不变系统
第三章周期信号得傅里叶级数表示FS
第四章连续时间傅里变换CFT
第五章离散时间傅里变换DFT(不考试)
第六章信号与系统得时域与频域分析
第七章采样
第八章通信系统
第九章拉普拉斯变换
第十章Z变换
理》
我想了一下,在信号系统中要强调得知识点主要有:
1、时域有限,频域无限;反之亦然;
2、抽样定理;
3、理想低通传输特性;
4、时域波形得变化与频率之间得关系;
5、冲击序列经过一个系统,它得输出波形就是怎样得?
6矩形信号得频谱; 7怎样求一个信号得直流分量?。

信号与系统知识点汇总总结

信号与系统知识点汇总总结

信号与系统知识点汇总总结一、信号与系统概念1. 信号的定义和分类2. 系统的定义和分类3. 时域和频域分析二、连续时间信号与系统1. 连续时间信号与系统的性质2. 连续时间信号的基本操作3. 连续时间系统的性质4. 连续时间系统的特性方程和驻点三、离散时间信号与系统1. 离散时间信号与系统的性质2. 离散时间信号的基本操作3. 离散时间系统的性质4. 离散时间系统的特性方程和驻点四、傅里叶分析1. 傅里叶级数2. 傅里叶变换3. 傅里叶变换的性质4. 傅里叶变换的逆变换五、拉普拉斯变换1. 拉普拉斯变换的定义2. 拉普拉斯变换定理3. 拉普拉斯变换的性质4. 拉普拉斯变换的逆变换六、Z变换1. Z变换的定义2. Z变换的性质3. Z变换与拉普拉斯变换的关系4. Z变换在离散时间系统分析中的应用七、系统的时域分析1. 系统的冲击响应2. 系统的单位脉冲响应3. 系统的阶跃响应4. 系统的时域性能指标八、系统的频域分析1. 系统的频率响应2. 系统的幅频特性3. 系统的相频特性4. 系统的频域性能指标九、信号与系统的稳定性1. 连续时间系统的稳定性2. 离散时间系统的稳定性3. 系统的相对稳定性十、线性时不变系统1. 线性系统的性质2. 时不变系统的性质3. 线性时不变系统的连续时间性能分析4. 线性时不变系统的离散时间性能分析十一、激励响应系统1. 激励响应系统的特性2. 激励响应系统的连续时间分析3. 激励响应系统的离散时间分析十二、卷积运算1. 连续时间信号的卷积运算2. 离散时间信号的卷积运算3. 卷积的性质和应用结语信号与系统是电子信息专业的重要基础课程,掌握好这门课程的知识对学生日后的学习和工作都有重要的帮助。

通过本文的知识点汇总总结,相信读者对信号与系统这门课程会有更深入的理解和掌握,希望对大家的学习有所帮助。

信号与线性系统分析[总结]复习课程

信号与线性系统分析[总结]复习课程
( 5 ) f 1 ( k k 1 ) * f 2 ( k ) f 1 ( k ) * f 2 ( k k 1 );
( 6 ) f 1 ( k k 1 ) * f 2 ( k k 2 ) f 1 ( k k 2 ) * f 2 ( k k 1 )
f 1 ( k ) * f 2 ( k k 1 k 2 ) f 1 ( k k 1 k 2 ) * f 2 ( k )
1
-1 o 1
t
-2 o
2 t t → 0.5t 展开
f (0.5 t ) 1
-4
o
4t
总结
平移、反转、尺度变换相结合 三种运算的次序可任意。但
例1 已知f (t),画出 f (– 4 – 2t)。
一定要注意始终对时间 t 进 行。
f (t )
f (t - 4)
1
右移4,得f (t – 4) 1
-2 o
2 .f(t)为奇函数——对称于原点 f (t) f (t)
an =0,展开为正弦级数。
f(t)
3 .f(t)为奇谐函数——f(t) = –f(t±T/2)
傅里叶级数中只含奇次谐波分量,而不含 0 T/2
Tt
偶次谐波分量即:a0=a2=…=b2=b4=…=0
f(t)
4 .f(t)为偶谐函数——f(t) = f(t±T/2)
f(t - td) → yzs(t - td)
直观判断方法: 若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。
方程中均为输出、输入序列的一次关系项,则是线性的。输入输出序 列前的系数为常数,且无反转、展缩变换,则为时不变的。
因果,稳定(见第七章)。
总结
第二章 连续系统的时域分析

信号与线性系统总结课件

信号与线性系统总结课件

齐次性:
f(·) →y(·) 可加性: f1(·) →y1(·) f2(·) →y2(·)
a f(·) →a y(·) f1(·) +f2(·) →y1(·)+y2(·)
综合,线性性质:
af1(·) +bf2(·) →ay1(·)+by2(·)
线性系统的条件
⑴ 动态系统响应不仅与激励{ f (·) }有关,而且与 系统的初始状态{x(0)}有关, 初始状态也称“内部激 励”。 y (·) = T [{ f (·) }, {x(0)}] yzi(·)=T[{0},{x(0)}], yzs(·) = T [{ f (·) }, {0}]
连续周期信号f(t)满足
f (t)
f(t) = f(t + mT),m = 0,±1,±2,…
离散周期信号f(k)满足
t
f(k) = f(k + mN),m = 0,±1,±2,…
满足上述关系的最小T(或整数N)称为信号的周期。
不具有周期性的信号称为非周期信号。
1.2 信号的分类及性质
例1 判断下列信号是否为周期信号,若是,确定其周期。 (1)f1(t) = sin2t + cos3t (2)f2(t) = cos2t + sinπt
三种运算的次序可任意。
已知f (t),画出 f (– 4 – 2t)。 但注意始终对时间 t 进行!
f( t)
f (t -4)
1 右移4,得f (t – 4)
1
-2 o
2
f (-2t -4) 1
t
反转,得f (– 2t – 4)
o
2 4 6t
压缩,得f (2t – 4)
f (2t -4)

信号与线性系统第一章

信号与线性系统第一章

傅里叶变换的性质与应用
傅里叶变换的性质
线性性、时移性、频移性、共轭对称 性、时频展缩性等。
傅里叶变换的应用
在通信、雷达、声学、振动分析等领 域中,通过傅里叶变换可以将信号从 时间域转换到频率域,便于分析信号 的频率成分和特征。
傅里叶变换在信号处理中的应用
信号的频谱分析
通过傅里叶变换可以得到信号的频谱,从而分析信号的频 率成分和特征,用于信号的滤波、调制和解调等处理。
01
离散信号的数学表示形式,可以表示为在时间或空间上离散变
化的数列。
离散时间傅里叶变换(DTFT)
02
将离散时间信号从时间域转换到频率域的数学工具。
离散时间信号的运算
03
包括加法、减法、乘法、累加等基本运算,以及卷积和相关等
更复杂的运算。
数字信号处理的基本方法
滤波器设计
设计和实现各种数字滤波器,用于提取信号中的特定频率成分或 抑制噪声和干扰。
线性系统的数学模型
80%
差分方程
描述系统动态行为的数学方程, 通常表示为y(n) = f(n, x(n))。
100%
传递函数
描述系统频率响应的数学函数, 通常表示为H(z) = Y(z)/X(z)。
80%
状态方程
描述系统内部状态变量的动态变 化的数学方程组。
线性系统的分析方法
频域分析
通过傅里叶变换将时域信号转 换为频域信号,分析系统的频 率响应。
离散信号的基本概念
01
02
03
离散信号
在时间或空间上取值离散 的信号,通常由离散的数 值列表示。
采样
将连续时间信号转换为离 散时间信号的过程,通过 在时间轴上选择特定时刻 的信号值来实现。

信号与系统要点

信号与系统要点

信号与系统要点《信号与系统》复习要点第一章SIGNALS AND SYSTEM(信号与系统) (1)1-1C ONTINUOUS-TIME AND DISCRETE-TIME SIGNALS(连续时间与离散时间信号) (1)1-2T RANSFORMA TIONS OF THE INDEPENDENT V ARIABLE (自变量的变换) (1)1-3E XPONENTIAL AND S INUSOIDAL S IGNALS(指数信号与正弦信号) (2)1-4T HE UNIT IMPULSE AND UNIT STEP FUNCTIONS(单位冲激与单位阶跃函数) (3)1-5C ONTINUOUS-TIME AND D ISCRETE-TIME S YSTEM(连续时间和离散时间系统) (4)1-6B ASIC SYSTEM PROPERTIES(基本系统性质) (4)第二章LINEAR TIME-INV ARIANT SYSTEM(线性时不变系统)(5)2-1:D ISCRETE-T IME LTI S YSTEM:T HE C ONVOLUTION S UM (离散LTI系统:卷和) (5)2-2C ONTINUOUS-TIME LTI SYSTEMS:THE CONVOLUTION INTEGRAL(连续时间LTI系统:卷积) (6)2-3P ROPERTIES OF LTI SYSTEM(线性时不变系统的性质) (6) 2-4C AUSAL LTI SYSTEM DESCRIBED BY DIFFERENTIAL AND DIFFERENCE EQUA TIONS(微分和差分方程描述的因果LTI系统)(7)2-5S INGULARITY FUNCTIONS(奇异函数) (7)第三章FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS(周期信号的傅立叶级数表示) (8)3-2 THE RESPONSE OF LTI SYSTEM TO COMPLEX EXPONENTIALS(LTI系统对复指数信号的响应) (8)3-3F OURIER SERIES REPRESENTATION OF CONTINUOUS-TIME PERIODIC SIGNALS(连续时间周期信号的傅立叶级数表达)(8)3-4C ONVERGENCE OF THE F OURIER SERIES(傅立叶级数的收敛) (9)3-8F OURIER SERIES AND LTI SYSTEMS(傅立叶级数与LTI系统) (9)3-9F ILTERING (滤波) (9)第四章THE CONTINUOUS-TIME FOURIER TRANSFORM(连续时间傅立叶变换) (10)4-1R EPRESENTA TION OF APERIODIC SIGNALS:THE CONTINUOUS-TIME F OUEIER TRANSFORM(非周期信号的表示:连续时间傅立叶变换) (10)4-2T HE F OURIER FOR PERIODIC SIGNALS(周期信号的傅立叶变换) (11)4-3P ROPERTIES OF THE CONTINUOUS-TIME F OURIER TRANSFORM(连续时间傅立叶变换的性质) (11)4-4T HE CONVOLUTION PROPERTY(卷积性质) (12)4-5T HE MULTIPLICATION PROPERTY(相乘性质) (13)4-6T ABLES OF F OURIER PROPERTIES AND OF BASIC F OURIER TRANSFORM PAIRS(傅立叶变换性质和基本傅立叶变换对一览表) (13)4-7S YSTEMS CHARACTERIZED BY LINEAR CONSTANT-COEFFICIENT DIFFERENTIAL EQUA TIONS(用线性常系数微分方程表征的系统) (13)第七章SAMPLING(抽样) (14)第九章THE LAPLACE TRANSFORM(拉普拉斯变换) (14)9-1T HE L APLACE TRANSFORM(拉普拉斯变换) (14)9-2T HE REGION OF CONVERGENCE FOR L APLACE TRANSFORMS(拉普拉斯变换的收敛域) (15)9-3T HE INVERSE L APLACE TRANSFORM(拉普拉斯反变换)(15)9-5P ROPERTIES OF THE L APLACE TRANSFORM(拉普拉斯变换性质) (16)9-6S OME L APLACE TRANSFORM PAIRS(常用拉普拉斯变换对) (17)9-7A NALYSIS AND CHARACTERIZATION OF LTI SYSTEMS USING THE L APLACE TRANSFORM(用拉普拉斯变换分析与表征LTI系统) (17)9-8S YSTEM FUNCTION ALGEBRE AND BLOCK DIAGRAM REPRESENTA TIONS(系统函数的代数属性与方框图表示) (18) 9-9T HE UNILATERAL L APLACE TRANSFORM(单边拉普拉斯变换) (18)第十章THE Z-TRANSFORM(Z变换) (19)10-1T HE Z-TRANSFORM(Z变换) (19)10-2T HE REGION OF CONVERGENCE FOR THE Z-TRANSFORM(Z变换的收敛域) (19)10-3T HE INVERSE Z-T RANSFORM(Z反变换) (20)10-5P ROPERTIES OF THE Z-TRANSFORM(Z变换性质) (20) 10-6S OME COMMON Z-T RANSFORM PAIRS(常用Z变换对)(21)10-7A NALYSIS AND CHARACTERIZATION OF LTI SYSTEM (用Z变换分析与表征LTI系统) (21)10-8S YSTEM FUNCTION ALGEBRA AND BLOCK DIAGRAM REPRESENTA TIONS(系统函数的代数属性与方框图表示) (21) 10-9T HE UNILATERAL Z-TRANSFORM(单边Z变换) (21)第一章Signals and System (信号与系统)1-1 Continuous-time and discrete-time signals (连续时间与离散时间信号)信号:信息的载体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档