运筹学试题及答案4套

合集下载

运筹学考研真题及答案

运筹学考研真题及答案

运筹学考研真题及答案【篇一:1999-2016年南京航空航天大学824运筹学考研真题及答案解析汇编】p> 我们是布丁考研网南航考研团队,是在读学长。

我们亲身经历过南航考研,录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入南航。

此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。

有任何考南航相关的疑问,也可以咨询我们,学长会提供免费的解答。

更多信息,请关注布丁考研网。

以下为本科目的资料清单〔有实物图及预览,货真价实〕:南京航空航天大学《运筹学》全套考研资料包含:一、南京航空航天大学《运筹学》历年考研真题及答案解析2016年南京航空航天大学《运筹学》考研真题〔含答案解析〕〔11月份统一更新〕2015年南京航空航天大学《运筹学》考研真题〔含答案解析〕2014年南京航空航天大学《运筹学》考研真题〔含答案解析〕2013年南京航空航天大学《运筹学》考研真题〔含答案解析〕2012年南京航空航天大学《运筹学》考研真题〔含答案解析〕2011年南京航空航天大学《运筹学》考研真题〔含答案解析〕2010年南京航空航天大学《运筹学》考研真题〔含答案解析〕2009年南京航空航天大学《运筹学》考研真题〔含答案解析〕2008年南京航空航天大学《运筹学》考研真题〔含答案解析〕2006年南京航空航天大学《运筹学》考研真题〔含答案解析〕2005年南京航空航天大学《运筹学》考研真题〔含答案解析〕2004年南京航空航天大学《运筹学》考研真题〔含答案解析〕2003年南京航空航天大学《运筹学》考研真题〔含答案解析〕2002年南京航空航天大学《运筹学》考研真题〔含答案解析〕2001年南京航空航天大学《运筹学》考研真题〔含答案解析〕2000年南京航空航天大学《运筹学》考研真题〔含答案解析〕1999年南京航空航天大学《运筹学》考研真题〔含答案解析〕二、南京航空航天大学《运筹学》期中期末试卷汇编三、南京航空航天大学《运筹学》考研复习笔记1、运筹学辅导讲义该部分为824运筹学辅导讲义2017版,由2016级高分学姐根据2017年考研动态编写,讲义按章节编写包含三个部分、第一个部分考研点睛〔历年考试情况分析〕、第二个部分考研知识点总结〔知识点详细划分,重要内容均作了详细标记,可以直接切入考研重难点,防止一些不必要的时间浪费〕,第三部分直击考研〔典型题型针对性联系〕。

运筹学

运筹学

一、单选题(共40 道试题,共100 分。

)V 1. 对于第二类存储模型——进货能力有限,不允许缺货,下列哪项不属于起假设前提条件()A. 需求是连续,均匀的B. 进货是连续,均匀的C. 当存储降至零时,可以立即得到补充D. 每个周期的定货量需要一次性进入存储,一次性满足标准答案:D2. 在完全不确定下的决策方法不包括下列的哪一项()A. 悲观法B. 乐观法C. 最大收益法D. 等可能性法标准答案:C3. 所谓确定条件下的决策,是指在这种条件下,只存在()A. 一种自然状态B. 两种自然状态C. 三种或三种以上自然状态D. 无穷多种自然状态标准答案:A4. 单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解。

A. 对B. 错标准答案:B5. 下例错误的说法是A. 标准型的目标函数是求最大值B. 标准型的目标函数是求最小值C. 标准型的常数项非正D. 标准型的变量一定要非负标准答案:C6. 求般获得最好经济效益问题是求如何合理安排决策变量(即如何安排生产)使目标函数最大的问题,求最大的目标函数问题,则记为max Z;若是如何安排生产使成本是最小的问题,则记为min Z .A. 对B. 错标准答案:A7. ()是用来衡量所实现过程优劣的一种数量指标A. 状态B. 决策C. 状态转移D. 指标函数标准答案:D8. 在实际工作中,企业为了保证生产的连续性和均衡性,需要存储一定数量的物资,对于存储方案,下列说法正确的是( )A. 应尽可能多的存储物资,以零风险保证生产的连续性B. 应尽可能少的存储物资,以降低库存造成的浪费C. 应从多方面考虑,制定最优的存储方案D. 以上说法都错误标准答案:C9. 约束条件为AX=b,X≥0 的线性规划问题的可行解集是()A. 补集B. 凸集C. 交集D. 凹集标准答案:B10. 存货台套的运费应列入()A. 订货费用B. 保管费用C. 进厂价D. 其它支出标准答案:C11. 基可行解中的非零变量的个数小于约束条件数时,该LP问题可求得( )。

运筹学试卷及答案完整版

运筹学试卷及答案完整版

《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。

)1. 图解法提供了求解线性规划问题的通用方法。

( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。

( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。

( )4. 满足线性规划问题所有约束条件的解称为基本可行解。

( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。

( )6. 对偶问题的目标函数总是与原问题目标函数相等。

( )7. 原问题与对偶问题是一一对应的。

( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。

( )9. 指派问题的解中基变量的个数为m+n。

( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。

( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。

( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

( )三、填空题1. 图的组成要素;。

2. 求最小树的方法有、。

3. 线性规划解的情形有、、、。

4. 求解指派问题的方法是。

5. 按决策环境分类,将决策问题分为、、。

6. 树连通,但不存在。

A 111四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。

1. 计算该规划的检验数2. 计算对偶问题的目标函数值3. 确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型21max 6x x S +=⎪⎩⎪⎨⎧≥≥+≤+0,16327212121x x x x x x六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学考试试卷及答案

运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。

答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案考试时间:120分钟命题人:XXX一、选择题(共60分)1. 运筹学的核心思想是:A. 尽可能地满足需求B. 确定最优决策C. 提高运营效率D. 预测未来趋势答案:B2. 下列哪个不是运筹学的应用领域?A. 生产调度B. 金融风险管理C. 市场营销D. 交通规划答案:C3. 线性规划是研究下列问题的数学方法:A. 最大化目标函数B. 最小化目标函数C. 求解等式系统D. 优化约束条件答案:D4. 整数规划是线性规划的扩展,其特点是:A. 变量只能取整数值B. 变量可以取任意实数值C. 目标函数必须是整数D. 约束条件必须是整数答案:A5. 运筹学中的最短路径问题是指:A. 在有向图中找到从起点到终点的最短路径B. 在无向图中找到连接所有节点的最短路径C. 在网络中找到连接所有节点的最短路径D. 在带权图中找到权值最小的路径答案:A二、计算题(共40分)1. 某工厂有3个生产车间,分别需要完成4个任务。

完成每个任务所需时间如下:车间1:10小时车间2:8小时车间3:6小时为了提高效率,每个车间只能同时进行一个任务。

请问应如何分配任务,才能使得所有任务完成的时间最短?答案:将任务按照时间从大到小排序分配,先将任务分配给车间1和车间2,然后再将任务分配给车间3。

具体分配如下:车间1:10小时(任务1)车间2:8小时(任务2)车间3:6小时(任务3)车间1:18小时(任务1+任务4)车间2:16小时(任务2+任务4)车间3:12小时(任务3)总时间为18小时。

2. 某物流公司需要将货物从发货仓库A送至目的地仓库B。

货物可通过3条不同的路径运送,分别需要的运输时间为:路径1:6小时路径2:8小时路径3:10小时若考虑各路径的运输成本,路径1的运输成本为100元/小时,路径2的运输成本为150元/小时,路径3的运输成本为120元/小时。

请问应如何选择路径,使得运输成本最低?答案:计算各路径的单位成本,并选择单位成本最低的路径。

数学:运筹学试题及答案(强化练习)

数学:运筹学试题及答案(强化练习)

数学:运筹学试题及答案(强化练习)1、单选不属一般系统,特别是人造系统特征的是()A.整体性B.集合性C.目的性D.规模性正确答案:D2、名词解释概率向量正确答案:任意一个向量u=(u1,u2,…,un),如果(江南博哥)它内部的各种元素为非负数,且总和等于1,则此向量称为概率向量。

3、填空题影子价格实际上是与原问题各约束条件相联系的()的数量表现。

正确答案:对偶变量4、单选关于线性规划和其对偶规划的叙述中,正确的是()A.极大化问题(原始规划)的任意一个可行解所对应的目标函数值是对偶问题最优目标函数值的一个下界B.极小化问题(对偶规划)的任意一个可行解所对应的目标函数值是原始问题最优目标函数值的一个下界C.若原始问题可行,则其目标函数无界的充要条件是对偶问题有可行解D.若对偶问题可行,则其目标函数无界的充要条件是原始问题可行正确答案:A5、单选为建立运输问题的改进方案,在调整路线中调整量应为()。

A.奇数格的最小运量B.奇数格的最大运量C.偶数格的最小运量D.偶数格的最大运量正确答案:A6、单选下述选项中结果一般不为0的是()。

A.关键结点的结点时差B.关键线路的线路时差C.始点的最早开始时间D.活动的专用时差正确答案:D7、填空题动态规划中,把所给问题的过程,分为若干个相互联系的()正确答案:阶段8、多选系统评价常用的理论有()A.数量化理论B.效用理论C.最优化理论D.不确定性理论E.模糊理论正确答案:A, B, C, D9、填空题常用的两种时差是工作()和工作自由时差。

正确答案:总时差10、填空题()(EOQ)是使总的存货费用达到最低的某种存货台套的最佳订货量。

正确答案:经济订货量11、填空题分枝定界法一般每次分枝数量为()正确答案:2个12、单选用单纯形法求解线性规划时,不论是极大化或是极小化问题,均用最小比值原则确定出基变量,该说法()。

A.正确B.不正确C.可能正确D.以上都不对正确答案:A13、名词解释安全库存量正确答案:也称保险库存量,是为了预防可能出现的缺货现象而保持的额外库存量14、填空题若线性规划问题有(),必在某顶点上得到。

全国自考运筹学基础-试卷4_真题(含答案与解析)-交互

全国自考运筹学基础-试卷4_真题(含答案与解析)-交互

全国自考(运筹学基础)-试卷4(总分80, 做题时间90分钟)1. 单项选择题1.“运筹帷幄”这一成语表明,在中国古代英明的军队指挥员已能运用( )SSS_SINGLE_SELA 单纯的主观判断方法B 定性决策方法C 定性决策与简单的定量决策相结合的方法D 只凭自己的经验决策的方法分值: 2答案:C解析:混合性决策:运用定性和定量两种方法才能制定的决策。

2.指数平滑预测方法是一种 ( )SSS_SINGLE_SELA 纯定量预测法B 纯定性预测法C 定性与定量相结合的方法D 既非定性也非定量分值: 2答案:C解析:指数平滑预测方法是一种定性与定量相结合的方法。

3.加权平均数预测法是一种 ( )SSS_SINGLE_SELA 纯定性预测B 定性和定量相结合的方法C 既非定性又非定量的预测法D 纯定量方法分值: 2答案:B解析:加权平均数预测法是一种定性和定量相结合的方法。

4.最大最小原则是用来解决下列哪项条件下的决策问题? ( )SSS_SINGLE_SELA 不确定B 确定C 风险D 风险或不确定分值: 2答案:A解析:不确定条件下的决策包括最大最大决策标准,最大最小决策标准,最小最大遗憾值决策标准,现实主义决策标准。

5.下列有关存货台套的说法中,错误的是 ( )SSS_SINGLE_SELA 存货台套是存货管理的单位B 某个存货台套中可以包括不同的单项存货C 存货台套法简化了库存管理的工作内容D 每个存货台套包括的单项存货在数目上一般是相同的分值: 2答案:D解析:存货台套包括的单项存货在数目上可以有多有少。

6.一元线性回归预测中,相关系数R的取值范围一般是 ( )SSS_SINGLE_SELA R≥0B Q≤R≤1C -1≤R≤1D 0.5≤R≤0.9分值: 2答案:C解析:一元线性回归中R的取值范围是:-1≤R≤1。

7.在Ft+1 =Ft+a(xt-Ft)中,a的取值范围是 ( ) SSS_SINGLE_SELA -1≤a<0B 0≤a≤1C a>1D a<-1分值: 2答案:B解析:指数平滑预测法中a的取值范围是:0≤a≤1。

大学考试试卷《运筹学》及参考答案3套.doc

大学考试试卷《运筹学》及参考答案3套.doc

2012年9月份考试运筹学第一次作业一、单项选择题(本大题共100分,共40小题,每小题2. 5分)1.•个无()、但允许多重边的图称为多重图。

A.边B.孤C.环D.路2.运筹学是一门()。

A.决策科学B.数学科学C.应用科学D.逻辑科学3.基可行解对应的基,称为()。

A.最优基B.可行基C.最优可行基D.极值基4.运筹学用()来描述问题。

A.拓补语言B.计算机语言C.机器语言D 数学语言5.隐枚墓最是省去若干目标函数不占优势的()的一种检验过程。

A.基本可行解B.最优解C.基本解D.可行解6.对偶问题与原问题研究出自()目的。

A.不同B.相似C.相反D.同一7.资源价格大于影子价格时,应该()该资源。

A.头入B.卖出C.保持现状D 借贷出8.敏房性分析假定()不变,分析参数的波动对最优解有什么影响。

A.可行基B.基本基C.非可行基D.最优基9.从系统工程或管理信息预测决辅助系统的角度来看,管理科学与()就其功能而言是等同或近似的。

A 纬汁学B:计算机辅助科学C,运筹学D.人工智能科学10.闭回路的特点不包括()。

A.每个顶点都是直角B.每行或每列有且仅有两个顶点C.每个顶点的连线都是水平的或是垂直的D.起点终点可以不同11.运输问题分布m*n矩阵表的横向约束为()。

A.供给约束B.需求约束C.以上两者都有可能C.超额约束12.动态规划综合了()和“最优化原理”。

A.一次决策方法B.二次决策方法C.系统决策方法D.分级决策方法13.线性规划问题不包括()。

A.资源优化配置B.复杂系统结构性调整C,混沌系统分析D,宏、微观经济系统优化14.运输问题分布m*n矩阵表的纵向约束为()。

A.供给约束B.需求约束C.以上两者都有可D.超额约束15.路的第一个点和最后一个点相同,称为()oA.通路B,环路C.回路D,连通路16.对偶问题与原问题研究的是()对象。

A.2种B.不同的C.1种D.相似的17.运输问题的求解方法不包括()。

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案

《运筹学》期末考试试卷A-答案一、选择题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中进行决策的科学,以下哪个选项不属于运筹学的研究内容?A. 优化问题B. 随机过程C. 系统建模D. 心理咨询答案:D2. 在线性规划中,若一个线性规划问题的可行域是空集,则该问题称为:A. 无界问题B. 无解问题C. 无可行解问题D. 有解问题答案:C3. 线性规划问题中,目标函数和约束条件均为线性函数的是:A. 线性规划B. 非线性规划C. 动态规划D. 随机规划答案:A4. 在整数规划中,若决策变量只能取整数值,则该问题称为:A. 线性规划B. 整数规划C. 非线性规划D. 动态规划答案:B5. 在排队论中,以下哪个因素对服务效率影响最大?A. 服务速率B. 到达率C. 排队长度D. 服务时间答案:A二、填空题(每题5分,共25分)1. 运筹学的基本方法是________、________和________。

答案:模型化、最优化、计算机模拟2. 线性规划的标准形式包括________、________和________。

答案:目标函数、约束条件、非负约束3. 在非线性规划中,目标函数和约束条件至少有一个是________函数。

答案:非线性4. 动态规划适用于解决________决策问题。

答案:多阶段5. 排队论中的基本参数包括________、________和________。

答案:到达率、服务率、服务台数量三、简答题(每题10分,共30分)1. 请简要介绍线性规划的基本概念。

答案:线性规划是运筹学的一个基本分支,主要研究在一定的线性约束条件下,如何求解目标函数的最大值或最小值问题。

线性规划问题通常包括目标函数、约束条件和非负约束。

目标函数是决策者要优化的目标,约束条件是决策者需要满足的条件,非负约束要求决策变量取非负值。

2. 请简要阐述整数规划的特点。

答案:整数规划是线性规划的一种特殊情况,要求决策变量取整数值。

运筹学考试试题

运筹学考试试题

运筹学考试试题
问题一:线性规划
某食品公司有两种包装酱油的产品,产品 A 和产品 B。

产品 A 需
要 2 包的玻璃瓶和 3 包的金属瓶,产品 B 需要 4 包的玻璃瓶和 1 包的金属瓶。

公司每天共有 60 包玻璃瓶和 50 包金属瓶可用于生产。

产品
A 毛利为 10 元/包,产品
B 毛利为 15 元/包。

为了最大限度地提高公司的毛利,请问公司每天应该生产多少包产品 A 和产品 B?
问题二:整数规划
某快递公司需要派送多个包裹,在不同的送货地点停靠。

每个派送地点需要 1 辆专门的送货车。

快递公司最多可以使用 5 辆送货车。

每辆车的容量为 30 个包裹。

每个送货地点的包裹量如下:地点 1 需要 12 个包裹,地点 2 需要 8 个包裹,地点 3 需要 15 个包裹,地点 4 需要 10 个包裹。

每个送货地点停靠一辆车后,可以继续往下一个地点派送。

请问如何安排送货车来最大化送货量?
问题三:动态规划
假设有一个 3×3 的方格矩阵,每个格子里都写有一个正整数。

从左上角出发,每次只能向右或向下移动,直到达到右下角。

路线上所有经过的格子的数字加起来就是这条路径的价值。

求最优路径和的最大值。

问题四:网络流
某市有 4 座工厂,生产不同种类的零件。

每座工厂每天的生产能力不同,且每种零件的需求也不相同。

如何设计一个合理的生产调度方案,使得所有工厂的产量最大化,且满足市场对不同零件的需求?
以上考试试题仅供参考,实际考试内容以试卷内容为准。

祝考试顺利!。

全国4月自考运筹学基础试卷及答案解析

全国4月自考运筹学基础试卷及答案解析

全国2018年4月自考运筹学基础试卷课程代码:02375一、单项选择题(在每小题四个选备选答案中选出一个正确答案,并将其字母标号填入题干的括号内。

每小题1分,共14分)1.下列四个向量中,( )是概率向量。

A.(0.5,0.3,0.2,0.1)B.(0.2,0.4,0.1,0.2)C.(-0.3,0.6,0.4,0.3)D.(0.6,0.2,0.2,0)2.无先例可循的新问题的决策称为( )性决策。

A.风险B.不确定C.特殊D.计划3.以结点9为始点的活动共有4个,它们的最迟开始时间各为:LS9,11=5天;LS9,13=6天;LS9,15=8天,LS9,17=9天。

则结点9的最迟开始时间LS9为( )天。

A.5B.6C.8D.94.在任一个树中,点数比它的边数多( )A.4B.1C.3D.25.网络计划技术一章中所述的网络图分为( )两种。

A.加工图和示意图B.装配图和示意图C.加工图和装配图D.箭线式网络图和结点式网络图6.一元线性回归模型预测法中,y=a+bx的重要特性之一是( )A.该直线必定通过(x y,)点B.该直线必定通过所有实际测量点(x i,y i)C.该直线不会通过(x y,)及所有的(x i,y i)点D.该直线会通过部分(x i,y i)点,但不一定通过(x y,)点7.下述选项中不属于订货费用的支出是( )A.采购人员的工资B.采购存货台套或存货单元时发生的运输费用C.向驻在外地的采购机构发电报、发传真采购单的费用D.采购机构向供应方付款及结账的费用8.在运输方案中出现退化现象,是指数字格的数目( )A.等于m+nB.大于m+n-1C.小于m+n-1D.等于m+n-19.从教材列举的实例中可以归纳出求最短路线问题应从( )开始推算。

A.终点B.起点C.中间点D.终点和起点10.决策方法的分类是( )A.定性决策和混合性决策B.混合性决策和定量决策C.定性决策、定量决策和混合性决策D.定性决策和定量决策11.要想使直线回归方程式y=a+bx与实际情况拟合得最好,就必须使( )A.总偏差平方和最小B.正、负误差之和最小C.误差绝对值之和最小D.误差平方和最小 12.在一个概率矩阵中,( )的概率值之和需等于1。

《运筹学》冲刺串讲及模拟四套卷

《运筹学》冲刺串讲及模拟四套卷
4006885365第四章目标规划一知识点梳理二重点知识点回顾1基本概念表示决策值超过目标值的部分目标规划里规定d0实际上当目标值计划的利润值确定时决策值超过了目标值表示为d0d0决策值未达到目标值表示为d0d0决策值恰好等于目标值表示为d0d?????0dd0目标规划的目标函数minzfdd要求恰好达到目标值minzfdd要求不超过目标值minzfd要求超过目标值minzfd2目标规划的一般数学模型minzll1plkk1lkdklkdkst
m i n b ω =Y s . t .
{
Y A≥ C Y无约束
口诀: 大化小, 约束让变量反号, 变量让约束同号; 小化大, 变量让约束反号, 约束让变量同号。 【 3 】 线性规划的对偶理论 对称定理: 对偶问题的对偶是原问题。 弱对偶性: 若X , Y分别是原问题及对偶问题的可行解, 则有 C X≤ Y b ; 无界性: 若原问题( 对偶问题) 为无界解, 则其对偶问题( 原问题) 无可行解。
【 3 】 解的概念与性质 可行域若有界则是凸集, 也可能是无界域; — 1—
檷檷檷檷檷檷檷檷檷檷檷檷殟
冲刺串讲
第一章 线性规划与单纯形法
{
A X =b X≥ 0
考试点( w w w . k a o s h i d i a n . c o m ) 名师精品课程 电话: 4 0 0- 6 8 8 5- 3 6 5
() ( )
变为 9


时的最优解;
1 5
2 x 时的最优解。 ( 5 ) 求增加新的约束条件 x 1+ 2 +x 3≤ 5
— 7—Βιβλιοθήκη 考试点( w w w . k a o s h i d i a n . c o m ) 名师精品课程 电话: 4 0 0- 6 8 8 5- 3 6 5

运筹学试题及答案4套

运筹学试题及答案4套

运筹学试题及答案4套《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。

-1311611-2002-111/21/21407三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序a b c d e f g h 紧前工序——a a b,c b,c,d b,c,d e试画出该工程的网络图。

(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。

六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。

2 -1 1 0 02 3 11311111610 0 -3 -1 -2 0(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地产地甲乙丙丁产量A41241116B2103910C8511622需求量814121448《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。

二、(20分)已知运输表如下:销地产地B1B2B3B4供应量A1503 2 7 6A275 2 360A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。

运筹学期末试题及答案

运筹学期末试题及答案

运筹学期末试题及答案一、单项选择题(每题2分,共20分)1. 线性规划的最优解一定在可行域的哪个位置?A. 边界上B. 内部C. 顶点D. 不确定答案:A2. 动态规划的基本原理是什么?A. 贪心算法B. 分而治之C. 动态规划D. 回溯算法答案:B3. 整数规划问题中,变量的取值范围是?A. 连续的B. 离散的C. 整数D. 任意实数答案:C4. 以下哪个不是网络流问题?A. 最短路径问题B. 最大流问题C. 旅行商问题D. 线性规划问题答案:D5. 用单纯形法求解线性规划问题时,如果目标函数的系数矩阵是奇异的,则会出现什么情况?A. 无解B. 多解C. 无界解D. 有唯一解答案:C6. 以下哪个算法不是启发式算法?A. 遗传算法B. 模拟退火算法C. 动态规划D. 贪心算法答案:C7. 以下哪个是多目标优化问题?A. 只有一个目标函数B. 有多个目标函数C. 目标函数是线性的D. 目标函数是凸的答案:B8. 以下哪个是确定性决策方法?A. 决策树B. 随机模拟C. 蒙特卡洛方法D. 马尔可夫决策过程答案:A9. 以下哪个是排队论中的基本概念?A. 服务时间B. 到达率C. 队列长度D. 以上都是答案:D10. 以下哪个是存储论中的基本概念?A. 订货点B. 订货周期C. 订货量D. 以上都是答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的解?A. 可行解B. 基本解C. 基本可行解D. 非基本解答案:ABC2. 以下哪些是整数规划问题的解?A. 整数解B. 混合整数解C. 连续解D. 非整数解答案:AB3. 以下哪些是动态规划的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:ABC4. 以下哪些是排队论中的基本概念?A. 到达过程B. 服务过程C. 等待时间D. 服务台数量答案:ABCD5. 以下哪些是图论中的基本概念?A. 节点B. 边C. 路径D. 环答案:ABCD三、简答题(每题5分,共20分)1. 请简述线性规划的几何意义。

运筹学习题答案

运筹学习题答案

第一章习题1.思考题(1)微分学求极值的方法为什么不适用于线性规划的求解(2)线性规划的标准形有哪些限制如何把一般的线性规划化为标准形式(3)图解法主要步骤是什么从中可以看出线性规划最优解有那些特点(4)什么是线性规划的可行解,基本解,基可行解引入基本解和基可行解有什么作用(5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来什么是检验数它有什么作用如何计算检验数(6)确定换出变量的法则是什么违背这一法则,会发生什么问题(7)如何进行换基迭代运算(8)大M法与两阶段法的要点是什么两者有什么共同点有什么区别(9)松弛变量与人工变量有什么区别试从定义和处理方式两方面分析。

(10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解为什么2.建立下列问题的线性规划模型:(1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示:润最大的模型。

(2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。

如何安排配方,使成本最低(3)某医院每天各时间段至少需要配备护理人员数量见表1-20。

表1-20假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。

能否利用初等数学的视察法,求出它的最优解(4)某工地需要30套三角架,其结构尺寸如图1-6所示。

仓库现有长6.5米的钢材。

如何下料,使消耗的钢材最少图1-63. 用图解法求下列线性规划的最优解:⎪⎪⎩⎪⎪⎨⎧≥≤+-≥+≥++=0,425.134 12 64 min )1(2121212121x x x x x x x x x x z⎪⎪⎩⎪⎪⎨⎧≥≤+≥+-≤++=0,82 5 1032 44 max )2(2121212121x x x x x x x x x x z⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤≤-≤+-≤++=0,6054 4 22232 96 max )3(21221212121x x x x x xx x x x xz⎪⎩⎪⎨⎧≥≤+-≥++=0,1 1234 3 max )4(21212121x x x x x x x x z4. 把下列线性规划化为标准形式:⎪⎪⎩⎪⎪⎨⎧≥≤=-++-≥-+≤-+-+-=无约束432143213214313210,,01 32 212 min )1(x x x x x x x x x x x x x x x x x z⎪⎪⎩⎪⎪⎨⎧≤≤≥+-≤++=无约束211212121,02182 32 max )2(x x x x x x x x x z5. 判定下列集合是否凸集:(1)R 1={(x 1,x 2)|x 12+2x 22≤2}(2)R 2={(x 1,x 2)|x 12-2x 2+3≥0,x 2≥0,|x 1|≤1} (3)R 3={(x 1,x 2)|x 1x 2≥1,x 1≥1,x 2≥0}6. 求出下列线性规划的所有基本解,并指出其中的基可行解和最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学》试卷一
一、(15分)用图解法求解下列线性规划问题
二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、
为松弛变量,试求表中到的值及各变量下标到的值。

-13
1
1
6
1
1-200
2-1
1
1/2
1/2
1
4
07
三、(15分)用图解法求解矩阵对策,
其中
四、(20分)
(1)某项工程由8个工序组成,各工序之间的关系为
工序a b c d e f g h 紧前工序——a a b,c b,c,d b,c,d e 试画出该工程的网络图。

(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键
线路(箭线下的数字是完成该工序的所需时间,单位:天)
五、(15分)已知线性规划问题
其对偶问题最优解为,试根据对偶理论求原问题的最优解。

六、(15分)用动态规划法求解下面问题:
七、(30分)已知线性规划问题
用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。

2 -1 1 0 0
2 3 1
1
3
1
1
1
1
1
6
10 0 -3 -1 -2 0
(1)目标函数变为;
(2)约束条件右端项由变为;
(3)增加一个新的约束:
八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案
销地
产地
甲乙丙丁产量
A41241116
B2103910
C8511622需求量814121448
《运筹学》试卷二
一、(20分)已知线性规划问题:
(a)写出其对偶问题;
(b)用图解法求对偶问题的解;
(c)利用(b)的结果及对偶性质求原问题的解。

二、(20分)已知运输表如下:
销地
产地B1B2B3B4供应量
50
A 1
3 2 7 6
A 2
60
7 5 2 3
25
A 3 2
5 4 5
需求量60 40 20 15
(1)用最小元素法确定初始调运方案;
(2)确定最优运输方案及最低运费。

三、(35分)设线性规划问题
maxZ=2x1+x2+5x3+6x4
的最优单纯形表为下表所示:
x
Β
b x1x2x3x4 x 5 x6
x3
42 -2 1 0
2 -1
x4
4
0 2 0 1 -1 1
-8 -1 0 0
-4 -1
利用该表求下列问题:
(1)要使最优基保持不变,C3应控制在什么范围;
(2)要使最优基保持不变,第一个约束条件的常数项b1应控制在什么范围;
(3)当约束条件中x1的系数变为时,最优解有什么变化;
(4)如果再增加一个约束条件3x1+2x2+x3+3x4≤14,最优解有什么变化。



人员
A B C D E
甲382103
乙87297
丙64275
丁84235
戊9106910
问指派哪个人去完成哪项工作,可使总的消耗时间最小?
五、(20分)用图解法求解矩阵对象G=(S1,S2,A),其中
六、(20分)已知资料如下表:
工序紧前
工序
工序
时间(天)
工序
紧前
工序
工序
时间
(天)


紧前
工序
工序
时间(天) a
b
c
d
e
f
--
a
a
a
a
a
60
14
20
30
21
10
g
h
i
j
k
l
b,c
e,f
f
d,g
h
j,k
7
12
60
10
25
10
m
n
o
p
q
j,k
i,l
n
m
o,p
5
15
2
7
5
(1)绘制网络图;
(2)确定关键路线,求出完工工期。

七、(15分)某工厂有100台机器,拟分四个周期使用,在每一周期有两种生产
任务。

据经验,把机器x1台投入第一种生产任务,则在一个生产周期中将 x1
台机器作废;余下的机器全部投入第二种生产任务,则有机器作废。

如果干第一种生产任务每台机器可收益10,干第二种生产任务每台机器可收益7,问怎
样分配机器,使总收益最大?
《运筹学》试卷三
一、(15分)用图解法求解下列线性规划问题
二、(30分)已知线性规划问题
用单纯形法求的最终表如下表所示:
X
B
b x1x2x3 x4 x5
x26 x5 101 1 1 1 0 0 3 1 1 1 0 -3 -1 -2 0
试说明分别发生下列变化时,新的最优解是什么?
(1)目标函数变为;
(2)约束条件右端项由变为;
(3)增添一个新的约束。

三、(20分)
(1)某工程由9项工作组成,它们之间的逻辑关系为:


A B C D E F G H L
紧前工作-A-A D,L E B,F-C,H 要求画出该工程的网络图。

(2)某工程的网络图为
箭线下的数字表示完成该项工作所需天数。

试求
a)各个事项所发生的最早、最迟时间;
b)工程的关键线路。

四、(15分)写出下列线性规划问题的对偶问题
五、(20分)矩阵对策,其中局中人Ⅰ的赢得矩阵为:
试用图解法求解。

六、(25分)设有物资从A1,A2,A3处运往B1,B2,B3,B4处,各处供应量、需求量及单位运价见下表。

问应如何安排运输方案,才能使总运费最少?
销地
产地B1B2B3B4供应量
A1 3 7 6 4 5
A2 2 4 3 2 2
A3 4 3 8 5 3
需求量 3 2 3 2 10
七、(25分)甲、乙双方合资办厂,根据协议,乙方负责提供全部1000台设备,甲方承担其余义务,生产的产品双方共享。

5年合同期满后,工厂全部归甲方所有。

假定设备可在高低两种负荷下运转,在高负荷下生产,产品生产量s1与高负荷运转设备数量u1关系为s1=8u1,此时设备折损后年完好率α=0.7;在低负荷下生产,年产量s2与低负荷下设备数量u2关系为s2=5u2,此时设备折损后年完好率β=0.9。

在排除其它影响前提下,问甲方应如何安排5年的生产计划,使5年后完好设备台数500台,同时5年总产量最大?
《运筹学》试卷四
一、(10分)写出下列线性规划问题的对偶问题:
二、(20分)下表是某线性规划问题的一个单纯形表。

已知该线性规划问题的目标函数为
,约束条件均为“”型不等式,其中为松弛变量,表中解对应的目标函数值
01
1/5
1
2
-1
(1)求到的值;
(2)表中给出的解是否为最优解?
三、(10分)已知线性规划问题:
其对偶问题的最优解为,试用对偶的互补松弛性求解原问题的最优解。

四、(20分)已知整数规划问题:
0 1 1
7/22
-1/22
1/22
3/22
7/2
9/2
0 0 -28/11 -15/11
试用割平面法求整数规划问题最优整数解。

五、(20分)某项研制新产品工程的各个工序与所需时间以及它们之间的相互关系如下表:
工序紧后工序工序时间(天)
a b,c,d,e60
b L45
c f10
d g,h20
e h40
f L18
g k30
h L15
k L25
L-35
(1)绘制该工程网络图;
(2)计算时间参数,确定关键路线,求出完工工期。

六、(20分)已知运输表如下:
销地
产地B1B2B3B4供应量
A1
3 11 3 10
7
A2
1 9
2 8
4
A3 7
4 10 5
9
需求量 3 6 5 6 20
(1)用最小元素法确定初始调运方案;
(2)确定最优运输方案及最低运费;
(3)产地A1至销地B4的单位运价C14在什么范围内变化时最优调运方案不变。

七、(20分)用图解法求解矩阵对策G=(S1,S2,A),其中
八、(20分)需要指派5人去做5项工作,每人做各项工作所消耗的时间如下表


人员
A B C D E
甲4871512
乙79171410
丙691287
丁6714610
戊6912106问指派哪个人去完成哪项工作,可使总的消耗时间最小?
九、(10分)某批发站每月需某种产品100件,每次订购费为5元。

若每次货物到达后存入仓库,每件每月要付出0.4元存储费。

若假设消耗是均匀连续发生的,且不许缺货。

求最佳订货周期及最佳订购批量。

相关文档
最新文档