北师大版八年级数学下册 平行四边形的性质与判定 专题(附答案)
北师大版数学八年级下册小专题(四) 平行四边形的性质与判定
小专题(四) 平行四边形的性质与判定1.(云南中考改编)如图,在平行四边形ABCD 中,M ,N 分别是AD ,BC 的中点.求证:四边形MNCD 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC.∵M ,N 分别是AD ,BC 的中点,∴MD =NC ,MD ∥NC.∴四边形MNCD 是平行四边形.2.如图,四边形ABCD 是平行四边形,点E ,A ,C ,F 在同一直线上,且AE =CF.求证:BE =DF.证明:∵四边形ABCD 为平行四边形,∴BC =AD ,BC ∥AD.∴∠BCA =∠DAC.又∵AE=CF ,∴AE +AC =CF +AC ,即EC =AF.在△BCE 和△DAF 中,⎩⎨⎧BC =DA ,∠BCE =∠DAF,EC =FA ,∴△BCE ≌△DAF(SAS ).∴BE =DF.3.如图,已知四边形AEFD 和EBCF 都是平行四边形,四边形ABCD 是平行四边形吗?为什么?解:四边形ABCD 是平行四边形.理由:∵四边形AEFD 是平行四边形,∴AD ∥EF ,且AD =EF.∵四边形BEFC 为平行四边形,∴EF ∥BC ,且EF =BC.∴AD ∥BC ,AD =BC.∴四边形ABCD 是平行四边形.4.(连云港中考)如图,在四边形ABCD 中,AD =BC ,BE =DF ,AE ⊥BD ,CF ⊥BD ,垂足分别为E ,F.(1)求证:△ADE≌△CBF;(2)若AC 与BD 相交于点O ,求证:AO =CO.证明:(1)∵BE=DF ,∴BE -EF =DF -EF ,即BF =DE.∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB=90°.在Rt △ADE 与Rt △CBF 中,⎩⎨⎧AD =CB ,DE =BF , ∴Rt△ADE ≌Rt△CBF (HL).(2)∵△ADE ≌△CBF ,∴∠ADE =∠CBF .∴AD ∥BC .又∵AD =BC ,∴四边形ABCD 是平行四边形.∴AO =CO .5.如图,在等腰△ABC 中,点D 是底边BC 边上的一点,DE ∥AC ,DF ∥AB ,通过观察分析线段DE ,DF ,AB 三者之间有什么关系,试说明你的结论成立的理由.解:AB =DE +DF.理由:∵DE∥AC,DF ∥AB ,∴四边形AEDF 是平行四边形,∠C =∠EDB.∴DF =AE.∵△ABC 是等腰三角形,∴∠B =∠C.∴∠B =∠EDB.∴DE =BE.∴AB =AE +BE =DF +DE.6.如图,已知▱ABCD 中,E ,F 是对角线BD 上的两点,给出下列三个条件:①BE =DF ;②∠AEB =∠DFC;③AF ∥EC.请你从中选择一个条件,能使四边形AECF 是平行四边形.选法有几种?请选择一种加以证明.解:能使四边形AECF 是平行四边形的选法有3种.如选①BE=DF.证明:连接AC ,与BD 交于点O.∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD.∵OB=BE+OE,OD=DF+OF,BE=DF,∴OE=OF.又∵OA=OC,∴四边形AECF是平行四边形.7.有一块形状如图所示的玻璃,AE∥CB,不小心把DEF部分打碎,现在只测得AB=30 cm,BC=70 cm,∠B=60°,∠C=150°,请根据测得的数据求出AD的长.解:过点C作CG∥AB,交AD于点G.∵AE∥BC,CG∥AB,∴四边形ABCG是平行四边形.∴CG=AB=30 cm,AG=BC=70 cm.∵∠B=60°,∴∠A=180°-60°=120°.∴∠DGC=∠A=∠BCG=120°.∵∠BCD=150°,∴∠D=180°-∠BCD=30°,∠GCD=∠BCD-∠BCG=30°.∴∠GCD=∠D=30°.∴DG=CG=AB=30 cm.∴AD=AG+DG=100(cm).8.(永州中考)如图,四边形ABCD为平行四边形,∠BAD的平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD.∴∠AEB=∠DAE.∵AE是∠BAD的平分线,∴∠BAE=∠DAE.∴∠BAE=∠AEB.∴AB=BE.∴BE=CD.(2)∵AB=BE,∠BEA=60°,∴△ABE是等边三角形.∴AE=AB=4.∵BF⊥AE,∴AF=EF=2.∴BF=AB2-AF2=42-22=2 3.∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E.在△ADF和△ECF中,⎩⎨⎧∠D=∠ECF,∠DAF =∠E,AF =EF ,∴△ADF ≌△ECF(AAS ). ∴S △ADF =S △ECF . ∴S ▱ABCD =S △ABE =12AE ·BF =12×4×23=4 3.。
2020-2021学年八年级数学北师大版下《平行四边形的判定与性质》训练含答案
2021北师大版八年级数学下册《平行四边形的判定与性质》综合提升训练1.若平行四边形中两个相邻内角的度数之比为1:3,则其中较小的内角是()A.45°B.30°C.60°D.36°2.如图,在▱ABCD中,∠BAD和∠ADC的平分线交于点O,且分别交直线BC于点E,F.若AB=7,BC=4,则OE2+OF2的值是()A.50B.63C.100D.1213.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.54.如图,在平行四边形ABCD中,AB=5,AD=3,∠BAD的平分线AE交CD于点E,连接BE,若∠BAD=∠BEC,则平行四边形ABCD的面积为()A.B.C.D.155.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:1:2:2D.2:1:2:1 6.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于E,交BA的延长线于F,则AF的长等于()A.2B.3C.4D.67.如图,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.如果AD=5cm,AP=8cm,则△ABP的面积等于()cm2.A.24B.30C.6D.128.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,且AE=3cm,AF=4cm.若▱ABCD 的周长为56cm,则BC的长为()A.14cm B.16cm C.28cm D.32cm9.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCB C.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD10.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形11.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF 一定是平行四边形的是()A..DE=BF B..AE=CF C..∠ADE=∠CBF D..∠AED=∠CFB.12.下列条件中,不能判定一个四边形为平行四边形的是()A.一组对边相等且平行B.一组对边平行,另一组对边相等C.两条对角线互相平分D.两组对边分别相等13.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CF B.EF经过BD的中点C.BE∥DF D.EF⊥AD14.如图,点A、E、F、C在一条直线上,若将△DEC的边EC沿AC方向平移,平移过程中始终满足下列条件:AE=CF,DE⊥AC于E,BF⊥AC于F,且AB=CD.则当点E、F不重合时,BD与EF的关系是.15.如图,已知平行四边形ABCD中,∠BCD的平分线交边AD于E,∠ABC的平分线交AD于F,AB=10,AE=4,则EF=.16.如图,EF过▱ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD 的周长是30,OE=3,则四边形ABFE的周长是.17.已知平行四边形ABCD的一个内角平分线把一边分为3cm,5cm两部分,这个平行四边形的周长是.18.如图,在▱ABCD中,以点A为圆心,AB为半径画弧交AD于点F,分别以点B,F为圆心,同长为半径画弧交于点G,连接AG并延长交BC于点E,若BF=6,AB=5,则AE的长为.19.如图,已知平行四边形ABCD中,AD=6,AB=10,∠DAB=60°,AC、BD相交于点O,经过点O的直线EF分别交CD、AB于点E、F,则图中阴影部分的面积是.20.如图,在▱ABCD中,AC,BD相交于点O,点E,F在对角线BD上,有下列条件:①BF=DE;②AE=CF;③∠EAB=∠FCO;④AF∥CE.其中一定能判定四边形AECF是平行四边形的是.21.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止).在运动以后,当t=时以P、D、Q、B四点组成的四边形为平行四边形.22.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.23.如图,在平行四边形ABCD中,对角线AC与BD交于点O,点M,N分别为OA、OC 的中点,求证:△AMB≌△CND.24.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E.(1)求证:AF=DE;(2)若EF=1,▱ABCD的周长为46,求BC的长.25.如图,在平行四边形ABCD中,对角线AC,BD交于点O,过点O任作直线分别交AB、CD于点E、F.(1)求证:OE=OF;(2)若CD=6,AD=5,OE=2,求四边形AEFD的周长.26.如图,已知△ABC与△ADE是等腰三角形,并且△ABC≌△ADE,连接CE、BD交于点F.(1)求证:BD=CE;(2)当四边形ABFE是平行四边形时,且AB=2,∠BAC=30°,求CF的长.27.如图,▱ABCD中,E是AD边的中点,BE的延长线与CD的延长线相交于F.(1)求证:△ABE≌△DFE.(2)连接AF、BD,若三角形DEF的面积为1,则四边形ABCF的面积为.28.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.29.已知:如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.求证:四边形CDBF是平行四边形.参考答案1.解:设平行四边形中两个相邻内角分别为x°,3x°,则x+3x=180,解得:x=45,∴其中较小的内角是45°,故选:A.2.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠E=∠DAE,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠BAE,∴AB=BE=7,又∵BC=4,∴CE=7﹣4=3,同理可得,BF=3,∴EF=3+4+3=10,∵AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD和∠ADC的平分线交于点O,∴∠OAD+∠ODA=90°,∴∠AOD=90°=∠EOF,∴Rt△EOF中,OE2+OF2=EF2=102=100,故选:C.3.解:连接EC,过A作AM∥BC交FE的延长线于M,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥CD,∴AM∥DE∥CF,AC∥FM,∴四边形ACFM是平行四边形,∵△BDE边DE上的高和△CDE的边DE上的高相同,∴△BDE的面积和△CDE的面积相等,同理△ADE的面积和△AME的面积相等,即阴影部分的面积等于平行四边形ACFM的面积的一半,是×CF×h CF,∵△ABC的面积是12,BC=4CF,∴BC×h BC=×3CF×h CF=12,∴CF×h CF=8,∴阴影部分的面积是×16=4,故选:C.4.解:过点B作BF⊥CD于F,如图所示:∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵四边形ABCD是平行四边形,∴AB=CD=5,AD=BC=3,∠BAD=∠BCE,AB∥CD,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴AD=DE=3,∴CE=CD﹣DE=2,∵∠BAD=∠BEC,∴∠BCE=∠BEC,∴CF=EF=CE=1,BF===2,∴平行四边形ABCD的面积=BF•CD=2×5=10,故选:C.5.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴D正确,故选:D.6.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,∴∠F=∠FCD,∵CE平分∠BCD,∴∠BCE=∠FCD,∴∠F=∠BCE,∴BF=BC=6,∴AF=BF﹣AB=8﹣6=2;故选:A.7.解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠P AB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠P AB+∠PBA)=90°,∴AP⊥PB,∵AP平分∠DAB且AB∥CD,∴∠DAP=∠P AB=∠DP A.∴△ADP是等腰三角形.∴AD=DP=5cm,同理可得CP=BC=5cm,∴CD=AB=10cm,∴PB===6cm,∴△ABP的面积=×6×8=24cm2,故选:A.8.解:∵▱ABCD的周长为56cm,∴BC+CD=28cm,∵▱ABCD中,AE⊥BC,AF⊥CD,∴S▱ABCD=BC•AE=CD•AF∵AE=3cm,AF=4cm,∴3BC=4CD,∴BC=16cm,CD=12cm,故选:B.9.解:A、∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=∠ADC,∴∠ADC+∠BAD=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB,∴∠ADB=∠CBD,∴AD∥CB,∵∠ABD=∠BDC,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC,又∠AOB=∠COD,∴△AOB≌△COD(AAS),∴DO=BO,∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.10.解:A、∵两组对边分别平行的四边形是平行四边形,∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形,∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形,∴选项D不符合题意;故选:B.11.解:A、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形,故选项A符合题意;B、∵四边形ABCD是平行四边形,∴DF∥EB,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴DF∥EB,AB=CD,AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴DF=EB,∴四边形DEBF是平行四边形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,∴DF∥EB,∴∠CFB=∠ABF,∵∠AED=∠CFB,∴∠ABF=∠AED,∴DE∥BF,∴四边形DEBF是平行四边形,故选项D不符合题意;故选:A.12.解:A、一组对边相等且平行的四边形是平行四边形,故本选项不符合题意;B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,可能是等腰梯形,故本选项符合题意;C、两条对角线互相平分是平行四边形,故本选项不符合题意;D、两组对边分别相等的四边形是平行四边形,故本选项不符合题意;故选:B.13.解:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE=CF,AD=BC,∴DE=BF,∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O,∵AD∥BC,∴∠EDO=∠FBO,在△BOF和△DOE中,,∴△BOF≌△DOE(ASA),∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF,∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.14.解:已知AE=CF,DE⊥AC于E,BF⊥AC于F,且AB=CD且点E、F不重合,∴AE+EF=CF+EF,即AF=CE,∴∠DEC=∠BF A=90°,又已知AB=CD,∴△ABF≌△CDE,∴DE=BF,∠DOE=∠BOF,∴△DOE≌△BOF,∴OE=OF,OB=OD,∴BD和EF互相平分.故答案为:互相平分.15.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,∴∠AFB=∠ABF,∵AB=10,AE=4,∴EF=AF﹣AE=10﹣4=6,故答案为:6.16.解:∵四边形ABCD为平行四边形,对角线的交点为O,∴AB=CD,AD=BC,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为30,∴AB+BC=×30=15,∴四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=15+6=21,故答案为:21.17.解:∵ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3cm,CE=5cm,AB=3cm,则周长为22cm;②当BE=5cm时,CE=3cm,AB=5cm,则周长为26cm.故答案为:22cm或26cm.18.解:如图,连接FE,设AE交BF于点O.由作图可知:AB=AF,AE平分∠BAD,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AE=∠AEB=∠BAE,∴AB=BE,∴AF=BE,∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,∴AO=OE=AE,BO=OF=3,在Rt△AOB中,AO===4,∴AE=2OA=8.故答案是:8.19.解:如图,过点D作DH⊥AB于H,∵∠DAB=60°,∴∠ADH=30°,∴AH=AD=3,DH=AH=3,∴平行四边形ABCD的面积=10×3=30,∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠BAC=∠DCA,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴S△AOF=S△COE,∴图中阴影部分的面积=S△BCD=S▱ABCD=15,故答案为15.20.解:∵四边形ABD是平行四边形,∴AB∥CD,AB=CD,OB=OD,OA=OC,∵BF=DE,∴BF﹣OB=DE﹣OD,即OF=OE,∴四边形AECF是平行四边形;∵AB∥CD,∴∠ABE=∠CDF,∵∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴BE=CF,∵AO=CO,BO=DO,∴OE=OF,∴四边形AECF是平行四边形;∵AF∥CE,∴∠AFB=∠CED,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS),∴BF=DE,∴BF﹣OB=DE﹣OD,即OF=OE,又∵OA=OC,∴四边形AECF是平行四边形;∵AE=CF,不能判定△ABE≌△CDF,∴不能判定四边形AECF是平行四边形;∴一定能判定四边形AECF是平行四边形的是①④,故答案为:①④.21.解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;综上所述,t=4.8s或8s或9.6s时,以P、D、Q、B四点组成的四边形为平行四边形,故答案为:4.8s或8s或9.6s.22.证明:(1)∵AB∥CD,∴∠B=∠D.在△ABE和△CDF中,,∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE.∴AE∥CF.∵AE=CF,∴四边形AECF是平行四边形.23.证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥CB,OA=OC,∴∠BAC=∠DCN,又点M,N分别为OA、OC的中点,∴AM=CN,在△AMB和△CND中,,∴△AMB≌△CND(SAS).24.证明:(1)∵四边形ABCD的平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠AFB=∠CBF,∠DEC=∠BCE,∵BF平分∠ABC,CE平分∠BCD,∴∠ABF=∠FBC=∠AFB,∠DCE=∠BCE=∠DEC,∴AB=AF,DC=DE,∴AF=DE;(2)∵▱ABCD的周长为46,∴AD+AB=23,∵EF=1,∴2AB﹣AD=EF=1,∴AB=8,AD=15,∴BC=15.25.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF;(2)解:∵△OAE≌△OCF,∴CF=AE,∴DF+AE=AB=CD=6,又∵EF=2OE=4,∴四边形AEFD的周长=AD+DF+AE+EF=6+4+5=15.26.解:(1)证明:∵△ABC≌△ADE,AB=AC,∴AB=AC=AD=AE,∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴BD=CE;(2)∵△ABC≌△ADE,∠BAC=30°,∴∠BAC=∠DAE=30°,∵四边形ABFE是平行四边形,∴AB∥CE,AB=EF,由(1)知:AB=AC=AE,∵AB=2,∴AB=AC=AE=2,过A作AH⊥CE于H,∵AB∥CE,∠BAC=30°,∴∠ACH=∠BAC=30°,∴在Rt△ACH中,AH===1,CH===,∵AC=AE,AH⊥CE,∴CE=2CH=2,∴CF=CE﹣EF=2﹣2.27.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=DC,∴∠F=∠EBA,∵E是AD边的中点,∴DE=AE,在△ABE与△DFE中,,∴△ABE≌△DFE(AAS);(2)解:∵△ABE≌△DFE,∴DF=AB,∵AB∥CD,∴四边形ABDF是平行四边形,∵三角形DEF的面积为1,∴S▱ABCD=4S△DEF=4,∴S△BCD=S▱ABCD=×4=2,∴S四边形ABDF=S▱ABDF+S△BCD=4+2=6.28.证明:(1)∵DF∥BE,∴∠DFE=∠BEF.在△ADF和△CBE中,,∴△AFD≌△CEB(SAS);(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形.29.证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.在△CEF与△BED中,,∴△CEF≌△BED(AAS).∴CF=BD.∴四边形CDBF是平行四边形.。
初中数学北师大版八年级下册第六章 平行四边形1.平行四边形的性质-章节测试习题(6)
章节测试题1.【题文】如图,在□ABCD中,对角线AC,BD相交于点O,EO⊥AC.(1)若△ABE的周长为10cm,求平行四边形ABCD的周长;(2)若∠ABC=78°,AE平分∠BAC,试求∠DAc的度数.【答案】解:(1)∵四边形ABCD是平行四边形,∴OA=OC.∵OE⊥AC,∴AE=CE.故△ABE的周长为AB+BC=10(cm).根据平行四边形的对边相等,得□ABCD的周长为2×10=20(cm).(2)∵AE=CE,∴∠EAC=∠ECA.∵∠ABC=78°,AE平分∠BAC,∴∠BAE=∠EAC=∠ECA.∴3∠ACE+78°=180°.∴∠ACE=34°.∵AD∥BC,∠DAC=∠ECA=34°.【分析】【解答】2.【题文】如图,已知点A(-4,2),B(-1,-2),□ABCD的对角线交于坐标原点O.(1)请直接写出点C,D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出□ABCD的面积.【答案】解:(1)C点坐标为(4,-2),D点坐标为(1,2).(2)AB绕点O旋转180°与CD重合.(答案不唯一,合理即可)(3).【分析】【解答】3.【题文】分别以□ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,即△ABE,△CDG,△ADF.(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF,请判断GF与EF的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.【答案】解:(1)GF⊥EF,GF=EF.(2)GF⊥EF,GF=EF成立.∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC.∠DAB+∠ADC=180°∵△ABE,△CDG,△ADF都是等腰直角三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°.∵.∠BAE+∠DAF+∠EAF+∠ADF+∠FDC=180°.∴∠EAF+∠CDF=45°.∵∠CDF+∠GDF=45°,∴∠FDG=∠EAF.∴△GDF≌△EAF(SAS)∴EF=FG,∠EFA=∠DFG.∴∠GFD+∠GFA=∠EFA+∠GFA=90°.∴∠GFE=90°∴GF⊥EF,GF=EF.【分析】【解答】4.【答题】如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A. AB=CDB. CE=FGC. A,B两点间的距离就是线段AB的长度D. l1与l2两平行线间的距离就是线段CD的长度【答案】D【分析】【解答】5.【答题】如图,直线AB∥CD,P是AB上的动点,当点P的位置变化时,三角形PCD的面积将()A. 变大B. 变小C. 不变D. 变大变小要看点P向左还是向右移动【答案】C【分析】【解答】6.【答题】如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=4cm,那么平行线a,b之间的距离为()A. 5cmB. 4cmC. 3cmD. 不能确定【答案】C【分析】【解答】7.【答题】已知直线a∥b∥c,直线a与直线b的距离是5cm,直线b与直线c的距离是3cm,则直线a与直线c之间的距离是______.【答案】8cm或2cm【分析】【解答】8.【答题】如图,方格纸中每个最小正方形的边长为1,则两平行直线AB,CD之间的距离是______.【答案】3【分析】【解答】9.【答题】如图,已知点E,F分别在长方形ABCD的边AB,CD上,且AF∥CE,AB=3,AD=5,那么AE与CF的距离是______.【答案】5【分析】【解答】10.【答题】如图,AD∥BC,AC,BD交于点E,S△ABC=5,S△EDC=2,则S△BEC=______.【答案】3【分析】【解答】11.【答题】如图,已知直线AB∥CD,AB与CD之间的距离为,∠BAC=60°,则AC=______.【答案】2【分析】【解答】12.【答题】平行四边形两邻边分别为20和16,若两较长边之间的距离为8,则两较短边之间的距离为______.【答案】10【分析】【解答】13.【答题】如图,直线a∥b,点A,B在直线a上,点C,D在直线b上,且AB:CD=1:2,若△ABC的面积为6,则△BCD的面积为______.【答案】12【分析】【解答】14.【题文】如图,已知l1∥l2,点C1在直线l1上,并且C1A⊥l2,点A为垂足,点C2,C3是l1上任意两点,点B在直线l2上.设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3.小颖认为S1=S2=S3,请帮小颖说明理由.【答案】解:直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等∴△ABC1,△ABC2,△ABC3同底且等高∴△ABC1,△ABC2,△ABC3的面积相等,即.【分析】【解答】15.【答题】如图,若□ABCD的面积为20,BC=5,则边AD与BC间的距离为______.【答案】4【分析】【解答】16.【答题】如图,四边形ABCD,ABDE都是平行四边形,且S□ABCD=8cm2,那么四边形ABCE的面积是______ cm2.【答案】12【分析】【解答】17.【答题】如图,直线a∥b∥c,且a,b之间的距离为1,△ABC和△CDE是两块全等的直角三角形纸板,其中∠ABC=∠CDE=90°,∠BAC=∠DCE=30°,它们的顶点都在平行线上,则b,c之间的距离是()A. 1B.C.D. 2【答案】C【分析】【解答】18.【答题】如图,a∥b,若要使△ABC的面积与△DEF的面积相等,需增加条件()A. AB=DEB. AC=DFC. BC=EFD. BE=AD【答案】C【分析】【解答】19.【答题】如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,AE=4,AF=6,□BCD的周长是40,则□ABCD的面积是()A. 48B. 40C. 35D. 30【答案】A【分析】【解答】20.【答题】如图,在□ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S□AEPH=______.【答案】4【分析】【解答】。
北师大版八年级数学下第六章 平行四边形 第一节 平行四边形的性质及判定
北师大版八年级下第六章平行四边形第一节平行四边形的性质及判定姓名:________ 班级:________ 成绩:________一、单选题1 . 下列判断正确的是()A.一组对边平行且另一组对边相等的四边形是平行四边形B.对角线相等的四边形是矩形C.一组对边平行且有一组对角相等的四边形是平行四边形D.对角线互相垂直且相等的四边形是正方形2 . 下列说法错误的是()A.成中心对称的两个图形必能重合B.两组对角分别相等的四边形是平行四边形C.一组对边平行,一组对角相等的四边形是平行四边形D.对角线相等的四边形是平行四边形3 . 如图,在▱ABCD中,AD=4cm,AB=2cm,则▱ABCD的周长是()A.12cm B.10cm C.8cm D.6cm4 . 平行四边形ABCD中的面积为72,AE:EB=1:2,CF:FB=1:2,则三角形DEF的面积为()A.36B.30C.32D.345 . 如图1,在□ABCD中,CE⊥AB,为垂足.如果∠A=125°,则∠BCE的度数为()A.55°B.35°C.25°D.30°6 . 在Rt△ABC中,∠C=90°,AC=3,BC=4,那么cosB的值是()A.B.C.D.7 . 如图,在ΔABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50°B.40°C.25°D.20°8 . 如图,的中线、交于点,连接,点、分别为、的中点,,,则四边形的周长为()A.12B.14C.16D.189 . 如图,在△ABC中,边AC的垂直平分线交边AB于点D,连结CD.若∠A=50°,则∠BDC的大小为()A.90°B.100°C.120° D. 130°10 . 如图,已知ABCD的对角线AC与BD相交于点O,AC=12cm,BD=18cm,AD=12cm,则△BOC的周长等于().A.21cm B.26cm C.27cm D.42cm11 . 如图,在□ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DE F:S△ABF=4:25,则DE:EC=()A.3:2B.1:1C.2:5D.2:312 . 如图,与的形状相同,大小不同,是由的各顶点变化得到的,则各顶点变化情况是()A.横坐标和纵坐标都乘以2B.横坐标和纵坐标都加2C.横坐标和纵坐标都除以2D.横坐标和纵坐标都减213 . 下列长度的三条线段能组成三角形的是()A.3,3,3B.5,5,11C.2,4,8D.1,2,314 . 平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等15 . 如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,且▱ABCD的周长为40,则▱ABCD 的面积为()A.24B.36C.40D.48二、填空题16 . 如果一个平行四边形的内角平分线与边相交,并且这条边被分成 3、5 两段,那么这个平行四边形的周长为______________.17 . 如图,在中,如果点为中点,与相交于点,那么______.18 . 在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别AB和CD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为3,则平行四边形ABCD面积为.三、解答题19 . 活动一:已知如图1,AB⊥AD,DE⊥AD,BC⊥CE,且AB=CA.求证:△ABC≌△DCB.活动二:动手操作,将两个斜边长相等的直角三角形纸片按图2放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C按顺时针方向旋转15°得到△MCN.如图3,连接MB,找出图中的全等三角形,并说明理由;活动三:已知如图,点C坐标为(0,2),B为x轴上一点,△ABC是以BC为腰的等腰直角三角形,∠BCA=90°,当B点从原点出发沿x轴正半轴运动时,在图中画出A点运动路线.并请说明理由.20 . 如图,在四边形ABCD中,∠BCD=100°,∠B=60o,连接AC,BC>AC>AB,且△ABC≌△ADC,CE、CF 分别是∠ACB与∠ACD的平分线,分别交AB、AD于E、F两点.(1)分别求∠BAD和∠AEC的度数.(2)请写出图中所有相等的线段.21 . (1)感知:如图(1),在△ABC中,分别以AB、AC为边在△ABC外部作等边三角形△ABD、△ACE,连接CD、BE.求证:BE=DC;(2)应用:如图(2),在△ABC中,AB>AC,分别以AB、AC为边在△ABC内部作等腰三角形△ABD、△ACE,点E恰好在BC边上,使AB=AD,AC=AE,且∠BAD=∠CAE,连接CD,CE=3cm,CD=2cm,△ABC的面积为25cm2,求△ABE的面积.22 . 如图,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式;(2)作Rt△OBC的高OD,延长OD与抛物线在第一象限内交于点E,求点E的坐标;(3)①在x轴上方的抛物线上,是否存在一点P,使四边形OBEP是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由;②在抛物线的对称轴上,是否存在上点Q,使得△BEQ的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由.23 . 如图,在△ABC中,AB=AC,D,E分别是边BC,AC上的点,且BD=EC,∠ADE=∠A.(1)求证:AD=DE;(2)若∠ADE=,求∠ADB的度数(用含x的代数式表示).24 . (问题情境)如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.(1)(问题解决)延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是.(反思感悟)解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.(2)(尝试应用)如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.(3)(拓展延伸)如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的取值范围.(温馨提示:如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达三边关系,a2+b2=c2)25 . 如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?请写出必要的推理过程;(2)△CED是不是直角三角形?请说明理由;(3)若已知AD=6,AB=14,请求出请求出△CED的面积.26 . 如图,相交于点,你能找出两对全等的三角形吗?你能说明其中的道理吗?参考答案一、单选题1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、二、填空题1、2、3、三、解答题1、2、3、4、5、6、7、8、。
期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学
北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是( )A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( )A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( )2.正十边形的外角和为 ( )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( )A.12B.13C.14D.154.八边形的内角和为°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练(解析版)题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( B)A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是 ( B)A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=61度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10或4或2.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,如图所示:在△ABC和△CDA中,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形. 6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.略题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是100m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( B)A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=4.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( D)2.正十边形的外角和为 ( B )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( C)A.12B.13C.14D.154.八边形的内角和为 1 080°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 5 .6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n-3,多边形对角线的总条数为n(n-3).答案:n-3 n(n-3)(2)∵3×6=18,∴数学社团的同学们一共将拨打电话×18×(18-3)=135(个).(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n-3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n-3);数学社团有18名同学,当n=18时,×18×(18-3)=135.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.答案:略.。
北师大版八年级数学下册 平行四边形的判定定理(提高)知识讲解 含答案解析
平行四边形的判定定理(提高)责编:杜少波【学习目标】1.平行四边形的四个判定定理及应用,会应用判定定理判断一个四边形是不是平行四边形.2.会综合应用平行四边形的性质定理和判定定理解决简单的几何问题.【要点梳理】要点一、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3. 两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 【典型例题】类型一、平行四边形的判定1、如图,点A、B、C在正方形网格的格点上(小正方形的边长为单位1).(1)在图中确定格点D,并画出以A、B、C、D为顶点的平行四边形.(2)若以C为原点,BC所在直线为x轴,建立直角坐标系,则你确定的点D的坐标是________________.【思路点拨】(1)分为三种情况:以AC为对角线时、以AB为对角线时、以BC为对角线时,画出图形,根据A、B、C的坐标求出即可;(2)在(1)的基础上,把y轴向左平移了一个单位,根据平移性质求出即可.【答案与解析】(1)解:从图中可知A(-3,2),B(-4,0)C(-1,0),以AB为对角线时,得出平行四边形ACBD1,D1的坐标是(-6,2),以AC为对角线时,得出平行四边形ABCD2,D2的坐标是(0,2),以BC为对角线时,得出平行四边形ABD3C,D3的坐标是(-2,-2),(2)解:以C为原点,BC所在直线为x轴,建立直角坐标系,D的坐标是(-1,2),(1,2),(-5,2),故答案为:(-1,2)或(1,2)或(-5,2).【总结升华】本题考查了平行四边形的性质和坐标与图形性质的应用,主要考查学生能否运用平行四边形的性质进行计算,注意:一定要进行分类讨论.举一反三【变式】(2016•呼伦贝尔)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【答案】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.2、类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1};(2)①动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到A ,再按照“平移量” {1,2}平移到B ;若先把动点P 按照“平移量”{1,2}平移到C ,再按照“平移量” {3,1}平移,最后的位置还是点B 吗?在图1中画出四边形OABC .②证明四边形OABC 是平行四边形.(3)如图2,一艘船从码头O 出发,先航行到湖心岛码头P (2,3),再从码头P 航行到码头Q (5,5),最后回到出发点O .请用“平移量”加法算式表示它的航行过程.【思路点拨】(1)本题主要是类比学习,所以关键是由给出的例题中找出解题规律,即前项加前项,后项加后项.(2)根据题中给出的平移量找出各对应点,描出各点,顺次连接即可.(3)根据题中的文字叙述列出式子,根据(1)中的规律计算即可. 【答案与解析】 解:(1){3,1}+{1,2}={4,3};{1,2}+{3,1}={4,3}.(2)①画图最后的位置仍是B .②证明:由①知,A (3,1),B (4,3),C (1,2)∴OC=AB=22125+=,OA=BC=223110+=,∴四边形OABC 是平行四边形.(3)从O 出发,先向右平移2个单位,再向上平移3个单位,可知平移量为{2,3}, 同理得到P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.【总结升华】本题考查了几何变换中的平移变换,解答本题关键是仔细审题,理解题目给出的信息,对于此类题目同学们不能自己凭空想象着解答,一定要按照题目给出的思路求解,克服思维定势.举一反三:【变式】一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+(-2)=3.若平面直角坐标系xOy 中的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移|a|个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移|b|个单位),则把有序数对{a ,b}叫做这一平移的“平移量”.规定“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a ,b}+{c ,d}={a+c ,b+d}.(1)计算:{3,1}+{1,2};(2)若一动点从点A(1,1)出发,先按照“平移量”{2,1}平移到点B,再按照“平移量”{-1,2}平移到点C;最后按照“平移量”{-2,-1}平移到点D,在图中画出四边形ABCD,并直接写出点D的坐标;(3)将(2)中的四边形ABCD以点A为中心,顺时针旋转90°,点B旋转到点E,连结AE、BE若动点P从点A出发,沿△AEB的三边AE、EB、BA平移一周.请用“平移量”加法算式表示动点P的平移过程.【答案】解:(1){3,1}+{1,2}={4,3};(2)B点坐标为:(1+2,1+1)=(3,2);C点坐标为:(3-1,2+2)=(2,4);D点坐标为:(2-2,4-1)=(0,3);①如图所示:②D(0,3).(3)点A至点E,向右平移1个单位,向下平移2个单位;点E至点B,向右平移1个单位,向上平移3个单位;点B至点A,向左平移2个单位,向下平移1个单位;故动点P的平移过程可表示为:{1,-2}+{1,3}+{-2,-1}.3、如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F .求证:四边形AECF 是平行四边形.【思路点拨】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD 是平行四边形,可证OF=OE ,OA=OC ,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决. 【答案与解析】证明:∵四边形ABCD 是平行四边形,∴OD=OB ,OA=OC ,∵AB ∥CD ,∴∠DFO=∠BEO ,∠FDO=∠EBO ,∴在△FDO 和△EBO 中,,===DFO BEO FDO EBO OD OB ∠∠⎧⎪∠∠⎨⎪⎩∴△FDO ≌△EBO (AAS ),∴OF=OE ,∴四边形AECF 是平行四边形.【总结升华】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.类型二、平行四边形的性质定理与判定定理的综合运用4、(2015•河南模拟)如图,△ABC 中AB=AC ,点D 从点B 出发沿射线BA 移动,同时,点E 从点C 出发沿线段AC 的延长线移动,已点知D 、E 移动的速度相同,DE 与直线BC 相交于点F .(1)如图1,当点D 在线段AB 上时,过点D 作AC 的平行线交BC 于点G ,连接CD 、GE ,判定四边形CDGE 的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF有何数量关系?请直接写出你的结论.【思路点拨】(1)由题意得出BD=CE,由平行线的性质得出∠DGB=∠ACB,由等腰三角形的性质得出∠B=∠ACB,得出∠B=∠DGB,证出BD=GD=CE,即可得出结论;(2)由(1)得:BD=GD=CE,由等腰三角形的三线合一性质得出BM=GM,由平行线得出GF=CF,即可得出结论.【答案与解析】解:(1)四边形CDGE是平行四边.理由如下:如图1所示:∵D、E移动的速度相同,∴BD=CE,∵DG∥AE,∴∠DGB=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DGB,∴BD=GD=CE,又∵DG∥CE,∴四边形CDGE是平行四边形;(2)BM+CF=MF;理由如下:如图2所示:由(1)得:BD=GD=CE,∵DM⊥BC,∴BM=GM,∵DG∥AE,∴GF=CF,∴BM+CF=GM+GF=MF.【总结升华】本题考查了等腰三角形的判定与性质、平行四边形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.举一反三【变式】如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).【答案】解:(1)∵四边形ABCD是平行四边形,∴ AB=CD,AB∥CD,∴∠ABD=∠CDB,∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(AAS),∴BE=DF;(2)四边形MENF是平行四边形.证明:由(1)可知:BE=DF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,∵DM=BN,∴△DMF≌△BNE,∴NE=MF,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥NE,∴四边形MENF是平行四边形.5、如图,已知在Y ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA 和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)【思路点拨】(1)先由平行四边形的性质,得AB=CD ,AB ∥CD ,根据两直线平行内错角相等得∠GBE=∠HDF .再由SAS 可证△GBE ≌△HDF ,利用全等的性质,证明∠GEF=∠HFE ,从而得GE ∥HF ,又GE=HF ,运用一组对边平行且相等的四边形是平行四边形得证.(2)仍成立.可仿照(1)的证明方法进行证明.【答案与解析】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠GBE=∠HDF .又∵AG=CH ,∴BG=DH .又∵BE=DF ,∴△GBE ≌△HDF .∴GE=HF ,∠GEB=∠HFD ,∴∠GEF=∠HFE ,∴GE ∥HF ,∴四边形GEHF 是平行四边形.(2)解:仍成立.(证法同上)【总结升华】本题考查的知识点为:一组对边平行且相等的四边形是平行四边形.举一反三【变式】如图,Y ABCD 中,对角线AC ,BD 相交于O 点,AE ⊥BD 于E ,CF ⊥BD 于F ,BG ⊥AG 于G ,DH ⊥AC 于H .求证:四边形GEHF 是平行四边形.【答案】证明:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=CO ,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,∵AE ⊥BD 于E ,CF ⊥BD 于F ,∴∠AEB=∠CFD=90°,在△ABE 和△CDF 中,,===AB CD ABE CDF AEB CFD ∠∠∠∠⎧⎪⎨⎪⎩∴△ABE ≌△CDF (AAS ),∴BE=DF ,∴BO-BE=DO-DF ,即:EO=FO,同理:△ABG≌△CDH,∴AG=CH,∴AO-AG=CO-CH,即:GO=OH,∴四边形GEHF是平行四边形.。
(完整版)平行四边形性质和判定习题(答案详细)(可编辑修改word版)
平行四边形性质和判定习题L如图,已知四边形ABCD为平行四边形,AE1BD于E- CF丄BD于F.(1)求证:BE=DF:X _勒(2)若N分别为边AD、BC±的点,且DM=BN.试判断四边形MENF的形状——必说明理由).2.如图所示,UAECF的对角线相交于点0, DB经过点O分別与AE, CF” p交于B. D.求证:四边形ABCD是平行四边形•3・如图,在四边形ABCD中,AB=CD, BF=DE, AE丄BD・CF丄BD,垂足分别为E, F.(1)求证J A ABE=A CDF:(2)若AC与BD交于点0,求证:AO=CO.4・已知:如图,他ABC中,^BAC=90\DE.DF是△ABC的中位线,连接EF、EF=AD・5・如图,已知D是A ABC的边AB上一点,CEIIAB,DE交AC于点0,且OA=0C,猜想线段CD与线段AE的大小关系和位置关并加以证明・B AD.求证:。
(不CNCBAFED FE系E6・如图,已知,UABCD中,AE=CF, M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形•7・如图,平行四边形ABCD, E 、F 两点在对角线BD 上,且BE=DF,连接AE. EG CF, FA ・求证:四边形AECF 是平行四边形•& 在UABCD 中,分别以AD 、BC 为边向内作等边△ADE 和等边△BCF,连接BE. DF ・求证:四边形BEDF 是平 行四边形・DBIIAC,且DB 丄AC. E 是AC 的中点,求证:BC=DE ・2如图,在梯形ABCD 中,ADIIBC, AD=24cm. BC=30cm,点P 自点A 向D 以IcmZs 的速度运动,到D 点Q 自点C 向B 以2cm/s 的速度运动,到B点即停止,直线PQ 截梯形为两个四边形•问当P. Q同时10. 已知脣 点即停止. 出发,几秒后其中一个四边形为平行四边形?IL 如图:已知D 、E 、F 分别是A ABC 各边的中点, 求证:AE 仃DF 互相平分.如图所示, 9・ED13.如图,已知四边形ABCD中,点E, F. G, H分别是AB、CD、AC. BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分・14.如图J oABCD 中,MNIIAC.试说明MQ=NP.15.已知:如图所示「平行四边形ABCD的对角线AC, BD柑交于点6 EF经过点0并且分别和AB. CD相交于点E, F,点G, H分别为OA, 0C的中点.求证:四边形EHFG是平行四边形.-46 如制已知的ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH. 连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,尖余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在A ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证J AF=CE:(2)如果AC=EF,且ZACB=135\试判断四边形AFCE是什么样的四边形,并证明你的结论・18,如图平行四边形ABCD 中.mBC=6(几 点E 、F 分別在CD.BC 的延长线上,AE||BD ・ EEhBB 垂足为点F, DF=2 (1) 求证:D 是EC 中点; (2) 求FC 的长.19.如图,已知A ABC 是等边三角形,点D 、F 分别在线段BC 、AB 匕 厶EFB=60。
北师大版八年级数学下册第六章 平行四边形练习(含答案)
北师大版八年级数学下册第六章 平行四边形练习(含答案)一、单选题1.下列性质中,平行四边形一定具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直2.如图,将折叠,使点分别落在点处(点都在所在的ABCD D C 、F E 、F E 、AB 直线上),折痕为,若,则等于( )MN 50AMF ∠=︒A ∠A .B .C .D .50︒55︒60︒65︒3.已知四边形的对角线相交于点,则下列条件中不能判定ABCD ,AC BD ,O OB OD =四边为平行四边形的是( )ABCD A .B .C .D .OA OC =//AB CD //AD BCAB CD =4.点A 、B 、C 、D 在一个平面内,若从①AB ∥CD ;②AB=CD ;③BC ∥AD ;④BC=AD . 这四个条件中选两个,但不能推导出四边形ABCD 是平行四边形的选项是()A .①②B .①④C .②④D .①③5.如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( )A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等6.多边形每个外角为45°,则多边形的边数是( )A.8 B.7 C.6 D.57.如图,在三角形模板ABC中,∠A=60°,D、E分别为AB、AC上的点,则∠1+∠2的度数为()A.180°B.200°C.220°D.240°8.下列图形中,周长不是32 m的图形是( )A.B.C.D.A9.如图,小明从点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转A20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地点时,一共走了()A .80米B .160米C .300米D .640米10.如图,已知四边形中,,,平分,ABCD //AD BC ABC ACD D ∠=∠=∠AE CAD ∠下列说法:①;②;③;④,//AB CD AE CD ⊥AEF BCF S S =△△AFB BAD ABE ∠=∠-∠其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题11.如图,已知等边△ABC 的边长为10,P 是△ABC 内一点,PD 平行AC ,PE 平行AD ,PF 平行BC ,点D ,E ,F 分别在AB ,BC ,AC 上,则PD+PE+PF=_______________.12.如图,在平行四边形ABCD 中,AB =AE .若AE 平分∠DAB ,∠EAC =25°,则∠B =_____,∠AED 的度数为_____.13.D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .14.如图,以正六边形的边为直角边作等腰直角三角形,使点在ABCEDF AB ABG G 其内部,且,连接,则的大小是__________度.90BAG ∠=︒FG EFG Ð三、解答题15.如图,ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA .(1)求∠APB 的度数;(2)如果AD =5cm ,AP =8cm ,求△APB 的周长.16.如图,在四边形ABCD 中,AD ∥BC ,AC 与BD 交于点E ,点E 是BD 的中点,延长CD 到点F ,使DF =CD ,连接AF ,(1)求证:AE =CE ;(2)求证:四边形ABDF 是平行四边形;(3)若AB =2,AF =4,∠F =30°,则四边形ABCF 的面积为 .17.如图,等边的边长是4,,分别为,的中点,延长至点,ABC ∆D E AB AC BC F 使,连接和.12CF BC =CD EF (1)求证:;DE CF =(2)求的长;EF (3)求四边形的面积.DEFC 18.提出问题:(1)如图,我们将图(1)所示的凹四边形称为“镖形”.在“镖形”图中,∠AOC与∠A、∠C、∠P的数量关系为_______.(2)如图(2),已知AP平分∠BAD,CP平分∠BCD,∠B =28°,∠D=48°.求∠P的度数.由(1)结论得:∠AOC =∠PAO +∠PCO+∠P所以2∠AOC=2∠PAO +2∠PCO+2∠P即2∠AOC =∠BAO +∠DCO+2∠P因为∠AOC =∠BAO +∠B,∠AOC =∠DCO +∠D所以2∠AOC=∠BAO +∠DCO+∠B +∠D所以∠P=_______.解决问题:(3)如图(3),直线AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______;(4)如图(4),直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的数量关系是_______.答案1.B 2.D 3.D 4.B5.C6.A7.D8.B9.A10.D11.1012.60°85°13.11.14.4515.(1)∵四边形是平行四边形,ABCD ∴∥ ,∥, ,AD CB AB CD AD BC,AB DC ==∴ ,DAB CBA 180∠∠+= 又∵和分别平分和,AP BP DAB ∠CBA ∠∴ ,()1PAB PBA DAB CBA 902∠∠∠∠+=+= ∴ ;()APB 180PAB PBA 90∠∠∠=-+= (2) ∵平分,∥ ,AP DAB ∠AB CD ∴ ,DAB PAB DPA ∠∠∠==∴ ,同理: ,AD DP 5cm ==PC BC AD 5cm ===∴ ,AB DC DP PC 10cm ==+=在中, , ∴ ,Rt APB AB 10cm,AP 8cm ==()BP 6cm ==∴△的周长.ABP ()681024cm ++=16.解:(1)证明:∵点E 是BD 的中点,∴BE =DE ,∵AD ∥BC ,∴∠ADE =∠CBE ,在△ADE 和△CBE 中ADE CBE DE BEAED CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△CBE (ASA ),∴AE =CE ;(2)证明:∵AE =CE ,BE =DE ,∴四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∵DF =CD ,∴DF =AB ,即DF =AB ,DF ∥AB ,∴四边形ABDF 是平行四边形;(3)解:过C 作CH ⊥BD 于H ,过D 作DQ ⊥AF 于Q ,∵四边形ABCD 和四边形ABDF 是平行四边形,AB =2,AF =4,∠F =30°,∴DF =AB =2,CD =AB =2,BD =AF =4,BD ∥AF ,∴∠BDC =∠F =30°,∴DQ =DF ==1,CH =DC ==1,12122⨯12122⨯∴四边形ABCF 的面积S =S 平行四边形BDFA +S △BDC =AF×DQ+=4×1+=6,1BD CH 2⨯⨯1412⨯⨯故答案为:6.17.(1)在中,ABC ∆、分别为、的中点,D E AB AC 为的中位线,DE ∴ABC ∆,12DE BC ∴=,12CF BC = .DE CF ∴=(2),,AC BC =AD BD =,CD AB ∴⊥,,4BC = 2BD =CD ∴==,,//DE CF DE CF =四边形是平行四边形,∴DEFC.EF CD ∴==(3)过点作于,D DH BC ⊥H ,,90DHC ∠=︒ 30DCB ∠=︒12DH DC ∴==,2DE CF ==.2DEFC S CF DH ∴=⋅==四边形18.(1)如图,延长CO ,交AP 与B ,∵∠AOC=∠A+∠ABO ,∠ABO=∠C+∠P ,∴∠AOC=∠A+∠P+∠C ,故答案为∠AOC=∠A+∠P+∠C ,(2)∵2∠AOC =∠BAO +∠DCO+2∠P ,2∠AOC=∠BAO +∠DCO+∠B+∠D ,∴2∠P=∠B+∠D ,∴∠P=(28°+48°)=38°,12故答案为38°(3)∵直线AP 平分∠BAD ,CP 平分∠BCD 的外角∠BCE ,∴∠PAB=∠PAD ,∠PCB=∠PCE ,∴2∠PAB+∠B=180°-2∠PCB+∠D ,∴180°-2(∠PAB+∠PCB )+∠D=∠B∵∠P=∠PAB+∠B+∠PCB ,∴∠PAB+∠PCB=∠P-∠B ,∴180°-2(∠P-∠B )+∠D=∠B ,即∠P=90°+(∠B+∠D ).12(4)∵直线AP 平分∠BAD 的外角∠FAD ,CP 平分∠BCD 的外角∠BCE ,∴∠FAP=∠PAO ,∠PCE=∠PCB ,在四边形APCB 中,(180°-∠FAP )+∠P+∠PCB+∠B=360°①,在四边形APCD 中,∠PAD+∠P+(180°-∠PCE )+∠D=360°②,①+②得:2∠P+∠B+∠D=360°,12∴∠P=180°-(∠B+∠D)。
北师大版数学八年级下册6.2《平行四边形的判定》练习(含答案)
北师大版数学八年级下册6.2《平行四边形的判定》精选练习一、选择题1.下列命题中,真命题的个数是( )①对角线互相平分的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边平行,另一组对边相等的四边形是平行四边形.A.3B.2C.1D.02.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD.从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A.AB∥CD,AB=CDB.AB∥CD,BC∥ADC.AB∥CD,BC=ADD.AB=CD,BC=AD3.已知四边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么可以判定四边形ABCD是平行四边形的是()①再加上条件“BC=AD”,则四边形ABCD一定是平行四边形.②再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形.③再加上条件“AO=CO”,则四边形ABCD一定是平行四边形.④再加上条件“∠DBA=∠CAB”,则四边形ABCD一定是平行四边形.A.①②B.①③④C.②③D.②③④4.在四边形ABCD中,对角线AC,BD相交于点O,∠A=∠C,添加下列一个条件后,能判定四边形ABCD是平行四边形的是( )A.∠A=∠BB.∠C=∠DC.∠B=∠DD.AB=CD5.如图,在四边形ABCD中,点E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )A.AD=BCB.CD=BFC.∠A=∠CD.∠F=∠CDE6.在下列条件中,不能确定四边形ABCD为平行四边形的是( )A.∠A=∠C,∠B=∠DB.∠A=∠B=∠C=90°C.∠A+∠B=180°,∠B+∠C=180°D.∠A=∠B,∠C=∠D7.在四边形ABCD中,AC,BD交于点O,且OA=OC,OB=OD,则下列结论不一定成立的是( )8.下列条件中,能说明四边形ABCD是平行四边形的是( )A.∠A=30°,∠B=150°,∠C=30°,∠D=150°B.∠A=60°,∠B=60°,∠C=120°,∠D=120°C.∠A=60°,∠B=90°,∠C=60°,∠D=150°D.∠A=60°,∠B=70°,∠C=110°,∠D=120°9.不能判定四边形ABCD为平行四边形的题设是()A.AB平行且等于CDB.∠A=∠C,∠B=∠DC.AB=AD,BC=CDD.AB=CD,AD=BC10.如图,在△ABC中,D,E分别是AB、BC的中点,点F在DE延长线上.添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF11.如图,平行四边形ABCD绕点A逆时针旋转300,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.155° B.170° C.105° D.145°12.已知四边形四条边的长分别为,且满足m2+n2+p2+q2=2mn+2pq,则这个四边形是()A.平行四边形B.对角线互相垂直的四边形C.平行四边形或对角线互相垂直的四边形D.对角线相等的四边形二、填空题13.在▱ABCD中,已知点A(-1,0),B(2,0),D(0,1),则点C的坐标为________.14.四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有_____(添序列号即可).15.如图,在四边形ABCD中,AD//BC,在不添加任何辅助线的情况下,请你添加一个条件____,使四边形ABCD是平行四边形(填一个即可).16.在四边形ABCD中,BD是对角线,∠ABD=∠CDB,要使四边形ABCD是平行四边形只须添加一个条件,这个条件可以是(只需写出一种情况).18.如图,在平面直角坐标系x0y中,已知点A( ,0),B(1,1).若平移点B到点D,使四边形0ADB是平行四边形,则点D的坐标是 .三、解答题19.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.20.已知,如图,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,EF∥AC交BC于F,试判断BE与FC的数量关系,并说明理由。
八年级数学平行四边形的性质(北师版)(综合)(含答案)
平行四边形的性质(北师版)(综合)一、单选题(共10道,每道10分)1.下列正确结论的个数是( )①平行四边形对角相等;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1B.2C.3D.4答案:C解题思路:平行四边形对角相等;①正确;平行四边形对角线互相平分,②错误;③正确;平行四边形邻角互补,④正确;∴正确结论是:①③④,共3个,故选C.试题难度:三颗星知识点:略2.如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=( )A.50°B.40°C.80°D.100°答案:C解题思路:在Rt△ADF中,∠DAF=50°,∴∠ADE=40°,∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选C.试题难度:三颗星知识点:略3.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为( )A.20°B.25°C.30°D.35°答案:A解题思路:在▱ABCD,▱DCFE中,AB=CD=EF,AD=BC,DE=CF∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∴∠DAE=∠DEA,∵∠BAD=60°,∠F=100°,∴∠ADC=120°,∠CDE═∠F=100°,∴∠ADE=360°-120°-100°=140°,∴∠DAE=(180°-140°)÷2=20°,故选A试题难度:三颗星知识点:略4.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥DC的延长线于点F,且∠EAF=40°,则∠B=( )A.40°B.50°C.70°D.65°答案:A解题思路:如图,在□ABCD中,AB∥CD,∴∠B=∠BCF;∵∠AEG=∠CFG,∠AGE=∠CGF,∴∠EAF=∠BCF∴∠B=∠EAF=40°.故选A.试题难度:三颗星知识点:略5.如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,CF平分∠BCD交AD于点F.那么下列结论错误的是( )A.AB=AEB.DC=AEC.AF=EFD.AF=ED答案:C解题思路:如图,在平行四边形ABCD中,AD∥BC∴∠AEB=∠CBE∵BE平分∠ABC∴∠ABE=∠CBE∴∠ABE=∠AEB∴AB=AE(选项A正确)同理,CD=DF∴AB=AE=DF=CD(选项B正确)∴AF+FE=DE+FE∴AF=DE(选项D正确)故选C试题难度:三颗星知识点:略6.如图,中,∠ABC和∠BCD的平分线交于AD边上一点E,且BE=4,CE=3,则AB的长是( )A.5B.4C.3D.答案:D解题思路:在□ABCD中,∠ABC+∠BCD=180°∵BE和CE分别是∠ABC和∠BCD的角平分线∴∠ABE=∠CBE,∠BCE=∠DCE∴∠EBC+∠ECB=90°,∴∠BEC=90°在Rt△BCE中,BE=4,CE=3,可得BC=5∵AD∥BC∴∠CBE=∠AEB,∠ECB=∠CED∴∠ABE=∠AEB,∠DCE=∠CED∴AB=AE,CD=ED∵AB=CD,∴E为AD的中点∴故选D试题难度:三颗星知识点:略7.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为( )A. B.C.4D.8答案:B解题思路:如图,在平行四边形ABCD中,AE平分∠BAD可证:AD=FD,AB=BE由题意,CD=AB=4∵F是DC中点∴DF=CF=2,且可证△ADF≌△ECF(AAS)∴AF=EF在等腰△ADF中,DG⊥AF,DG=1,AD=2在直角三角形ADG中,由勾股定理可得:∴AF=2AG=∴AE=2AF=.故选B.试题难度:三颗星知识点:略8.如图所示,在中,∠ABE=∠AEB,AE∥DF,DC是∠ADF的角平分线.下列说法正确的是( )①BE=CF;②AE是∠DAB的角平分线;③∠DAE+∠DCF=120°.A.①B.①②C.①②③D.都不正确答案:C解题思路:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∠ABC=∠ADC∵AE∥DF,∴∠AEB=∠F∵∠ABE=∠AEB,∴∠ADC=∠F∵AD∥BC,∴∠ADC=∠DCF∵DC是∠ADF的角平分线,∴∠ADC=∠FDC∴∠F=∠DCF=∠FDC∴△DCF是等边三角形∴DC=CF=FD,∠F=∠DCF=∠FDC=60°∴∠ABE=∠AEB=60°∴△ABE是等边三角形∴AB=BE=EA∵AB=CD,∴BE=CF,即选项①正确∴∠DAB+∠B=180°∵∠B=∠BAE=60°,∴∠DAE=60°∴AE是∠DAB的角平分线,即选项②正确∵∠DAE+∠DCF=60°+60°=120°,∴选项③正确综上,选项①②③都正确.故选C试题难度:三颗星知识点:略9.如图6-5所示,□ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.有下列结论:①△ABE是等边三角形;②∠CAD=30°;③S□ABCD=AB·AC;④OB=AB.其中正确的有( )A.1个B.2个C.3个D.4个答案:C解题思路:∵四边形ABCD是平行四边形∴∠ABC=∠ADC=60°,∠BAD=120°∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,故①正确;∴AE=AB=BE,∵AB=BC∴AE=BC∴∠BAC=90°,∴∠CAD=30°,故②正确;∴S£ABCD=AB•AC,故③正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故④错误;故选C试题难度:三颗星知识点:略10.如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD,BC于点M,N,交BA,DC的延长线于点E,F.下列结论:①AO=EO;②OE=OF;③△EAM≌△FCN;④EM=FN.其中正确的是( )A.①②③B.②③④C.①②④D.①②③④答案:B解题思路:①因为四边形ABCD固定,所以AO长度固定,EF可以看做在绕点O旋转,EO的长度不固定,故AO不一定等于EO,①错误②∵AB∥CD∴∠E=∠F∵∠EOA=∠FOC,AO=CO∴△EOA≌△FOC∴EO=FO,②正确③由②可得EA=FC,∠E=∠F,∠EAO=∠FCO∵AD∥BC,∠MAO=∠NCO∴∠EAM=∠FCN∴△EAM≌△FCN,③正确④由③可得△EAM≌△FCN∴EM=FN,④正确故选B试题难度:三颗星知识点:略。
北师大版八年级数学下册利用四边形对角线的性质判定平行四边形同步练习题
D A CB 6.2 平行四边形的判定第2课时 平行四边形的判定定理3与两平行线间的距离【学习内容】平行四边形的判定(P143—P145页)【学习目标】1、理解平行四边形的另一种判定方法,并学会简单运用。
2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展逻辑思维能力和推理论证的表达能力。
【学习重难点】重点:平行四边形判定方法理解运用;难点:平行四边形判 定方法运用【自研课】定向导学 (15分钟)复习引入1.平行四边形的定义是什么?平行四边形的定义: 的四边形,叫做平行四边形2.判定四边形是平行四边形的方法有哪些?(1)两组对边分别 的四边形是平行四边形. (2)两组对边 的四边形是平行四边形.(3)一组对边 的四边形是平行四边形.探究 活动:工具:两根不同长度的细木条.动手:能否合理摆放这两根细木条,使得连接四个顶点后成为平行四边形? 思考:你能说明你得到的四边形是平行四边形吗?已知:如图,四边形ABCD 的对角线AC 、BD 相交于点O,并且OA=OC,OB=OD.求证:四边形ABCD 是平行四边形.已知:如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O,点E 、F 在对角线AC 上,并且AE=CF .求证:四边形BFDE 是平行四边形【训练课】(时段:晚自习,时间20分钟)基础题:1、如图,四边形ABCD中,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是______ ___ ,根据是。
A DOB C2、四边形ABCD中,AC、BD相交于点O,且OA=OC,如果要使四边形ABCD 是平行四边形,则还需补充的条件是()A.AC⊥BD B. OA=OB C.OC=OD D.OB=OD3、下列条件中,能判定四边形是平行四边形的是()A.一组对角相等 B. 对角线互相平分C.一组对边相等 D. 对角线互相相等4、如图,在平行四边形ABCD中,O是AC,BD的交点,点E,F,G,H分别是AO,BO,CO,DO的中点,四边形EFGH是平行四边形吗?说说你的理由.A DE O HF GB C发展题5、下列条件中不能确定四边形ABCD是平行四边形的是()A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC6、A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种 B.4种 C.5种 D.6种提高题:7、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分)1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(本题共6小题,每小题4分,共24分)11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
第18讲平行四边形的判定八年级数学下册讲义(北师大版)(原卷版)
第18讲平行四边形的判定目标导航1.掌握平行四边形性质与判定定理。
2.会应用平行四边形的性质与判定定理解决相关的几何证明和计算问题.知识精讲知识点01 平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.【知识拓展】(2021秋•芙蓉区校级期末)如图,在▱ABCD中,∠ABC的平分线交AD于E,∠BEA=30°,则∠A的大小为()A.150°B.130°C.120°D.100°【即学即练1】(2022•乐清市一模)如图,在▱ABCD中,AB=BE,∠C=70°,则∠BAE的度数为()A.35°B.45°C.55°D.65°【即学即练2】(2022春•睢宁县月考)▱ABCD的对角线相交于点O,BD=14,AC=10,则BC的长可以是()A.8B.20C.14D.22知识点02 平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.【知识拓展】(2021秋•芝罘区期末)如图,四边形ABCD中,AD∥BC,AD=8cm,BC=12cm,M是BC 上一点,且BM=9cm,点E从点A出发以1cm/s的速度向点D运动,点F从点C出发,以3cm/s的速度向点B运动,当其中一点到达终点,另一点也随之停止,设运动时间为t(s),则当以A、M、E、F为顶点的四边形是平行四边形时,t的值是()A.B.3C.3或D.或【即学即练1】(2022春•金华月考)如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.OB=OD,OA=OC B.AD∥BC,AB=CDC.AB∥CD,AD∥BC D.AB∥CD,AB=CD【即学即练2】(2022春•渝中区校级月考)在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A.AB∥CD,∠A=∠C B.AB∥CD,AD=BCC.AB=BC,CD=DA D.∠A=∠B,∠C=∠D【即学即练3】(2022春•丹徒区月考)在四边形ABCD中,AD∥BC,BC⊥CD,AD=6cm,BC=10cm,M 是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为时,以A、M、E、F为顶点的四边形是平行四边形.知识点03 平行四边形的判定与性质平行四边形的判定与性质的作用平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.运用定义,也可以判定某个图形是平行四边形,这是常用的方法,不要忘记平行四边形的定义,有时用定义判定比用其他判定定理还简单.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.【知识拓展】(2021秋•仓山区校级期末)下列条件中,能判定四边形是平行四边形的是()A.一组对边平行B.对角线互相平分C.一组对边相等D.对角线互相垂直【即学即练1】(2021秋•开福区校级期末)如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,,求AB的长.【即学即练2】(2022春•九龙坡区校级月考)在四边形ABCD中,AC、BD交于点O,AD∥BC,BO=DO.(1)证明:四边形ABCD是平行四边形;(2)过点O作OE⊥BD交BC于点E,连接DE.若∠CDE=∠CBD=15°,求∠ABC的度数.【即学即练3】(2021秋•栖霞市期末)在△ABC中,∠C=90°,AC=6,BC=8,若以A,B,C,D为顶点的四边形是平行四边形,则此平行四边形的周长为.【即学即练4】(2021秋•栖霞市期末)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE ∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.【即学即练5】(2021秋•栖霞市期末)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形.(1)证明:四边形AEFD是平行四边形;(2)求∠DFE的度数.【即学即练6】(2021秋•曲阳县期末)如图所示,△AOD关于直线l进行轴对称变换后得到△BOC,则以下结论中,不一定正确的是(填字母序号)A.∠1=∠2B.∠3=∠4C.l垂直平分AB,且l垂直平分CDD.AC与BD互相平分【即学即练7】(2022春•渝水区校级月考)如图,在▱ABCD中,AB=8cm,AD=12cm,点P在AD边上以1cm/s的速度从点A向点D运动,点Q在BC边上以4cm/s的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止运动).设运动t(s)(其中t>0)时,以P、D、Q、B四点组成的四边形是平行四边形,则t 的所有可能取值为.能力拓展一.选择题(共2小题)1.(2019•湖北自主招生)如图,平行四边形DEFG 内接于△ABC,已知△ADE ,△EFC,△DBG的面积为1,3,1,那么▱DEFG的面积为()A.2B.2C.3D.42.(2016•宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二.填空题(共2小题)3.(2019•湖北自主招生)如图,直线AB、IL、JK、DC互相平行,直线AD、IJ、LK、BC互相平行,四边形ABCD面积为90,四边形EFGH面积为55,则四边形IJKL面积为.4.(2017•金牛区校级自主招生)如图,点P是▱ABCD内一点,S△P AB=7,S△P AD=4,则S△P AC=.三.解答题(共8小题)5.(2017•市南区校级自主招生)如图,E是平行四边形ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若AB=AF,试判断四边形ACFD的形状,并说明理由.6.(2018•西湖区校级自主招生)如果用铁丝围成如图一样的平行四边形,需要用铁丝多少厘米?7.(2020•北碚区自主招生)如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE =∠CDF.求证:(1)△ABE≌△CDF;(2)四边形EBFD是平行四边形.8.(2019•麻城市校级自主招生)如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD 中点.求证:AP=BC.9.(2019•南岸区自主招生)如图,平行四边形ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.10.(2018•宝山区校级自主招生)AB∥CD,AB=15,CD=10,AD=3,CB=4,求S四边形ABCD.11.(2018•江岸区校级自主招生)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连接AE(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.12.(2019•渝中区校级自主招生)如图,平行四边形ABCD中,BD为对角线,点F在AB上,连接DF、CF,且BD=BC,过F点作FE⊥CB交CB的延长线于点E.(1)如图1,当F为AB的中点,∠A=60°,AD=2,求CE;(2)如图2,若∠FDB=2∠FCB,求证:FD=2BE.分层提分题组A 基础过关练一.选择题(共7小题)1.(2021•南岗区校级开学)在▱ABCD中,若∠A=38°,则∠C等于()A.142°B.132°C.38°D.52°2.(2021•唐山一模)证明:平行四边形的对角线互相平分.已知:如图四边形ABCD是平行四边形,对角线AC、BD相交于点O.求证:OA=OC,OB=OD,嘉琪的证明过程如图.证明过程中,应补充的步骤是()A.AB=CD,AD=BC B.AB∥BC,AD=BCC.AB∥CD,AD∥BC D.AB∥CD,AB=CD3.(2021秋•襄都区校级期末)平行四边形ABCD的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm4.(2022•大渡口区模拟)如图,在平行四边形ABCD中,DE平分∠ADC,∠DEC=30°,则∠ADC=()A.30°B.45°C.60°D.80°5.(2021秋•桓台县期末)如图,在▱ABCD中,若∠A=∠D+40°,则∠B的度数为()A.110°B.70°C.55°D.35°6.(2022春•洪泽区月考)平行四边形的对角线长为x,y,一边长为14,则x,y的值可能是()A.8和16B.10和14C.18和10D.10和247.(2021秋•高新区校级期末)如图,点P是平行四边形ABCD边AD上的一点,E,F分别是BP,CP的中点,已知平行四边形ABCD面积为24,那么△PEF的面积为()A.12B.3C.6D.4二.填空题(共4小题)8.(2021秋•芝罘区期末)如图,平行四边形ABCD中,AC、BD相交于点O,OE⊥BD交AD、BC于E、F,若△ABE的周长为10,则四边形ABCD的周长是.9.(2022春•泰州月考)已知▱ABCD周长是48cm,AC和BD相交于O,且△AOB的周长比△BOC的周长小4cm,则CD的长是cm.10.(2022春•玉林月考)如图,在平行四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC =4,AC=10,则平行四边形ABCD的面积为.11.(2022春•洪泽区月考)在▱ABCD中,若∠B+∠D=160°,∠C=°.三.解答题(共4小题)12.(2021秋•沂源县期末)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形,并说明理由.13.(2022春•泰州月考)如图所示,已知点E,F在▱ABCD的对角线BD上,且BE=DF.(1)求证:△ABE≌△CDF;(2)连接AF,CE,求证:四边形AECF是平行四边形.14.(2022春•东台市月考)如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E、F在对角线AC上,且AE=CF.求证:四边形EGFH是平行四边形.15.(2021秋•桓台县期末)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.题组B 能力提升练一.选择题(共3小题)1.(2022春•盐都区月考)如图,在△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=150°;④S四边形AEFD=8.正确的个数是()A.1个B.2个C.3个D.4个2.(2022春•江都区月考)如图,在平行四边形ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E和F,若BE=6,则CF=()A.6B.8C.10D.133.(2021秋•莱州市期末)如图,在▱ABCD中,E是AD边的中点,BE平分∠ABC.若AB=2,则▱ABCD 的周长是()A.11B.12C.13D.14二.填空题(共4小题)4.(2022春•宝应县月考)在四边形ABCD中,分别给出四个条件:①AB∥CD;②AD=BC;③∠A=∠C;④AB=CD.以其中的两个条件能判定四边形ABCD为平行四边形的有种不同的选择.5.(2022春•沭阳县月考)已知在平面直角坐标系中,有点O(0,0)、A(2,2)、B(5,2)、C这四点.以这四点为顶点画平行四边形,则点C的坐标为.6.(2022春•江都区月考)如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=18,则△BOC的周长为.7.(2022春•江都区月考)在平面直角坐标系中,▱ABCD的顶点A、B、C的坐标分别是(0,2)、(﹣3,﹣4)、(2,﹣4),则顶点D的坐标是.三.解答题(共4小题)8.(2021秋•莱阳市期末)如图,在▱ABCD中,延长AD到点E,延长CB到点F,使得DE=BF,连接EF,分别交CD,AB于点G,H,连接AG,CH.求证:四边形AGCH是平行四边形.9.(2021秋•东阳市期末)如图,在平行四边形ABCD中,AD=8,AB=12,∠A=60°,点E,G分别在边AB,AD上,且AE=AB,AG=AD,作EF∥AD、GH∥AB,EF与GH交于点O,分别在OF、OH上截取OP=OG,OQ=OE,连结PH、QF交于点I.(1)四边形EBHO的面积四边形GOFD的面积(填“>”、“=”或“<”);(2)比较∠OFQ与∠OHP大小,并说明理由.(3)求四边形OQIP的面积.10.(2021秋•沙坪坝区校级期末)如图,在▱ABCD中,E、F分别为AB、CD边上两点,FB平分∠EFC.(1)如图1,若AE=2,EF=5,求CD的长;(2)如图2,∠BCD=45°,BC⊥BD,若G为EF上一点,且∠GBF=∠EFD,求证:FG+2FD=AB.11.(2021秋•莱芜区期末)点E是▱ABCD的边CD上的一点,连接EA并延长,使EA=AM,连接EB并延长,使EB=BN,连接MN,F为MN的中点,连接CF,DM.(1)求证:四边形DMFC是平行四边形;(2)连接EF,交AB于点O,若OF=2,求EF的长.题组C 培优拔尖练一.填空题(共8小题)1.(2021春•贵阳期末)如图所示,点O为▱ABCD内一点,连接BD,OA,OB,OC,OD,已知△BCO的面积为3,△ABO的面积为5,则阴影部分的面积是.2.(2021春•沙坪坝区校级期中)如图,在平行四边形ABCD中,∠A=90°,AD=10,AB=8,点P在边AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且PM=CN,连接MN交CP于点F,过点M作ME⊥CP于E,则EF=.3.(2021春•永嘉县校级期中)如图所示,在平行四边形ABCD中,AB=3,BC=4,∠B=60°,E是BC 的中点,EF⊥AB于点F,则△DEF的面积为平方单位.4.(2020秋•仓山区校级期末)如图,在平行四边形ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD 的对称点为E,连接BE交AD于点F,点G为CD的中点,连接EG,BG,则S△BEG=.5.(2021春•武汉期末)如图,在△ABC中,∠BAC=60°,∠ABC=45°,AD平分∠CAB交BC于点D,P为直线AB上一动点.以DP、BD为邻边构造平行四边形DPQB,连接CQ,若AC=4.则CQ的最小值为.6.(2021•太原一模)如图,在▱ABCD中,AD=6,对角线BD⊥CD,∠BAD=30°,∠BAD与∠CDB的平分线交于点E,延长DB到点F,使DF=AD,连接EF,则EF的长为.7.(2020春•鹿城区期中)如图在平行四边形ABCD中,∠ABC=60°,AB=4,四条内角平分线围成四边形EFGH面积为,则平行四边形ABCD面积为.8.(2020•青羊区模拟)如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP =60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,则AF=.二.解答题(共6小题)9.(2020春•北碚区校级月考)在平行四边形ABCD中,AC⊥CD,E为BC中点,点M在线段BE上,连接AM,在BC下方有一点N,满足∠CAD=∠BCN,连接MN.(1)若∠BCN=60°,AE=5,求△ABE的面积;(2)若MA=MN,MC=EA+CN,求证:AB=AE.10.(2020•南海区一模)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.求证:(1)AC=EF;(2)四边形ADFE是平行四边形;(3)AC⊥DF.11.(2019秋•沙坪坝区校级期中)如图所示,平行四边形ABCD和平行四边形CDEF有公共边CD,边AB 和EF在同一条直线上,AC⊥CD且AC=AF,过点A作AH⊥BC交CF于点G,交BC于点H,连接EG.(1)若AE=2,CD=5,求△BCF的周长;(2)求证:BC=AG+EG.12.(2019春•阿荣旗期末)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC =26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,从运动开始.使PQ∥CD和PQ=CD,分别需经过多少时间?为什么?13.(2019春•萧县期末)如图,在四边形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C 出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间t为多少秒时,以点P,Q,E,D为顶点的四边形是平行四边形.14.(2018秋•东湖区校级期末)如图,等边△ABC的边长为8,动点M从点B出发,沿B→A→C→B的方向以3cm/s的速度运动,动点N从点C出发,沿C→A→B→C方向以2cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及△ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.。
北师大版数学八年级下册期末复习(六) 平行四边形
期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。
北师大版八年级数学下册 平行四边形的性质与判定 专题(附答案)
北师大版八年级数学下册平行四边形的性质与判定专题(附答案)综合滚动练:平行四边形的性质与判定一、选择题(每小题4分,共32分)1.在平行四边形ABCD中,若∠A+∠C=120°,则∠A 的度数是()。
A。
100° B。
120° C。
80° D。
60°2.如图,在平行四边形ABCD中,点O是对角线AC,BD的交点,下列结论错误的是()。
A。
AB∥CD B。
AB=CD C。
AC=BD D。
OA=OC3.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是()。
A。
4∶3∶3∶4 B。
7∶5∶5∶7 C。
4∶3∶2∶1 D。
7∶5∶7∶54.平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是()。
A。
(-2,1) B。
(-2,-1) C。
(-1,-2) D。
(-1,2)5.如图,在平行四边形ABCD中,点E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()。
A。
BE=DF B。
BF=DE C。
AE=CF D。
∠1=∠26.如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E。
若AB=6,EF=2,则BC的长为()。
A。
8 B。
10 C。
12 D。
147.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于E,CF∥AE交AD于F,则∠BCF等于()。
A。
40° B。
50° C。
60° D。
80°8.(2017·龙东中考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是()。
A。
22 B。
20 C。
22或20 D。
18二、填空题(每小题4分,共24分)9.已知AB∥CD,添加一个条件使得四边形ABCD为平行四边形。
北师大版八年级数学下册--第六章6.1-6.2 平行四边形的性质及判定 (含答案)
6.1-6.2 平行四边形的性质及判定四种特殊四边形的性质边 角 对角线 对称性 平行四边形 对边平行且相等 对角相等 互相平分 中心对称 矩形 对边平行且相等 四个角都是直角 互相平分且相等轴对称中心对称 菱形对边平行四条边相等对角相等互相垂直平分且每条对角线平分对角轴对称中心对称正方形对边平行四条边相等 四个角都是直角 互相垂直平分且相等,每条对角线平分对角轴对称中心对称平行四边形①两组对边分别平行的四边形 ②两组对边分别相等的四边形③一组对边平行且相等的四边形 ④两组对角分别相等的四边形⑤对角线互相平分的四边形 矩形 ①有一个角是直角的平行四边形 ②有三个角是直角的四边形 ③对角线相等的平行四边形菱形 ①有一组邻边相等的平行四边形 ②四条边都相等的四边形③对角线互相垂直的平行四边形 ④对角线垂直且平分的四边形 正方形①有一个角是直角一组邻边相等的平行四边形 ②一组邻边相等的矩形③一个角是直角的菱形 ④对角线垂直且相等的平行四边形面积公式: S 平行四边形=底边长×高=ah S 矩形=长×宽=ab S 菱形=底边长×高=两条对角线乘积的一半 2221对角线边长正==S【几个重要结论】1.菱形的面积等于两对角线乘积的一半.正方形同样如此。
2.直角三角形斜边上的中线等于斜边的一半.3.直角三角形中,如果有一个锐角等于30°,那么30°所对的直角边等于斜边的一半.6.1同步练习:1.如图,在四边形ABCD 中,AD ∥BC 、AB ∥CD ,过点P 画线段EF 、GH 分别平行于AB 、BC ,则图中共有平行四边形( )个.A .4B .5C .9D .82.平行四边形的一条边长是10,则两条对角线的长可以是( ).A .4或8B .6或8C .8或10D .10或123.▱ABCD 的周长为40cm ,△ABC 的周长为25cm ,则AC 得长为( ). A .5cm B .6cm C .15cm D .16cm 4.平行四边形具有而一般四边形不具有的特征是( )A.不稳定性 B.对角线互相平分 C.内角的为360度 D.外角和为360度5.在▱ABCD中,∠A的余角与∠B的和为190°,则∠BAD=______.6.▱ABCD中, 对角线AC﹑BD相交于点O,且AC+BD=20, △AOB的周长等于15,则CD=______. 7.▱ABCD,若∠A:∠B=5:4,则∠C= ___,∠D= .8.▱ABCD中,AB-CB=4cm,周长为32cm , 则AB= .9.如图,▱ABCD中,∠A=52°,BC=5cm,则∠B=_____,∠C=_____,AD=_____.10.已知O是▱ABCD两条对角线的交点,若已知AB=5,△OAB的周长比△OBC的周长短3,则BC=_____ .11.已知O是▱ABCD两条对角线的交点,若AC=24mm, BD=38mm,BC=28mm,则△OBC的周长为_____ .12.在▱ABCD中,对角线AC,BD交于点O,AC=10,BD=8,则AD 的取值范围是 ___.13.夹在两平行线的平行线段_______,夹在两平行线间_______相等.14.(解答题)已知:如图,▱ABCD的对角线AC,BD交于点O,E,F分别是OA,OC的中点。
难点解析北师大版八年级数学下册第六章平行四边形重点解析试题(含解析)
北师大版八年级数学下册第六章平行四边形重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在△ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若△ABD、△EFC的面积分别为21、7,则ABAC的值为()A.14B.34C.23D.132、如图,点O是▱ABCD的对称中心,l是过点O的任意一条直线,它将平行四边形分成甲、乙两部分,在这个图形上做扎针试验,则针头扎在甲、乙两个区域的可能性的大小是()A.甲大B.乙大C.一样大D.无法确定3、如图,在平行四边形ABCD中,AE BC于点E,把BAE以点B为中心顺时针旋转一定角度后,得到BFG ,已知点F 在BC 上,连接DF .若70ADC ∠=︒,15CDF ∠=︒,则DFG ∠的大小为( )A .140°B .155°C .145°D .135°4、已知正多边形的一个外角等于45°,则该正多边形的内角和为( ) A .135°B .360°C .1080°D .1440°5、如图,正五边形ABCDE 点D 、E 分别在直线m 、n 上.若m ∥n ,∠1=20°,则∠2为( )A .52°B .60°C .58°D .56°6、四边形ABCD 中,如果270A C D ∠+∠+∠=︒,则B 的度数是( ) A .110°B .100°C .90°D .30°7、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为( ) A .9条B .8条C .7条D .6条8、如图,将三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCED 的外部时,测量得∠1=70°,∠2=132°,则∠A为()A.40°B.22°C.30°D.52°9、正五边形的外角和是()A.180︒B.360︒C.540︒D.720︒10、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(7,3)B.(8,2)C.(3,7)D.(5,3)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平行四边形ABCD中,AB=4,BC=5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于12PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是 _____.2、如图,已知AB ∥CD ,ABE ∠和CDE ∠的平分线相交于F ,140E ∠=︒,求BFD ∠的度数_____.3、如图,在四边形ABCD 中,90A C ∠=∠=︒,34B ∠=︒,在边AB ,BC 上分别找一点E ,F 使DEF 周长最小,此时EDF ∠=______.4、如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为_________5、如图,在平行四边形ABCD 中,45ABC ∠=︒,E 、F 分别在CD 和BC 的延长线上,AE BD ∥,30EFC ∠=︒,AB =EF =______.三、解答题(5小题,每小题10分,共计50分)1、已知:如图,在ABC 中,AD DB =,BE EC =,AF FC =.求证:AE DF 、互相平分.2、△ABC 和△GEF 都是等边三角形.问题背景:如图1,点E 与点C 重合且B 、C 、G 三点共线.此时△BFC 可以看作是△AGC 经过平移、轴对称或旋转得到.请直接写出得到△BFC 的过程.迁移应用:如图2,点E 为AC 边上一点(不与点A ,C 重合),点F 为△ABC 中线CD 上一点,延长GF交BC 于点H ,求证:CE CH +=.联系拓展:如图3,AB =12,点D ,E 分别为AB 、AC 的中点,M 为线段BD 上靠近点B 的三等分点,点F 在射线DC 上运动(E 、F 、G 三点按顺时针排列).当12MG AG +最小时,则△MDG 的面积为_______.3、在等腰直角三角形ABC 中,90BAC ∠=︒,点E 、F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90°得到AG ,连接GC ,HB .(1)如图1,求证:AHB AGC ≌; (2)如图2,连接GF ,HG ,HG 交AF 于点Q . ①点H 在运动的过程中,求证:90HFG ∠=︒;②若44AB C ==,当AQG 为等腰三角形时,EH 的长为______. 4、已知:如图:五边形ABCDE 的内角都相等,DF ⊥AB . (1)则∠CDF =(2)若ED =CD ,AE =BC ,求证:AF =BF .5、如图,在Rt△OAB 中,∠OAB =90°,OA =AB =6,将△OAB 绕点O 沿逆时针方向旋转90°得到△OA 1B 1.(1)线段OA 1的长是 ,∠AOB 1的度数是 ; (2)连接AA 1,求证:四边形OAA 1B 1是平行四边形.-参考答案-一、单选题 1、B 【分析】过点A 作△ABC 的高,设为x ,过点E 作△EFC 的高为12x ,可求出42BD x =,28CF x=,再由点E 、F 分别是线段AC 、CD 的中点,可得出2CE CD CE CF =,进而求出56CD x=,再利用角平分线的性质可得出AB AC 的值为BDCD即可求解. 【详解】解:过点A 作△ABC 的高,设为x ,过点E 作△EFC 的高为12x ,∴1212ABDSx BD == ,11722EFCS x CF == ∴42BD x =,28CF x= ,∵点E 、F 分别是线段AC 、CD 的中点, ∴12CE EF CF CA AD CD === , ∴2CA CE = , ∵CE CD CA CF = , ∴2CE CD CE CF =, ∴56CD x=, 过点D 作DM ⊥AB ,DN ⊥AC , ∵AD 为BAC ∠平分线, ∴DM =DN , ∵1122ABD ACDSAB DM S AC DN =⋅=⋅,, ∴S ABD AB DM DB S ACD AC DN CD ⋅==⋅,即:AB DBAC CD=∴4242356564AB BD x AC CD x==== , 故选:B . 【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出AB BDAC CD=. 2、C 【分析】如图,连接,,AC BD 记过O 的直线交,AD BC 于,,N H 则O 为,AC BD 的中点,,,,OA OC OB OD AD BC ∥再证明,ANO CHO ≌ ,,DNO BHO AOB COD ≌≌ 可得,ANHB CHND S S 四边形四边形 从而可得答案.【详解】解:如图,连接,,AC BD 记过O 的直线交,AD BC 于,,N HO 为▱ABCD 的对称中心,O 为,AC BD 的中点,,,,OA OC OB OD AD BC ∥,,NAO HCO ANO CHO,ANO CHO ≌同理:,,DNO BHO AOB COD ≌≌,ANHBCHND S S 四边形四边形所以针头扎在甲、乙两个区域的可能性的大小是一样的, 故选C 【点睛】本题考查的是全等三角形的判定与性质,平行四边形的性质,随机事件发生的可能性的大小,几何概率的意义,理解几何概率的意义是解本题的关键. 3、C 【分析】根据题意求出∠ADF ,根据平行四边形的性质求出∠ABC 、∠BAE ,根据旋转变换的性质、结合图形计算即可.【详解】解:∵∠ADC=70°,∠CDF=15°,∴∠ADF=55°,∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=70°,AD∥BC,∴∠BFD=125°,∵AE⊥BC,∴∠BAE=20°,由旋转变换的性质可知,∠BFG=∠BAE=20°,∴∠DFG=∠DFB+∠BFG=145°,故选:C.【点睛】本题考查的是平行四边形的性质、旋转变换的性质,掌握旋转前、后的图形全等是解题的关键.4、C【分析】先利用正多边形的每一个外角为45︒,求解正多边形的边数,再利用正多边形的内角和公式可得答案. 【详解】解:正多边形的一个外角等于45°,∴这个正多边形的边数为:3608, 45∴这个多边形的内角和为:821801080,故选C本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.5、D【分析】延长AB 交直线n 于点F ,由正五边形ABCDE ,可得出五边形每个内角的度数,再由三角形外角的性质可得128EGB ∠=︒,根据平行线的性质可得52GFH ∠=︒,最后再利用一次三角形外角的性质即可得.【详解】解:如图所示,延长AB 交直线n 于点F ,∵正五边形ABCDE ,∴108A ABC C D AED ∠=∠=∠=∠=∠=︒,∵120∠=︒,∴1128EGB A ∠=∠+∠=︒,∵m n ∥,∴18052GFH EGB ∠=︒-∠=︒,∴256GBH GFH ∠=∠-∠=︒,故选:D .题目主要考查正多边形的内角,平行线的性质,三角形外角的性质等,理解题意,作出辅助线,综合运用这几个性质是解题关键.6、C【分析】根据四边形内角和是360°进行求解即可.【详解】 解:四边形的内角和是360°,+++=360A B C D ∴∠∠∠∠︒∵270A C D ∠+∠+∠=︒=360-270=90B ∴∠︒︒︒.故选:C .【点睛】本题考查四边形的内角和,是基础考点,难度较易,掌握相关知识是解题关键.7、A【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条.故选A .本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.8、B【分析】利用四边形的内角和定理求出B C ∠+∠,再利用三角形的内角和定理可得结果.【详解】∵1=70∠︒,2=132∠︒,∴3601236070132158B C ∠+∠=︒-∠-∠=︒-︒-︒=︒,∴180()18015822A B C ∠=︒-∠+∠=︒-︒=︒,故选:B .【点睛】本题主要考查了多边形的内角和定理及三角形的内角和定理,关键是运用多边形的内角和定理求出B C ∠+∠的度数.9、B【分析】根据多边形的外角和等于360°,即可求解.【详解】解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.故选:B .【点睛】本题主要考查多边形的外角和定理,解答本题的关键是掌握任意多边形的外角和都是360°.10、A利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标.【详解】解:四边形ABCD为平行四边形。
平行四边形的性质与判定(北师版)(含答案)
平行四边形的性质与判定(北师版)一、单选题(共10道,每道10分)1.四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC答案:D解题思路:选项A:由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形,不符合题意;选项B:由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形,不符合题意;选项C:由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形,不符合题意;选项D:由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形,符合题意.故选D.试题难度:三颗星知识点:平行四边形的判定2.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24,△OAB的周长为18,则EF的长为( )A.1B.2C.3D.4答案:C解题思路:在平行四边形ABCD中,OA=OC,OB=OD,又∵AC+BD=24,∴OA+OB=12.∵△OAB的周长为18,即AB+OA+OB=18,∴AB=6.∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线.∴.故选C.试题难度:三颗星知识点:平行四边形的性质3.如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形共有( )A.12个B.9个C.7个D.5个答案:B解题思路:确定分类标准:①每单独一个四边形为平行四边形的有:四边形AEOH,四边形HOFD,四边形EBNO,四边形ONCF,共4个;②由两个四边形组成的图形为平行四边形的有:四边形AEFD,四边形EBCF,四边形ABNH,四边形HNCD,共4个;③由三个四边形组成的图形为平行四边形的有0个;④由四个四边形组成的图形为平行四边形的有:四边形ABCD,共1个.综上,图中的平行四边形共有9个,故选B.试题难度:三颗星知识点:平行四边形的判定4.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4cm,则四边形DECF的周长为( )cm.A.6B.8C.10D.12答案:B解题思路:∵∠A=∠B,∴BC=AC=4cm.∵DF∥AC,∴∠A=∠BDF.∵∠A=∠B,∴∠B=∠BDF.∴DF=BF.同理AE=DE,∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=4+4=8(cm),故选B.试题难度:三颗星知识点:平行四边形的判定与性质5.如图,在平行四边形ABCD中,AB=6,∠ABC,∠BCD的平分线分别交AD于点E,F,且EF=3,则BC的长是( )A.6B.9C.10D.12答案:B解题思路:如图,在平行四边形ABCD中,AD∥BC,AB=CD=6,∴∠1=∠2.∵BE平分∠ABC,∴∠1=∠3.∴∠2=∠3.∴AE=AB=6.同理可证:DF=DC=6,∴BC=AD=AE+FD-EF=6+6-3=9.故选B.试题难度:三颗星知识点:平行四边形的性质6.如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=5,OE=1.5,那么四边形EFCD的周长是( )A.16B.14C.12D.10答案:C解题思路:在平行四边形ABCD中,AB=CD=4,BC=AD=5,OA=OC,OB=OD,AD∥BC,∴∠EAO=∠FCO.又∵∠AOE=∠COF,∴△AOE≌△COF.∴AE=CF,OE=OF=1.5.故选C.试题难度:三颗星知识点:平行四边形的性质和判定7.如图,在Rt△ABC中,∠BAC=90°,D,E分别是AB,BC的中点,点F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为( )A.16B.20C.18D.22答案:A解题思路:在Rt△ABC中,AC=6,AB=8,∴BC=10.∵E是BC的中点,∴AE=BE=5.∴∠BAE=∠B.∵∠FDA=∠B,∴∠FDA=∠BAE.∴DF∥AE.∵D,E分别是AB,BC的中点,∴DE∥AC,.∴四边形AEDF是平行四边形.∴四边形AEDF的周长为:2×(3+5)=16.故选A.试题难度:三颗星知识点:平行四边形的判定与性质8.如图,在平行四边形ABCD中,BE⊥BC,CE平分∠BCD,AB=10,BC=16,则四边形ABCD 的面积为( )A.64B.128C.160D.256答案:B解题思路:在平行四边形ABCD中,AD∥BC,AD=BC=16,AB=CD=10,∴∠DEC=∠ECB,∠AEB=∠CBE=90°.∵CE平分∠DCB,∴∠DCE=∠BCE.∴∠DEC=∠DCE.∴DE=DC=AB=10.∴AE=16-10=6.在Rt△ABE中,AB=10,AE=6,∴BE=8.∴.故选B.试题难度:三颗星知识点:平行四边形的性质9.如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,设运动时间为x秒.则当x=( )时,四边形ABQP是平行四边形.A.1B.2C.3D.4答案:B解题思路:∵P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,∴AP=x,CQ=2x.∵BC=6,∴QB=6-2x.由已知可得:AP∥BQ,则只需AP=BQ即可,也即当AP=BQ时,四边形ABQP是平行四边形,∴x=6-2x.解得,x=2.故选B.试题难度:三颗星知识点:动点问题10.如图,在平行四边形ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,DF=,则EF的长为( )A. B.3C.2D.答案:B解题思路:由题意可得AB∥DE,AB=DC,∵AE∥BD,∴四边形ABDE是平行四边形.∴AB=DE.∴DE=DC.∴在Rt△CEF中,∵AB∥CD,∠ABC=60°,∴∠ECF=60°.∴在Rt△ECF中,∴DF=CF=.∴在Rt△ECF中,.故选B.试题难度:三颗星知识点:平行四边形的判定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合滚动练习:平行四边形的性质与判定
时间:45分钟分数:100分得分:________
一、选择题(每小题4分,共32分)
1.在▱ABCD中,若∠A+∠C=120°,则∠A的度数是()
A.100°B.120°C.80°D.60°
2.如图,在▱ABCD中,点O是对角线AC,BD的交点,下列结论错误的是() A.AB∥CD B.AB=CD
C.AC=BD D.OA=OC
第2题图第5题图
3.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是()
A.4∶3∶3∶4 B.7∶5∶5∶7
C.4∶3∶2∶1 D.7∶5∶7∶5
4.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是()
A.(-2,1) B.(-2,-1)
C.(-1,-2) D.(-1,2)
5.如图,▱ABCD中,点E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()
A.BE=DF B.BF=DE
C.AE=CF D.∠1=∠2
6.如图,在▱ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E.若AB=6,EF=2,则BC的长为()
A.8 B.10 C.12 D.14
第6题图第7题图7.如图,在▱ABCD中,∠B=80°,AE平分∠BAD交BC于E,CF∥AE交AD于F,则∠BCF等于()
A.40°B.50°C.60°D.80°
8.(2017·龙东中考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是()
A.22 B.20 C.22或20 D.18
二、填空题(每小题4分,共24分)
9.已知AB∥CD,添加一个条件____________,使得四边形ABCD为平行四边形.10.如图,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为________.
第10题图第11题图
11.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF.若∠BAE=55°,则∠D1AD=________.
12.如果平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长m 的取值范围是____________.
13.如图,在四边形ABCD中,AD∥BC,点E是BC边的中点,连接DE并延长,交AB的延长线于F点.已知AB=4,∠F=∠CDE,则BF的长为________.
第13题图第14题图
14.★如图,▱ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是________.
三、解答题(共44分)
15.(7分)如图,在四边形ABCD中,∠B=∠D,∠1=∠2,求证:四边形ABCD是平行四边形.
16.(8分)如图,▱ABCD中∠BAD的平分线交BC于点E,且AE=BE,求▱ABCD各内角的度数.
17.(9分)(2017·湘潭中考)如图,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.
(1)求证:△ADE≌△FCE;
(2)若AB=2BC,∠F=36°,求∠B的度数.
18.(10分)如图,▱ABCD中,BD⊥AD,∠A=45°,点E,F分别是AB,CD上的点,且BE=DF,连接EF交BD于点O.
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
19.(10分)★如图,AD为△ABC的中线,点E为AC上一点,连接BE交AD于点F,且AE=FE.
求证:BF=AC.
[提示:延长AD 到N ,使DN =AD ,构造平行四边形进行证明]
参考答案与解析
1.D 2.C 3.D 4.A 5.C 6.B 7.B
8.C 解析:设AE 平分∠A 交BC 于点E ,在平行四边形ABCD 中,AD ∥BC ,则∠DAE =∠AEB .∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠BEA ,∴AB =BE .①当BE =3,EC =4时,AB =3,BC =7,∴平行四边形ABCD 的周长为2(AB +BC )=2×(3+7)=20.②当BE =4,EC =3时,AB =4,BC =7,∴平行四边形ABCD 的周长为2(AB +BC )=2×(4+7)=22.故选C.
9.AB =CD (答案不唯一)
10.50° 11.55° 12.10<m <22 13.4
14.1 解析:由题可知∠ECF =∠ABC =60°,则∠CEF =30°.设CF =x ,则CE =2CF =2x .在Rt △CEF 中,CF 2+EF 2=CE 2,即x 2+3=(2x )2,解得x =1,则CE =2.∵AE ∥BD ,
AB ∥DE ,∴四边形ABDE 为平行四边形,∴AB =DE .又∵AB =CD ,∴AB =12
CE =1. 15.证明:∵∠1+∠B +∠ACB =180°,∠2+∠D +∠CAD =180°,∠B =∠D ,∠1=∠2,∴AB ∥CD ,∠DAC =∠ACB ,∴AD ∥BC .(5分)∴四边形ABCD 是平行四边形.(7分)
16.解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∠B =∠D ,∴∠AEB =∠DAE .(2分)∵AE 是∠BAD 的平分线,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴AB =BE .(4分)∵AE =BE ,∴△ABE 是等边三角形,∴∠D =∠B =60°.(6分)∵∠B +∠C =180°,∴∠C =120°.∴▱ABCD 各内角的度数分别是∠B =∠D =60°,∠BAD =∠C =120°.(8分)
17.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠D =∠ECF .(2
分)在△ADE 和△FCE 中,⎩⎪⎨⎪⎧∠D =∠ECF ,DE =CE ,∠AED =∠FEC ,
∴△ADE ≌△FCE (ASA).(5分)
(2)解:∵△ADE ≌△FCE ,∴AD =FC .∵AD =BC ,AB =2BC ,∴AB =FB .(7分)∴∠BAF =∠F =36°,∴∠B =180°-2×36°=108°.(9分)
18.(1)证明:∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠ODF =∠OBE .(2分)在
△ODF 与△OBE 中,⎩⎪⎨⎪⎧∠ODF =∠OBE ,∠DOF =∠BOE ,DF =BE ,
∴△ODF ≌△OBE ,(4分)∴BO =DO .(5分)
(2)解:∵BD ⊥AD ,∴∠ADB =∠GDO =90°.∵∠A =45°,∴∠DBA =∠A =45°.∵EF ⊥AB ,∴∠G =∠A =45°,∠DOG =45°,∴OD =DG .(7分)∵AB ∥CD ,EF ⊥AB ,∴DF ⊥OG ,∴OF =FG ,△DFG 是等腰直角三角形,∴DF =GF =1,∴DO =DG = 2.(8分)∵DO =BO ,∴在等腰Rt △ADB 中,AD =DB =2DO =2 2.(10分)
19.证明:如图,延长AD 到N ,使DN =AD ,连接BN ,CN .(2分)∵AD 为△ABC 的中线,∴BD =CD ,∴四边形ABNC 是平行四边形,∴BN =AC ,BN ∥AC ,∴∠1=∠4.(6分)∵AE =FE ,∴∠1=∠2.∵∠2=∠3,∠1=∠4,(8分)∴∠3=∠4,∴BN =BF ,∴BF =AC .(10分)。