中国矿业大学828高等代数历年考研试题

合集下载

(NEW)中国人民大学《828高等代数》历年考研真题汇编

(NEW)中国人民大学《828高等代数》历年考研真题汇编
3.设V1,V2,…,Vn是欧氏空间V的互不相同的子空间,则下述结论 成立的是( ).
A.设V1⊕V2⊕…⊕Vn=V,若ξ∈V,则ξ必属于V1,V2,…,Vn中的 一个
B.V1∪V2∪…∪Vn也是V的子空间 C.设α是V1中的一个向量,β∈V,若(β,α)=0,则β∈V1⊥ D.存在一个α∈V1⊥,α∈V2⊥,但α∈V1⊥⊕V2⊥
6.若Am×m,Bn×n均是可逆矩阵,C是任意n×m矩阵,
,则D-
1=_______,如果
,则D-1=________.
7.设
,并设Aij为元素aij的代数余子式,则A21+A22+
ห้องสมุดไป่ตู้
A23+A24=________,A31+A32+A33+A34=________.
8.如果二次型f(x1,x2,…,xn)在实数域上合同于[-f(x1,x2, …,xn)],那么F(x1,x2,…,xn)的符号差为_______.
2001年中国人民大学449高等代数考研真题 一、填空题(每题4分,共24分,把答案写在题中的横线上)
1.以
为根的有理数的不可约多项式为________.
2.设
,则A100=________.
3.矩阵
的全部特征值为________.
4.已知向量η1=(2,1/3,2/3),η2=(1/3,-4/3,-1)是线性方 程组
的两个解,则该方程组的全部解为________.
5.二次型x12+x22+x32-2x42-2x1x2+2x1x3-2x1x4+2x2x3-4x2x4的标 准型为________,秩为_______,正惯性指数为_______,符号差为 ________.
6.设α=(2,2,1,1),β=(1/2,1,-1,1/2),则α的长度为 ________,α与β的距离为________,α与β的夹角为________.

考研高等代数真题答案

考研高等代数真题答案

考研高等代数真题答案一、选择题1. 根据线性空间的定义,下列哪个选项不是线性空间的子空间?- A. 所有零向量组成的集合- B. 线性空间中的非零向量集合- C. 线性空间中的任意向量集合- D. 线性空间中满足特定线性组合的向量集合答案:B2. 矩阵A的特征值是λ1, λ2, ..., λn,矩阵B的特征值是μ1,μ2, ..., μn。

若AB=BA,那么矩阵A+B的特征值是什么?- A. λ1+μ1, λ2+μ2, ..., λn+μn- B. λ1*μ1, λ2*μ2, ..., λn*μn- C. λ1+μ1, λ1+μ2, ..., λn+μn(无规律)- D. 不能确定答案:A二、填空题1. 若线性变换T: V → W,其中V和W是有限维向量空间,且dim(V) = n,dim(T(V)) = r,则T的核的维数是_________。

答案:n-r2. 设A是一个3×3的矩阵,且|A| = 2,矩阵A的特征多项式为f(λ)= (λ-1)^2(λ-3),则矩阵A的迹是_________。

答案:4三、解答题1. 证明:若矩阵A可逆,则A的伴随矩阵A*的行列式等于|A|^(n-1),其中n是A的阶数。

证明:设矩阵A是一个n×n的可逆矩阵,其伴随矩阵记为A*。

根据伴随矩阵的定义,我们有:A * A* = |A| * I,其中I是单位矩阵。

两边同时乘以A的逆矩阵A^(-1),得到:A^(-1) * A * A* = |A| * A^(-1) * I,即 A* = |A|^(n-1) * A^(-1)。

由此可知,A*的行列式是|A|^(n-1)。

2. 解线性方程组:x + 2y + 3z = 14x + 5y + 6z = 27x + 8y + 9z = 3解:首先写出增广矩阵:[1 2 3 | 1][4 5 6 | 2][7 8 9 | 3]通过初等行变换,将增广矩阵化为行最简形式:[1 0 -1 | -1][0 1 3 | 4][0 0 0 | 0]根据行最简形式,我们可以得到y = 4 - 3z,x = 1 + z。

中国矿业大学(北京)828高等代数2020年考研专业课初试大纲

中国矿业大学(北京)828高等代数2020年考研专业课初试大纲
线性空间的概念与基本性质,线性空间的维数、基与向量的坐 标,线性空间中的基变换与坐标变换,过渡矩阵,线性子空间及其 运算,线性空间的同构。 7、线性变换
线性变换的概念和简单性质,线性变换的运算,线性变换的矩 阵,线性变换(矩阵)的特征值、特征向量和特征子空间,线性变换 的特征多项式及HamiltonCaylay定理,矩阵相似的概念及性质,矩阵可对角化的充分必要条 件,线性变换的值域与核,线性变换的不变子空间,矩阵的若当标 准型。 8、欧几里德空间 线性空间内积的定义及其性质,欧几里德空间的概念,标准正交基 ,施密特正交化过程,正交矩阵,正交变换及其性质,正交子空间、 正交补及其性质,实对称矩阵的特征值、特征向量,对角化,欧几 里德空间的同构。 主要参考书目: 《高等代数》,北京大学数学系几何与代数教研室代数小组编,2013 年8月第4版,高等教育出版社出版 三、试题结构
能力、运算能力和综合运用所学知识分析问题和解决问题的能力。
二、考试范围
1、多项式理论
考察多项式的相关概念、基本性质、一元多项式的带余除法、不
可约多项式的性质和判定、最大公因式的性质、三种具体数域上多
项式的不可约分解定理。
2、行列式
理解行列式的概念,掌握行列式的性质、行列式的乘法法则。会应
用行列式概念和基本性质计算行列式,能够熟练掌握行列式按行(
列)展开定理,能够运用递推公式计算一些经典类型的行列式。
3、向量和矩阵
向量的线性组合和线性表示,向量组的等价,向量组的线性相
关与线性无关,极大线性无关组,向量组的秩,向量组的秩与矩阵
的秩之间的关系。矩阵的概念,矩阵的基本运算,矩阵的转置,伴
随矩阵,逆矩阵的概念和性质,矩阵可逆的充分必要条件,矩阵的
初等变换和初等矩阵,矩阵的秩,矩阵的等价,分块矩阵及其运算

全国名校高等代数考研真题汇编

全国名校高等代数考研真题汇编

2012年
601 代数考
2012年攻读

入试
考试 : 代数(601)
考 意:
1 本试 分为150 分 共计10道 分 考试时 总计180 分钟;
分15
2 案必 写 上 无效。
上 写 试 上或草
一、设 是 阶 位 阵 证明 行列 于 .
阵足
二、设 是 阶
阵足
.证明所有 都 似于一个 角 阵
征值之 于 阵
.
三、设 是 维欧 表为 个
正交 换 证明 最 可以 .
、设 是 阶 阵 证明存 数 于
使得 是可以 角化 阵

阵且
.
五、设
.
当 为何值时 存 使得
出这样 阵
角 阵;
为角阵
时阵
标准 .
六、令二次
.
次二次 方阵;
当 为 数 出次二次 为正
七、令
是上 性
到 所有 性映 组成 性 .证明:


中是 性无关 .
2011年 中 技
代数考
中技
2011年
招 考试
考试 : 代数
适 范 :基 数 与数 计
数 计数
概论
一、计 行列
.
二、 次 性方 组、
一组基 解 .
三、设A,B都是
阵,C是
阵,且
A=BC.rankB=n.证明: rankA=rankC.
、设T是维 性 V 换.
(1)证明:V=ImT kerT.
2011年802代数考2012年825代数考2012年东范817代数考2011年中技代数考中技2011年招考试考试
2011年
802 代数考
2012年

(NEW)中国人民大学《828高等代数》历年考研真题汇编

(NEW)中国人民大学《828高等代数》历年考研真题汇编
1.第i行j列元素为1,其他元素为0的n阶方阵记为Eij,那么EijEkl= _______.
2.设A为3阶方阵且|A|=-1/3,A*是A的伴随矩阵,那么|(2A)-1+ 3A*|=________,|(A*)*+3(A*)-1|=________.
3.向量组α1=(1,2,2)T,α2=(2,4,4)T,α3=(1,0,3)T, α4=(0,4,-2)T的秩为________,它的一个极大无关组为 _________.
2005年中国人民大学450高等代数考研真题
2006年中国人民大学494高等代数考研真题
2007年中国人民大学436高等代数考研真题
第2部分 其他院校高等代数考研真题 2017年中山大学862高等代数考研真题
2017年中国传媒大学高等代数考研真题
4.设A、B是同阶方阵,则( )成立.
A.若A、B有相同的特征多项式,则A、B有相同的初等因子
B.若A相似于B,则|A|=|B|
C.若A、B有相同的各阶行列式因子,则A、B相似 D.若A、B均为实对称矩阵,且存在非奇异矩阵P使PTAP=B,则A、B 相似
5.已知T(x1,x2,…,xn)=(0,x1,x2,…,xn-1)是线性空间Pn 的线性变换,KerT,ImT分别表示线性变换T的核和值域,则下列结论 中正确的有( ).
求正交矩阵T,使T-1AT成对角矩阵. 五、(10分)证明平面上三条互异直线
相交于一点的充分必要条件是a+b+c=0. 六、(20分)设A、B、C分别是r×s,s×m,m×n矩阵,r(B)= r(AB).求证: (1)线性方程组BX=0与ABX=0同解; (2)r(BC)=r(ABC). 七、(20分)设A、B是n×n实对称矩阵,A正定.证明: (1)AB可对角化; (2)若B也正定,则AB的特征值全是正的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档