勾股定理应用难题
完整版勾股定理大题难题
1、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A C的坐标分别为A (10, 0)、C (0, 4),点D是OA勺中点,点P在BC边上运动,当△ ODP是腰长为5的等腰三角形时,点P的坐标为2.如图,小红用一张长方形纸片ABCGffi行折纸,已知该纸片宽AB为8cm,?长BC为10cm当小红折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长??3、如图,EF为正方形ABCD勺对角线,将/ A沿DK折叠,使它的顶点A落在EF上的G点,则/ DKG=4、以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为 边长作第三个正三角形,以此类推,则第十个正三角形的高是(1 yl 3 43A 、2X( 2)10B 、2X( 2)9C 、2X( T)10D 、2X( T)95.在^ ABC 中,AB 边上的中线 CD=3 AB=6 BC+AC=B 则^ ABC 勺面积为6. 如图,直线I 上有三个正方形a , b , c ,若a , c 的面积分别为5和11,则b 的面积为7. 如图所示,在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,则点P 到三 角形的三边距离之和 PD+PE+P 等于多少?)厘米8.如图Rt△ ABC中,AB=BC=4 D为BC的中点,在AC边上存在一点△ BDE周长的最小值为多少?9、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了5叩到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
E,连接ED EB则10.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?11.国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,12.在数轴上表示烦的点。
勾股定理综合难题。竞赛
CBA D EF1 如图,圆柱的高为10 cm ,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A点相对的B 点处,需要爬行的最短路程是多少?2 如图,长方体的高为3 cm ,底面是边长为2 cm 的正方形. 现有一小虫从顶点A 出发,沿长方体侧面到达顶点C 处,小虫走的路程最短为多少厘米? 答案AB=5AB3、一只蚂蚁从棱长为1的正方体纸箱的B’点沿纸箱爬到D 点,那么它所行的最短路线的长是_____________。
4、如图,小红用一张长方形纸片ABCD 进行折纸,该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处〔折痕为AE 〕.想一想,此时EC 有多长?•5.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,那么EB 的长是〔 〕. A .3 B .4 C D .5BCAFEDCBAB ’C ’B ′A ′C ′DC D 6.:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm .求AC 的长.7、如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,那么CD 的长为8、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,假设21::=BE AE ,那么折痕EF 的长为 。
9、如图,:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,那么EB ∶CE =_________.10、如图,AD 是△ABC 的中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C´的位置,假设BC =2,那么BC´=_________.E题5图FBC ′ BA CD A C11.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 等于〔 〕A.2cmB.3 cmC.4 cmD.5 cm12、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?13、如图,在△ABC 中,∠B=90,AB=BC=6,把△ABC 进行折叠,使点A 与点D 重合,BD:DC=1:2,折痕为EF ,点E 在AB 上,点F 在AC 上,求EC 的长。
勾股定理难题精选
勾股定理一、选择题1、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( )A 、6厘米B 、8厘米C 、1380厘米 D 、1360厘米2、若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为 ( )A. 48 cm 2B. 36 cm 2C. 24 cm 2 cm 2 3、Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121B 、120C 、132D 、不能确定解:设该Rt △的三边分别为a 、b 、c ,a 、b 为直角边,c 为斜边由勾股定理知:222a b c +=,即:112+b 2= c2所以(b+c )(c -b )=121因为b 、c 都为自然数,所以b+c ,c -b ,都为正自然数。
又因为121只有1、11、121这三个正整数因式,所以b+c=121,c -b=1。
所以b=60,c=61评论,本题以直角三角形为载体,同过勾股定理将初中几何知识和代数知识很好地串联起来考察学生的能力。
4、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是( )A . 4B . 6C . 8D . 105、△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( ) A . 42 B . 32 C . 42或32D . 37或3310、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A 、450a 元B 、225a 元C 、150a 元D 、300a 元11.已知,如图,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) A 、6cm2B 、8cm2C 、10cm2D 、12cm212.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 、25海里B 、30海里C 、35海里D 、40海里8、直角三角形的一条直角边长为12,另外两条边长均为自然数,则其周长可以为( ) A .36 B .28 C .56 D .不能确定9、已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c -+-+-=,则三角形的形状是( )A .底与边不相等的等腰三角形B 、等边三角形C 、钝角三角形D 、直角三角形 10、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2)(b a +的值为( ).A .13B .19C .25D .169150°20m30m第10题图A BEFDC第11北南A东第12图1二、填空题15、如图,从电线杆离地面3米处向地面拉一条长为5米的拉线,这条拉线在地面的固定点距离电线杆底部有 米。
勾股定理综合难题 附答案(超好 打印版)
C B ADEF 练习题之答禄夫天创作时间:二O 二一年七月二十九日1 如图,圆柱的高为10 cm,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处,需要爬行的最短路程是几多?2 如图,长方体的高为3 cm,底面是边长为 2 cm 的正方形. 现有一小虫从极点A 动身,沿长方体正面达到极点C 处,小虫走的路程最短为几多厘米?谜底AB=53、一只蚂蚁从棱长为1的正方体纸箱的B’点沿纸箱爬到D 点,那么它所行的最短路线的长是_____________. 4、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB为8cm,•长BC•为10cm .当小红折叠时,极点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•5.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ).A .3B .4C .5D .56.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB的垂直平分线交BC 于D,垂足为B C A B ’C ’ B ′A ′ C ′ DE,D=4cm .求AC 的长.7、如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为8、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折 痕EF 的长为 .9、如图,已知:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,则EB∶CE =_________.10、如图,AD 是△ABC 的中线,∠ADC=45o ,把△ADC 沿AD 半数,点C 落在C´的位置,若BC =2,则BC´=_________.11.如图1,有一块直角三角形纸片,两直角边AC =6cm,BC =8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 即是( )A.2cmB.3 cmC.4 cmD.5 cm 12、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AEE 题5图F BC ′ B A CD A CD A C BE 图1D CD重合,你能求出CD 的长吗?13、如图,在△ABC 中,∠B= 90,AB=BC=6,把△ABC 进行折叠,使点A 与点D 重合,BD:DC=1:2,折痕为EF,点E 在AB 上,点F 在AC 上,求EC 的长.14.已知,如图长方形ABCD 中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D 重合,折痕为EF,则△ABE 的面积为( )A 、6cm 2B 、8cm 2C 、10cm 2D 、12cm 215.如图,使点D 与点B 重合,已知AB =3,AD =9,求16、如图,每个小方格的边长都为1.求图中格点四边形ABCD 的面积.17、如图,已知:在ABC ∆中,︒=∠90ACB ,分别以此直角三角形的三边为直径画半圆,试说明图中阴影部份的面积与直角三角形的面积相等.18.如图8,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够年夜的直角三角板 PHF 的直角极点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板极点P :①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板极点P 在AD 上移动,直角边PH 始终通过点B,另一直角边PF 与DC 的延长线交于点Q,与BC 交于点E,能否使CE =2cm ?若能,图8 A D B C E F F 第11题请你求出这时AP 的长;若不能,请你说明理由.21.①能.设AP =x 米,由于BP 2=16+x 2,CP 2=16+(10-x)2,而在Rt△PBC 中,有BP 2+ CP 2=BC 2,即16+x 2+16+(10-x)2=100,所以x 2-10x+16=0,即(x -5)2=9,所以x -5=±3,所以x =8,x =2,即AP =8或2,②能.仿照①可求得AP =4.19.如图△ABC 中,BC BM AC AN BC AC ACB ====︒=∠,,5,12,90则MN= 420、※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d 解:设两直角边分别为,a b ,斜边为c ,则2c d =,12S ab =. 由勾股定理,得222a b c +=. 所以()222222444a b a ab b c S d S +=++=+=+.所以a b +=所以a b c ++=2d .故选(C )21※.在ABC ∆中,1AB AC ==,BC 边上有2006个分歧的点122006,,P P P ,记()21,2,2006i i i i m AP BP PC i =+⋅=,则122006m m m ++=_____.22※.如图所示,在Rt ABC ∆中,90,,45BAC AC AB DAE ∠=︒=∠=︒,且3BD =,4CE =,求DE 的长..23、如图,在△ABC 中,AB=AC=6,P 为BC 上任意一点,请用学过的知识试求PC ·PB+PA 2的值.24、※如图在Rt △ABC 中,3,4,90==︒=∠BC AC C ,在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形.如图所示: 要求:在两个备用图中分别画出两种与示例图分歧的拼接方法,在图中标明拼接的直角三角形的三边长(请同学们先用铅笔画出草图,确定后再用0.5mn 的黑色签字笔画出正确的图形)25.如图,A 、B 两个村庄在河CD 的同侧,A 、B 两村到河的距离分别为AC=1km,BD=3km,CD=3km,现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20000元/千米,请你在CD 选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用F.26.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角是 cm27.(8分)如图,在△ABC 中,AB=AC,P 为BC 上任意一点,请说明:AB 2-AP 2=PB ×PC. 28、如图,已知:︒=∠90C ,CM AM =,AB MP ⊥于P .求证:222BC AP BP +=.A B PC C O A BD E F 第26题图 第28题29.(本题满分6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是几多? 30. (本题满分6分)如图所示,一个上方是一个半圆,下方是长方形的仿古通道,装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道.31.在一棵树的10米高B 处有两只猴子,树20米处的水池的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高几多米?32.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是几多米?33.长为 4 m 的梯子搭在墙上与空中成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m .34.已知:如图,△ABC 中,∠C =90°,D 为AB 的中点,E 、F 分别在AC 、BC 上,且DE ⊥DF .求证:AE 2+BF 2=EF 2. 35.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等小河分点且CE =CB 41,求证:AF ⊥FE .36.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC的形状,并说明你的理由.37.已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.38.如图,长方体的底面边长分别为1cm 和3cm,高为6cm .如果用一根细线从点A 开始经过四个正面环绕纠缠一圈达到点B,那么所用细线最短需要多长?如果从点A 开始经过四个正面环绕纠缠n 圈达到点B,那么所用细线最短需要多长?39、a 、b 为任意正数,且a>b,求证:边长为2ab 、 a 2-b 2、a 2+b 2的三角形是直角三角形40. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形(C ) 直角三角形 (D ) 锐角三角形.41.(12分)如图,某沿海开放城市A 接到台风警报,在该市正南方向100km 的B 处有一台风中心,沿BC 方向以20km/h 的速度向D 移动,已知城市A 到BC 的距离AD=60km,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?A BCD 第24题图42.(14分)△ABC 中,BC a =,AC b =,AB c =,若∠C=90°,如图(1),根据勾股定理,则222c b a =+,若△ABC 不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想22b a +与2c 的关系,并证明你的结论.. 解:若△ABC 是锐角三角形,则有a 2+b 2>c 2若△ABC 是钝角三角形,∠C 为钝角,则有a 2+b 2<c 2当△ABC 是锐角三角形时,证明:过点A 作AD⊥CB,垂足为D.设CD 为x,则有DB=a -x 根据勾股定理得 b 2-x 2=c 2―(a―x) 2即 b 2-x 2=c 2―a 2+2ax―x 2∴a 2+b 2=c 2+2ax∵a>0,x>0∴2ax>0∴a 2+b 2>c 2 当△ABC 是钝角三角形时,43.(10分)如图,A 市气象站测得台风中心在A 市正西方向300千米的B 处,以107 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A 市受这次台风影响,那么受台风影响的时间有多长?44、将一根24cm 的筷子,置于底面直径为15cm,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h 的取值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD.7cm≤h≤16cm45如图,已知:,,于P. 求证:.46【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求:四边形ABCD的面积.47【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?(一)转化的思想方法我们在求三角形的边或角,或进行推理论证时,经常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.49、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长.50 如图,在等腰△ABC中,∠ACB=90°,D、E为斜边AB上的点,且∠DCE=45°.求证:DE2=AD2+BE2.51 如图,在△A BC中,AB=13,BC=14,A C=15,则BC边上的高 A D= .52 如图,长方形ABCD中,AB=8,BC=4,将长方形沿AC折叠,点D落在点E处,则重叠部份△AFC的面积是.53 在△ABC中,AB=15 ,AC=20,BC边上的高A D=12,试求BC边的长.54 在△ A BC中,D是BC所在直线上一点,若AB=l0,BD=6,AD=8,AC=17,求△ABC的面积.55. 若△ABC三边a、b、c 满足 a2+b2+c2+338=10a+24b+26c,△ABC是直角三角形吗?为什么?56. 在△ABC中,BC=1997,AC=1998,AB2=1997+1998,则△ABC是否为直角三角形?为什么?注意BC、AC、AB的年夜小关系.AB<BC<AC.AB2+BC2=1997+19972+1998=1997×(1+1997)+1998=1997×1998+1998=19982= AC2.57. 一只蚂蚁在一块长方形的一个极点A处,一只苍蝇在这个长方形上和蜘蛛相对的极点C1处,如图,已知长方形长6cm,宽5 cm,高3 cm.蜘蛛因急于捉到苍蝇,沿着长方形的概况向上爬,它要从A点爬到C1点,有很多路线,它们有长有短,蜘蛛究竟应该沿着怎样的路线爬上去,所走的距离最短?你能帮蜘蛛求出最短距离吗?58.木箱的长、宽、高分别为40dm 、30dm 和50dm,有一70dm 的木棒,能放进去吗?请说明理由.59. 已知△ABC 的三边a 、b 、c,且a+b=17,ab=60,c=13, △ABC 是否是直角三角形?你能说明理由吗?60. 如图,E 是正方形ABCD 的边CD 的中点,延长AB 到F,使BF=41AB,那么FE 与FA 相等吗?为什么?61. 如图,∠A=60°, ∠B=∠D=90°.若BC=4,CD=6,求AB 的长.62.如图,∠xoy=60°,M 是∠xoy 内的一点,它到ox 的距离MA 为2.它到oy 的距离为11.求OM 的长.带谜底版的用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形.在(3)—1中,甲的面积=(年夜正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(年夜正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形.C B ADEF ,所以.练习题1 如图,圆柱的高为10 cm,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处,需要爬行的最短路程是几多?2 如图,长方体的高为3 cm,底面是边长为 2 cm 的正方形. 现有一小虫从极点A 动身,沿长方体正面达到极点C 处,小虫走的路程最短为几多厘米?谜底AB=53、一只蚂蚁从棱长为1的正方体纸箱的B’点沿纸箱爬到D 点,那么它所行的最短路线的长是_____________. 4、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB为8cm,•长BC•为10cm .当小红折叠时,极点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•5.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ).A .3B .4C .5D .56.已知:如图,在△ABC 中,∠C=90°,B C A B ’C ’ B ′A ′ C ′ D∠B=30°,AB的垂直平分线交BC 于D,垂足为E,D=4cm .求AC 的长.7、如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为8、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折 痕EF 的长为 .9、如图,已知:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,则EB∶CE =_________.10、如图,AD 是△ABC 的中线,∠ADC=45o ,把△ADC 沿AD 半数,点C 落在C´的位置,若BC =2,则BC´=_________.11.如图1,有一块直角三角形纸片,两直角边AC =6cm,BC =8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 即是( )A.2cmB.3 cmC.4 cmD.5 cm 12、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角E 题5图F BC ′ B A CD A CD A C BE 图1D边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?13、如图,在△ABC 中,∠B= 90,AB=BC=6,把△ABC 进行折叠,使点A 与点D 重合,BD:DC=1:2,折痕为EF, 点E 在AB 上,点F 在AC 上,求EC 的长.14.已知,如图长方形ABCD 中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D 重合,折痕为EF,则△ABE 的面积为( )A 、6cm 2B 、8cm 2C 、10cm 2D 、12cm 215.如图,使点D 与点B 重合,已知AB =3,AD =9,求16、如图,每个小方格的边长都为1.求图中格点四边形ABCD 的面积.17、如图,已知:在ABC ∆中,︒=∠90ACB ,分别以此直角三角形的三边为直径画半圆,试说明图中阴影部份的面积与直角三角形的面积相等.18.如图8,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够年夜的直角三角板 PHF 的直角极点P 落在AD 边上(不与A 、D 重合),在AD 上适当移动三角板极点P :①能否使你的三角板两直角边分别通过点B 与点C ?若能,请你求出这时 AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板极点P 在AD 上移动,直角边PH 始终通过点B,另一直角边PF 与DC 的延长图8 A D B C E F F 第11题线交于点Q,与BC 交于点E,能否使CE =2cm ?若能,请你求出这时AP 的长;若不能,请你说明理由.21.①能.设AP =x 米,由于BP 2=16+x 2,CP 2=16+(10-x)2,而在Rt△PBC 中,有BP 2+ CP 2=BC 2,即16+x 2+16+(10-x)2=100,所以x 2-10x+16=0,即(x -5)2=9,所以x -5=±3,所以x =8,x =2,即AP =8或2,②能.仿照①可求得AP =4.19.如图△ABC 中,BC BM AC AN BC AC ACB ====︒=∠,,5,12,90则MN= 420、※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d 解:设两直角边分别为,a b ,斜边为c ,则2c d =,12S ab =. 由勾股定理,得222a b c +=. 所以()222222444a b a ab b c S d S +=++=+=+.所以a b +=所以a b c ++=2d .故选(C ) 21※.在ABC ∆中,1AB AC ==,BC 边上有2006个分歧的点122006,,P P P ,记()21,2,2006i i i i m AP BP PC i =+⋅=,则122006m m m ++=_____.解:如图,作AD BC ⊥于D ,因为1AB AC ==,则BD CD =.由勾股定理,得222222,AB AD BD AP AD PD =+=+.所以所以2221AP BP PC AB +⋅==. 因此2122006120062006m m m ++=⨯=.22※.如图所示,在Rt ABC ∆中,90,,45BAC AC AB DAE ∠=︒=∠=︒,且3BD =,4CE =,求DE 的长.解:如右图:因为ABC ∆为等腰直角三角形,所以45ABD C ∠=∠=︒. 所以把AEC ∆绕点A 旋转到AFB ∆,则AFB AEC ∆≅∆.所以4,,45BF EC AF AE ABF C ===∠=∠=︒.连结DF . 所以DBF ∆为直角三角形.由勾股定理,得222222435DF BF BD =+=+=.所以5DF =.因为45,DAE ∠=︒所以45DAF DAB EAC ∠=∠+∠=︒.所以()ADE ADF SAS ∆≅∆. 所以5DE DF ==.23、如图,在△ABC 中,AB=AC=6,P 为BC 上任意一点,请用学过的知识试求PC ·PB+PA 2的值.24、※如图在Rt △ABC 中,3,4,90==︒=∠BC AC C ,在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形.如图所示: 要求:在两个备用图中分别画出两种与示例图分歧的拼接方法,在图中标明拼接的直角三角形的三边长(请同学们先用铅笔画出草图,确定后再用0.5mn 的黑色签字笔画出正确的图形)A B PC解:要在Rt △ABC 的外部接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰与底边简直定.要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理知识.下图中的四种拼接方法供参考.25.如图,A 、B 两个村庄在河CD 的同侧,A 、B 两村到河的距离分别为AC=1km,BD=3km,CD=3km,现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20000元/千米,请你在CD 选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用F.26.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角是 cm27.(8分)如图,在△ABC 中,AB=AC,P 为BC 上任意一点,请说明:AB 2-AP 2=PB ×PC. 28、如图,已知:︒=∠90C ,CM AM =,AB MP ⊥于P .求证: 222BC AP BP +=.29.(本题满分6分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完C O A BD E F 第26题图 第28题小河成这件事情所走的最短路程是几多?30. (本题满分6分)如图所示,一个上方是一个半圆,下方是长方形的仿古通道,装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道.31.在一棵树的10米高B 处有两只猴子,树20米处的水池的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高几多米?32.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是几多米?33.长为 4 m 的梯子搭在墙上与空中成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m .34.已知:如图,△ABC 中,∠C =90°,D 为AB 的中点,E 、F 分别在AC 、BC 上,且DE ⊥DF .求证:AE 2+BF 2=EF 2.35.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .36.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC的形状,并说明你的理由.37.已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.38.如图,长方体的底面边长分别为1cm 和3cm,高为6cm .如果用一根细线从点A 开始经过四个正面环绕纠缠一圈达到点B,那么所用细线最短需要多长?如果从点A 开始经过四个正面环绕纠缠n 圈达到点B,那么所用细线最短需要多长?39、a 、b 为任意正数,且a>b,求证:边长为2ab 、 a 2-b 2、a 2+b 2的三角形是直角三角形40. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形(C ) 直角三角形 (D ) 锐角三角形.41.(12分)如图,某沿海开放城市A 接到台风警报,在该市正南方向100km 的B 处有一台风中心,沿BC 方向以20km/h 的速度向D 移 动,已知城市A 到BC 的距离AD=60km,那么台风中心经过多长时 间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?42.(14分)△ABC 中,BC a =,AC b =,AB c =,若∠C=90°,如图(1),根据勾股定理,则222c b a =+,若△ABC 不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想22b a +与2c 的关系,并证明你的结论.. 解:若△ABC 是锐角三角形,则有a 2+b 2>c 2若△ABC 是钝角三角形,∠C 为钝角,则有a 2+b 2<c 2A BCD 第24题图当△ABC是锐角三角形时,证明:过点A作AD⊥CB,垂足为D.设CD为x,则有DB=a-x根据勾股定理得 b2-x2=c2―(a―x) 2即 b2-x2=c2―a2+2ax―x 2∴a2+b2=c2+2ax∵a>0,x>0∴2ax>0∴a2+b2>c2 当△ABC是钝角三角形时, 43.(10分)如图,A市气象站测得台风中心在A市正西方向300千米的B处,以107千米/时的速度向北偏西60°的BF方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A市受这次台风影响,那么受台风影响的时间有多长?44、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().A.h≤17cm B.h≥8cm C.15cm≤h≤16cm D.7cm≤h≤16cm45如图,已知:,,于P. 求证:.思路点拨: 图中已有两个直角三角形,可是还没有以BP为边的直角三角形. 因此,我们考虑构造一个以BP为一边的直角三角形. 所以连结BM. 这样,实际上就获得了4个直角三角形. 那么根据勾股定理,可证明这几条线段的平方之间的关系.解析:连结BM,根据勾股定理,在中,. 而在中,则根据勾股定理有. ∴又∵(已知),∴.在中,根据勾股定理有, ∴.46【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求:四边形ABCD的面积.分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单.解析:延长AD、BC交于 E. ∵∠A=∠60°,∠B=90°,∴∠E=30°.∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==.∵DE2= CE2-CD2=42-22=12,∴DE==.∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=47【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【谜底】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB, 与空中交于H.解:OC=1米(年夜门宽度一半), OD=0.8米(卡车宽度一半)在Rt△OCD中,由勾股定理得:CD===0.6米, CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.48、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为几多秒?思路点拨:(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m, 小于100m则受影响,年夜于100m则不受影响,故作垂线段AB并计算其长度.(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶的路程.因此必需找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校.解析:作AB⊥MN,垂足为 B.在 RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160,∴ AB=AP=80. (在直角三角形中,30°所对的直角边即是斜边的一半)∵点A到直线MN的距离小于100m,∴这所中学会受到噪声的影响.如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响,那么AC=100(m), 由勾股定理得: BC2=1002-802=3600,∴ BC=60.同理,拖拉机行驶到点D处学校开始脱离影响,那么,AD =100(m),BD=60(m),∴CD=120(m).拖拉机行驶的速度为: 18km/h=5m/st=120m÷5m/s=24s.答:拖拉机在公路 MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒. (一)转化的思想方法我们在求三角形的边或角,或进行推理论证时,经常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.49、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长.思路点拨:现已知BE、CF,要求EF,但这三条线段不在同一三角形中,所以关键是线段的转化,根据直角三角形的特征,三角形的中线有特殊的性质,无妨先连接AD.解:连接AD.因为∠BAC=90°,AB=AC.又因为AD为△ABC的中线,所以AD=DC=DB.AD⊥BC.且∠BAD=∠C=45°.因为∠EDA+∠ADF=90°.又因为∠CDF+∠ADF=90°.所以∠EDA=∠CDF.所以△AED≌△CFD(ASA).所以AE=FC=5.同理:AF=BE=12.在Rt△AEF中,根据勾股定理得:,所以EF=13.总结升华:此题考查了等腰直角三角形的性质及勾股定理等知识.通过此题,我们可以了解:当已知的线段和所求的线段不在同一三角形中时,应通过适当的转化把它们放在同一直角三角形中求解.50 如图,在等腰△ABC 中,∠ACB=90°,D 、E 为斜边AB 上的点,且∠DCE=45°.求证:DE 2=AD 2+BE 2.分析:利用全等三角形的旋转变换,进行边角的全等变换,将边转移到一个三角形中,并构造直角三角形.51 如图,在△A BC 中,AB=13,BC=14,A C=15,则BC 边上的高 AD= .谜底12.52 如图,长方形ABCD 中,AB=8,BC=4,将长方形沿AC 折叠,点D 落在点E 处,则重叠部份△AFC 的面积是.设EF=x,那么AF=CF=8-x,AE^2+EF^2=AF^2,所以4^2+x^2=(8-x)^2,解得x=3,S=4*8/2-3*4/2=10谜底:1053 在△ABC 中,AB=15 ,AC=20,BC 边上的高A D=12,试求BC 边的长.谜底25或754 在△ A BC 中,D 是BC 所在直线上一点,若DAB=l0,BD=6,AD=8,AC=17,求△ABC的面积.谜底84或3655. 若△ABC三边a、b、c 满足 a2+b2+c2+338=10a+24b+26c,△ABC是直角三角形吗?为什么?56. 在△ABC中,BC=1997,AC=1998,AB2=1997+1998,则△ABC是否为直角三角形?为什么?注意BC、AC、AB的年夜小关系.AB<BC<AC.AB2+BC2=1997+19972+1998=1997×(1+1997)+1998=1997×1998+1998=19982= AC2.57. 一只蚂蚁在一块长方形的一个极点A处,一只苍蝇在这个长方形上和蜘蛛相对的极点C1处,如图,已知长方形长6cm,宽5 cm,高3 cm.蜘蛛因急于捉到苍蝇,沿着长方形的概况向上爬,它要从A点爬到C1点,有很多路线,它们有长有短,蜘蛛究竟应该沿着怎样的路线爬上去,所走的距离最短?你能帮蜘蛛求出最短距离吗?58.木箱的长、宽、高分别为40dm、30dm和50dm,有一70dm的木棒,能放进去吗?请说明理由.59. 已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗?谜底:是直角三角形.(平方差公式的灵活运用)ab b a b a 2)(222-+=+=2216960217c ==⨯-.60. 如图,E 是正方形ABCD 的边CD 的中点,延长AB 到F,使BF=41AB,那么FE 与FA 相等吗?为什么?61. 如图,∠A=60°, ∠B=∠D=90°.若BC=4,CD=6,求AB 的长.62.如图,∠xoy=60°,M 是∠xoy 内的一点,它到ox 的距离MA 为2.它到oy 的距离为11.求OM 的长.过点D作FE⊥BC,交BC的延长线于点E,交BC的平行线AF于F点.AB=EF,DE=33,CE=3(在直角三角形中,30°角所对的边=斜边的一半), ∴AF=BE=7.在Rt △ADF中,FD=337373==AF∴AB=DE+FD=331633733=+谜底. 延长AM交oy 于M′,MM′=22 ∴AM′=24OB=OM′-M′B =35311316=-∴在Rt △OMB中,OM=1422=+BM OB。
勾股定理难题50道
勾股定理难题50道1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对3.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留)π4.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表:若a b c m +-=,则观察上表我们可以猜想出Sl= (用含m 的代数式表示) 6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 . (2)错误的原因是 . (3)本题正确的结论是 .8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积AE=;则正方形EFGH的面积=.16=,19.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树米才是安全的.10.如图,长方体的底面是边长为1cm的正方形,高为3cm.如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要cm.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm,则A、B、C、D四个小正方形的面积之和为2cm.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC∆中BC边上的高是.∆,则ABC13.如图,在ABC∠=︒,分别以BC、AB、AC为边向外作正方形,面积分∆中,90ABC别记为1S 、2S 、3S ,若24S =,36S =,则1S = .14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是 .15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 米.16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 .17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于 .18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD = .19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是cm .(结果保留根号)20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =,6DE =,则EB = .21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为m.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为尺.23.如图是一个长8m、宽6m、高5m的仓库,在其内壁的点A(长的四等分点)处有一只壁虎、点B(宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为m.24.如图,Rt ABC∆的斜边AC为一直角边,另一直角∆的两直角边分别为1,2,以Rt ABC边为1画第二个ACD∆;在以ACD∆的斜边AD为一直角边,另一直角边长为1画第三个∆;⋯,依此类推,第n个直角三角形的斜边长是.ADE25.如图所示的长方体是某种饮料的纸质包装盒,规格为5610cm,在上盖中⨯⨯(单位:)开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:2 1.4≈.≈,3 1.7≈,5 2.2)26.如图,有一圆柱体,它的高为20cm,底面半径为7cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm (结果用带根号和π的式子表示).评卷人得分三.解答题(共24小题)27.已知ABC∆中,AB AC=.(1)如图1,在ADE∆中,若AD AE=,且DAE BAC∠=∠,求证:CD BE=;(2)如图2,在ADE∆中,若60DAE BAC∠=∠=︒,且CD垂直平分AE,3AD=,4CD=,求BD的长;(3)如图3,在ADE∆中,当BD垂直平分AE于H,且2BAC ADB∠=∠时,试探究2CD,2BD,2AH之间的数量关系,并证明.28.我们学习了勾股定理后,都知道“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是11(91),(91)22-+;勾是五时,股和弦的算式分别是11(251),(251)22-+.根据你发现的规律,分别写出勾是七时,股和弦的算式;(2)根据(1)的规律,请用含(n n为奇数,且3)n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m为偶数,且4)m>的代数式来表示股和弦.29.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC 中,AB AC =,其一腰上的高为h ,M 是底边BC 上的任意一点,M 到腰AB 、AC 的距离分别为1h 、2h .(1)请你结合图形来证明:12h h h +=;(2)当点M 在BC 延长线上时,1h 、2h 、h 之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;(3)利用以上结论解答,如图在平面直角坐标系中有两条直线13:34l y x =+,2:33l y x =-+,若2l 上的一点M 到1l 的距离是32.求点M 的坐标.30.如图,在等边ABC ∆中,线段AM 为BC 边上的中线,动点D 在直线AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连接BE . (1)填空:ACB ∠= 度;(2)当点D 在线段AM 上(点D 不运动到点)A 时,试求出ADBE的值; (3)若8AB =,以点C 为圆心,以5为半径作C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.31.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题, 请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长 . (1) 如图 1 ,正方体的棱长为5cm 一只蚂蚁欲从正方体底面上的点A 沿着正方体表面爬到点1C 处;(2) 如图 2 ,正四棱柱的底面边长为5cm ,侧棱长为6cm ,一只蚂蚁从正四棱柱底面上的点A 沿着棱柱表面爬到1C 处;(3) 如图 3 ,圆锥的母线长为4cm ,圆锥的侧面展开图如图 4 所示, 且1120AOA ∠=︒,一只蚂蚁欲从圆锥的底面上的点A 出发, 沿圆锥侧面爬行一周回到点A .32.在学习勾股定理时,我们学会运用图()I 验证它的正确性;图中大正方形的面积可表示为:2()a b +,也可表示为:214()2c ab +,即221()4()2a b c ab +=+由此推出勾股定理222a b c +=,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图()(2002II 年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);(2)请你用()III 提供的图形进行组合,用组合图形的面积表达式验证222()2x y x xy y +=++; (3)请你自己设计图形的组合,用其面积表达式验证:22()()()x p x q x px qx pq x p q x pq ++=+++=+++.33.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,如图①,在盒子的内部我们先取棱1BB 的中点E ,再连接AE 、1EC .虫乙如果沿路径1A E C --爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A 沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)34.在ABC ∆中,BC a =,AC b =,AB c =,设c 为最长边,当222a b c +=时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当ABC ∆三边分别为6、8、9时,ABC ∆为 三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为 三角形.(2)猜想,当22a b + 2c 时,ABC ∆为锐角三角形;当22a b + 2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围. 35.一、阅读理解:在ABC ∆中,BC a =,CA b =,AB c =; (1)若C ∠为直角,则222a b c +=;(2)若C ∠为锐角,则22a b +与2c 的关系为:222a b c +> 证明:如图过A 作AD BC ⊥于D ,则BD BC CD a CD =-=- 在ABD ∆中:222AD AB BD =- 在ACD ∆中:222AD AC CD =- 2222AB BD AC CD -=-2222()c a CD b CD --=- 2222a b c a CD ∴+-= 0a >,0CD >2220a b c ∴+->,所以:222a b c +>(3)若C ∠为钝角,试推导22a b +与2c 的关系.二、探究问题:在ABC ∆中,3BC a ==,4CA b ==,AB c =;若ABC ∆是钝角三角形,求第三边c 的取值范围.36.已知a 、b 、c 是ABC ∆的三边,且满足422422a b c b a c +=+,试判断ABC ∆的形状.阅读下面解题过程:解:由422422a b c b a c +=+得: 442222a b a c b c -=-①2222222()()()a b a b c a b +-=-② 即222a b c +=③ABC ∴∆为Rt △. ④试问:以上解题过程是否正确:若不正确,请指出错在哪一步?(填代号) 错误原因是 本题的结论应为 .37.如图a ,90EBF ∠=︒,请按下列要求准确画图:1:在射线BE 、BF 上分别取点A 、C ,使2BC AB BC <<,连接AC 得直角ABC ∆; 2:在AB 边上取一点M ,使AM BC =,在射线CB 边上取一点N ,使CN BM =,直线AN 、CM 相交于点P .(1)请用量角器度量APM ∠的度数为 ;(精确到1)︒ (2)请用说理的方法求出APM ∠的度数;(3)若将①中的条件“2BC AB BC <<”改为“2AB BC >”,其他条件不变,你能自己在图b 中画出图形,求出APM ∠的度数吗?38.如图,D 、E 分别是ABC ∆的边BC 和AB 上的点,ABD ∆与ACD ∆的周长相等,CAE ∆与CBE ∆的周长相等.设BC a =,AC b =,AB c =. (1)求AE 和BD 的长;(2)若90BAC ∠=︒,ABC ∆的面积为S ,求证:S AE BD =.39.小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m .请你帮小强计算这块菜地的面积.(结果保留根号)40.ABC ∆中,BC a =,AC b =,AB c =.若90C ∠=︒,如图1,根据勾股定理,则222a b c +=.若ABC ∆不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.41.张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 ⋯ a221-231-241-251-⋯ b46 810 ⋯ c221+ 231+241+251+⋯(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数(1)n n >的代数式表示:a = ,b = ,c = ;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形并证明你的猜想.42.据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算1(91)2-、1(91)2+与1(251)2-、1(251)2+,并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;(2)根据(1)的规律,用(n n 为奇数且3)n 的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m 为偶数且4)m >的代数式来表示他们的股和弦.43.如图,梯子AB 斜靠在墙上,90ACB ∠=︒,5AB =米,4BC =米,当点B 下滑到点B '时,点A 向左平移到点A '.设BB x '=米(04)x <<,AA y '=米. (1)用含x 的代数式表示y ;(2)当x 为何值时,点B 下滑的距离与点A 向左平移的距离相等?(3)请你对x 再取几个值,计算出对应的y 值,并比较对应的y 值与x 值的大小(y 值可以用精确到0.01的近似数表示,也可用无理数表示).(4)根据第(1)~(3)题的计算,还可以结合画图、观察,推测y 与x 的大小关系及对应的x 的取值范围.44.已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在空地上种植草皮,经测量90A ∠=︒,3AB m =,12BC m =,13CD m =,4DA m =,若每平方米草皮需要200元,问要多少投入?45.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,在图①画出一条路径,使昆虫乙从顶点A 沿这条路径爬行,可以在最短的时间内捕捉到昆虫甲.(请简要说明画法)(2)如图②,假设昆虫甲静止不动,昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(3)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1)s 19 4.4≈21 4.6.46.在合肥市地铁一号线的修建过程中,原设计的地铁车站出入口高度较低,为适应地形,把地铁车站出入口上下楼梯的高度普遍增加了,如图所示,已知原设计楼梯BD 长20米,在楼梯水平长度()BC 不发生改变的前提下,楼梯的倾斜角由30︒增大到45︒,那么新设计的楼梯高度将会增加多少米?(结果保留整数,参考数据:2 1.414≈,3 1.732)≈47.如图,小强在江南岸选定建筑物A ,并在江北岸的B 处观察,此时,视线与江岸BE 所成的夹角是30︒,小强沿江岸BE 向东走了500m ,到C 处,再观察A ,此时视线AC 与江岸所成的夹角60ACE ∠=︒.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.48.在ABC ∆中,AC BC =,90ACB ∠=︒,D 、E 是直线AB 上两点.45DCE ∠=︒ (1)当CE AB ⊥时,点D 与点A 重合,显然222DE AD BE =+(不必证明); (2)如图,当点D 不与点A 重合时,求证:222DE AD BE =+;(3)当点D 在BA 的延长线上时,(2)中的结论是否成立?画出图形,说明理由.49.如图,四边形ABCD 中,AB BC ⊥,AD AB ⊥,1AB =,2BC CD ==.求四边形ABCD 的周长和面积.50.定义: 三边长和面积都是整数的三角形称为“整数三角形” .数学学习小组的同学从 32 根等长的火柴棒 (每 根长度记为 1 个单位) 中取出若干根, 首尾依次相接组成三角形, 进行探究活动 . 小亮用 12 根火柴棒, 摆成如图所示的“整数三角形”; 小颖分别用 24 根和 30 根火柴棒摆出直角“整数三角形”;小辉受到小亮、 小颖的启发, 分别摆出三个不同的等腰“整数三角形” . (1) 请你画出小颖和小辉摆出的“整数三角形”的示意图;(2) 你能否也从中取出若干根, 按下列要求摆出“整数三角形”, 如果能, 请画出示意图;如果不能, 请说明理由 . ①摆出等边“整数三角形”;②摆出一个非特殊 (既 非直角三角形, 也非等腰三角形) “整数三角形” .勾股定理难题50道参考答案与试题解析一.选择题(共2小题)1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形【解答】解:依题意可知,1133BP BF DH==,2233CQ CG DH==,又////PB CQ DH,APB AQC AHD∴∆∆∆∽∽,A∴、P、Q、H四点共线,平面展开图形为平行四边形(如图)故选:B.2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对【解答】解:在直角三角形ABD中,根据勾股定理,得15BD=;在直角三角形ACD中,根据勾股定理,得6CD=.当AD在三角形的内部时,15621BC=+=;当AD在三角形的外部时,1569BC=-=.则BC的长是21或9.故选:D .二.填空题(共24小题)3.在底面直径为2cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为 231π+ cm .(结果保留)π【解答】解:如图所示,无弹性的丝带从A 至C ,绕了1.5圈,∴展开后 1.523AB cm ππ=⨯=,3BC cm =,由勾股定理得:22229931AC AB BC cm ππ=+=+=+. 故答案为:231π+.4.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 10 cm .【解答】解:将长方体展开,连接A 、B ',13138()AA cm '=+++=,6A B cm ''=,根据两点之间线段最短,228610AB cm '=+=. 故答案为:10.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表: 三边a 、b 、ca b c +- l S /S l345 2 12 6 1/26810 4 24 24 1 51213 4 30 30 1 81517 6 40 60 3/2121620848962⋯ ⋯ ⋯ ⋯ ⋯若a b c m +-=,则观察上表我们可以猜想出S l =4m(用含m 的代数式表示) 【解答】解:3452m a b c =+-=+-=时,1224S l ==; 6810512134m a b c =+-=+-=+-=时,414S l ==; 815176m a b c =+-=+-=时,3624S l ==; 1216208m a b c =+-=+-=时,824S l ==; ⋯∴我们可以猜想出4S ml =. 故答案为4m.6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 7或25 秒.【解答】解:如图,作AD BC ⊥,交BC 于点D , 8BC cm =,142BD CD BC cm ∴===, 223AD AB BD ∴=-=,分两种情况:当点P 运动t 秒后有PA AC ⊥时,22222AP PD AD PC AC =+=-,2222PD AD PC AC ∴+=-,22223(4)5 2.25PD PD PD ∴+=+-∴=, 4 2.25 1.750.25BP t ∴=-==, 7t ∴=秒,当点P 运动t 秒后有PA AB ⊥时,同理可证得 2.25PD =, 4 2.25 6.250.25BP t ∴=+==, 25t ∴=秒,∴点P 运动的时间为7秒或25秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 ③ . (2)错误的原因是 . (3)本题正确的结论是 .【解答】解:2222222()()()c a b a b a b -=-+∴应有2222222()()()0c a b a b a b ---+=得到22222()[()]0a b c a b --+=,22()0a b ∴-=或222[()]0c a b -+=,即a b =或222a b c +=,∴根据等腰三角形得定义和勾股定理的逆定理,三角形为等腰三角形或直角三角形.故填③,不能确定22a b -是否为0,等腰三角形或直角三角形.8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F 、G 、H 分别在正方形ABCD 的边DA 、AB 、BC 、CD 上.若正方形ABCD 的面积16=,1AE =;则正方形EFGH 的面积= 10 .【解答】解:四边形EFGH 是正方形,EH FE ∴=,90FEH ∠=︒,90AEF AFE ∠+∠=︒,90AEF DEH ∠+∠=︒,AFE DEH ∴∠=∠,在AEF ∆和DHE ∆中, A D AFE DEH EF HE ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEF DHE ∴∆≅∆, AF DE ∴=,正方形ABCD 的面积为16, 4AB BC CD DE ∴====, 413AF DE AD AE ∴==-=-=,在Rt AEF ∆中,2210EF AE AF + 故正方形EFGH 的面积101010=.故答案为:10.9.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树 4 米才是安全的. 【解答】解:如图,BC 即为大树折断处4m 减去小孩的高1m ,则413BC m =-=,945AB m =-=,在Rt ABC ∆中,2222534AC AB BC =-=-=米. 即小孩至少离开这棵树4米才是安全的. 故答案为:4.10.如图,长方体的底面是边长为1cm 的正方形,高为3cm .如果从点A 开始经过4个侧面缠绕2圈到达点B ,那么所用细线最短需要73 cm .【解答】解:如图所示,从点A 开始经过4个侧面缠绕2圈到达点B ,∴展开后188AC cm cm =⨯=,3BC cm =,由勾股定理得:2273AB AC BC cm =+.故答案为:73.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm ,则A 、B 、C 、D 四个小正方形的面积之和为 144 2cm .【解答】解:如右图所示, 根据勾股定理可知,231S S S +=正方形正方形正方形, 2C D S S S +=正方形正方形正方形, 3A B S S S +=正方形正方形正方形,2112144C D A B S S S S S ∴+++===正方形正方形正方形正方形正方形.故答案是144.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC ∆,则ABC ∆中BC 边上的高是322.【解答】解:由题意知,小四边形分别为小正方形,所以B 、C 为EF 、FD 的中点,ABC AEB BFC CDA AEFD S S S S S ∆∆∆∆=---正方形 11122121112222=⨯-⨯⨯-⨯⨯-⨯⨯,32=. 22112BC =+=.ABC ∴∆中BC 边上的高是3322222⨯÷=. 故答案为:322.13.如图,在ABC ∆中,90ABC ∠=︒,分别以BC 、AB 、AC 为边向外作正方形,面积分别记为1S 、2S 、3S ,若24S =,36S =,则1S = 2 .【解答】解:ABC ∆中,90ABC ∠=︒, 222AB BC AC ∴+=, 222BC AC AB ∴=-,21BC S =、224AB S ==,236AC S ==, 132642S S S ∴=-=-=.故答案为:2.14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是103.【解答】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=, ∴得出18S y x =+,24S y x =+,3S x =,12331210S S S x y ∴++=+=,故31210x y +=,1043x y +=, 所以21043S x y =+=, 故答案为:103. 15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 5 米.【解答】解:将圆柱表面切开展开呈长方形, 则有螺旋线长为三个长方形并排后的长方形的对角线长 圆柱高4米,底面周长1米222(13)491625x =⨯+=+= 所以,花圈长至少是5m .16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 4或25或10 .【解答】解:①以A 为直角顶点,向外作等腰直角三角形DAC ,90DAC ∠=︒,且AD AC =,224BD BA AD ∴=+=+=;②以C 为直角顶点,向外作等腰直角三角形ACD ,连接BD ,过点D 作DE BC ⊥,交BC 的延长线于E . ABC ∆是等腰直角三角形,90ACD ∠=︒, 45DCE ∴∠=︒,又DE CE ⊥,90DEC ∴∠=︒, 45CDE ∴∠=︒,222CE DE ∴=== 在Rt BAC ∆中,222222BC +=,2222(222)(2)25BD BE DE ∴=+=++=; ③以AC 为斜边,向外作等腰直角三角形ADC ,90ADC ∠=︒,AD DC =,且2AC =,2sin 45222AD DC AC ∴==︒=⨯=, 又ABC ∆、ADC ∆是等腰直角三角形, 45ACB ACD ∴∠=∠=︒, 90BCD ∴∠=︒,又在Rt ABC ∆中,222222BC =+=,2222(22)(2)10BD BC CD ∴=+=+=. 故BD 的长等于4或25或10.17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于27133+ .【解答】解: 延长BA 交QR 于点M ,连接AR ,AP .AC GC =,BC FC =,ACB GCF ∠=∠, ABC GFC ∴∆≅∆,30CGF BAC ∴∠=∠=︒,60HGQ ∴∠=︒,90HAC BAD ∠=∠=︒, 180BAC DAH ∴∠+∠=︒, 又//AD QR ,180RHA DAH ∴∠+∠=︒, 30RHA BAC ∴∠=∠=︒,60QHG ∴∠=︒,60Q QHG QGH ∴∠=∠=∠=︒, QHG ∴∆是等边三角形 .3cos304232AC AB =︒=⨯=. 则23QH HA HG AC ====.在直角HMA ∆中,3sin 602332HM AH =︒=⨯=.cos 603AM HA =︒=. 在直角AMR ∆中,4MR AD AB ===.2334723QR ∴=++=+. 21443QP QR ∴==+. 3736PR QR==+.PQR ∴∆的周长等于27133RP QP QR ++=+.故答案为:27133+.18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD =75.【解答】解:设AC x =,CD y =,由勾股定理得: 2222(5)6425x y x y ⎧++=⎨+=⎩, 消去x ,得:22(5)39y y +-=, 整理,得: 1014y =,即75y =, 故CD 的长为75. 19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是 42cm .(结果保留根号)【解答】解:将圆柱体展开,连接A 、B ,根据两点之间线段最短,224442AB cm =+=.20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =6DE =,则EB =334 .【解答】解:在Rt ABC ∆中,42AB =,45A ∠=︒,24242BC ∴=⨯= 在Rt EDC ∆中,60EDC ∠=︒,6DE =,3sin 6332CE DE EDC ∴=∠=⨯= 334BE CE BC ∴=-=-.故填空答案:334-.21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为 20489+或40165+或4085+ m .【解答】解:(1)当20是等腰三角形的底边时,根据面积求得底边上的高AD 是16,再根据等腰三角形的三线合一,知:底边上的高也是底边上的中线,即底边的一半10BD =, 根据勾股定理即可求得其腰长22100256289AB AD BD =++,此时三角形的周长是20489+;(2)当20是腰时,由于高可以在三角形的内部,也可在三角形的外部,又应分两种情况. 根据面积求得腰上的高是16;①当高在三角形的外部时,在RT ADC ∆中,2212AD AC CD =-=,从而可得32BD =,进一步根据勾股定理求得其底边是22221632165BC CD BD =+=+=,此时三角形的周长是40165+;②当高在三角形的内部时,根据勾股定理求得2212AD AC CD =-=,8BD AB AD =-=, 在RT CDB ∆中,22BC CD BD =+2216885+=,此时三角形的周长是4085+; 故本题答案为:20489+或40165+或4085+.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun 一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为 10.1 尺.【解答】解:设单门的宽度是x 米,根据勾股定理,得221(0.1)x x =+-, 5.05x =,则210.1x =尺.23.如图是一个长8m 、宽6m 、高5m 的仓库,在其内壁的点A (长的四等分点)处有一只壁虎、点B (宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为 85 .。
精品-勾股定理综合性难题及答案
精品-勾股定理综合性难题及答案1.在三角形ABC中,角ACB为直角,以三角形的三条边为直径画出半圆。
阴影部分的面积等于三角形ABC的面积。
2.直角三角形的面积为S,斜边上的中线长为d,则该三角形的周长为d+S+2d=2d+S+2d。
因此选项C为正确答案。
3.在直角三角形ABC中,角BAC为直角,AC=AB,角DAE=45度,BD=3,CE=4.求DE的长度。
4.在直角三角形ABC中,角C=90度,AC=4,BC=3.在三角形ABC的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形。
要求画出两种不同的拼接方法,并标明拼接的直角三角形的三边长。
5.在直角三角形ABC中,角C=90度,点O为三条角平分线的交点,OD垂直于BC,OE垂直于AC,OF垂直于AB,且BC=8cm,CA=6cm。
求点O到三边AB、AC和BC的距离。
6.在三角形ABC中,AB=AC,P为BC上任意一点。
则有AB-AP^2=PB×PC。
7.在一棵树的高度为B处有两只猴子,一只猴子从B爬下树走到离树20米处的池塘的A处;另一只猴子从B爬到树顶D后直接跃到A处。
如果两只猴子所经过的距离相等,则这棵树高10米。
8.长为4m的梯子搭在墙上与地面成45度角,作业时调整为60度角。
则梯子的顶端沿墙面升高了2m。
9.在直角三角形ABC中,角C=90度,D为AB的中点,E、F分别在AC、BC上,且DE垂直于DF。
则有AE^2+BF^2=EF^2.10.在正方形ABCD中,F为DC的中点,E为CB的四等分点且CE=4.则有AF垂直于FE。
11.已知△ABC中,a^2+b^2+c^2=10a+24b+26c-338.需要进一步计算才能判定△XXX的形状。
12.已知三角形ABC的三边长分别为a、b、c,且满足a^2c^2 - b^2c^2 = a^4 - b^4,需要判断三角形的形状。
13.如图,一个长方体的底面边长分别为1cm和3cm,高为6cm。
勾股定理综合难题 附答案(超好 打印版)
CBA D EFCA BE D练习题1 如图,圆柱的高为10 cm ,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处,需要爬行的最短路程是多少?2 如图,长方体的高为3 cm ,底面是边长为2 cm 的正方形. 现有一小虫从顶点A 出发,沿长方体侧面到达顶点C 处,小虫走的路程最短为多少厘米? 答案AB=5ACB3、一只蚂蚁从棱长为1的正方体纸箱的B’点沿纸箱爬到D 点,那么它所行的最短路线的长是_____________。
4、如图,小红用一X 长方形纸片ABCD 进展折纸,该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处〔折痕为AE 〕.想一想,此时EC 有多长?•5.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,那么EB 的长是〔 〕.A .3B .4C .5D .56.:如图,在△ABC 中,∠C=90°,∠B=30°,AB的垂直平分线交BC 于D ,垂足为E ,D=4cm . 求AC 的长.7、如图,有一个直角三角形纸片,两直角边AC=6,BC=8, 现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且 与AE 重合,那么CD 的长为8、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,假设21::=BE AE ,那么折 痕EF 的长为 。
BCAFEDCBAB ’C ’B ′A ′C ′D9、如图,:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,那么EB ∶CE =_________.10、如图,AD 是△ABC 的中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C´的位置,假设BC =2,那么BC´=_________.11.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 等于〔 〕 A.2cmB.3 cmC.4 cmD.5 cm12、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?13、如图,在△ABC 中,∠B=90,AB=BC=6,把△ABC 进展折叠,使点A 与点D 重合,BD:DC=1:2,折痕为EF , 点E 在AB 上,点F 在AC 上,求EC 的长。
《勾股定理》难题(含答案)
第一章勾股定理(难度题)1、如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的(B)A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定2、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为13cm.【解】∵PA=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.3、(潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【解】如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.4、如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A、25B、23C、25+2D、23+25、如图,EF为正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则∠DKG=_______.6、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________7、如图,点E 在DBC ∆的边DB 上,点A 在DBC ∆内部,90DAE BAC ∠=∠=,AD AE =,AB AC =.给出下列结论:①BD CE =;②45ABD ECB ∠+∠=;③BD CE ⊥;④22222BE AD AB CD =+()﹣.其中正确的有( )A .1个B .2个C .3个D .4个8、如图,在矩形ABCD中,AB=3,BC=4,对角线AC、BD相交于点O,过A 作AE⊥BD交BD于点E,将△ABE沿AE折叠,点B恰好落在线段OD的F点处,则DF的长为(C)A.B.C.D.【解】∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴BD==5,∵AE⊥BD,∴△ABD的面积=AB•AD=BD•AE,∴AE==,∴BE==,由翻折变换的性质得:EF=BE=,∴DF=BD﹣BE﹣EF=5﹣﹣=.故选:C.9、如图,正方形ABCD的边长为6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=135°.其中正确的个数是()A.5 B.4 C.3 D.2 【解】:由题意可求得DE=2,CE=4,AB=BC=AD=6,∵将△ADE沿AE对折至△AFE,∴∠AFE=∠ADE=∠ABG=90°,AF=AD=AB,EF=DE=2在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∴BG=GF,∠BGA=∠FGA,设BG=GF=x,若BG=CG=x,在Rt△EGC中,EG=x+2,CG=x,CE=4,由勾股定理可得(x+2)2=x2+42,解得x=3,此时BG=CG=3,BG+CG=6,满足条件,∴②正确;∵GC=GF,∴∠GFC=∠GCF,且∠BGF=∠GFC+∠GCF=2∠GCF,∴2∠AGB=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF,∴③正确;∵S△EGC=GC•CE=×3×4=6,S△AFE=AF•EF=×6×2=6,∴S△EGC=S△AFE,∴④正确;在五边形ABGED中,∠BGE+∠GED=540°﹣90°﹣90°﹣90°=270°,即2∠AGB+2∠AED=270°,∴∠AGB+∠AED=135°,∴⑤正确;∴正确的有五个,故选:A.10、如图,P是矩形ABCD内一点,PA=1,PB=5,PC=7,则PD=_________. 解:过点P作MN∥AD交AB于点M,交CD于点N,则AM=DN,BM=CN∵∠PMA=∠PMB=90°, ∴PA 2-PM 2=AM 2,PB 2-PM 2=BM 2.∴PA 2-PB 2=AM 2-BM 2.同理,PD 2-PC 2=DN 2-CN 2.∴PA 2-PB 2=PD 2-PC 2.又PA=1,PB=5,PC=7, ∴PD 2=PA 2-PB 2+PC 2=12-52+72,PD=511、如图, 已知正方形ABCD 的边长为2,△ BPC 是等边三角形,则PD 的长是( D )A .347- B .32- C .23- D .348-12、如图,在△ABC 中,AD =15,AC =12,DC =9,点B 是CD 延长线上一点,连接AB .若AB =20,求△ABD 的面积.【解】:在△ADC 中,∵AD =15,AC =12,DC =9,∴AC 2+DC 2=122+92=152=AD 2,∴△ADC 是直角三角形.在Rt △ABC 中,AC 2+BC 2=AB 2,∵AB =20,∴BC =16,∴BD =BC -DC =16-9=7,∴S △ABD =12BD ×AC =12×7×12=42.13、如图,∠xoy =60°,M 是∠xoy 内的一点,它到ox 的距离MA 为2,它到oy 的距离MB 为11,求OM 的长。
勾股定理难题精选
勾股定理难题精选勾股定理一、选择题1、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( )A 、6厘米B 、8厘米 C、厘米 D 、厘米2、若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为( )A. 48 cm 2B. 36 cm 2C. 24 cm 2D.12 cm 23、Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )A 、121B 、120C 、132D 、不能确定解:设该Rt △的三边分别为a 、b 、c ,a 、b 为直角边,c 为斜边由勾股定理知:,即:112+b 2 = c 2所以(b+c )(c -b )=121因为b 、c 都为自然数,所以b+c ,c -b ,都为正自然数。
又因为121只有1、11、121这三个正整数因式,所以b+c=121,c -b=1。
所以b=60,c=61评论,本题以直角三角形为载体,同过勾股定理将初中几何知识和代数知识很好地串联起来考察学生的能力。
4、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是( )A .4B .6C .8D .1013801360222a b c +=5、△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为( )A .42B .32C .42或32D .37或3310、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )A 、450a 元B 、225a 元C 、150a 元D 、300a 元11.已知,如图,长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A 、6cm2B 、8cm2C 、10cm2D 、12cm212.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A 、25海里B 、30海里C 、35海里D 、40海里8、直角三角形的一条直角边长为12,另外两条边长均为自然数,则其周长可以为( )A .36B .28C .56D .不能确定9、已知a 、b 、c 是三角形的三边长,如果满足,则三角形的形状是( )A .底与边不相等的等腰三角形B 、等边三角形C 、钝角三角形D 、直角三角形10、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小小正方形拼成的一个大正方形(如图1所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么的值为( ).A .13 B .19 C .25 D .169二、填空题15、如图,从电线杆离地面3米处向地面拉一条长为5米的拉线,这条拉线在地面的固定点距离电线杆底部有 米。
勾股定理难题
勾股定理典型例题『例题精讲』1例如图是一个长方体盒子(尺寸如图所示),在长方体下底部的A 点有一只蚂蚁,它想吃到上底面B 点的食物(BC=3cm),需爬行的最短路程是多少?2练如图所示,有一个圆柱形状的建筑物,底面直径为8 m ,高为7 m .为方便工作人员从底部A 点到达顶部的B 点,要绕建筑物修一螺旋状的梯子.试求梯子最短为多少米?(π取3)5.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?『例题精讲』3例一个直角三角形的两条直角边长为a 、b ,斜边上的高为 h ,斜边长为c ,则以 c+h ,a+b ,h 为边的三角形的形状是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定『随堂练习』1.直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )A. ab=h2B. a 2+b 2=2h 2C. a 1+b 1=h 1D. 21a +21b =21h2..以下各组正数为边长,能组成直角三角形的是(B ). A .a-1,2a ,a+1 B .a-1,a+1 C .a-1a+1 D .a-1,a+13..已知△ABC 的三边为a 、b 、c ,且a+b=4,ab=1,c=14,试判定△ABC 的形状。
4. 若△ABC 三边a 、b 、c 满足 a2+b2+c2+338=10a+24b+26c ,△ABC 是直角三角形吗?为什么?实际应用5例如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?『随堂练习』1练如图5所示,一条清水河的同旁有两个村庄A 和B.到河岸l 的距离分别为3千米和5千米,两个村的水平距离CD =6千米.问:要在河边修一个水泵站向两个村供水.需要的水管最少应为多少千米?2.如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
勾股定理的十道压轴题
勾股定理的十道压轴题1. 如图,一个正方体木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处.(1)请你在正方体木柜的表面展开图中画出蚂蚁能够最快到达目的地的可能路径;(2)当正方体木柜的棱长为4时,求蚂蚁爬过的最短路径的长. (1)解:蚂蚁能够最快到达目的地的可能路径有如图的AC ′1和AC 1.(2)解:如图,在Rt△ACC 1中,根据勾股定理,得AC 1=212CC AC +=224)44(++=45. 所以蚂蚁爬过的最短路径的长是45.2. 在△ABC 中,△C =90°,AC =24,BC =7,△ABC 内存在一点P 到三边距离相等,这个距离是( ).知识点: 等面积法(两直角边的乘积等于斜边与斜边上高的乘积) 。
题干中的直角三角形隐藏着解题信息:斜边可通过勾股定理求出,面积可以通过两个直角边求出,所以常用三角形面积相等来列方程.思路分析:已知AC与BC,根据勾股定理,可以求出AB;S△ABC可以用AC乘以BC求出;S△ABC也可以用S△PAB+S△PBC+S△PCA来表示(这三个三角形的面积都可以用所求的距离表示);利用三角形面积相等来列方程,方程只有一个未知数,可解.3. 如图△ABC中,∠C=90°,AD平分∠A,CD=3,BD=5,AC的长是()。
知识点:角分线构造全等三角形,方程思想。
直角三角形含着勾股定理这一解题思路;△ABC有一个直角,可以结合角分线构造全等三角形(过角分线上一点作两边的垂线);勾股定理是一个等式,所以可以根据它来构建方程。
思路分析:利用角分线构造全等三角形,根据勾股定理建立方程.作DE⊥AB于E,易证△ACD≌△AED。
则AE=AC,DE=CDBE可以根据DE与BD求出,则AB可以用AC来表示.根据勾股定理可得AB2=AC2+BC2,其中只有AC一个未知数,可解.4. 《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图(1)).设每个直角三角形中较短直角边为a,较长直角边为b,斜边为c.(1)利用图(1)面积的不同表示方法验证勾股定理.(2)实际上还有很多代数恒等式也可用这种方法说明其正确性.试写出图(2)所表示的代数恒等式:( );(3)如果图(1)大正方形的面积是13,小正方形的面积是1,求(a +b )2的值.解:(1)图(1)中的大正方形的面积可以表示为c 2,也可表示为(b -a )2+4×21ab△(b -a )2+4×21ab =c 2化简得b 2-2ab +a 2+2ab =c 2 △当△C =90°时,a 2+b 2=c 2; (2)(x +y )(x +2y )=x 2+3xy +2y 2(3)依题意得a 2+b 2=c 2=13,(b -a )2=1,则2ab =12 △(a +b )2=a 2+b 2+2ab =13+12=25,即(a +b )2=255. 如图,线段AB 上有一个动点P ,CA 与BD 都垂直AB ,AB =8,AC =5,BD =1. 则PC +PD 的最小值是( )思路分析:根据勾股定理求最值过点C 作AB 的平行线,与BD 的延长线交于点E ,则BE =AC =5,DE =6,CE =8,∠CED =90°,则可以求出CD 长度,即是PC +PD 的最小值.6. 如图△ABC中,D是AB的中点,AC=24,BC=7,CD=12.5,AB的长是( )知识点:勾股定理逆定理,倍长中线思路分析:利用所给条件,构造直角三角形;有中点,可以延长CD到E,使DE=CD,连接AE.则AE=BC=7,AC=24,CE=25,根据勾股定理的逆定理,可得△E=90°在直角△AED中,可以计算出AD,最后求出AB.7. 如图,在正方形ABCD中,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,求EP+BP的最短长度.解:如图,连接BD交AC于O,连接ED与AC交于点P,连接BP.已知BD△AC,且BO=OD,△BP=PD,则BP+EP=ED,此时最短.△AE=3,AD=1+3=4,由勾股定理得ED2=AE2+AD2=32+42=25=52,△ED=BP+EP=5.8. 如图△ABC中,∠C=90°,AC=BC=6√2,∠DCE=45°,BD=8,则DE的长是( )知识点:勾股定理,半角模型,方程思想思路分析:利用半角模型的解题思路:旋转。
勾股定理难题50道
勾股定理难题50道1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对3.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留)π4.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表:若a b c m +-=,则观察上表我们可以猜想出Sl= (用含m 的代数式表示) 6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 . (2)错误的原因是 . (3)本题正确的结论是 .8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积AE=;则正方形EFGH的面积=.16=,19.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树米才是安全的.10.如图,长方体的底面是边长为1cm的正方形,高为3cm.如果从点A开始经过4个侧面缠绕2圈到达点B,那么所用细线最短需要cm.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm,则A、B、C、D四个小正方形的面积之和为2cm.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC∆中BC边上的高是.∆,则ABC13.如图,在ABC∠=︒,分别以BC、AB、AC为边向外作正方形,面积分∆中,90ABC别记为1S 、2S 、3S ,若24S =,36S =,则1S = .14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是 .15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 米.16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 .17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于 .18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD = .19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是cm .(结果保留根号)20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =,6DE =,则EB = .21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为m.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为尺.23.如图是一个长8m、宽6m、高5m的仓库,在其内壁的点A(长的四等分点)处有一只壁虎、点B(宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为m.24.如图,Rt ABC∆的斜边AC为一直角边,另一直角∆的两直角边分别为1,2,以Rt ABC边为1画第二个ACD∆;在以ACD∆的斜边AD为一直角边,另一直角边长为1画第三个∆;⋯,依此类推,第n个直角三角形的斜边长是.ADE25.如图所示的长方体是某种饮料的纸质包装盒,规格为5610cm,在上盖中⨯⨯(单位:)开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:2 1.4≈.≈,3 1.7≈,5 2.2)26.如图,有一圆柱体,它的高为20cm,底面半径为7cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是cm (结果用带根号和π的式子表示).评卷人得分三.解答题(共24小题)27.已知ABC∆中,AB AC=.(1)如图1,在ADE∆中,若AD AE=,且DAE BAC∠=∠,求证:CD BE=;(2)如图2,在ADE∆中,若60DAE BAC∠=∠=︒,且CD垂直平分AE,3AD=,4CD=,求BD的长;(3)如图3,在ADE∆中,当BD垂直平分AE于H,且2BAC ADB∠=∠时,试探究2CD,2BD,2AH之间的数量关系,并证明.28.我们学习了勾股定理后,都知道“勾三、股四、弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.事实上,勾是三时,股和弦的算式分别是11(91),(91)22-+;勾是五时,股和弦的算式分别是11(251),(251)22-+.根据你发现的规律,分别写出勾是七时,股和弦的算式;(2)根据(1)的规律,请用含(n n为奇数,且3)n的代数式来表示所有这些勾股数的勾、股、弦,合情猜想它们之间的相等关系(请写出两种),并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m为偶数,且4)m>的代数式来表示股和弦.29.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC 中,AB AC =,其一腰上的高为h ,M 是底边BC 上的任意一点,M 到腰AB 、AC 的距离分别为1h 、2h .(1)请你结合图形来证明:12h h h +=;(2)当点M 在BC 延长线上时,1h 、2h 、h 之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;(3)利用以上结论解答,如图在平面直角坐标系中有两条直线13:34l y x =+,2:33l y x =-+,若2l 上的一点M 到1l 的距离是32.求点M 的坐标.30.如图,在等边ABC ∆中,线段AM 为BC 边上的中线,动点D 在直线AM 上时,以CD 为一边且在CD 的下方作等边CDE ∆,连接BE . (1)填空:ACB ∠= 度;(2)当点D 在线段AM 上(点D 不运动到点)A 时,试求出ADBE的值; (3)若8AB =,以点C 为圆心,以5为半径作C 与直线BE 相交于点P 、Q 两点,在点D 运动的过程中(点D 与点A 重合除外),试求PQ 的长.31.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题, 请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长 . (1) 如图 1 ,正方体的棱长为5cm 一只蚂蚁欲从正方体底面上的点A 沿着正方体表面爬到点1C 处;(2) 如图 2 ,正四棱柱的底面边长为5cm ,侧棱长为6cm ,一只蚂蚁从正四棱柱底面上的点A 沿着棱柱表面爬到1C 处;(3) 如图 3 ,圆锥的母线长为4cm ,圆锥的侧面展开图如图 4 所示, 且1120AOA ∠=︒,一只蚂蚁欲从圆锥的底面上的点A 出发, 沿圆锥侧面爬行一周回到点A .32.在学习勾股定理时,我们学会运用图()I 验证它的正确性;图中大正方形的面积可表示为:2()a b +,也可表示为:214()2c ab +,即221()4()2a b c ab +=+由此推出勾股定理222a b c +=,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图()(2002II 年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);(2)请你用()III 提供的图形进行组合,用组合图形的面积表达式验证222()2x y x xy y +=++; (3)请你自己设计图形的组合,用其面积表达式验证:22()()()x p x q x px qx pq x p q x pq ++=+++=+++.33.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,如图①,在盒子的内部我们先取棱1BB 的中点E ,再连接AE 、1EC .虫乙如果沿路径1A E C --爬行,那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A 沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲;(请简要说明画法)(2)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1秒)34.在ABC ∆中,BC a =,AC b =,AB c =,设c 为最长边,当222a b c +=时,ABC ∆是直角三角形;当222a b c +≠时,利用代数式22a b +和2c 的大小关系,探究ABC ∆的形状(按角分类).(1)当ABC ∆三边分别为6、8、9时,ABC ∆为 三角形;当ABC ∆三边分别为6、8、11时,ABC ∆为 三角形.(2)猜想,当22a b + 2c 时,ABC ∆为锐角三角形;当22a b + 2c 时,ABC ∆为钝角三角形.(3)判断当2a =,4b =时,ABC ∆的形状,并求出对应的c 的取值范围. 35.一、阅读理解:在ABC ∆中,BC a =,CA b =,AB c =; (1)若C ∠为直角,则222a b c +=;(2)若C ∠为锐角,则22a b +与2c 的关系为:222a b c +> 证明:如图过A 作AD BC ⊥于D ,则BD BC CD a CD =-=- 在ABD ∆中:222AD AB BD =- 在ACD ∆中:222AD AC CD =- 2222AB BD AC CD -=-2222()c a CD b CD --=- 2222a b c a CD ∴+-= 0a >,0CD >2220a b c ∴+->,所以:222a b c +>(3)若C ∠为钝角,试推导22a b +与2c 的关系.二、探究问题:在ABC ∆中,3BC a ==,4CA b ==,AB c =;若ABC ∆是钝角三角形,求第三边c 的取值范围.36.已知a 、b 、c 是ABC ∆的三边,且满足422422a b c b a c +=+,试判断ABC ∆的形状.阅读下面解题过程:解:由422422a b c b a c +=+得: 442222a b a c b c -=-①2222222()()()a b a b c a b +-=-② 即222a b c +=③ABC ∴∆为Rt △. ④试问:以上解题过程是否正确:若不正确,请指出错在哪一步?(填代号) 错误原因是 本题的结论应为 .37.如图a ,90EBF ∠=︒,请按下列要求准确画图:1:在射线BE 、BF 上分别取点A 、C ,使2BC AB BC <<,连接AC 得直角ABC ∆; 2:在AB 边上取一点M ,使AM BC =,在射线CB 边上取一点N ,使CN BM =,直线AN 、CM 相交于点P .(1)请用量角器度量APM ∠的度数为 ;(精确到1)︒ (2)请用说理的方法求出APM ∠的度数;(3)若将①中的条件“2BC AB BC <<”改为“2AB BC >”,其他条件不变,你能自己在图b 中画出图形,求出APM ∠的度数吗?38.如图,D 、E 分别是ABC ∆的边BC 和AB 上的点,ABD ∆与ACD ∆的周长相等,CAE ∆与CBE ∆的周长相等.设BC a =,AC b =,AB c =. (1)求AE 和BD 的长;(2)若90BAC ∠=︒,ABC ∆的面积为S ,求证:S AE BD =.39.小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m .请你帮小强计算这块菜地的面积.(结果保留根号)40.ABC ∆中,BC a =,AC b =,AB c =.若90C ∠=︒,如图1,根据勾股定理,则222a b c +=.若ABC ∆不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与2c 的关系,并证明你的结论.41.张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 ⋯ a221-231-241-251-⋯ b46 810 ⋯ c221+ 231+241+251+⋯(1)请你分别观察a ,b ,c 与n 之间的关系,并用含自然数(1)n n >的代数式表示:a = ,b = ,c = ;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形并证明你的猜想.42.据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五.后人概括为“勾三,股四,弦五”.(1)观察:3,4,5;5,12,13;7,24,25;⋯,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算1(91)2-、1(91)2+与1(251)2-、1(251)2+,并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;(2)根据(1)的规律,用(n n 为奇数且3)n 的代数式来表示所有这些勾股数的勾、股、弦,合情猜想他们之间二种相等关系并对其中一种猜想加以证明;(3)继续观察4,3,5;6,8,10;8,15,17;⋯,可以发现各组的第一个数都是偶数,且从4起也没有间断过.运用类似上述探索的方法,直接用(m m 为偶数且4)m >的代数式来表示他们的股和弦.43.如图,梯子AB 斜靠在墙上,90ACB ∠=︒,5AB =米,4BC =米,当点B 下滑到点B '时,点A 向左平移到点A '.设BB x '=米(04)x <<,AA y '=米. (1)用含x 的代数式表示y ;(2)当x 为何值时,点B 下滑的距离与点A 向左平移的距离相等?(3)请你对x 再取几个值,计算出对应的y 值,并比较对应的y 值与x 值的大小(y 值可以用精确到0.01的近似数表示,也可用无理数表示).(4)根据第(1)~(3)题的计算,还可以结合画图、观察,推测y 与x 的大小关系及对应的x 的取值范围.44.已知某开发区有一块四边形的空地ABCD ,如图所示,现计划在空地上种植草皮,经测量90A ∠=︒,3AB m =,12BC m =,13CD m =,4DA m =,若每平方米草皮需要200元,问要多少投入?45.如图①,一个无盖的正方体盒子的棱长为10厘米,顶点1C 处有一只昆虫甲,在盒子的内部顶点A 处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点1C 处静止不动,在图①画出一条路径,使昆虫乙从顶点A 沿这条路径爬行,可以在最短的时间内捕捉到昆虫甲.(请简要说明画法)(2)如图②,假设昆虫甲静止不动,昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(3)如图②,假设昆虫甲从顶点1C ,以1厘米/秒的速度在盒子的内部沿棱1C C 向下爬行,同时昆虫乙从顶点A 以2厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?(精确到1)s 19 4.4≈21 4.6.46.在合肥市地铁一号线的修建过程中,原设计的地铁车站出入口高度较低,为适应地形,把地铁车站出入口上下楼梯的高度普遍增加了,如图所示,已知原设计楼梯BD 长20米,在楼梯水平长度()BC 不发生改变的前提下,楼梯的倾斜角由30︒增大到45︒,那么新设计的楼梯高度将会增加多少米?(结果保留整数,参考数据:2 1.414≈,3 1.732)≈47.如图,小强在江南岸选定建筑物A ,并在江北岸的B 处观察,此时,视线与江岸BE 所成的夹角是30︒,小强沿江岸BE 向东走了500m ,到C 处,再观察A ,此时视线AC 与江岸所成的夹角60ACE ∠=︒.根据小强提供的信息,你能测出江宽吗?若能,写出求解过程(结果可保留根号);若不能,请说明理由.48.在ABC ∆中,AC BC =,90ACB ∠=︒,D 、E 是直线AB 上两点.45DCE ∠=︒ (1)当CE AB ⊥时,点D 与点A 重合,显然222DE AD BE =+(不必证明); (2)如图,当点D 不与点A 重合时,求证:222DE AD BE =+;(3)当点D 在BA 的延长线上时,(2)中的结论是否成立?画出图形,说明理由.49.如图,四边形ABCD 中,AB BC ⊥,AD AB ⊥,1AB =,2BC CD ==.求四边形ABCD 的周长和面积.50.定义: 三边长和面积都是整数的三角形称为“整数三角形” .数学学习小组的同学从 32 根等长的火柴棒 (每 根长度记为 1 个单位) 中取出若干根, 首尾依次相接组成三角形, 进行探究活动 . 小亮用 12 根火柴棒, 摆成如图所示的“整数三角形”; 小颖分别用 24 根和 30 根火柴棒摆出直角“整数三角形”;小辉受到小亮、 小颖的启发, 分别摆出三个不同的等腰“整数三角形” . (1) 请你画出小颖和小辉摆出的“整数三角形”的示意图;(2) 你能否也从中取出若干根, 按下列要求摆出“整数三角形”, 如果能, 请画出示意图;如果不能, 请说明理由 . ①摆出等边“整数三角形”;②摆出一个非特殊 (既 非直角三角形, 也非等腰三角形) “整数三角形” .勾股定理难题50道参考答案与试题解析一.选择题(共2小题)1.已知:如图,无盖无底的正方体纸盒ABCD EFGH-,P,Q分别为棱FB,GC上的点,且2FP PB=,12GQ QC=,若将这个正方体纸盒沿折线AP PQ QH--裁剪并展开,得到的平面图形是()A.一个六边形B.一个平行四边形C.两个直角三角形D.一个直角三角形和一个直角梯形【解答】解:依题意可知,1133BP BF DH==,2233CQ CG DH==,又////PB CQ DH,APB AQC AHD∴∆∆∆∽∽,A∴、P、Q、H四点共线,平面展开图形为平行四边形(如图)故选:B.2.已知ABC∆中,17AB=,10AC=,BC边上的高8AD=,则边BC的长为() A.21B.15C.6D.以上答案都不对【解答】解:在直角三角形ABD中,根据勾股定理,得15BD=;在直角三角形ACD中,根据勾股定理,得6CD=.当AD在三角形的内部时,15621BC=+=;当AD在三角形的外部时,1569BC=-=.则BC的长是21或9.故选:D .二.填空题(共24小题)3.在底面直径为2cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为 231π+ cm .(结果保留)π【解答】解:如图所示,无弹性的丝带从A 至C ,绕了1.5圈,∴展开后 1.523AB cm ππ=⨯=,3BC cm =,由勾股定理得:22229931AC AB BC cm ππ=+=+=+. 故答案为:231π+.4.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 10 cm .【解答】解:将长方体展开,连接A 、B ',13138()AA cm '=+++=,6A B cm ''=,根据两点之间线段最短,228610AB cm '=+=. 故答案为:10.5.直角三角形是一个奇妙的三角形,除了有勾股定理这样著名的定理外,它还有许多奇妙的特性值得我们去探索,例如,在Rt ABC ∆中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c .设ABC S S ∆=,a b c l ++=,则S 与l 的比Sl蕴含着一个奇妙的规律,这个规律与a b c +-的值有关,观察下面a 、b 、c 取具体勾股数的表: 三边a 、b 、ca b c +- l S /S l345 2 12 6 1/26810 4 24 24 1 51213 4 30 30 1 81517 6 40 60 3/2121620848962⋯ ⋯ ⋯ ⋯ ⋯若a b c m +-=,则观察上表我们可以猜想出S l =4m(用含m 的代数式表示) 【解答】解:3452m a b c =+-=+-=时,1224S l ==; 6810512134m a b c =+-=+-=+-=时,414S l ==; 815176m a b c =+-=+-=时,3624S l ==; 1216208m a b c =+-=+-=时,824S l ==; ⋯∴我们可以猜想出4S ml =. 故答案为4m.6.等腰ABC ∆的底边8BC cm =,腰长5AB cm =,一动点P 在底边上从点B 开始向点C 以0.25/cm 秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 7或25 秒.【解答】解:如图,作AD BC ⊥,交BC 于点D , 8BC cm =,142BD CD BC cm ∴===, 223AD AB BD ∴=-=,分两种情况:当点P 运动t 秒后有PA AC ⊥时,22222AP PD AD PC AC =+=-,2222PD AD PC AC ∴+=-,22223(4)5 2.25PD PD PD ∴+=+-∴=, 4 2.25 1.750.25BP t ∴=-==, 7t ∴=秒,当点P 运动t 秒后有PA AB ⊥时,同理可证得 2.25PD =, 4 2.25 6.250.25BP t ∴=+==, 25t ∴=秒,∴点P 运动的时间为7秒或25秒.7.阅读以下解题过程:已知a ,b ,c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 错解:222244a c b c a b -=-⋯(1),2222222()()()c a b a b a b ∴-=-+⋯(2), 222c a b ∴=+⋯(3)问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号 ③ . (2)错误的原因是 . (3)本题正确的结论是 .【解答】解:2222222()()()c a b a b a b -=-+∴应有2222222()()()0c a b a b a b ---+=得到22222()[()]0a b c a b --+=,22()0a b ∴-=或222[()]0c a b -+=,即a b =或222a b c +=,∴根据等腰三角形得定义和勾股定理的逆定理,三角形为等腰三角形或直角三角形.故填③,不能确定22a b -是否为0,等腰三角形或直角三角形.8.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH 的顶点E 、F 、G 、H 分别在正方形ABCD 的边DA 、AB 、BC 、CD 上.若正方形ABCD 的面积16=,1AE =;则正方形EFGH 的面积= 10 .【解答】解:四边形EFGH 是正方形,EH FE ∴=,90FEH ∠=︒,90AEF AFE ∠+∠=︒,90AEF DEH ∠+∠=︒,AFE DEH ∴∠=∠,在AEF ∆和DHE ∆中, A D AFE DEH EF HE ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEF DHE ∴∆≅∆, AF DE ∴=,正方形ABCD 的面积为16, 4AB BC CD DE ∴====, 413AF DE AD AE ∴==-=-=,在Rt AEF ∆中,2210EF AE AF + 故正方形EFGH 的面积101010=.故答案为:10.9.一棵高9米的树从离地面4米处折断,树旁有一个身高为1米的小孩,则小孩至少离开这棵树 4 米才是安全的. 【解答】解:如图,BC 即为大树折断处4m 减去小孩的高1m ,则413BC m =-=,945AB m =-=,在Rt ABC ∆中,2222534AC AB BC =-=-=米. 即小孩至少离开这棵树4米才是安全的. 故答案为:4.10.如图,长方体的底面是边长为1cm 的正方形,高为3cm .如果从点A 开始经过4个侧面缠绕2圈到达点B ,那么所用细线最短需要73 cm .【解答】解:如图所示,从点A 开始经过4个侧面缠绕2圈到达点B ,∴展开后188AC cm cm =⨯=,3BC cm =,由勾股定理得:2273AB AC BC cm =+.故答案为:73.11.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm ,则A 、B 、C 、D 四个小正方形的面积之和为 144 2cm .【解答】解:如右图所示, 根据勾股定理可知,231S S S +=正方形正方形正方形, 2C D S S S +=正方形正方形正方形, 3A B S S S +=正方形正方形正方形,2112144C D A B S S S S S ∴+++===正方形正方形正方形正方形正方形.故答案是144.12.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到ABC ∆,则ABC ∆中BC 边上的高是322.【解答】解:由题意知,小四边形分别为小正方形,所以B 、C 为EF 、FD 的中点,ABC AEB BFC CDA AEFD S S S S S ∆∆∆∆=---正方形 11122121112222=⨯-⨯⨯-⨯⨯-⨯⨯,32=. 22112BC =+=.ABC ∴∆中BC 边上的高是3322222⨯÷=. 故答案为:322.13.如图,在ABC ∆中,90ABC ∠=︒,分别以BC 、AB 、AC 为边向外作正方形,面积分别记为1S 、2S 、3S ,若24S =,36S =,则1S = 2 .【解答】解:ABC ∆中,90ABC ∠=︒, 222AB BC AC ∴+=, 222BC AC AB ∴=-,21BC S =、224AB S ==,236AC S ==, 132642S S S ∴=-=-=.故答案为:2.14.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12310S S S ++=,则2S 的值是103.【解答】解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=, ∴得出18S y x =+,24S y x =+,3S x =,12331210S S S x y ∴++=+=,故31210x y +=,1043x y +=, 所以21043S x y =+=, 故答案为:103. 15.某校九年级学生准备毕业庆典,打算用橄榄枝花圈来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.由于在中学同学三年,他们打算精确地用花圈从上往下均匀缠绕圆柱3圈(如图),那么螺旋形花圈的长至少 5 米.【解答】解:将圆柱表面切开展开呈长方形, 则有螺旋线长为三个长方形并排后的长方形的对角线长 圆柱高4米,底面周长1米222(13)491625x =⨯+=+= 所以,花圈长至少是5m .16.Rt ABC ∆中,90BAC ∠=︒,2AB AC ==.以AC 为一边,在ABC ∆外部作等腰直角三角形ACD ,则线段BD 的长为 4或25或10 .【解答】解:①以A 为直角顶点,向外作等腰直角三角形DAC ,90DAC ∠=︒,且AD AC =,224BD BA AD ∴=+=+=;②以C 为直角顶点,向外作等腰直角三角形ACD ,连接BD ,过点D 作DE BC ⊥,交BC 的延长线于E . ABC ∆是等腰直角三角形,90ACD ∠=︒, 45DCE ∴∠=︒,又DE CE ⊥,90DEC ∴∠=︒, 45CDE ∴∠=︒,222CE DE ∴=== 在Rt BAC ∆中,222222BC +=,2222(222)(2)25BD BE DE ∴=+=++=; ③以AC 为斜边,向外作等腰直角三角形ADC ,90ADC ∠=︒,AD DC =,且2AC =,2sin 45222AD DC AC ∴==︒=⨯=, 又ABC ∆、ADC ∆是等腰直角三角形, 45ACB ACD ∴∠=∠=︒, 90BCD ∴∠=︒,又在Rt ABC ∆中,222222BC =+=,2222(22)(2)10BD BC CD ∴=+=+=. 故BD 的长等于4或25或10.17.勾股定理有着悠久的历史, 它曾引起很多人的兴趣 . 1955 年希腊发行了二枚以勾股图为背景的邮票 . 所谓勾股图是指以直角三角形的三边为边向外作正方形构成, 它可以验证勾股定理 . 在右图的勾股图中, 已知90ACB ∠=︒,30BAC ∠=︒,4AB =.作PQR ∆使得90R ∠=︒,点H 在边QR 上, 点D ,E 在边PR 上, 点G ,F 在边PQ 上, 那么PQR ∆的周长等于27133+ .【解答】解: 延长BA 交QR 于点M ,连接AR ,AP .AC GC =,BC FC =,ACB GCF ∠=∠, ABC GFC ∴∆≅∆,30CGF BAC ∴∠=∠=︒,60HGQ ∴∠=︒,90HAC BAD ∠=∠=︒, 180BAC DAH ∴∠+∠=︒, 又//AD QR ,180RHA DAH ∴∠+∠=︒, 30RHA BAC ∴∠=∠=︒,60QHG ∴∠=︒,60Q QHG QGH ∴∠=∠=∠=︒, QHG ∴∆是等边三角形 .3cos304232AC AB =︒=⨯=. 则23QH HA HG AC ====.在直角HMA ∆中,3sin 602332HM AH =︒=⨯=.cos 603AM HA =︒=. 在直角AMR ∆中,4MR AD AB ===.2334723QR ∴=++=+. 21443QP QR ∴==+. 3736PR QR==+.PQR ∴∆的周长等于27133RP QP QR ++=+.故答案为:27133+.18.如图,在Rt ABC ∆中,90C ∠=︒,点D 是BC 上一点,AD BD =,若8AB =,5BD =,则CD =75.【解答】解:设AC x =,CD y =,由勾股定理得: 2222(5)6425x y x y ⎧++=⎨+=⎩, 消去x ,得:22(5)39y y +-=, 整理,得: 1014y =,即75y =, 故CD 的长为75. 19.如图,有一个圆柱,它的高等于4cm ,底面半径等干4cm π,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,需要爬行的最短路程是 42cm .(结果保留根号)【解答】解:将圆柱体展开,连接A 、B ,根据两点之间线段最短,224442AB cm =+=.20.将一个含30︒角的三角板和一个含45︒角的三角板如图摆放,ACB ∠与DCE ∠完全重合,90C ∠=︒,45A ∠=︒,60EDC ∠=︒,42AB =6DE =,则EB =334 .【解答】解:在Rt ABC ∆中,42AB =,45A ∠=︒,24242BC ∴=⨯= 在Rt EDC ∆中,60EDC ∠=︒,6DE =,3sin 6332CE DE EDC ∴=∠=⨯= 334BE CE BC ∴=-=-.故填空答案:334-.21.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,则需要栅栏的长度为 20489+或40165+或4085+ m .【解答】解:(1)当20是等腰三角形的底边时,根据面积求得底边上的高AD 是16,再根据等腰三角形的三线合一,知:底边上的高也是底边上的中线,即底边的一半10BD =, 根据勾股定理即可求得其腰长22100256289AB AD BD =++,此时三角形的周长是20489+;(2)当20是腰时,由于高可以在三角形的内部,也可在三角形的外部,又应分两种情况. 根据面积求得腰上的高是16;①当高在三角形的外部时,在RT ADC ∆中,2212AD AC CD =-=,从而可得32BD =,进一步根据勾股定理求得其底边是22221632165BC CD BD =+=+=,此时三角形的周长是40165+;②当高在三角形的内部时,根据勾股定理求得2212AD AC CD =-=,8BD AB AD =-=, 在RT CDB ∆中,22BC CD BD =+2216885+=,此时三角形的周长是4085+; 故本题答案为:20489+或40165+或4085+.22.《九章算术》“勾股”章有一题:“今有开门去阃()kun 一尺,不合二寸,问门广几何.”大意是说:今推开双门,门框距离门槛1尺,双门间的缝隙为2寸,那么门的宽度(两扇门的和)为 10.1 尺.【解答】解:设单门的宽度是x 米,根据勾股定理,得221(0.1)x x =+-, 5.05x =,则210.1x =尺.23.如图是一个长8m 、宽6m 、高5m 的仓库,在其内壁的点A (长的四等分点)处有一只壁虎、点B (宽的三等分点)处有一只蚊子.则壁虎爬到蚊子处的最短距离为 85 .。
勾股定理难题
勾股定理难题作为中学数学中常见的工具定理之一,勾股定理在几何分析和数学证明中都发挥了重要的作用。
然而,虽然该定理简单易懂,但也存在一些难题需要深入思考和探究。
难题一:勾股定理证明勾股定理是一个重要的几何定理,其基本内容在高中数学教学中被广泛的传授,它表达的是一个直角三角形斜边的平方等于两个直角边的平方之和。
但是,在实际应用问题中,我们对勾股定理的理解往往仅仅满足于表面层次,而对于定理的证明,我们往往感到十分困难。
在数学中,证明是一项非常重要的任务。
如果可以证明某个定理,那么可以证明这个定理是真实有效的。
在勾股定理的证明中,我们需要运用的基本知识有数学分析,三角函数,纯数学运算等,其中还包括几何知识和直观图像等。
难题二:勾股定理的正确应用除了勾股定理本身的证明难题,正确应用勾股定理也是一个难题。
由于勾股定理的广泛应用,我们应该了解何时应该使用它,以及如何正确应用该定理。
在实际问题中,如果错误地应用勾股定理,将会导致问题解决的错误结果。
以一个典型例子来说,如果我们需要求一个飞机飞行的航迹,经常会遇到需要求解三角形的三个角度以及长度的问题,此时勾股定理就能够发挥作用,但是,如果我们将三角形直接代入公式计算,而没有首先检查它是否确实是一个具有直角的三角形,就会发生计算错误。
这就需要我们在应用时要仔细思考,避免使用不恰当的的定理和方法。
难题三:勾股定理的综合运用勾股定理的应用不仅仅局限于计算直角三角形的三个边长和三个角度等问题,还可以应用到平面分析、建筑设计和机械制造等范畴中。
在实际的工作中,我们需要将勾股定理与其他的工程和技术原理相结合使用,以便更好地解决问题。
例如,在建筑设计中,我们需要计算一个建筑物的倾斜角度,就需要有一定的勾股定理知识,以便能够应用该定理进行计算。
此外,还有汽车设计与制造、航空工程、电子科技等领域均需要使用勾股定理。
勾股定理虽然看似简单,但在实际运用中却有着诸多的难题。
我们希望大家能够在学习中注重探究定理的原理,深刻理解其本质;在实际应用中,注重思考,确保定理的正确应用,以达到最优的解决问题的效果。
《勾股定理》难题
勾股定理一、利用勾股定理推导线段平方关系1、如图2-22所示.AM 是△ABC 的BC 边上的中线,求证:AB 2+AC 2=2(AM 2+BM 2).变式:在△ABC 中,∠A=90°,AB=AC,D 为斜边上任一点,求证:BD 2+CD 2=2AD 22、 如图,在Rt △ABC 中,AC ⊥BC,D 是AB 的中点,E 、F 分别在AC 和BC 上。
且DE ⊥DF,求证:EF 2=AE 2+BF 2变式:△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长。
二、构造直角三角形利用勾股定理解几何计算题3、如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C.若∠AOB=60°,OC=4,则点P 到OA 的距离PD 等于多少4、如图,△ABC 是边长为2的正三角形,E 是AB 边的中点,延长BC 至D,使CD=BC,连接ED,求ED 的长。
AB CD A OBP D CA BC DECBD A 三、勾股定理逆定理的运用5、如图,三角形ABC 中,CD ⊥AB 于点D ,若有AD BD CD ∙=2,则证明三角形ABC 为直角三角形。
四、实际应用---折叠问题6、.如图,在长方形ABCD 中,将∆ABC 沿AC 对折至∆AEC 位置,CE 与AD 交于点F 。
(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长7、如图,一张矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝。
现将其折叠,使点D 与点B 重合。
求折叠后BE 的长和折痕EF 的长。
1. 直角三角形的三边为a-b ,a ,a+b 且a 、b 都为正整数,则三角形其中一边长可能为( ) A 、61 B 、71 C 、81 D 、912、已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 ____________.3、如图,EF 为正方形ABCD 的对角线,将∠A 沿DK 折叠,使它的顶点A 落在EF 上的G 点,则∠DKG=_______.4、以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是( ) A 、2×(22)10厘米 B 、2×(21)9厘米 C 、2×(23)10厘米 D 、2×(23)9厘米5在△ABC 中,AB 边上的中线CD=3,AB=6,BC+AC=8,则△ABC 的面积为_____________.6如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm ,正方形B 的边长为5cm ,正方形C 的边长为5cm ,则正方形D 的面积是_______cm 2.7、如图所示,在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,则点P 到三角形的三边距离之和PD+PE+PF 等于( )A 、3B 、23C 、43D 、无法确定8、如图Rt △ABC 中,AB=BC=4,D 为BC 的中点,在AC 边上存在一点E ,连接ED ,EB ,则△BDE 周长的最小值为( )A 、25B 、23C 、25+2D 、23+21(石景山)如图,在△ABC 中,∠ACB =90°,若把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合. (1)当∠A =35°时,求∠CBD 的度数. (2)若AC =4,BC =3,求AD 的长.(3)当AB = m (m > 0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)2(朝阳)如图,四边形ABCD 是矩形,AB =3,BC =4,把矩形沿直线AC 折叠,点B 落在点F 处,连接DF ,CF 与AD 相交于点E ,求DE 的长和△ACE 的面积.ABCDEE F DA C B。
勾股定理应用难题
勾股定理 【2 】的运用常见题型:求值(求边长或面积.线段间的平方关系.折叠后求值);断定垂直;几何体表面上两点间距离.一.求值问题●例题:1.如图,直线l 上有三个正方形a,b,c,若a,c 的面积分离为5和11,则b 的面积为( )A.4B.6C.16D.552.如图,直角三角形ABC,∠ACB=90°,AC=BC=6,DE ⊥AB,DE:DB=1:5,则AE=_______.图1 图2 图33.如图,如图,直角三角形ABC,∠C=90°,AM=CM,MP ⊥AB 与P,求证:BP 2=AP 2+BC 2.4.如图,分离以直角三角形的三边为直径作半圆,个中两个半圆的面积S1=25/8π,S2=2π,则S3=_______.图4 图5 图6 图75.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD 的面积.6.如图,△BDE 是将长方形纸片ABCD 沿对角线BD 折叠后得到的,若AB =4,BC =8,则重叠部分的面积为_______.7.如图,正方形ABCD 中,AB 边上一点E,AE=3,EB=1,在AC 上有一点P,使EP+BP 最短,则EP+BP 的最短长度为_______.8.一辆装满货色的卡车,高2.5米,宽1.6米,要开进如图所示的上边是半圆,下边是长方形的桥洞,已知半圆的直径为2米,长方形的另一条边长是2.3米.(1)此辆卡车可否经由过程此桥洞?解释你的来由.(2)为了顺应车流量增长的须要,想把桥洞改为双行道,P M B C AAC B ED并要使宽1.2米,高2.8米的卡车能安全经由过程,那么此桥洞的宽至少应增长到若干米?● 常识总结与拓展:标题1题型总结:三直角模子,全等必消失标题2拓展常识:等腰直角三角形三边比,直角边:直角边:斜边= 1:1:√2(根号)标题3题型总结:该类题型是在适合的直角三角形顶用勾股定理,进行边的等量关系代换,导出标题所要成果.增强演习:如图,在△ABC 中,AB=AC=6,P 为BC 上随意率性一点,(1)求PC •PB+PA 2的值;(2)求证AB 2-AP 2=PB ×PC.标题4题型总结:以直角三角形的三边1)为直径向外作半圆;2)为斜边向外作等腰直角三角形;3)为边作等边三角形;4)向外作正方形,则有以两直角边所做图形面积的和等于以斜边所做图形的面积.标题5拓展常识:有一个角是30°的直角三角形三边比,30°所对直角边:斜边:另一边直角边= 1:2:√3(根号) 标题6题型总结:常见的折叠图形有以下四种,折叠后求边长的问题,症结在于找到折叠后的相等前提(边和角).然后在适合的直角三角形中,运用勾股定理求值.总结:1)折叠后对应点连线所得线段被对称轴垂直等分;2)折叠后与折叠前对应的两个三角形全等.A B P C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的应用
常见题型:求值(求边长或面积、线段间的平方关系、折叠后求值);判断垂直;几何体表面上两点间距离。
一、求值问题
●例题:
1.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()
A.4
B.6
C.16
D.55
2.如图,直角三角形ABC,∠ACB=90°,AC=BC=6,DE⊥AB,DE:DB=1:5,则AE=_______。
图1 图2 图3
3.如图,如图,直角三角形ABC, ∠C=90°,AM=CM,MP⊥AB与P,求证:BP2=AP2+BC2。
4.如图,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积S1=25/8π,S2=2π,则S3=_______。
图4 图5 图6 图7
5.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD的面积。
6.如图,△BDE是将长方形纸片ABCD沿对角线BD折叠后得到的,若AB=4,BC=8,则重叠部分的面积为_______。
7.如图,正方形ABCD中,AB边上一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短,则EP+BP的最短长度为_______。
8. 一辆装满货物的卡车,高2.5米,宽1.6米,要开进如图所示的上边是半圆,下边是长方形的桥洞,已知半圆的直径为2米,长方形的另一条边长是2.3米。
(1)此辆卡车能否通过此桥洞?说明你的理由。
(2)为了适应车流量增加的需要,想把桥洞改为双行道,
并要使宽1.2米,高2.8米的卡车能安全通过,那
P
M
B
C A
A
C B
E
D
么此桥洞的宽至少应增加到多少米?
●
知识总结与拓展:
题目1题型总结:
三直角模型,全等必出现
题目2拓展知识:
等腰直角三角形三边比,直角边:直角边:斜边= 1:1:√2(根号)
题目3题型总结:
该类题型是在合适的直角三角形中用勾股定理,进行边的等量关系代换,导出题目所要结果。
加强练习:
如图,在△ABC中,AB=AC=6,P为BC上任意一点,(1)求PC•PB+PA2的值;(2)求证AB2-AP2=PB×PC.
题目4题型总结:
以直角三角形的三边1)为直径向外作半圆;2)为斜边向外作等腰直角三角形;3)为边作等边三角形;
4)向外作正方形,则有以两直角边所做图形面积的和等于以斜边所做图形的面积。
题目5拓展知识:
有一个角是30°的直角三角形三边比,30°所对直角边:斜边:另一边直角边= 1:2:√3(根号)
题目6题型总结:
常见的折叠图形有以下四种,折叠后求边长的问题,关键在于找到折叠后的相等条件(边和角)。
然后在合适的直角三角形中,利用勾股定理求值。
总结:1)折叠后对应点连线所得线段被对称轴垂直平分;
2)折叠后与折叠前对应的两个三角形全等。
A
B
P
C。