初三数学上圆章节测试题(含答案)

合集下载

九年级上学期数学《圆》单元检测题含答案

九年级上学期数学《圆》单元检测题含答案
8.如图,△A B C是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△A BP中,PB=A B,则PA的长为()
A.5B. C.5 D.5
[答案]D
[解析]
试题解析:连接OA、OB、OP,
∵∠C=30°,∴∠APB=∠C=30°,∵PB=A B,∴∠PA B=∠APB=30°
A.π+1B.π+2C.2π+2D.4π+1
8.如图,△A B C是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△A BP中,PB=A B,则PA的长为()
A. 5B. C. 5 D. 5
9.如图是某公园的一角,∠AOB=90°,弧A B的半径OA长是6米,C是OA的中点,点D在弧A B上,C D∥OB,则图中休闲区(阴影部分)的面积是()
23.如图,点I是△A B C的内心,AI的延长线和△A B C的外接圆相交于点D,与B C相交于点E.
(1)求证:DI=D B;
(2)若AE=6Cm,ED=4Cm,求线段DI的长.
24.如图,已知扇形AOB的圆心角为直角,正方形OC DE内接于扇形AOB.点C、E、D分别在OA、OB、弧A B上,过点A作AF⊥DE交ED的延长线于F,如果正方形的边长为1,求阴影部分M、N的面积和.
点睛:本题考查了圆周角定理,圆周角的度数等于它所对的弧所对的圆心角度数的一半,圆的弦所对的圆周角分两种,一种是优弧所对的圆周角,一种是劣弧所对的圆周角,它们是互补的关系.
4.⊙O的半径r=5Cm,直线l到圆心O的距离D=4,则l与⊙O的位置关系是( )
A.相离B.相切C.相交D.重合
[答案]C
[解析]
3.正六边形内接于圆,它的边所对的圆周角是( )

九年级上学期数学《圆》单元检测题(含答案)

九年级上学期数学《圆》单元检测题(含答案)

九年级上册数学《圆》单元测试卷[考试时间:90分钟满分:120分]一.选择题(共12小题)1.(2020春•南岸区校级月考)如图,A B 是⊙O的直径,C 和D 是⊙O上两点,连接A C 、B C 、B D 、CD ,若∠C D B =36°,则∠A B C =()A .36°B .44°C .54°D .72°2.(2020•清江浦区)如图,A 、B 、C 是⊙O上的三个点,∠A OB =58°,则∠B C A 的度数是()A .58°B .42°C .32°D .29°3.(2020•斗门区)如图,⊙O的直径C D 垂直弦A B 于点E,且C E=2,D E=8,则B E的长为()A .2B .4C .6D .84.(2020•桂林)如图,A B 是⊙O的弦,A C 与⊙O相切于点A ,连接OA ,OB ,若∠O=130°,则∠B A C 的度数是()A .60°B .65°C .70°D .75°5.(2020•通辽)如图,P A ,PB 分别与⊙O相切于A ,B 两点,∠P=72°,则∠C =()A .108°B .72°C .54°D .36°6.(2020•三明)如图,已知⊙O是△A B C 的外接圆,A D 是⊙O的直径,若A D =8,∠B =30°,则A C 的长度为()A .3B .4C .4√2D .4√3 7.(2020•南充模拟)如图,A 、B 、C 是⊙O上顺次3点,若A C 、A B 、B C 分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A .9B .10C .12D .158.若正六边形的边长为8C m ,则它的边心距为( )A .8C mB .6C m C .4√3C mD .2√3C m9.(2020•天台县)如图,圆锥的底面半径为6,母线长为10,则圆锥的侧面积是( )A .36πB .60πC .96πD .100π10.(2020•包头)如图,A B 是⊙O 的直径,C D 是弦,点C ,D 在直径A B 的两侧.若∠A OC :∠A OD :∠D OB =2:7:11,C D =4,则CD̂的长为( )A .2πB .4πC .√2π2D .√2π11.一个扇形的圆心角是120°,它的面积是3πC m 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( )A .3C mB .2C m C .1C mD .4C m12.如图,在正方形纸板上剪下一个扇形和圆,围成一个圆锥模型,设围成的圆锥底面半径为r,母线长为R,正方形的边长为A ,则用r表示A 为()A .A =2+√22r B .A =5+2√22r C .A =2+5√22r D .A =(1+5√22r)二.填空题(共7小题)13.(2020•铁岭)如图A B 是⊙O的直径,弦C D ⊥OB 于点E,交⊙O于点D ,已知OC =5C m,C D =8C m,则A E= C m.14.如图,一条公路的转弯处是一段圆弧A B ,点O是这段弧所在圆的圆心,A B =40m,点C 是AB̂的中点,且C D =10m,则这段弯路所在圆的半径为m.15.如图,A B 为⊙O的直径,△P A B 的边P A ,PB 与⊙O的交点分别为C 、D .若AĈ=CD̂= DB̂,则∠P的大小为度.16.(2020•遵义)如图,⊙O是△A B C 的外接圆,∠B A C =45°,A D ⊥B C 于点D ,延长A D 交⊙O于点E,若B D =4,C D =1,则D E的长是.17.(2020•碑林区校级四模)如图,若正六边形A B C D EF边长为1,连接对角线A C ,A D .则△A C D 的周长为.18.(2020春•南岸区校级月考)如图,在正方形A B C D 中,A B =2,分别以B 、C 为圆心,以A B 的长为半径作弧,则阴影部分的面积为.19.(2020•娄底)如图,四边形A B D C 中,A B =A C =3,B D =C D =2,则将它以A D 为轴旋转180°后所得分别以A B 、B D 为母线的上下两个圆锥的侧面积之比为.三.解析题(共6小题)20.(2020•鼓楼区校级模拟)如图①,A B 为⊙O的直径,点C 在⊙O上,A D 平分∠C A B ,A D 与B C 交于点F,过点D 作D E⊥A B 于点E.(1)求证:B C =2D E;(2)如图②,连接OF,若∠A FO=45°,半径为2时,求A C 的长.21.(2020•南京)如图,在△A B C 中,A C =B C ,D 是A B 上一点,⊙O经过点A 、C 、D ,交B C 于点E,过点D 作D F∥B C ,交⊙O于点F.求证:(1)四边形D B C F是平行四边形;(2)A F=EF.22.(2020•鼓楼区校级模拟)如图,A B 是⊙O直径,A C 是⊙O切线,B C 交⊙O与点E.(1)若点D 在A C 上,连接D E,且A D =D E,求证:D E是⊙O的切线;(2)若C E=1.B E=3,求∠A C B 的度数.23.(2020•江岸区校级模拟)如图,A ,P,B ,C 是⊙O上的四个点,∠A PC =∠C PB =60°.(1)求证:△A B C 是等边三角形.(2)若⊙O的半径为2,求等边△A B C 的边心距.24.如图,已知点O是正六边形A B C D EF的对称中心,G,H分别是A F,B C 上的点,且A G =B H.(1)求∠F A B 的度数;(2)求证:OG=OH.̂, 25.(2020•承德)如图,点A 在数轴上对应的数为20,以原点O为圆心,OA 为半径作优弧AB̂上任取一点P,过点P作直线OB 的垂使点B 在点O右下方,且∠A OB =30°,在优弧AB线,交数轴于点Q,设Q在数轴上对应的数为x,连接OP.̂上一段AP̂的长为10π,求∠A OP的度数及x的值;(1)若优弧AB̂所在圆的位置关系.(2)求x的最小值,并指出此时直线PQ与AB答案与解析一.选择题(共12小题)1.(2020春•南岸区)如图,A B 是⊙O的直径,C 和D 是⊙O上两点,连接A C 、B C 、B D 、C D ,若∠C D B =36°,则∠A B C =()A .36°B .44°C .54°D .72°[答案]C[解析]∵A B 是⊙O的直径,∴∠A C B =90°,∵∠A =∠D =36°,∴∠A B C =90°﹣36°=54°,故选:C .[小贴士]圆周角定理,直角三角形的性质等知识,属于中考常考题型.[考点]圆周角定理.2.(2020•清江浦区)如图,A 、B 、C 是⊙O上的三个点,∠A OB =58°,则∠B C A 的度数是()A .58°B .42°C .32°D .29°[答案]D[解析]如图,∵A 、B 、C 是⊙O上的三个点,∠A OB =58°,∴∠B C A =12∠A OB =29°,故选:D .[小贴士]圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,基础题.[考点]圆周角定理.3.(2020•斗门区)如图,⊙O的直径C D 垂直弦A B 于点E,且C E=2,D E=8,则B E的长为()A .2B .4C .6D .8[考点]勾股定理;垂径定理.[答案]B[分析]根据C E=2,D E=8,得出直径C D =10,从而得出半径为5,在直角三角形OB E中,由勾股定理得B E.[解析]∵C E=2,D E=8,∴C D =10,∴OB =5,∴OE=3,∵A B ⊥C D ,∴在△OB E中,B E=√OB2−OE2=√52−32=4,故选:B .[小贴士]勾股定理以及垂径定理,是基础.4.(2020•桂林)如图,A B 是⊙O的弦,A C 与⊙O相切于点A ,连接OA ,OB ,若∠O=130°,则∠B A C 的度数是()A .60°B .65°C .70°D .75°[考点]切线的性质.[答案]B[解析]∵A C 与⊙O相切于点A ,∴A C ⊥OA ,∴∠OA C =90°,∵OA =OB ,∴∠OA B =∠OB A .∵∠O=130°,∴∠OA B =180°−∠O2=25°,∴∠B A C =∠OA C ﹣∠OA B =90°﹣25°=65°.故选:B .[小贴士]切线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•通辽)如图,P A ,PB 分别与⊙O相切于A ,B 两点,∠P=72°,则∠C =()A .108°B .72°C .54°D .36°[考点]圆周角定理和切线的性质.[答案]C[解析]连接OA 、OB ,∵P A ,PB 分别为⊙O的切线,∴OA ⊥P A ,OB ⊥PB ,∴∠P A O=90°,∠PB O=90°,∴∠A OB =360°﹣∠P A O﹣∠PB O﹣∠P=360°﹣90°﹣90°﹣72°=108°,由圆周角定理得,∠C =12∠A OB =54°,故选:C .[小贴士]的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(2020•三明)如图,已知⊙O是△A B C 的外接圆,A D 是⊙O的直径,若A D =8,∠B =30°,则A C 的长度为()A .3B .4C .4√2D .4√3[考点]三角形的外接圆与外心.[答案]B[解析]连接C D ,∵A D 是⊙O的直径,∴∠A C D =90°,又∵∠B =∠D =30°,∴A C =12A D =4,故选:B .7.(2020•南充模拟)如图,A 、B 、C 是⊙O上顺次3点,若A C 、A B 、B C 分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A .9B .10C .12D .15[考点]正多边形和圆.[答案]C[解析]如图,连接OA ,OC ,OB .∵若A C 、A B 分别是⊙O内接正三角形、正方形的一边,∴∠A OC =120°,∠A OB =90°,∴∠B C O=∠A OC ﹣∠A OB =30°,由题意30°=360°n,∴n=12,8.若正六边形的边长为8C m,则它的边心距为()A .8C mB .6C m C .4√3C mD .2√3C m[考点]正多边形和圆.[答案]C[解析]如图所示,连接OA ,OB ,过O作OD ⊥A B 于D ,则OA =OB ,OD ⊥A B ,A D =B D =12A B =12×8=4C m,∵此六边形是正六边形,∴∠A OB =360°6=60°,∴∠A OD =12∠A OB =12×60°=30°,∴OD =A D •C ot∠A OD =4×√3=4√3C m.故选:C .9.(2020•天台县)如图,圆锥的底面半径为6,母线长为10,则圆锥的侧面积是()A .36πB .60πC .96πD .100π[考点]圆锥的计算.[答案]B[解析]底面周长是:2×6π=12π,则圆锥的侧面积是:12×12π×10=60π.故选:B . 10.(2020•包头)如图,A B 是⊙O 的直径,C D 是弦,点C ,D 在直径A B 的两侧.若∠A OC :∠A OD :∠D OB =2:7:11,C D =4,则CD̂的长为( )A .2πB .4πC .√2π2D .√2π [考点]弧长的计算.[答案]D[解析]∵∠A OC :∠A OD :∠D OB =2:7:11,∠A OD +∠D OB =180°,∴∠A OD =77+11×180°=70°,∠D OB =110°,∠C OA =20°,∴∠C OD =∠C OA +∠A OD =90°,∵OD =OC ,C D =4,∴2OD 2=42,∴OD =2√2,∴CD ̂的长是nπr 180=90π×2√2180=√2π,故选:D .[小贴士]解直角三角形和弧长公式,能求出半径OD 的长是解此题的关键,注意:圆心角是n °,半径是r 的弧的长度是nπr 180.11.一个扇形的圆心角是120°,它的面积是3πC m 2,用这个扇形作为一个圆锥侧面,则该圆锥的底面半径是( )A .3C mB .2C m C .1C mD .4C m [考点]圆锥的计算.[答案]C[分析]利用扇形的面积公式可得圆锥的母线长,进而可求得圆锥的弧长,除以2π即为圆锥的底面半径.[解析]设圆锥的母线长为R ,120π×R 2360=3π,解得R =3C m , ∴圆锥的侧面展开图的弧长=120π×3180=2πC m , ∴圆锥的底面半径=2π÷2π=1C m ,故选:C .[小贴士]用到的知识点为:圆锥的侧面展开图的面积=nπR 2360;圆锥的侧面展开图的弧长=nπR 180;圆锥的侧面展开图的弧长等于底面周长.12.如图,在正方形纸板上剪下一个扇形和圆,围成一个圆锥模型,设围成的圆锥底面半径为r ,母线长为R ,正方形的边长为A ,则用r 表示A 为( )A .A =2+√22r B .A =5+2√22r C .A =2+5√22r D .A =(1+5√22r)[考点]弧长的计算.[答案]C[分析]利用底面周长=展开图的弧长求出半径比,再根据过小圆的圆心作垂线,垂直于正方形的边,就构成等腰直角三角形,从图中关系可知,直角三角形的斜边是r+R,直角边A ﹣r,根据勾股定理计算.[解析]利用底面周长=展开图的弧长可得;2πr=90πR180,得出R=4r,利用勾股定理解得A =2+5√22r.故选:C .[小贴士]的关键是利用底面周长=展开图的弧长求得r与R的关系,然后由勾股定理求得A 与r之间的关系.二.填空题(共7小题)13.(2020•铁岭)如图A B 是⊙O的直径,弦C D ⊥OB 于点E,交⊙O于点D ,已知OC =5C m,C D =8C m,则A E=8 C m.[考点]勾股定理和垂径定理.[答案]8[解析]∵C D ⊥OB ,∴C E=D E=12C D =4,在Rt△OC E中,OE=√52−42=3,∴A E=A O+OE=5+3=8(C m).14.(2019秋•昌平区期末)如图,一条公路的转弯处是一段圆弧A B ,点O是这段弧所在圆的圆心,A B =40m,点C 是AB̂的中点,且C D =10m,则这段弯路所在圆的半径为25m.[考点]垂径定理的应用.[答案]25[分析]根据题意,可以推出A D =B D =20,若设半径为r,则OD =r﹣10,OB =r,结合勾股定理可推出半径r的值.[解析]∵OC ⊥A B ,∴A D =D B =20m,在Rt△A OD 中,OA 2=OD 2+A D 2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.15.(2019•长春)如图,A B 为⊙O的直径,△P A B 的边P A ,PB 与⊙O的交点分别为C 、D .若AĈ=CD̂=DB̂,则∠P的大小为60度.[考点]圆心角、弧、弦的关系.[答案]60[解析]连接OC 、OD ,̂=CD̂=DB̂,∵AC∴∠A OC =∠C OD =∠D OB =60°,∵OA =OC ,OB =OD ,∴△A OC 和△B OD 都是等边三角形,∴∠A =60°,∠B =60°,∴∠P=60°,故答案为:60.[小贴士]在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.16.(2020•遵义)如图,⊙O是△A B C 的外接圆,∠B A C =45°,A D ⊥B C 于点D ,延长A D交⊙O于点E,若B D =4,C D =1,则D E的长是√41−52.[考点]垂径定理和三角形的外接圆与外心.[解析]连结OB ,OC ,OA ,过O点作OF⊥B C 于F,作OG⊥A E于G,∵⊙O是△A B C 的外接圆,∠B A C =45°,∴∠B OC =90°,∵B D =4,C D =1,∴B C =4+1=5,∴OB =OC =5√2 2,∴OA =5√22,OF=B F=52,∴D F=B D ﹣B F=3 2,∴OG=32,GD =52,在Rt△A GO中,A G=√OA2−OG2=√412,∴GE=√41 2,∴D E=GE﹣GD =√41−52.17.(2020•碑林区校级四模)如图,若正六边形A B C D EF边长为1,连接对角线A C ,A D .则△A C D 的周长为3+√3.[考点]正多边形和圆.[答案]3+√3.[分析]根据正六边形的性质和直角三角形的性质即可得到结论.[解析]∵正六边形A B C D EF中,A B =B C =C D =1,∠B =∠B C D =120°,∴∠A C B =∠B A C =30°,∴∠A C D =90°,∵∠C D A =∠ED A =60°,∴∠C A D =30°,∴A D =2C D =2,A C =√3C D =√3,∴△A C D 的周长=A D +A C +C D =3+√3,18.(2020春•南岸区校级月考)如图,在正方形A B C D 中,A B =2,分别以B 、C 为圆心,以A B 的长为半径作弧,则阴影部分的面积为2√3−23π.[考点]扇形面积的计算.[答案]2√3−23π.[分析]连接B E 、C E ,得出等边三角形EB C ,求出∠D C E =30°,∠EB C =60°,分别求出扇形EB C 、扇形D C E 和△EB C 的面积,再求出答案即可.[解析]∵在正方形A B C D 中,A B =2,分别以B 、C 为圆心,以A B 的长为半径作弧, ∴∠D C B =90°,B C =A B =2,弧对应的半径是2,如图,连接B E 、C E ,∵B C =C E =B E =2,∴△B EC 是等边三角形,∴∠EB C =∠EC B =60°,∴∠D C E =30°,S 弓形=S 扇形EB C ﹣S △EB C =60π×22360−12×2×√3=23π−√3, ∴阴影部分的面积S =2(S 扇形D C E ﹣S 弓形)=2×[30π×22360−(23π−√3)]=2√3−23π.19.(2020•娄底)如图,四边形A B D C 中,A B =A C =3,B D =C D =2,则将它以A D 为轴旋转180°后所得分别以A B 、B D 为母线的上下两个圆锥的侧面积之比为 3:2 .[考点]圆锥的计算.[答案]3:2,[分析]根据两个圆锥的底面圆相同,设底面圆的周长为l ,根据圆锥的侧面积公式可得上面圆锥的侧面积为:12l •A B ,下面圆锥的侧面积为:12l •B D ,即可得出答案. [解析]∵两个圆锥的底面圆相同,∴可设底面圆的周长为l ,∴上面圆锥的侧面积为:12l •A B ,下面圆锥的侧面积为:12l •B D ,∵A B =A C =3,B D =C D =2,∴S 上:S 下=3:2,三.解析题(共6小题)20.(2020•鼓楼区校级模拟)如图①,A B 为⊙O 的直径,点C 在⊙O 上,A D 平分∠C A B ,A D 与B C 交于点F ,过点D 作D E ⊥A B 于点E .(1)求证:B C =2D E ;(2)如图②,连接OF ,若∠A FO =45°,半径为2时,求A C 的长.[考点]圆周角定理.[分析](1)如图①中,延长D E交⊙O于G,连接A G.想办法证明D E=EG,B C =D G即可.(2)如图②中,作FR⊥A B 于R,OS⊥A D 于S.首先证明B F=B O,利用相似三角形的性质证明A C =2FR=2C F,由tA n∠F A R=tA n∠F A C =12,设SO=t,A S=2t,SF=SO=t,利用勾股定理求出t即可解决问题.[解析](1)证明:如图①中,延长D E交⊙O于G,连接A G.∵A B ⊥D G,A B 是直径,∴BD̂=BĜ,D E=EG,∵A D 平分∠C A B ,∴∠C A D =∠D A B ,∴CD̂=BD̂,∴BĈ=DĜ,∴B C =D G=2D E.(2)如图②中,作FR⊥A B 于R,OS⊥A D 于S.∵A D 平分∠C A B ,FC ⊥A C ,FR⊥A B ,∴∠C A D =∠B A D =x,FC =FR,∴∠FB O=90°﹣2x,∵∠A FO=45°,∴∠FOB =45°+x,∴∠OFB =180°﹣(90°﹣2x)﹣(45°+x)=45°+x,∴∠FOB =∠OFB∴B F=B O=OA ,∵∠FRB =∠A C B =90°,∠FB R=∠A B C ,∴△B FR∽△B A C ,∴FBAB =FRAC=12,∴A C =2FR=2FC ,∴tA n∠F A R=tA n∠F A C =1 2,设SO=t,A S=2t,SF=SO=t,则t2+4t2=4,∵t>0,∴t=2√5 5,∴A F=3t=6√55,设C F=m,则A C =2m,则有5m2=36 5,∵m>0,∴m=6 5,∴A C =2m=12 5.[小贴士]解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.21.(2020•南京)如图,在△A B C 中,A C =B C ,D 是A B 上一点,⊙O经过点A 、C 、D ,交B C 于点E,过点D 作D F∥B C ,交⊙O于点F.求证:(1)四边形D B C F是平行四边形;(2)A F=EF.[考点]等腰三角形的判定与性质;圆周角定理.[解析]证明:(1)∵A C =B C ,∴∠B A C =∠B ,∵D F∥B C ,∴∠A D F=∠B ,∵∠B A C =∠C FD ,∴∠A D F=∠C FD ,∴B D ∥C F,∵D F∥B C ,∴四边形D B C F是平行四边形;(2)连接A E,∵∠A D F=∠B ,∠A D F=∠A EF,∴∠A EF=∠B ,∵四边形A EC F是⊙O的内接四边形,∴∠EC F+∠EA F=180°,∵B D ∥C F,∴∠EC F+∠B =180°,∴∠EA F=∠B ,∴∠A EF=∠EA F,∴A F=EF.22.(2020•鼓楼区校级模拟)如图,A B 是⊙O直径,A C 是⊙O切线,B C 交⊙O与点E.(1)若点D 在A C 上,连接D E,且A D =D E,求证:D E是⊙O的切线;(2)若C E=1.B E=3,求∠A C B 的度数.[考点]圆周角定理和切线的判定与性质.[解析](1)连接OE,A E,∵A E=D E,OA =OE,∴∠D A E=∠D EA ,∠OA E=∠OEA ,∵A C 是⊙O的切线,∴∠B A C =90°,∴∠D A E+∠OA E=∠D EA +∠OEA =90°,∵OE是⊙O的半径,∴D E是⊙O的切线.(2)∵A B 是⊙O的直径,∴∠A EB =90°,∵∠C +∠C A E=∠C A E+∠B A E=90°,∴∠C =∠B A E,∴△C A E∽△A B E,∴A E2=C E•B E,∴A E2=1×3,∴A E=√3,在Rt△A C E中,∴tA n∠A C E=AECE=√3,∴∠A C E=60°.23.(2020•江岸区校级模拟)如图,A ,P,B ,C 是⊙O上的四个点,∠A PC =∠C PB =60°.(1)求证:△A B C 是等边三角形.(2)若⊙O的半径为2,求等边△A B C 的边心距.[解析](1)证明:在⊙O中,∵∠B A C 与∠C PB 是BĈ对的圆周角,∠A B C 与∠A PC 是AĈ所对的圆周角,∴∠B A C =∠C PB ,∠A B C =∠A PC ,又∵∠A PC =∠C PB =60°,∴∠A B C =∠B A C =60°,∴△A B C 为等边三角形;(2)过O作OD ⊥B C 于D ,连接OB ,则∠OB D =30°,∠OD B =90°,∵OB =2,∴OD =1,∴等边△A B C 的边心距为1.24.如图,已知点O是正六边形A B C D EF的对称中心,G,H分别是A F,B C 上的点,且A G =B H.(1)求∠F A B 的度数;(2)求证:OG=OH.[考点]正多边形和圆.[解析](1)∵六边形A B C D EF是正六边形,∴∠F A B =(6−2)×1806=120°;(2)证明:连接OA 、OB ,∵OA =OB ,∴∠OA B =∠OB A ,∵∠F A B =∠C B A ,∴∠OA G =∠OB H ,在△A OG 和△B OH 中,{AG =BH ∠OAG =∠OBH OA =OB,∴△A OG ≌△B OH (SA S )∴OG =OH .25.(2020•承德)如图,点A 在数轴上对应的数为20,以原点O 为圆心,OA 为半径作优弧AB̂,使点B 在点O 右下方,且∠A OB =30°,在优弧AB̂上任取一点P ,过点P 作直线OB 的垂线,交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为10π,求∠A OP 的度数及x 的值; (2)求x 的最小值,并指出此时直线PQ 与AB̂所在圆的位置关系.[考点]实数与数轴和圆周角定理和弧长的计算.[解析](1)如图1,由n⋅π×20180=10π,解得n=90°,∴∠POQ=90°,∴∠A OP=180°﹣∠POQ=90°,∵PQ⊥OB ,∴∠PQO=60°,∴tA n∠PQO=OPOQ=√3,∴OQ=20√3 3∴x=−20√3 3;(2)如备用图,当直线PQ与AB̂所在圆的位置关系相切时,x有最小值,则∠QPO=90°,∵∠POQ=∠A OB =30°,OP=20,∴OQ=2√33OP=40√33,∴x=−40√3 3.[小贴士]切线的判定和性质,弧长计算,锐角三角函数定义,解题的关键是熟练掌握切线的性质.。

九年级数学《圆》单元测试卷及答案含有详细解析

九年级数学《圆》单元测试卷及答案含有详细解析

九年级数学《圆》单元测试卷一、选择题1、如果⊙O 的半径为6 cm ,OP =7cm ,那么点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 D .不能确定2、如图,在⊙O 中,AB =AC ,∠AOB=40°,则∠ADC 的度数是( )。

A .40° B .30° C .20° D .15°(第2题图) (第3题图) (第4题图) (第5题图) 3、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD=8,OP=3,则⊙O 的半径为() A .10 B .8 C .5 D .34、如图所示,四边形ABCD 内接于⊙O ,F 是弧CD 上一点,且弧DF=弧BC ,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为( )A. 45°B. 50°C. 55°D. 60°5、如图,AB 是⊙O 的切线,B 为切点,AO 与⊙O 交于点C.若∠BAO =40°,则∠CBA 的度数为( )A. 15°B. 20°C. 25°D. 30°6、如图,菱形ABCD 的对角线AC ,BD 相交于点O ,AC=8,BD=6,以AB 为直径作一个半圆,则图中阴影部分的面积为( )(第6题图) (第7题图)A .25π-6B .π-6C .π-6 D .π-67、如图,在△ABC 中,AB=CB ,以AB 为直径的⊙O 交AC 于点D .过点C 作CF ∥AB ,在CF 上取一点E ,使DE=CD ,连接AE .对于下列结论:①AD=DC ;②△CBA ∽△CDE ;③;④AE 为⊙O 的切线,一定正确的结论全部包含其中的选项是( )A .①②B .①②③C .①④D .①②④二、填空题8、如图,已知以直角梯形ABCD 的腰CD 为直径的半圆O 与梯形上底AD 、下底BC 以及腰AB 均相切,切点分别是D ,C ,E .若半圆O 的半径为2,梯形的腰AB 为5,则该梯形的周长是 。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。

如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。

2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。

3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版数学九年级上学期《圆》单元测试(满分120分,考试用时120分钟)一、单选题OP ,则点P与O的位置关系是( ) 1.已知O的半径为5,同一平面内有一点P,且7A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2.已知正六边形的边长是2,则该正六边形的边心距是()A.1 B C.2 D.23.如图,已知在⊙O中,BC是直径,AB=DC,∠AOD=80°,则∠ABC等于( )A.40°B.65°C.100°D.105°4.如图,ABCD为⊙O内接四边形,若∠D=85°,则∠B=( )A.85°B.95°C.105°D.115°5.如图,已知AB是⊙O直径,∠AOC=130°,则∠D等于()A.65°B.25°C.15°D.35°6.如图,AB是⊙O的直径,C,D为⊙O上的点,AD CD,如果∠CAB=40°,那么∠CAD的度数为()A.25°B.50°C.40°D.80°7.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为() A.相离B.相切C.相交D.相切、相交均有可能8.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外9.若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为()A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定10.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°11.如图,MN是⊙O的直径,MN=4,∠AMN=30°,点B为弧AN的中点,点P是直径MN上的一个动点,则P A+PB的最小值为()A.4 B.C.D.212.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD为O的直径,弦AB CD垂足为E,CE=1寸,AB=10寸,求直径CD的长”,依题意得CD的长为( )A.12寸B.13寸C.24寸D.26寸二、填空题13.如图,AB是⊙O的直径,D是AB延长线上一点,DC切⊙O于C,连接AC,若∠CAB=30°,则∠D =_____度.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.20.如图,矩形ABCD 中,3AB =,4AD =.作DE ⊥AC 于点E ,作AF ⊥BD 于点F .(1)求AF 、AE 的长;(2)若以点A 为圆心作圆, B 、C 、D 、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径 r 的取值范围.21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?23.如图,P是⊙O外一点,P A是⊙O的切线,A是切点,B是⊙O上一点,且P A=PB,延长BO分别与⊙O、切线P A相交于C、Q两点.(1)求证:PB是⊙O的切线;(2)QD为PB边上的中线,若AQ=4,CQ=2,求QD的值.24.如图,O 的直径AB 垂直弦CD 于M ,且M 是半径OB 的中点,8CD cm =,求直径AB 的长.25.如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为BD 的中点.若40A ∠=,求B ∠的度数.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)参考答案一、单选题12.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长六寸,问径几何?”用现代的数学语言表述是:“CD 为的直径,弦,垂足为E ,CE=1寸,AB=10寸,求直径CD 的长”,依题意得CD 的长为( )A .12寸B .13寸C .24寸D .26寸【答案】D 【解析】【分析】连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,然后利用垂径定理得出AE ,最后根据勾股定理进一步求解即可.【详解】如图,连接AO ,设直径CD 的长为寸,则半径OA=OC=寸,∵CD 为的直径,弦,垂足为E ,AB=10寸,∴AE=BE=AB=5寸,根据勾股定理可知, O AB CD⊥2xx 2x x O AB CD ⊥12在Rt △AOE 中,,∴,解得:,∴,即CD 长为26寸.【点评】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.二、填空题13.如图,AB 是⊙O 的直径,D 是AB 延长线上一点,DC 切⊙O 于C ,连接AC ,若∠CAB =30°,则∠D =_____度.【答案】30【解析】【分析】连接OC ,如图,根据切线的性质得∠OCD =90°,再根据等腰三角形的性质和三角形外角性质得到∠COD =60°,然后利用互余计算∠D 的度数.【详解】连接OC ,如图,∵DC 切⊙O 于C ,∴OC ⊥CD ,∴∠OCD =90°.∵OA =OC ,∴∠ACO =∠CAB =30°,∴∠COD =∠ACO +∠CAB =60°,∴∠D =90°﹣∠COD =90°﹣60°=30°. 故答案为30.222AO AE OE =+()22251x x =+-13x =226x=【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质. 14.如图,已知AB 是⊙O 的直径,AB=2,C 、D 是圆周上的点,且∠CDB=30°,则BC 的长为______.【答案】1【解析】【分析】根据同弧或等弧所对的圆周角相等可得∠A=∠CDB=30°,再根据AB 是⊙O 的直径,得出∠ACB=90°,则BC=AB ,从而得出结论. 【详解】解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠A=∠CDB=30°,∴BC=AB=, 故答案为1.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.15.若一个扇形的圆心角为45°,面积为6π,则这个扇形的半径为_______.12121212⨯=【答案】【解析】【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【详解】设扇形的半径为r.根据题意得:6π解得:r=故答案为【点评】本题考查了扇形的面积公式.熟练将公式变形是解题的关键.16.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为______.【答案】10cm【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•30=300π,然后解方程即可.【详解】解:根据题意得•2π•r•30=300π,解得r=10(cm).245360rπ=1212故答案为:10cm.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.三、解答题17.已知如图所示,OA、OB、OC是⊙O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB的中点.求证:MC=NC.【答案】证明见解析【解析】【分析】根据弧与圆心角的关系,可得∠AOC=∠BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC≌△NOC,继而证得结论.【详解】证明:∵弧AC和弧BC相等,∴∠AOC=∠BOC,∵OA=OB又∵M、N分别是OA、OB的中点∴OM=ON,在△MOC和△NOC中,OM ONAOC BOCOC OC,=⎧⎪∠=∠⎨⎪=⎩∴△MOC≌△NOC(SAS),∴MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.18.如图,AB为⊙O的直径,过点C的切线DE交AB的延长线于点D,AE⊥DC,垂足为E.求证:AC平分∠BAE.【答案】证明见解析【解析】【分析】连接OC,根据切线的性质得到OC⊥CD,根据平行线的性质、等腰三角形的性质得到∠EAC=∠CAO,即AC平分∠BAE.【详解】如图:连接OC.∵DE切⊙O于点C,∴OC⊥DE.又∵AE⊥DC,∴OC∥AE,∴∠ACO=∠EAC.∵OA=OC,∴∠ACO=∠OAC,∴∠EAC=∠OAC,∴AC平分∠BAE.【点评】本题考查了切线的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.19.如图,四边形ABCD 是⊙O 的内接四边形,BD 是∠ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F .(1)求证:△AED ≌△CFD;(2)若AB =10,BC =8,∠ABC =60°,求BD 的长度.【答案】(1)见解析【解析】【分析】(1)由角平分线性质定理可得DE =DF ,由圆内接四边形性质可得∠A +∠BCD =180°,然后代换可得∠A =∠DCF ,又∠DEA =∠F =90°, 所以△AED ≌△CFD;(2)由三角形全等可得AE =CF ,BE =BF ,设AE =CF =x ,可得x =1;在Rt △BFD ,根据30°所对的直角边是斜边的一半,则BD =2DF ,利用勾股定理解得BD =【详解】(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A +∠BCD =180°,又∵∠DCF +∠BCD =180°,∴∠A =∠DCF∵BD 是∠ABC 的角平分线,又∵DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∠DEA =∠F =90°,∴△AED ≌△CFD.(2)∵△AED ≌△CFD ,∴AE =CF ,BE =BF ,设AE =CF =x ,则BE =10-x ,BF =8+x ,即10-x =8+x ,解得x =1,在Rt △BFD ,∠DBC =30°,设DF =y ,则BD =2y ,∵BF 2+DF 2=BD 2,∴y 2+92=(2y)2,y =BD =【点评】本题考查了全等三角形的性质和判定,勾股定理等知识,由条件灵活转移线段关系是解题关键. 20.如图,矩形中,,.作DE ⊥AC 于点E ,作AF ⊥BD 于点F . (1)求AF 、AE 的长;(2)若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,且至少有2个点在圆外,求的半径 的取值范围.【答案】(1),;(2) 【解析】【分析】(1)先利用等面积法算出AF=,再根据勾股定理得出; (2)根据题意点F 只能在圆内,点C 、D 只能在圆外,所以⊙A 的半径r 的取值范围为.【详解】解:如图,ABCD 3AB =4AD =A B C D Ar 125AF =165AE = 2.44r <<125165AE = 2.44r <<(1)在矩形中,,.∴∵DE ⊥AC ,AF ⊥BD ,∴ ; ∴AF=, 同理,DE=, 在Rt △ADE 中,=, (2) 若以点为圆心作圆, 、、、E 、F 五点中至少有1个点在圆内,则r>2.4,当至少有2个点在圆外,r<4,故⊙A 的半径r 的取值范围为:21.如图,已知.(1)用尺规作正六边形,使得是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.ABCD 3AB =4AD =11··22ABD S AB AD BD AF ==△125125165A B C D 2.44r <<O O【答案】(1)答案见解析;(2)答案见解析【解析】【分析】(1)利用正六边形的性质外接圆边长等于外接圆半径;(2)连接对角线以及利用正六边形性质.【详解】解:(1)如图所示:,(2)如图所示:【点评】此题主要考查了复杂作图以及全等三角形和正六边形的性质,根据正六边形性质得出作法是解题关键.22.校运会期间,小捷同学积极参与各项活动.在铅球项目中,他掷出的铅球在场地上压出一个小坑(图示是其主视图),经测量,其中坑宽AB为8cm,小坑的最大深度为2cm,请帮助小捷同学计算铅球的半径OA 的长为多少?【答案】5cm【解析】【分析】先根据垂径定理求出AD 的长,设OA=rcm ,则OD=(r-2)cm ,再根据勾股定理求出r 的值即可.【详解】解:作OD ⊥AB 于D ,如图所示:∵AB=8cm ,OD ⊥AB ,小坑的最大深度为2cm ,∴AD=AB=4cm . 设OA=rcm ,则OD=(r-2)cm在Rt △OAD 中,∵OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm;即铅球的半径OA 的长为5cm .【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.23.如图,P 是⊙O 外一点,P A 是⊙O 的切线,A 是切点,B 是⊙O 上一点,且P A =PB ,延长BO 分别与⊙O 、切线P A 相交于C 、Q 两点.(1)求证:PB 是⊙O 的切线;(2)QD 为PB 边上的中线,若AQ =4,CQ =2,求QD 的值.12【答案】(1)详见解析;(2)QD【解析】【分析】(1)要证明PB 是⊙O 的切线,只要证明∠PBO=90°即可,根据题意可以证明△OBP ≌△OAP ,从而可以解答本题;(2)根据题意和勾股定理的知识,可以求得QD 的值.【详解】(1)证明:连接OA ,在△OBP 和△OAP 中,,∴△OBP ≌△OAP (SSS ),∴∠OBP =∠OAP ,∵P A 是⊙O 的切线,A 是切点,∴∠OAP =90°,∴∠OBP =90°,∵OB 是半径,∴PB 是⊙O 的切线;(2)连接OCPA PB OB OAOP OP ⎧⎪⎨⎪⎩===∵AQ=4,CQ=2,∠OAQ=90°,设OA=r,则r2+42=(r+2)2,解得,r=3,则OA=3,BC=6,设BP=x,则AP=x,∵PB是圆O的切线,∴∠PBQ=90°,∴x2+(6+2)2=(x+4)2,解得,x=6,∴BP=6,∴BD=3,∴QD,即QD【点评】本题考查切线的判定与性质,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.如图,的直径垂直弦于,且是半径的中点,,求直径的长.【解析】【分析】连接OC ,根据垂径定理可求CM =DM =4cm ,再运用勾股定理可求半径OC ,则直径AB 可求.【详解】连接OC .设圆的半径是r .∵直径AB ⊥CD,∴CM =DM =CD =4cm . ∵M 是OB 的中点,∴OM =r ,由勾股定理得:OC 2=OM 2+CM 2,∴r 2=(r )2+42,解得:r =,则直径AB =2r =(cm ).【点评】本题考查了垂径定理,解此类题一般要把半径、弦心距、弦的一半构建在一个直角三角形里,运用勾股定理求解.25.如图,四边形内接于,为的直径,点为的中点.若,求的度数. O AB CD M M OB 8CD cm =AB 1212123ABCD O AB O C BD 40A ∠=B ∠【答案】.【解析】【分析】连接AC ,根据圆周角定理可得∠ACB=90°,∠BAC=∠BAD ,然后根据∠B 与∠BAC 互余即可求解.【详解】解:连接,∵是直径,∴,∵点为的中点,,∴, ∴在中,.【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.26.如图是破残的圆形轮片,求作此残片所在的圆.(不写作法,保留作图痕迹)【答案】见解析70B ∠=12AC AB 90ACB ∠=C BD 40BAD ∠=11402022BAC BAD ∠=∠=⨯=Rt ABC 902070B ∠=-=【解析】【分析】根据圆的性质,弦的垂直平分线过圆心,所以只要找到两条弦的垂直平分线,交点即为圆心,有圆心就可以作出圆轮.【详解】如图:圆O为所求.【点评】本题考查了圆的基本性质,是一种求圆心的作法.作圆的方法有:①圆心半径;②三个圆上的点.。

初三数学《圆》全章测试及答案

初三数学《圆》全章测试及答案

北京市第八中学分校202010月初三数学总复习圆 全章测试题班级: 姓名: 分数: 一、选择题 (每题4分,共32分)1.如图,AB 是⊙O 的直径,CD 是弦,AB ⊥CD 于点E, 若AB=10,CD=6,则OE 的长是( ).A.4B.3C.2D.12.半径分别为3和7的两个圆的圆心距为d ,若4<d≤11,则这两个圆的位置关系一定是( )A .相交B .相切C .内切或相交D .外切或相交 3.如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是( )A .AB ⊥CD B .∠AOB=4∠ACDC .AD=BD D .PO=PD 4. 一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为( )A .6cmB .12cmC .2cm D .cm5.O 是△ABC 的外心,且∠ABC+∠ACB=100°,则∠BOC=( ). A .100° B .120° C .130° D .160°6.下列语句中,正确的个数是( )个.①相等的圆心角所对的弧相等;②同圆或等圆中,相等的圆周角所对的弦相等;③一边上的中线等于这条边一半的三角形是直角三角形;第1题第3题④等弧所对的圆周角相等;⑤一条弧所对的圆心角等于它所对的圆周角的一半A.2B.3C.4D.57.如图已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,∠AOB =45°,点P 在数轴上运动,若过点P 与OA 平行的直线与⊙O 有公共点,设OP =x ,则x 的取值范围是( )A .0≤x ≤2B .-2≤x ≤2C .-1≤x ≤1D .x >28.设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =8cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积等于( )A .(4π+8)cm 2B .(4π+16)cm 2C .(3π+8) cm 2D .(3π +16)cm 2 二.填空题(每小题3分,共24分)9.如图,AB 是⊙O 的直径,弦CD⊙AB ,若⊙ABD =65°,则⊙ADC =__________.10.如图,AB 为半圆O 的直径,∠BAC =31°,D 为AC 上任意一点,则∠D的度数为__________.11.圆所在平面上的一点到该圆上的最小距离为4cm ,最大距离为10cm ,则该圆的半径为___________.12. 四边形ABCD 是⊙O 的内接四边形,且∠A ∶∠B ∶∠C=2∶3∶4,则 ∠D= 度。

(完整版)初三数学圆单元测试卷(含答案)

(完整版)初三数学圆单元测试卷(含答案)

圆单元测试卷(总分:120 分时间:120 分钟)一、填空题(每题 3 分,共 30 分)1.如图1 所示AB 是⊙O的弦,OC⊥AB于C,若OA=2cm,OC=1cm,则AB 长为.图1 图2 图 32.如图2 所示,⊙O的直径CD 过弦EF 中点G,∠EOD=40°,则∠DCF=.3.如图 3 所示,点 M,N 分别是正八边形相邻两边 AB,BC 上的点,且 AM=BN,则∠MON=度.4.如果半径分别为2 和3 的两个圆外切,那么这两个圆的圆心距是.5.如图4 所示,宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm)则该圆的半径为cm.图4 图5 图66.如图5 所示,⊙A的圆心坐标为(0,4),若⊙A的半径为3,则直线y=x 与⊙A 的位置关系是.7.如图6 所示,O 是△ABC的内心,∠BOC=100°,则∠A=.8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为.(用含的式子表示)9.已知圆锥的底面半径为 40cm,母线长为 90cm,则它的侧面展开图的圆心角为.41 2210. 矩形 ABCD 中,AB=5,BC=12,如果分别以 A ,C 为圆心的两圆相切,点 D 在⊙C 内,点B在⊙C 外,那么⊙A 的半径 r 的取值范围为 .二、选择题(每题 4 分,共 40 分)11. 如图 7 所示,AB 是直径,点 E 是 AB 中点,弦 CD∥AB 且平分 OE ,连 AD ,∠BAD 度数为( )A .45°B .30°C .15°D .10°图 7 图 8 图 912.下列命题中,真命题是( )A .圆周角等于圆心角的一半B .等弧所对的圆周角相等C .垂直于半径的直线是圆的切线D .过弦的中点的直线必经过圆心13.(易错题)半径分别为 5 和 8 的两个圆的圆心距为 d ,若 3<d≤13, 则这两个圆的位置关系一定是( ) A .相交B .相切C .内切或相交D .外切或相交14. 过⊙O 内一点 M 的最长弦长为 10cm ,最短弦长为 8cm ,那么 OM 长为( )A .3cmB .6cmC . cmD .9cm15. 半径相等的圆的内接正三角形,正方形边长之比为( )A .1:B .:C .3:2D .1:216. 如图 8,已知⊙O 的直径 AB 与弦 AC 的夹角为 35°,过 C 点的切线 PC 与 AB 的延长线交于点 P ,则∠P 等于( ) A .15°B .20°C .25°D .30°17. 如图 9 所示,在直角坐标系中,A 点坐标为(-3,-2),⊙A 的半径为 1,P 为 x 轴上一动点,PQ 切⊙A 于点 Q ,则当 PQ 最小时,P 点的坐标为( ) A .(-4,0)B .(-2,0)C .(-4,0)或(-2,0)D .(-3,0)18.在半径为 3 的圆中,150°的圆心角所对的弧长是( )23A . 154B . 152C .54D .5219. 如图 10 所示,AE 切⊙D 于点 E ,AC=CD=DB=10,则线段 AE 的长为( )A .10B .15C .10D .2020. 如图 11 所示,在同心圆中,两圆半径分别是 2 和 1,∠AOB=120°, 则阴影部分的面积为( )A. 4B. 2C.34D.三、解答题(共 50 分)21.(8 分)如图所示,CE 是⊙O 的直径,弦 AB⊥CE 于 D ,若 CD=2,AB=6,求⊙O 半径的长.22.(8 分)如图所示,AB 是⊙O 的直径,BC 切⊙O 于 B ,AC 交⊙O 于 P ,E 是 BC 边上的中点,连结 PE ,PE 与⊙O 相切吗?若相切,请加以证明,若不相切,请说明理由.23.(12 分)已知:如图所示,直线 PA 交⊙O 于 A ,E 两点,PA 的垂线 DC 切⊙O 于点 C ,过 A 点作⊙O 的直径 AB .(1)求证:AC 平分∠DAB;(2)若 AC=4,DA=2,求⊙O 的直径.324.(12 分)“五一”节,小雯和同学一起到游乐场玩大型摩天轮, 摩天轮的半径为 20m ,匀速转动一周需要 12min ,小雯所坐最底部的车厢(离地面 0.5m ). (1)经过 2min 后小雯到达点 Q 如图所示,此时他离地面的高度是多少.(2)在摩天轮滚动的过程中,小雯将有多长时间连续保持在离地面不低于 30.5m 的空中.25.(10 分)如图所示,⊙O 半径为 2,弦 BD=2 ,A 为弧 BD 的中点,E 为弦 AC 的中点,且在 BD 上,求四边形 ABCD 的面积.3 3 3 3 3答案:13 1.2 cm 2.20° 3.45 4.5 5. 6.相交47.20° 8.40cm 29.160° 10.1<r<8 或 18<r<2511.C 12.B 13.D 14.A 15.B 16.B 17.D 18.D 19.C 20.B121. 解:连接 OA ,∵CE 是直径,AB⊥CE,∴AD= AB=3.2∵CD=2,∴OD=OC-CD=OA-2.由勾股定理,得 OA 2-OD 2=AD 2, ∴OA 2-(OA-2)2=92,解得 OA=13,∴⊙O 的半径等于13 .4422. 解:相切,证 OP⊥PE 即可.23. 解:(1)连 BE ,BC ,∠CAB+∠ABC=90°,∠DCA=∠ABC,∴∠DAC,∠CAB,AC 平分∠DAB.(2)DA=2,AC=4,∠ACD=30°,∠ABC=∠DCA=30°,∵AC=4,∴AB=8. 124.(1)10.5 (2) ×12=4(min ).325.解:连结 OA 交 BD 于点 F ,连接 OB .∵OA 在直径上且点 A 是 BD 中点,∴OA ⊥BD ,•BF=DF= .在 Rt △BOF 中,由勾股定理得 OF 2=OB 2-BF 2,OF= =1. OA = 2,∴ AF = 1,∴ S∆ABD =2 3 ⨯1 = .2∵点 E•是 AC 中点,∴AE=CE .又∵△ADE 和△CDE 同高,∴S △CDE =S △ADE , 同理 S △CBE =S △ABE ,∴S △BCD =S △CDE +S △CBE =S △ADE +S △ABE =S △ABD = , ∴S 四边形 ABCD =S △ABD +S △BCD =2 .22 - ( 3)2。

数学九年级上册《圆》单元综合检测题(含答案)

数学九年级上册《圆》单元综合检测题(含答案)
(5)在同圆中,同一条弧所对的圆周角相等,但同一条弦所对的圆周角不一定相等,正确;
故(2)(5)正确,
故选B.
【点睛】本题考查圆周角定理、线段的垂直平分线的性质、垂径定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长交⊙O于点D,∠D=30°,则∠BAD的度数是()
6.如图,以半径为2的正六边形ABCDEF的中心O为原点建立平面直角坐标系,顶点A,D在x轴上,则点C的坐标为()
A. B. C. D.
【答案】C
【解析】
试题解析:连接OC.
∵∠COD=60°,OC=OD,
∴△COD是等边三角形,
∴OC=OD=2.
设BC交y轴于G,则∠GOC=30°.
在Rt△GOC中,∵∠GOC=30°,OC=2,
(1)请直接写出旋转角的度数;
(2)若BC=2 ,试求线段BC在上述旋转过程中所扫过部分的面积.
23.已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.
(1)求证:ED=EC;
(2)若CD=3,EC=2 ,求AB的长.
24.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F,BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB,
(1)求证:DC是⊙O 切线;
(2)若⊙O半径为4,∠OCE=30°,求△OCE的面积.
20.如图,在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P,AC=8,BC=6.
(1)当点O在AC上时,求证:2∠ACP=∠B;

人教版九年级数学上册第二十四章圆单元测试(含答案)

人教版九年级数学上册第二十四章圆单元测试(含答案)

人教版九年级数学上册第二十四章圆单元测试(含答案)一、单选题1.下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦; ④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是 ( ) A .①③ B .①③④ C .①②③ D .②④2.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为P .若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .33.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为( )A.4mB.5mC.6mD.8m4.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .45.如图,C 、D 为半圆上三等分点,则下列说法:①AD =CD =BC ;②∠AOD =∠DOC =∠BOC ;③AD =CD =OC ;④△AOD 沿OD 翻折与△COD 重合.正确的有( )A.4个B.3个C.2个D.1个6.下列各角中,是圆心角的是()A. B. C. D.7.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°8.如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是60°,则∠ACD的度数为( )A.60°B.30°C.120°D.45°9.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定10.如图,AB是⊙O 的直径,BC是⊙O 的切线,若OC=AB,则∠C的度数为()A.15°B.30°C.45°D.60°11.如图,在平行四边形ABCD中,∠A=2∠B,⊙C的半径为3,则图中阴影部分的面积是()A .πB .2πC .3πD .6π12.如图,已知在⊙O 中,AB=4, AF=6,AC 是直径,AC ⊥BD 于F ,图中阴影部分的面积是( )A. B.C. D.13.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( )2π- 2π C.π D.2π二、填空题14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________.15.如图,在⊙O 中,已知∠AOB =120°,则∠ACB =________.16.如图,在O 中,直径4AB =,弦CD AB ⊥于E ,若30A ∠=,则CD =____17.如图,在O 中,120AOB ∠=︒,P 为劣弧AB 上的一点,则APB ∠的度数是_______.三、解答题18.如图,在△ABC 中,已知∠ACB=130°,∠BAC=20°,BC=2,以点C 为圆心,CB 为半径的圆交AB 于点D ,求弦BD 的长19.如图,在 Rt △ABC 中,∠C =90°,以 BC 为直径的⊙O 交 AB 于点 D ,过点 D 作∠ADE =∠A ,交 AC 于点 E .(1)求证:DE 是⊙O 的切线;(2)若34BCAC=,求DE 的长.20.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:A DOB∠=∠;(2)DE与⊙O有怎样的位置关系?请说明理由.21.如图所示,一个圆锥的高为h=(1)圆锥的母线长与底面圆的半径之比;(2)母线AB与AC的夹角;(3)圆锥的全面积.答案1.A2.A3.D4.B5.A6.D7.D8.B9.A10.B11.C12.D13.A14.6.15.60°16.17.12018.解:如图,作CE ⊥AB 于E .∵∠B=180°-∠A-∠ACB=180°-20°-130°=30°,在Rt △BCE 中,∵∠CEB=90°,∠B=30°,BC=2,∴CE=12BC=1,∵CE⊥BD,∴DE=EB,∴19.(1)证明:连接OD,如图,∵∠C=90°,∴∠A+∠B=90°,∵OB=OD,∴∠B=∠ODB,而∠ADE=∠A,∴∠ADE+∠ODB=90°,∴∠ODE=90°,∴OD⊥DE,∴DE 是⊙O 的切线;(2)解:在Rt△ABC 中34 BC AC∴AC=43×15=20,∵ED 和EC 为⊙O 的切线,∴ED=DC,而∠ADE=∠A,∴DE=AE,∴AE=CE=DE12AC=10,即DE 的长为10.20.(1)连接OC ,D Q 为BC 的中点,∴CD BD =,12BOD BOC ∴∠=∠, 12BAC BOC ∠=∠, A DOB ∴∠=∠;(2)DE 与⊙O 相切,理由如下:A DOB ∠=∠,//AE OD ∴,∴∠ODE+∠E=180°,DE AE ⊥,∴∠E=90°,∴∠ODE=90°,OD DE ∴⊥,又∵OD 是半径,DE ∴与⊙O 相切.21.(1)设圆锥的母线长为l ,底面圆的半径为r .∵圆锥的侧面展开图是半圆,∴2r l ππ=,∴2l r =,∴21l r =::.即圆锥的母线长与底面圆的半径之比为2:1.(2)∵2l r =,即2AB BO =,∴30BAO ∠︒=,∴60BAC ∠︒=,即母线AB 与AC 的夹角为60︒.(3)在Rt AOB 中,222l h r =+,又2l r =,h =∴36r l =,=,∴227S S S rl r πππ全底=+=+=侧人教版九上数学第二十四章圆单元测试卷一.选择题1.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦2.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°3.如图,△ABC内接于⊙O,连结OA,OB,∠ABO=40°,则∠C的度数是()A.100°B.80°C.50°D.40°4.在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A.100°B.110°C.120°D.130°5.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°6.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则△ADE的周长是()A.9+3B.12+6C.18+3D.18+67.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度(米)为()A.2B.4 C.4D.4π8.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为()A.4﹣πB.2﹣πC.4﹣πD.2﹣π9.如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.B.2 C.D.10.如图,3个正方形在⊙O直径的同侧,顶点B,C,G,H都在⊙O的直径上,正方形ABCD 的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上,顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则正方形PCGQ的面积为()A.5 B.6 C.7 D.1011.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣12.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.4 B.6 C.3D.2二.填空题13.如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD=度.14.边长为4的正六边形内接于⊙M,则⊙M的半径是.15.△ABC为半径为5的⊙O的内接三角形,若弦BC=8,AB=AC,则点A到BC的距离为.16.如图,BD为⊙O的直径,=,∠ABD=35°,则∠DBC=°.17.如图,在扇形AOB中,OA=OB=4,∠AOB=120°,点C是上的一个动点(不与点A,B重合),射线AD与扇形AOB所在⊙O相切,点P在射线AD上,连接AB,OC,CP,若AP=2,则CP的取值范围是.三.解答题18.如图,在△ABC中,∠C=90°,点O为BE上一点,以OB为半径的⊙O交AB于点E,交AC于点D.BD平分∠ABC.(1)求证:AC为⊙O切线;(2)点F为的中点,连接BF,若BC=,BD=8,求⊙O半径及DF的长.19.如图,已知AB是⊙O直径,AC是⊙O弦,点D是的中点,弦DE⊥AB,垂足为F,DE交AC于点G.(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由;(2)在满足第(2)问的条件下,已知AF=3,FB=,求AG与GM的比.20.如图,四边形ABCD是平行四边形,以AB为直径的⊙O与CD切于点E,AD交⊙O于点F.(1)求证:∠ABE=45°;(2)连接CF,若CE=2DE,求tan∠DFC的值.21.如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为.22.如图,在平行四边形ABCD中,AE⊥BC,垂足为点E,以AE为直径的⊙O与边CD相切于点F,连接BF交⊙O于点G,连接EG.(1)求证:CD=AD+CE.(2)若AD=4CE,求tan∠EGF的值.23.如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC上任意一点,且∠AMC=60°.(1)若BC=6,求△ABC的面积;(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.24.如图,⊙O的直径AB为10cm,点E是圆内接△ABC的内心,CE的延长线交⊙O于点D (1)求AD的长;(2)求DE的长.参考答案一.选择题1.解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.解:∵AB是⊙O的直径,∴∠ADB=90°.又∠BAD=25°,∴∠B=65°.∴∠C=65°.故选:B.3.解:∵OA=OB,∠ABO=40°,∴∠AOB=100°,∴∠C=∠AOB=50°,故选:C.4.解:在优弧AB上取点C,连接AC、BC,由圆周角定理得,∠ACB=AOB=60°,由圆内接四边形的性质得到,∠APB=180°﹣∠ACB=120°,故选:C.5.解:连接OB,∵∠ACB=25°,∴∠AOB=2∠ACB=50°,∵OA=OB,∴∠OAB=∠OBA==65°.故选:D.6.解:连接OE,∵多边形ABCDEF是正多边形,∴∠DOE==60°,∴∠DAE=∠DOE=×60°=30°,∠AED=90°,∵⊙O的半径为6,∴AD=2OD=12,∴DE=AD=×12=6,AE=DE=6,∴△ADE的周长为6+12+6=18+6,故选:D.7.解:正方形桌布对角线长度为圆形桌面的直径加上两个高,即2+1+1=4(米),设正方形边长是x米,则x2+x2=42,解得:x=2,所以正方形桌布的边长是2米.故选:A.8.解:连接OA,OD∵OF⊥AD,∴AC=CD=,在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,则∠DOA=120°,OA=2,∴Rt△OAE中,∠AOE=60°,OA=2∴AE=2,S阴影=S△OAE﹣S扇形OAF=×2×2﹣×π×22=2﹣π,故选:B.9.解:取DE的中点O,过O作OG⊥AB于G,连接OC,又∵CO=1.5,∴只有C、O、G三点一线时G到圆心O的距离最小,∴此时OG达到最小.∴MN达到最大.作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴AB==5,∵AC•BC=AB•CF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,故选:C.10.解:连接AO、PO、EO,设⊙O的半径为r,O C=x,OG=y,由勾股定理可知:,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=,∴正方形PCGQ的面积为6,故选:B.11.解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =OB =1,在Rt △COD 中利用勾股定理可知:CD ==,AC =2CD =2,∵sin ∠COD ==, ∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =OB ×AC =×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 扇形AOC ﹣S 菱形ABCO =π﹣2, 故选:C .12.解:连接OD ,∵DF 为圆O 的切线,∴OD ⊥DF ,∵△ABC 为等边三角形,∴AB =BC =AC ,∠A =∠B =∠C =60°, ∵OD =OC ,∴△OCD 为等边三角形,∴∠CDO =∠A =60°,∠ABC =∠DOC =60°, ∴OD ∥AB ,∴DF ⊥AB ,在Rt △AFD 中,∠ADF =30°,AF =2, ∴AD =4,即AC =8,∴FB =AB ﹣AF =8﹣2=6,在Rt△BFG中,∠BFG=30°,∴BG=3,则根据勾股定理得:FG=3.故选:C.二.填空题(共5小题)13.解:∵四边形OABC是平行四边形,OC=OA,∴OA=AB,∵OD⊥AB,OD过O,∴AE=BE,=,即OA=2AE,∴∠AOD=30°,∴和的度数是30°∴∠BAD=15°,故答案为:15.14.解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,∴边长为4的正六边形外接圆半径是4.故答案为4.15.解:作AH⊥BC于H,连结OB,如图,∵AB=AC,AH⊥BC,∴BH=CH=BC=4,AH必过圆心,即点O在AH上,在Rt△OBH中,OB=5,BH=4,∴OH==3,当点O在△ABC内部,如图1,AH=AO+OH=5+3=8,当点O在△ABC内部,如图2,AH=AO﹣OH=5﹣3=2,∴综上所述,点A到BC的距离为8或2,故答案为:8或2.16.解:连接DA、DC,∵BD为⊙O的直径,∴∠BAD=∠BCD=90°,∵∠ABD=35°,∴∠ADB=55°,由圆周角定理得,∠ACB=∠ADB=55°,∵=,∴AB=AC,∴∠ABC=∠ACB=55°,∴∠BAC=70°,由圆周角定理得,∠BDC=∠BAC=70°,∴∠DBC=20°,故答案为:20.17.解:如图,当O、C、P三点在一条直线上时,∵射线AD与扇形AOB所在⊙O相切,∴∠OAP=90°,∵AO=4,AP=2,∴=2,∴PC=2﹣4,过点O作OE⊥AB于点E,连接PE、PB,∵OA=OB=4,∠AOB=120°,∴∠OAB=∠OBA=30°,∴AE=BE=2,∠BAP=60°,∴AE=AP,∴△AEP是等边三角形,∴∠AEP=60°,∴∠EPB=30°,∴∠APB=90°,∴==6,∵点C不与A、B重合,∴PC的取值范围是2.故答案为:2.三.解答题(共7小题)18.(1)证明:连接OD,∵BD平分∠ABC,∴∠CBD=∠OBD,∵OB=OD,∴∠ODB=∠OBD,∴∠ODB=∠CBD,∴OD∥BC,∴∠ADO=∠C=90°,∴OD ⊥AC ,∴AC 为⊙O 切线;(2)解:∵BE 为⊙O 的直径,∴∠BDE =90°,∴∠C =∠BDE ,∵∠CBD =∠EBD ,∴△CBD ∽△DBE ,∴,即=,∴BE =10,∴⊙O 半径OB =5;∴DE =6,∵点F 为的中点,∴=,∴∠EDF =∠BDF =45°,过B 作BM ⊥DF 于M ,过E 作EN ⊥DF 于N ,连接EF ,∴BM =BD =4,EN =DE =3,EF =BE =5, ∴S 四边形BDEF =S △BEF +S △BDE =S △DEF +S △DBF ,∴×5×5+×6×8=×3DF +×4DF ,∴DF =7.19.解:(1)ME =MG 成立,理由如下:如图,连接EO ,并延长交⊙O 于N ,连接BC ;∵AB是⊙O的直径,且AB⊥DE,∴,∵点D是的中点,∴,∴,∴,即A C=DE,∠N=∠B;∵ME是⊙O的切线,∴∠MEG=∠N=∠B,又∵∠B=90°﹣∠GAF=∠AGF=∠MGE,∴∠MEG=∠MGE,故ME=MG.(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;故DE=AC=2DF=4;∵∠FAG=∠CAB,∠AFG=∠ACB=90°,∴△AFG∽△ACB,∴,即,解得AG=,GC=AC﹣AG=;设ME=MG=x,则MC=x﹣,MA=x+,由切割线定理得:ME2=MC•MA,即x2=(x﹣)(x+),解得MG=x=;∴AG:MG=:=10:3,即AG与GM的比为.20.(1)证明:如图1,连接OE,∵四边形ABCD是平行四边形,∴AB∥CD,∵DC是⊙O的切线,∴OE⊥CD,∴OE⊥AB,∴∠EOB=90°,∵OE=OB,∴∠ABE=45°;(2)解:如图2,连接OE,则OE⊥CD,设DE=x,则CE=2x,∴AB=CD=3x,∴OA=OE=OB=1.5x,过D作DG⊥AB于G,∴DG=OE=1.5x,OG=DE=x,∴AG=x,∵AB是⊙O的直径,∴∠AFB=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBF=∠AFB=90°,∠BCF=∠DFC,Rt△ADG中,BC=AD===,∵∠A=∠A,∠AFB=∠AGD=90°,∴△AGD∽△AFB,∴,∴=,∴BF=,Rt△BFC中,tan∠DFC=tan∠BCF===.21.解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=5,BE=ED,∴∠ABE=∠CBE,∠CBE=∠D,又∵∠EAC=∠CBE,∴∠EAC=∠D.又∵∠CED=∠AEB,∴△AEF∽△DEC,∴=,即=,解得DE=9.故答案为:①60°;②9.22.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE⊥BC,∴AD⊥OA,∵AO是⊙O的半径,∴AD是⊙O的切线,又∵DF是⊙O的切线,∴AD=DF,同理可得CE=CF,∵CD=DF+CF,∴CD=AD+CE.(2)解:连接OD,AF相交于点M,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.∵AD=4CE,∴设CE=t,则AD=4t,∴BE=3t,AB=CD=5t,∴在Rt△ABE中,AE==4t,∴OA=OE=2t,∵DA,DF是⊙O的两条切线,∴∠ODA=∠ODF,∵DA=DF,∠ODA=∠ODF,∴AF⊥OD,∴在Rt△OAD中,tan∠ODA=,∵∠OAD=∠AMD=90°,∴∠EAF=∠ODA,∵,∴∠EGF=∠EAF,∴∠ODA=∠EGF,∴tan∠EGF=.23.解:(1)∵∠ABC=∠AMC=60°,而AB=AC,∴△ABC为等边三角形,∴△ABC的面积=BC2=×36=9;(2)MA=MB+MC,理由如下:∵BD=DM,∠AMB=∠ACB=60°,∴△BDM为正三角形,∴BD=BM,∵∠ABC=∠DBM=60°,∴∠ABC﹣∠DBC=∠DBM﹣∠DBC,∴∠ABD=∠CBM,在△ABD与△CBM中,,∴△ABD≌△CBM(SAS),∴AD=CM,∴MA=MD+AD=MB+MC.24.解:(1)连接BD,如图,∵AB为⊙O的直径,∴∠ACB=∠ADB=90°,∵点E是圆内接△ABC的内心,∴CE平分∠ACB,∴∠1=45°,∴∠DBA=∠1=45°,∴△ADB为等腰直角三角形,∴AD=AB=×10=5;(2)连接AE,如图,∵点E是圆内接△ABC的内心,∴∠2=∠4,∵∠1=∠5,∴∠3=∠1+∠2=∠5+∠4,即∠3=∠DAE,∴DE=DA=5.人教版九年级数学(上)第24章《圆》单元检测题一.选择题1.如图,AO是圆锥的高,圆锥的底面半径OB=0.7,AB的长为2.5,则AO的长为()A.2.4 B.2.2 C.1.8 D.1.62.如图,OA为⊙O的半径,点P为OA的中点,Q为⊙O上的点,且∠APQ=135°,若OA=2,则PQ的长度为()A.B.C.3D.3.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.内含4.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=130°,则∠BOD=()A.50°B.80°C.100°D.130°5.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是()A.25°B.20°C.80°D.100°6.下列命题错误的是()A.经过平面内三个点有且只有一个圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.圆内接菱形是正方形7.如图,A、B、C是半径为4的⊙O上的三点.如果∠ACB=45°,那么的长为()A.πB.2πC.3πD.4π8.如图,已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为()A.点M在⊙C上B.点M在⊙C内C.点M在⊙C外D.点M不在⊙C内9.如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是()A.6﹣πB.6﹣πC.12﹣πD.12﹣π10.如图,BC是⊙O的直径,AB是⊙O的弦,PA,PC均是⊙O的切线,若∠B=40°,则∠P 的度数是()A.80°B.90°C.100°D.120°11.如图,⊙O直径是10,弦AB长为8,M是AB上的一个动点,则OM的长度不可能是()A.5 B.4 C.3 D.212.如图,⊙C过原点,且与坐标轴分别交于点A和点B,点A的坐标为(0,3),点B的坐标为(﹣3,0),且M是第三象限内⊙C上一点,则∠BMO的度数为()A.100°B.110°C.120°D.130°二.填空题13.在边长为的正方形OABC中,D为边BC上一点,且CD=1,以O为圆心,OD为半径作圆,分别与OA、OC的延长线交于点E、F,则阴影部分的面积为.14.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.16.如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为.17.如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).18.在⊙O中,直径AB=4,PD与⊙O相切于点C,交AB的延长线与点D,且∠PDO=30°,则劣弧的弧长为.三.解答题19.如图,CD是⊙O的直径,若AB⊥CD,垂足B.(1)若∠OAB=40°,求∠C度数;(2)若∠C=30°,AC=4,求⊙O的直径.20.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)PC=2,OA=4,求⊙O的半径.21.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.22.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.23.如图,AB是⊙O的直径,AE交⊙O于点F,且与⊙O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8,求⊙O的半径.24.如图,已知四边形ADBC是⊙O的内接四边形,AB是直径,AB=10cm,BC=8cm,CD平分∠ACB.(1)求AC与BD的长;(2)求四边形ADBC的面积.25.如图,在⊙O中,直径CD⊥弦AB于点E,点P是CD延长线上一点,连接PB、BD.(1)若BD平分∠ABP,求证:PB是⊙O的切线;(2)连接AP,延长BD交AP于点F,若BD⊥AP,AB=,OP=,求OE的长度.参考答案一.选择题1.解:由勾股定理得,AO==2.4,故选:A.2.解:作OE⊥PQ于E,连接OQ.∵AP=OP=1,∠APQ=135°,∴∠OPE=45°,∴OE=PE=,在Rt△OQE中,QE===,∴PQ=PE+QE=+=,故选:D.3.解:∵⊙O的半径为5cm,OA=4cm,∴点A与⊙O的位置关系是:点A在⊙O内.故选:A.4.解:∵四边形ABCD为⊙O的内接四边形,∠BCD=130°,∴∠A+∠BCD=180°,∴∠A=50°,由圆周角定理得,2∠A=∠BOD=100°,故选:C.5.解:∵∠BOC=50°,∴∠A=∠BOC=25°.故选:A.6.A、当三点在一直线上时,三点不共圆;故本项错误,符合题意;B、三角形的外心是三角形外接圆的圆心,即三角形三边垂直平分线的交点;它到三角形三个顶点的距离都相等;故本选项正确,不符合题意;C、因为在同圆或等圆中圆心角相等,弧相等,弦相等,弦心距相等,在这几组相等关系中,只要有一组成立,则另外几组一定成立;故本选项正确,不符合题意;D、因为在菱形中只有正方形外接圆;故本项正确,不符合题意;故选:A.7.解:如图,连接OA、OB.∵∠ACB=45°,∴∠AOB=90°,∵OA=4,∴的长是:=2π.故选:B.8.解:∵由勾股定理得AB==10cm,∵CM是AB的中线,∴CM=5cm,∴d=r,所以点M在⊙C上,故选:A.9.解:∵正六边形ABCDEF的边长为2,∴正六边形ABCDEF的面积是:=6×=6,∠FAB=∠EDC =120°,∴图中阴影部分的面积是:6﹣=,故选:B.10.解:连接OA,∵∠B=40°,∴∠AOC=2∠B=80°,∵PA,PC均是⊙O的切线,∴∠OAP=∠OCP=90°,∴∠AOC+∠P=180°,∴∠P=100°,故选:C.11.解:过点O作OD⊥AB于点D,连接OA,由垂线段最短可知当M于点D重合时OM最短,当OM是半径时最长,∵,⊙O的直径为10,∴OA=5,∵弦AB的长为8,OD⊥AB,∴AD=AB=4,在Rt△OAD中,OD===3,∴当OM=3时最短,∴OM长的取值范围是:3≤OM≤5.∴OM的长度不可能是2.故选:D.12.解:∵点A的坐标为(0,3),点B的坐标为(﹣3,0),∴OA=3,OB=3,∴tan∠BAO==,∴∠BAO=60°,∵四边形ABMO是圆内接四边形,∴∠BMO=120°,故选:C.二.填空题(共6小题)13.解:在Rt△OCD中,OD===2,∴∠COD=30°,在Rt△COD和Rt△AOG中,,∴Rt△COD≌Rt△AOG(HL)∴AG=CD=1,∠AOG=∠COD=30°,∴∠DOG=30°,∴阴影部分的面积=×﹣×1××2﹣=3﹣﹣,故答案为:3﹣﹣.14.解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N是弧MB的中点,∴∠BON =∠MOB =×40°=20°,由对称性,∠N ′OB =∠BON =20°,∴∠MON ′=∠MOB +∠N ′OB =40°+20°=60°, ∴△MON ′是等边三角形,∴MN ′=OM =OB =AB ==4,∴△PMN 周长的最小值=1+4=5,故答案为:5.15.解:连接OD ,∵CD ⊥AB 于点E ,直径AB 过O ,∴DE =CE =CD =×8=4,∠OED =90°,由勾股定理得:OD ===5,即⊙O 的半径为5.故答案为:5.16.解:如图,连接AF 、DF ,由圆的定义,AD =AF =DF , 所以,△ADF 是等边三角形,∵∠BAD =90°,∠FAD =60°,∴∠BAF =90°﹣60°=30°,同理,弧DE 的圆心角是30°,∴弧EF 的圆心角是90°﹣30°×2=30°,∴=,由对称性知,图中阴影部分的外围四条弧都相等,所以,图中阴影部分的外围周长=×4=π.故答案为:π.17.解:∵在矩形ABCD 中,AB =3,AD =2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π, 故答案为:6﹣π18.解:∵PD 切⊙O 于C ,∴∠OCD =90°,∵∠PDO =30°,∴∠COD =60°,∴∠AOC =120°,∵直径AB =4,∴半径是2,∴劣弧的弧长是=,故答案为:. 三.解答题(共7小题)19.解:(1)∵AB ⊥CD ,∠OAB =40°,∴∠AOB =50°,∵OA =OC ,∴∠C =∠CAO ,∴∠AOB =2∠C =50°,∴∠C =25°;(2)连接AD ,∵CD 是⊙O 的直径,∴∠CAD =90°,∵∠C =30°,AC =4,∴CD =AC =2.∴⊙O 的直径是2.20.(1)证明:连结OB,如图,∵AB=AC,∴∠1=∠2,∵OA⊥AC,∴∠2+∠3=90°,∵OB=OP,∴∠4=∠5,而∠3=∠4,∴∠5+∠2=90°,∴∠5+∠1=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作OH⊥PB于H,如图,则BH=PH,设⊙O的半径为r,则PA=OA﹣OP=4﹣r,在Rt△PAC中,AC2=PC2﹣PA2=(2)2﹣(4﹣r)2,在Rt△OAB中,AB2=OA2﹣OB2=42﹣r2,而AB=AC,∴(2)2﹣(4﹣r)2=42﹣r2,解得r=1,即⊙O的半径为1.21.(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.22.证明:(1)连接OC,∵CD=AC,∴∠CAD=∠D,又∵∠ACD=120°,∴∠CAD=(180°﹣∠ACD)=30°,∵OC=OA,∴∠A=∠1=30°,∴∠COD=60°,又∵∠D=30°,∴∠OCD=180°﹣∠COD﹣∠D=90°,∴CD是⊙O的切线;(2)∵∠A=30°,∴∴∠1=2∠A=60°∠1=2∠A=60°.∴∴,在Rt△OCD中,.∴.∴图中阴影部分的面积为2﹣π.23.(1)证明:连接OC.∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AE,∴OC∥AE,∴∠1=∠3,∵OC=OA,∴∠2=∠3,∴∠1=∠2,即∠EAC=∠CAB,(2)解:①连接BC.∵AB是⊙O的直径,CD⊥AE于点D,∴∠ACB=∠ADC=90°∵∠1=∠2,∴△ACD∽△ABC,∴=,∵AC2=AD2+CD2=42+82=80,∴AB===10,∴⊙O的半径为10÷2=5.24.解:(1)∵AB是直径,∴∠ACB=90°,∴AC==6(cm),∵CD平分∠ACB,∴BD=AD=AB=5(cm);(2)四边形ADBC的面积=△ABC的面积+△ADB的面积=×6×8+×5×5=49(cm2).25.(1)证明:连接BC,BO,∵CD是⊙O的直径,∴∠CBD=90°,∵CD⊥AB,∴∠DBE=∠C=90°﹣∠CDB,∵OB=OC,∴∠OBC=∠C,∵∠PBD=∠EBD,∴∠PBD=∠OBC,∴∠PBO=90°,∴PB是⊙O的切线;(2)解:连接BC,BO,∵CD是⊙O的直径,∴BC⊥BD,∵BD⊥AP,∴AP∥BC,∴∠C=∠APC,∵CD是⊙O的直径,CD⊥AB,∴AE=BE,∴AP=BP,∴∠APC=∠BPC,∴∠C=∠BPC,∴CE=PE,设OE=x,CO=BO=r,∴r+x=﹣x,∴r=﹣2x,∵AB=,∴BE=AB=,在Rt△BEO中,BO2=OE2+BE2,即(﹣2x)2=x2+()2,解得:x=,x=(不合题意,舍去),∴OE=.。

九年级上册数学《圆》单元测试题(带答案)

九年级上册数学《圆》单元测试题(带答案)
20.已知,A B是⊙O 直径,B C是⊙O的弦,⊙O的割线PDE垂直于A B于点F,交B C于点G,∠A=∠B CP.
(1)求证:PC是⊙O的切线;
(2)若点C在劣弧A D上运动,其条件不变,问应再具备什么条件可使结论BG2=BF·BO成立,(要求画出示意图并说明理由).
21.如图,已知A B是⊙O的直径,C是⊙O上一点,连接A C,过点C作直线C D⊥A B于点D,E是A B上一点,直线CE与⊙O交于点F,连结AF,与直线C D交于点G.
10. 两圆内切,一个圆的半径是3,圆心距是2,那么另一个圆的半径为( )
A. 1B. 3C. 2或3.D. 1或5.
二、填空题(每题4分,共32分)
11.已知:如图,A B是⊙O的直径,B D=OB,∠C A B=30°,请根据已知条件和图形,写出三个正确的结论(AO=BO=B D除外)________;_____________;____________.
B.点O到A C、B C的距离相等
C.∠A与∠A B D互余
D.∠A与∠C B D互补
[答案]D
[解析]
试题分析: 垂直平分 ,根据垂径定理可得弦 一定是 的直径,A项正确, ,由此可得点 到 的距离相等,B项正确,根据圆周角定理可得 ,
,C项正确, ,故选D.
考点:1、垂径定理;2、圆周角定理.
3.如图,已知⊙O中∠AOB度数为100°,C是圆周上的一点,则∠A C B的度数为()
[答案]24和240π
[解析]
[分析]
根据弧长公式即可得到关于扇形半径的方程,然后根据扇形的面积公式即可求解.
[详解]解:设扇形的半径是r,则 =20π
解得:r=24.
扇形的面积是:

初三数学上圆章节测试题(含答案)

初三数学上圆章节测试题(含答案)

九年级数学第二十四章圆测试题(A)时间:45分钟分数:100分一、选择题(每小题3分,共33分)1、若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为()A、2ba+B、2ba-C、2 2baba-+或D、baba-+或2、如图24—A—1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A、4B、6C、7D、83、已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A、40°B、80°C、160°D、120°4、如图24—A—2,△ABC内接于⊙O,若∠A=40°,则∠OBC的度数为()A、20°B、40°C、50°D、70°5、如图24—A—3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A、12个单位B、10个单位C、1个单位D、15个单位6、如图24—A—4,AB为⊙O的直径,点C在⊙O上,若∠B=60°,则∠A等于()A、80°B、50°C、40°D、30°7、如图24—A—5,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A、5B、7C、8D、108、若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m,母线长为3m,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是()A、26m B、26mπC、212m D、212mπ9、如图24—A—6,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PC=4,则两圆组成的圆环的面积是()A、16πB、36πC、52πD、81π10、已知在△ABC中,AB=AC=13,BC=10,那么△ABC的内切圆的半径为()A、310B、512C、2D、311、如图24—A—7,两个半径都是4cm的圆外切于点C,一只蚂蚁由点A开始依A、B、C、D、E、F、C、G、A的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm后才停下来,则蚂蚁停的那一个点为()图24—A—5图24—A—6 图24—A—1 图24—A—2 图24—A—3 图24—A—4图24—A—7A、D点B、E点C、F点D、G点二、填空题(每小题3分,共30分)12、如图24—A—8,在⊙O中,弦AB等于⊙O的半径,OC⊥AB交⊙O于点C,则∠AOC= 。

人教版九年级数学上册 第24章 圆 单元测试题(含答案)

人教版九年级数学上册 第24章 圆 单元测试题(含答案)

人教版九年级数学上册第24章圆单元测试题一.选择题(共10小题)1.到定点的距离等于定长的点的集合是()A.圆的外部B.圆的内部C.圆D.圆的内部和圆2.如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠ADC=65°,则∠ABD的度数为()A.55°B.45°C.25°D.30°3.⊙O的半径为5,点A在直线l上.若OA=5,则直线l与⊙O的位置关系是()A.相切B.相交C.相切或相交D.相离4.圆锥的母线长为5,底面半径为3,则它的侧面积为()A.6πB.12πC.15πD.30π5.如图,点O是正五边形ABCDE的中心,则∠AOB的度数是()A.65°B.70°C.72°D.78°6.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π7.如图,⊙O中,弦AB⊥CD于E,若已知AD=9,BC=12,则⊙O的半径为()A.5.5B.6C.7.5D.88.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示位置,第2秒点P位于点C的位置,……,则第2019秒点P所在位置的坐标为()A.(,)B.(﹣,﹣)C.(0,﹣1)D.(,﹣)9.在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B在⊙A 内时,实数a的取值范围是()A.a>2B.a>8C.2<a<8D.a<2或a>810.如图,在Rt△ABC中,∠ABC=90°,AB=4cm,BC=3cm,分别以A,C为圆心,以的长为半径作圆.将Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为()cm2A.6﹣πB.6﹣πC.πD.6﹣π二.填空题(共8小题)11.已知一个圆的周长为12.56厘米,则这个圆的半径是厘米.(π取3.14)12.在平面直角坐标系中,O为坐标原点,A(3,4)是⊙O上一点,B是⊙O内一点,请你写出一个符合要求的点B的坐标:.13.已知75°的圆心角所对的弧长为5π,则这条弧所在圆的半径是.14.如图,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且AD=2,BC=5,则△ABC的周长为.15.排水管的截面为如图所示的⊙O,半径为5m,已知现在水面位于圆心O下方,且水面宽AB=6m,如果水面上涨后,水面宽为8m,那么水面上涨了m.16.如图,在⊙O中,,∠1=30°,的度数为.17.如图,四边形ABCD内接于⊙O,∠AOC=140°,则四边形ABCD的外角∠CDM=°.18.如图,正六边形ABCDEF内接于⊙O且半径为3,则AB的长为.三.解答题(共8小题)19.如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)20.如图,△ABC分别交⊙O于点A,B,D,E,且CA=CB.求证:AD=BE.21.如图,AB是圆O的直径,∠ACD=30°,(1)求∠BAD的度数.(2)若AD=4,求圆O的半径.22.如图,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DM⊥AC于M.求证:DM是⊙O的切线.23.如图,正方形ABCD内接于⊙O,M为的中点,连接AM,BM.(1)求证:;(2)求的度数.24.已知,△ABC内接于⊙O,AC为⊙O的直径,点D为优弧BC的中点(1)如图1,连接OD,求证:AB∥OD;(2)如图2,过点D作DE⊥AC,垂足为E.若AE=3,BC=8,求⊙O的半径.25.在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a (a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,判断直线DE与图形G的位置关系,并说明理由.26.如图,四边形ABCD是菱形,∠A=60°,AB=6,扇形BEF的半径为6,圆心角为60°.(1)连接DB,求证:∠DBF=∠ABE;(2)求图中阴影部分的面积.参考答案与试题解析一.选择题(共10小题)1.解:圆可以看做是所有到定点O的距离等于定长r的点的集合.故选:C.2.解:∵CD是⊙O的直径,∴∠CAD=90°,∴∠C=∠ABD=90°﹣∠ADC=90°﹣65°=25°.故选:C.3.解:∵⊙O的半径为5,OA=5,∴点O到直线l的距离≤5,∴直线l与⊙O的位置关系是相切或相交.故选:C.4.解:它的侧面积=×2π×3×5=15π.故选:C.5.解:∵点O是正五边形ABCDE的中心,∴∠AOB=360°÷5=72°.故选:C.6.解:该莱洛三角形的周长=3×=3π.故选:C.7.解:连接DO并延长DO交圆O于点F,连接BD,AF,BF,∵∠DAE=∠DFB,∠AED=∠FBD=90°,∴∠ADC=∠FDB,∴∠ADF=∠CDB,∴,∴AF=BC=12,∵∠DAF=90°,∴DF=,∴⊙O的半径为7.5.故选:C.8.解:2019÷8=252…3,即第2019秒点P所在位置如图:过P作PM⊥x轴于M,则∠PMO=90°,∵OP=1,∠POM=45°,∴PM=OM=1×sin45°=,即此时P点的坐标是(﹣,﹣),故选:B.9.解:∵⊙A的半径为3,若点B在⊙A内,∴OB<3,∵点A所表示的实数为5,∴2<a<8,故选:C.10.解:∵∠C=90°,∴∠A+∠B=90°,设∠A=α,∠B=β,则α+β=90°,∵∠C=90°,AB=4cm,BC=3cm,∴AC===5cm,∴阴影的面积为×3×4﹣﹣=(6﹣π)cm2.故选:B.二.填空题(共8小题)11.解:∵圆的周长为12.56厘米,∴圆的半径为12.56÷2÷3.14=2厘米,故答案为:2.12.解:连结OA,OA==5,∵B为⊙O内一点,∴符合要求的点B的坐标(0,0)答案不唯一.故答案为:(0,0)答案不唯一.13.解:设这条弧所在圆的半径为r,则=5π,解得,r=12,答:这条弧所在圆的半径为12,故答案为:12.14.解:△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,∴AF=AD=2,BD=BE,CF=CE,∴BD+CF=BE+CE=BC=5,∴△ABC的周长=AD+DB+BC+CF+AF=AD+AF+BC+(BD+CF)=14,故答案为:14.15.解:过O点作OC⊥AB,连接OB,如图所示:∴AB=2BC,在Rt△OBC中,BC2+OC2=OB2,∵OB=5m,BC=3m,∴OC===4m,∵MN∥AB,∴OC⊥MN于D,连接ON,同理OD===3,∴CD=1,当MN与AB在圆心的两侧时,CD=3+4=7,故水面上涨了1m或7m,故答案为:1或7.16.解:∵在⊙O中,,∴∠AOC=∠BOD,∴∠1+∠BOC=∠2+∠BOC,∴∠1=∠2=30°,∴的度数为30°,故答案为:30°17.解:∵∠B+∠ADC=180°,∠ADC+∠CDM=180°,∴∠B=∠CDM,∵∠B=∠AOC=70°,∴∠CDM=70°,故答案为70.18.解:连接OA、OB,如图所示:∵正六边形ABCDEF内接于⊙O,∴∠AOB==60°,∵OA=OB=3,∴△AOB是等边三角形,∴AB=OA=OB=3,故答案为:3.三.解答题(共8小题)19.解:如图,连接OC,AB交CD于E,由题意知:AB=1.6+6.4+4=12,所以OC=OB=6,OE=OB﹣BE=6﹣4=2,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE===4,∴CD=2CE=8≈11.3m,所以路面CD的宽度为11.3m.20.证明:∵AC=BC,∴∠A=∠B,∴=,∴﹣=﹣,即=,∴AD=BE.21.解:(1)∵AB是圆O的直径,∴∠ADB=90°,∵∠B=∠C=30°,∴∠BAD=60°;(2)∵∠B=30°,∠ADB=90°,∴AB=2AD,∵AD=4,∴AB=8,∴圆O的半径为4.22.证明:连接OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠ODB=∠B,∴∠ODB=∠C,∴OD∥AC,∵DM⊥AC,∴∠CMD=90°,∴∠ODM=∠CMD=90°,∴OD⊥DM,∵点D在⊙O上,∴DM是⊙O的切线.23.(1)证明:∵四边形ABCD是正方形,∴AD=BC,∴=,∵M为的中点,∴=,∴+=+,∴;(2)解:连接OM,OA,OB,∵正方形ABCD内接于⊙O,∴∠AOB=90°,∴∠AOM=∠BOM=(360°﹣90°)=135°,∴的度数时135°.24.解:(1)如图1,延长DO交BC于F,∵点D为优弧BC的中点,∴=,∴DF⊥BC,∵AC为⊙O的直径,∴AB⊥BC,∴AB∥OD;(2)连接DO并延长交BC于F,∵点D为优弧BC的中点,∴=,∴DF⊥CB,∴CF=BC=4,∵DE⊥AC,∴∠DEO=∠OFC=90°,∵∠DOE=∠COF,OC=OD,∴△DOE≌△COF(AAS),∴OF=OE=OA﹣3,∵OC2=OF2+CF2,∴OC2=(OC﹣3)2+42,∴OC=,∴⊙O的半径为.25.(1)证明:如图1中,由题意图形G是△ABC使得外接圆(⊙O),∵∠ABD=∠CBD,∴=,∴AD=CD.(2)解:结论:DE是⊙O的切线.理由:如图2中,连接OD.∵AD=CM,∴=,∵=,∴=,∵BC⊥DM,∴BC是⊙O的直径,∴OB=OD,∴∠OBD=∠ODB,∵∠ABD=∠DBO,∴∠ABD=∠ODB,∴AB∥OD,∵DE⊥AB,∴DE⊥OD,∴DE是⊙O的切线.26.(1)证明:∵四边形ABCD是菱形,∴AD=AB,AD∥BC,∵∠A=60°,∴∠ADB=∠DBC=180°﹣60°﹣60°=60°,即∠EBF=ABD=60°,∴∠ABE=∠DBF=60°﹣∠DBE,即∠DBF=∠ABE;(2)解:过B作BQ⊥DC于Q,则∠BQC=90°,∵四边形ABCD是菱形,∠A=60°,AB=6,∴DC∥AB,∠C=∠A=60°,BC=AB=6,∴∠ADC=120°,∴∠QBC=30°,∴CQ=BC=3,BQ=CQ=3,∵∠A=60°,∠CDB=120°﹣60°=60°,∴∠A=∠CDB,∵AB=BD,∴在△ABM和△DBN中∴△ABM≌△DBN(ASA),∴S△ABM =S△DBN,∴阴影部分的面积S=S扇形DBC﹣S△DBC=﹣=60π﹣9.。

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知与的半径分别为和3,若两圆相交,则两圆的圆心距满足( )A .B .C .D .2.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .73.如图,AB 为O 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )A . 070B . 035C . 030D .20︒4.在同圆中,CD 的度数小于180︒,且2AB CD =,那么弦AB 和弦CD 的大小关系为( )A .AB CD > B .AB CD =C .AB CD < D .无法确定5.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )A .115︒B .105︒C .100︒D .95︒ 6.Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm 长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是1O 2O 2m 5m =1m =5m >15m <<EDC BA( )A .0个B .l 个C .2个D .3个7.在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )A .B .cmC .cmD .cm8.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则ABE 面积的最小值是A .2B .1C .D .9.在圆柱形油槽内装有一些油.截面如图所示,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽度为8分米,圆柱形油槽直径MN 为( ) A .6分米 B .8分米 C .10 分米 D .12 分米10.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=4,则⊙O 的直径等于( )Rt ABC △90C ∠=︒4BC cm =3AC cm =ABC △A 90︒11AB C △B 54π52π5π△22-2A.B. C. D .7 二 、填空题(本大题共5小题,每小题3分,共15分)11.已知1O ⊙与2O ⊙半径的长是方程27120x x -+=的两根,且1212O O =,则1O ⊙与2O ⊙的位置关系是___________.12.在Rt △ABC 中,∠C=90°,AC=3,BC=4,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是 .13.如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.14.如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为 cm 2.(结果保留π)15.已知正六边形的边心距为,则它的周长是 .三 、解答题(本大题共7小题,共55分)16.如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;B(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.17.如图⊙O 半径为2,弦BD =,A 为弧BD 的中点,E 为弦AC 的中点,且在BD上。

数学九年级上册《圆》单元测试题(附答案)

数学九年级上册《圆》单元测试题(附答案)

人教版数学九年级上学期《圆》单元测试【考试时间:90分钟满分:120分】一.选择题(共8小题)1.(2020•锦州一模)如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E,若∠C=72°,则∠DOE的度数是()A.30°B.35°C.36°D.40°2.(2020•新北区一模)如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠BCD =()A.105°B.110°C.115°D.120°3.(2020•西宁一模)如图,⊙O的直径AB垂直于弦CD,垂足是点E,∠CAO=22.5°,OC=8,则弦CD的长为()A .8√2B .4√2C .8√3D .4√34.(2020•铜山区一模)如图,在平面直角坐标系中.点A 的坐标是(20,0),点B 的坐标是(16,0),点C ,D 在以OA 为直径的半圆M 上,四边形OCDB 是平行四边形.则点C 的坐标为( )A .(1,7)B .(2,6)C .(2,7)D .(1,6)5.(2020春•宜兴市校级月考)如图,▱ABCD 的三个顶点A 、B 、D 均在⊙O 上,且对角线AC 经过点O ,BC 与⊙O 相切于点B ,已知⊙O 的半径为6,则▱ABCD 的面积为( )A .36B .3845C .54√3D .72+72√556.(2020•内乡县一模)如图,AB 是⊙O 的直径,弦CD 与AB 相交,连接CO ,过点D 作⊙O 的切线,与AB 的延长线交于点E ,若DE ∥AC ,∠BAC =40°,则∠OCD 的度数为( )A .65°B .30°C .25°D .20°7.(2020•拱墅区校级一模)如图,已知AB 是⊙O 的直径 P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定8.(2020•郯城县一模)如图,点A 、B 、C 在⊙O 上,若∠BAC =45°,OC =2,则图中阴影部分的面积是( )A .π﹣2B .π﹣4C .23π−1D .23π−2 二.填空题(共10小题)9.如图,AB ⊙O 的直径,CD 为⊙O 的弦,若AB ⊥CD 于E ,下列结论:①CE =DE ,②BĈ=BD ̂.③AC ̂=AD ̂,④AC =AD .其中正确的有 (填序号).10.⊙O 的弦AB 长为4√3cm ,弦AB 所对的圆心角为120°,则弦AB 的弦心距为 cm .11.(2020•碑林区校级四模)如图,在正六边形ABCDEF 中,AB =1,BF 是正六边形ABCDEF 的一条对角线,则BF 的长为 .12.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧AB上任意一点(与点B不重合),则∠BPC的度数为.13.如图,AB为⊙O的弦,点C在AB上,若AB=4,OC=√2,∠OCB=45°,则⊙O的半径为.14.如图,在直角平面坐标系中,⊙O是以原点为圆心、半径为4的圆,已知有一条直线y=kx﹣2(k+1)与⊙O有两个交点A、B,则弦AB长的最小值为.15.如图,已知Rt△ABC中,∠C=90°∠A=36°,以C为圆心,CB为半径的圆交AB于P,则弧BP的度数是°.̂的中点,则四边形AOBC 16.如图,A、B是半径为3的⊙O上的两点,若∠AOB=120°,C是AB的周长等于.17.如图,P A,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,PO与AB交于点C.若∠APB=60°,OC=1,则△P AB的周长为.18.(2020•碑林区校级四模)如图,正六边形ABCDEF的边长为2,则△ACE的周长为.三.解答题(共7小题)19.已知⊙O的半径为5,点A、B、C都在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图1,若BC为⊙O的直径,AB=6,求AC和BD的长;(2)如图2,若∠CAB=60°,过圆心O作OE⊥BD于点E,求OE的长.20.如图,AB为圆O的直径,CD为弦,AM⊥CD于M,BN⊥CD于N.(1)求证:CM=DN.(2)若AB=10,CD=8,求BN﹣AM的值.21.如图,在⊙O中,AD、BC相交于点E,OE平分∠AEC.(1)求证:AB=CD;(2)如果⊙O的半径为5,AD⊥CB,DE=1,求AD的长.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=3,求⊙O和菱形ABFC的面积.23.已知:如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC上一动点,AG,DC的延长线交于点F,连接BC.(1)若AB=4,∠B=60°,求CD的长;(2)设∠DGF=β°,∠BCD=α°,求β关于α的函数表达式.24.(2020•通州区一模)如图,⊙O的圆心O在△ABC的边AC上,AC与⊙O分别交于C,D两点,⊙O与边AB相切,且切点恰为点B.(1)求证:∠A+2∠C=90°;(2)若∠A=30°,AB=6,求图中阴影部分的面积.25.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=√3,̂,交OB于E点.以O为圆心,OC为半径作CE(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.答案与解析一.选择题(共8小题)1.(2020•锦州一模)如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E,若∠C=72°,则∠DOE的度数是()A.30°B.35°C.36°D.40°【考点】等腰三角形的性质和圆周角定理.【答案】C【解析】解:如图,连接AD.∵AB=AC,∠C=72°,∴∠ABC=∠C=72°.∴∠CAB=36°.∵AB是圆O的直径,∴AD⊥BD.又∵AB=AC,∴BD=CD.∴AD是∠CAB的平分线,∴∠CAD=12∠CAB=18°.∴∠DOE=2∠CAD=36°.故选:C.【小贴士】本题主要考查了圆周角定理,等腰三角形的性质,圆心角、弧、弦的关系等知识点,正确作出辅助线是解题的难点.2.(2020•新北区一模)如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠BCD =()A.105°B.110°C.115°D.120°【考点】圆心角、弧、弦和圆周角定理.【答案】C【分析】连接AC,然后根据圆内接四边形的性质,可以得到∠ADC的度数,再根据点D是弧AC的中点,可以得到∠DCA的度数,直径所对的圆周角是90°,从而可以求得∠BCD的度数.【解析】解:连接AC,∵∠ABC=50°,四边形ABCD是圆内接四边形,∴∠ADC=130°,∵点D是弧AC的中点,∴CD=AC,∴∠DCA=∠DAC=25°,∵AB是直径,∴∠BCA=90°,∴∠BCD=∠BCA+∠DCA=115°,故选:C.3.(2020•西宁一模)如图,⊙O的直径AB垂直于弦CD,垂足是点E,∠CAO=22.5°,OC=8,则弦CD的长为()A.8√2B.4√2C.8√3D.4√3【考点】垂径定理和圆周角定理.【答案】A【分析】先根据垂径定理得到CE=DE,再根据圆周角定理得到∠BOC=2∠A=45°,则△OCE为等腰直角三角形,所以CE=√22OC=4√2,从而得到CD的长.【解析】解:∵CD⊥AB,∴CE=DE,∵∠BOC=2∠A=2×22.5°=45°,∴△OCE为等腰直角三角形,∴CE=√22OC=√22×8=4√2,∴CD=2CE=8√2.故选:A.4.(2020•铜山区一模)如图,在平面直角坐标系中.点A的坐标是(20,0),点B的坐标是(16,0),点C,D在以OA为直径的半圆M上,四边形OCDB是平行四边形.则点C的坐标为()A.(1,7)B.(2,6)C.(2,7)D.(1,6)【考点】平行四边形的性质和圆周角定理.【答案】B【解析】解:如图,连接OD,AD,DM,作DF⊥OA于F.∵A(20,0),B(16,0),∴OA=20,OB=16,∴AB=20﹣16=4,∵四边形ABCD 是平行四边形,∴CD ∥OB ,CD =OB =16,OC =BD ,∴∠CDO =∠DOA ,∴OĈ=AD ̂, ∴OC =AD =BD ,∵DF ⊥BA ,∴BF =F A =2,∴OF =18,∴在Rt △DMF 中.DF =√DM 2−MF 2=√102−82=6,∴D (18,6),C (2,6),故选:B .【小贴士】平行四边形的性质,圆周角定理,垂径定理,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020春•宜兴市校级月考)如图,▱ABCD 的三个顶点A 、B 、D 均在⊙O 上,且对角线AC 经过点O ,BC 与⊙O 相切于点B ,已知⊙O 的半径为6,则▱ABCD 的面积为( )A .36B .3845C .54√3D .72+72√55【考点】圆周角定理和切线的性质.【答案】C【分析】连接OB ,延长BO 交AD 于E ,如图,先根据切线的性质得OB ⊥BC ,再利用平行四边形的性质得AD∥BC,AD=BC,所以BE⊥AD,接着根据垂径定理得到AE=DE,然后证明△AOE∽△COB,利用相似比求出OE=3,OC=12,则根据勾股定理可计算出BC,然后利用平行四边形的面积公式求解.【解析】解:连接OB,延长BO交AD于E,如图,∵BC与⊙O相切于点B,∴OB⊥BC,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴BE⊥AD,∴AE=DE=12AD=12BC,∵AE∥BC,∴△AOE∽△COB,∴OEOB =OAOC=AEBC=12,∴OE=12OB=3,OC=2OA=12,在Rt△OCB中,BC=√122−62=6√3,∴▱ABCD的面积=BE•BC=(3+6)×6√3=54√3.故选:C.6.(2020•内乡县一模)如图,AB是⊙O的直径,弦CD与AB相交,连接CO,过点D作⊙O的切线,与AB的延长线交于点E,若DE∥AC,∠BAC=40°,则∠OCD的度数为()A.65°B.30°C.25°D.20°【考点】圆周角定理和切线的性质.【答案】C【分析】连接OD,如图,先利用平行线的性质得∠E=∠BAC=40°,再根据切线的性质得OD⊥DE,则可计算出∠DOE=50°,接着根据圆周角定理得到∠BOC=2∠A=80°.然后根据等腰三角形的性质和三角形内角和计算∠OCD的度数.【解析】解:连接OD,如图,∵DE∥AC,∴∠E=∠BAC=40°,∵DE为切线,∴OD⊥DE,∴∠DOE=90°﹣40°=50°,∵∠BOC=2∠A=80°.∴∠COD=80°+50°=130°,∵OC=OD,∴∠OCD=∠ODC=12(180°﹣130°)=25°.故选:C.7.(2020•拱墅区校级一模)如图,已知AB是⊙O的直径P为⊙O外一点,PC切⊙O于C,PB 与⊙O交于A、B两点.若P A=1,PB=5,则PC=()A.3B.√5C.4D.无法确定【考点】切线的性质.【答案】B【分析】求出半径的长,求出PO长,根据切线的性质求出∠PCO=90°,再根据勾股定理求出即可.【解析】解:∵P A=1,PB=5,∴AB=PB﹣P A=4,∴OC=OA=OB=2,∴PO=1+2=3,∵PC切⊙O于C,∴∠PCO=90°,在Rt△PCO中,由勾股定理得:PC=√PO2−OC2=√32−22=√5,故选:B.【小贴士】圆的切线垂直于过切点的半径.8.(2020•郯城县一模)如图,点A 、B 、C 在⊙O 上,若∠BAC =45°,OC =2,则图中阴影部分的面积是( )A .π﹣2B .π﹣4C .23π−1D .23π−2 【考点圆周角定理和扇形面积的计算.【答案】A【分析】根据S 阴=S 扇形OBC ﹣S △OBC ,计算即可.【解析】解:∵∠BOC =2∠BAC =90°,∴S 阴=S 扇形OBC ﹣S △OBC =90⋅π⋅22360−12×2×2=π﹣2,故选:A . 【小贴士】本题考查扇形的面积,圆周角定理,三角形的面积等知识,属于中考常考题型.二.填空题(共10小题)9.如图,AB ⊙O 的直径,CD 为⊙O 的弦,若AB ⊥CD 于E ,下列结论:①CE =DE ,②BĈ=BD̂.③AC ̂=AD ̂,④AC =AD .其中正确的有 ①②③④ (填序号).【考点】圆心角、弧、弦的关系.【答案】①②③④.【分析】根据垂径定理得到CE=DE,BĈ=BD̂,AĈ=AD̂,根据圆心角、弧、弦的关系定理得到AC=AD,得到答案.【解析】解:∵AB⊙O的直径,CD为⊙O的弦,AB⊥CD,∴CE=DE,BĈ=BD̂,AĈ=AD̂,①②③正确,∵AĈ=AD̂,∴AC=AD,④正确,10.⊙O的弦AB长为4√3cm,弦AB所对的圆心角为120°,则弦AB的弦心距为2cm.【考点】垂径定理和圆心角、弧、弦的关系.【答案】2【分析】OC⊥AB于C,如图,根据垂径定理得AC=12AB=2√3,再利用∠A=∠B,∠AOB=120°,得到∠A=30°,然后根据含30度的直角三角形三边的关系可计算出OC=√33AC=2.【解析】解:作OC⊥AB于C,如图,∴AC=BC=12AB=2√3cm,∵OA=OB,∴∠A=∠B,而∠AOB=120°,∴∠A=30°,∴OC=√33AC=√33×2√3=2,即AB的弦心距为2cm.故答案为:2.11.(2020•碑林区校级四模)如图,在正六边形ABCDEF中,AB=1,BF是正六边形ABCDEF的一条对角线,则BF的长为√3.【考点】正多边形和圆.【答案】见试题解析内容【分析】根据正多边形的性质得出AB=AF,求出∠BAF度数,解直角三角形即可得到结论.【解析】解:∵六边形ABCDEF是正六边形,∴AB=AF,∠BAF=(6−2)×180°6=120°,∴∠AFB=∠ABF=12(180°﹣∠BAF)=30°,过A作AH⊥BF于H,则∠AHB=90°,BF=2BH,∵AB=1,∴BH=√32AB=√32,∴BF=2BH=√3,故答案为:√3.12.如图,四边形ABCD是⊙O的内接正方形,点P是劣弧AB上任意一点(与点B不重合),则∠BPC的度数为45°.【考点】正多边形和圆.【答案】45°【分析】接OB,OC,根据四边形ABCD是正方形可知∠BOC=90°,再由圆周角定理即可得出结论.【解析】解:连接OB,OC,∵四边形ABCD是正方形,∴∠BOC=90°,∴∠BPC=12∠BOC=45°.故答案为:45°.【小贴士】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解析此题的关键.13.如图,AB为⊙O的弦,点C在AB上,若AB=4,OC=√2,∠OCB=45°,则⊙O的半径为√5.【考点】勾股定理和垂径定理.【答案】√5【分析】作OD⊥AB,连接OB,据此得BD=12AB=2,根据OC=√2,∠OCB=45°得OD=1,利用勾股定理可得答案.【解析】解:如图,过点O作OD⊥AB于点D,连接OB,则BD=12AB=2,∵OC=√2,∠OCB=45°,∴OD=1,则OB=√OD2+BD2=√12+22=√5,故答案为:√5.14.如图,在直角平面坐标系中,⊙O是以原点为圆心、半径为4的圆,已知有一条直线y=kx﹣2(k+1)与⊙O有两个交点A、B,则弦AB长的最小值为4√2.【考点】一次函数图象上点的坐标特征和垂径定理.【答案】4√2【分析】如图,设⊙O交x轴于D(4,0),交y轴于C(0,﹣4),连接OE.而直线y=kx﹣2(k+1),经过定点E(2,﹣2),由OE⊥CD,推出当直线AB与直线CD重合时,弦CD的值最小.【解析】解:如图,设⊙O交x轴于D(4,0),交y轴于C(0,﹣4),连接OE.∵CD的中点E(2,﹣2),又∵直线y=kx﹣2(k+1),经过定点E(2,﹣2),∵OE⊥CD,∴当直线AB与直线CD重合时,弦CD的值最小,最小值为4√2,故答案为4√2.【小贴士】本题考查垂径定理,一次函数的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,已知Rt△ABC中,∠C=90°∠A=36°,以C为圆心,CB为半径的圆交AB于P,则弧BP的度数是72°.【考点】圆心角、弧、弦的关系.【答案】72【分析】连CP,由∠C=90°∠A=36°,根据互余求得∠B=90°﹣36°=54°,又根据等腰三角形的性质得∠CPB=∠B=54°,再根据三角形的内角和定理得到∠PCB=180°﹣54°﹣54°=72°,最后根据圆心角的度数等于它所对的弧的度数得到即可弧BP的度数.【解析】解:连CP,如图,∵∠C=90°∠A=36°,∴∠B=90°﹣36°=54°,又∵CB=CP,∴∠CPB=∠B=54°,∴∠PCB=180°﹣54°﹣54°=72°,∴弧BP的度数=72°.故答案为72.̂的中点,则四边形AOBC 16.如图,A、B是半径为3的⊙O上的两点,若∠AOB=120°,C是AB的周长等于12.【考点】等边三角形的判定与性质和圆心角、弧、弦的关系.【答案】12.【分析】通过等弧所对的圆心角相等和∠AOB=120°,得到△AOC和△BOC都是等边三角形,再求出四边形AOBC的周长.̂的中点【解析】解:∵C是AB∴∠AOC=∠BOC,而∠AOB=120°∴∠AOC=∠BOC=60°∴△AOC和△BOC都是等边三角形∴OA=OB=CA=CB=3所以四边形AOBC的周长等于12.故填12.17.如图,P A,PB是⊙O的两条切线,切点分别为A,B.连接OA,OB,AB,PO,PO与AB交于点C.若∠APB=60°,OC=1,则△P AB的周长为6√3.【考点】切线的性质.【答案】6√3【分析】根据切线的性质得到OA⊥P A,OB⊥PB,OP平分∠APB,P A=PB,推出△P AB是等边三角形,根据直角三角形的性质求出AC,由AB=2AC,于是得到结论.【解析】解:∵P A、PB是⊙O的两条切线,∴OA⊥P A,OB⊥PB,OP平分∠APB,P A=PB,∵∠APB=60°,∴△P AB是等边三角形,AB=2AC,PO⊥AB,∴∠P AB=60°,∴∠OAC=∠P AO﹣∠P AB=90°﹣60°=30°,∴AO=2OC,∵OC=1,∴AO=2,∴AC=√3,∴AB=2AC=2√3,∴△P AB的周长=6√3.故答案为:6√3.18.(2020•碑林区校级四模)如图,正六边形ABCDEF的边长为2,则△ACE的周长为6√3.【考点】正多边形和圆.【答案】6√3【解析】解:作BG⊥AC,垂足为G.如图所示:则AC=2AG,∵AB=BC,∴AG=CG,∵六边形ABCDEF是正六边形,∴∠ABC=120°,AB=BC=2,∴∠BAC=30°,∴AG=AB•cos30°=2×√32=√3,∴AC=2×√3=2√3,∴△ACE的周长为3×2√3=6√3.故答案为6√3.三.解析题(共7小题)19.已知⊙O的半径为5,点A、B、C都在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图1,若BC为⊙O的直径,AB=6,求AC和BD的长;(2)如图2,若∠CAB=60°,过圆心O作OE⊥BD于点E,求OE的长.【考点】圆周角定理.【解析】解:(1)如图1,∵BC为⊙O的直径,∴BC=10,且∠BAC=∠BDC=90°,则在Rt△ABC中,BC=10,AB=6,∴AC=√BC2−AB2=8,又∵AD是∠CAB的平分线∴∠CAD=∠BAD,̂=BD̂,∴CD∴CD=BD,∴△BDC是等腰直角三角形,∵BC=10∴BD=5√2;(2)如图2,连接BO,DO,∵AD是∠CAB的平分线,∠CAB=60°,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,又∵OB=OD,∴△BOD是等边三角形,又∵OE⊥BD,∴∠BOE=30°,BE=BD,又∵OB=5,∴BE=12OB=52,∴OE=√OB2−BE2=√52−(52)2=52√3.【小贴士】解题的关键是学会添加常用辅助线.20.如图,AB为圆O的直径,CD为弦,AM⊥CD于M,BN⊥CD于N.(1)求证:CM=DN.(2)若AB=10,CD=8,求BN﹣AM的值.【考点】勾股定理和垂径定理.【解析】(1)证明:过O作OF⊥CD于F,∵AM⊥CD于M,BN⊥CD于N,∴AM∥FO∥NB,∵OA =OB ,∴MF =NF ,∵OF ⊥CD ,O 为圆心,∴CF =FD ,∴CF ﹣MF =FD ﹣FN ,即MC =ND ;(2)解:连结OD ,∵AB =10,CD =8,∴OD =5,FD =4,∴OF =3,设OE =x ,则EB =x +5,AE =5﹣x ,∵NB ∥FO ,∴△EBN ∽△EOF ,∴BN OF =BE OE ,即BN :3=(5+x ):x ,∴BN =15+3x x,① ∵MA ∥FO ,∴△AME ∽△OFE ,∴AM :3=(5﹣x ):x ,∴AM =15−3x x ② 两式相减即可得到,BN ﹣AM =6.21.如图,在⊙O中,AD、BC相交于点E,OE平分∠AEC.(1)求证:AB=CD;(2)如果⊙O的半径为5,AD⊥CB,DE=1,求AD的长.【考点】垂径定理和圆心角、弧、弦的关系.̂=BĈ,【分析】(1)过点O作OM⊥AD,ON⊥BC,从而得出OM=ON,根据垂径定理可得出AD̂=CD̂,继而得出结论.然后可得AB(2)先判断OM=ME,然后利用勾股定理得出AM的方程,解出后,根据AD=2AM,即可得出答案.【解析】证明:(1)过点O作OM⊥AD,ON⊥BC,∵OE平分∠AEC,∴OM=ON,̂=BĈ,AD̂−BD̂=BĈ−BD̂,即AB̂=CD̂,∴AD∴AB=CD.(2)∵OM⊥AD,∴AM=DM,∵AD⊥CB,OE平分∠AEC,∴∠OEM=45°,∴∠MOE=45°,∴∠OEM=∠EOM,∴OM=ME,在Rt△AOM中,OA2=OM2+AM2,即25=(AM﹣1)2+AM2,解得:AM=4或AM=﹣3(舍去)故AD的长为8.22.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=3,求⊙O和菱形ABFC的面积.【考点】圆周角定理.【解析】(1)证明:∵AB是直径,∴∠AEB =90°,∴AE ⊥BC ,∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形,∵AC =AB ,∴四边形ABFC 是菱形.(2)设CD =x .连接BD .∵AB 是直径,∴∠ADB =∠BDC =90°,∴AB 2﹣AD 2=CB 2﹣CD 2,∴(7+x )2﹣72=62﹣x 2,解得x =2或﹣9(舍弃)∴AB =9,BD =√92−72=4√2,∴S 菱形ABFC =36√2.∴S ⊙O =π•(92)2=814π.【小贴士】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.已知:如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC上一动点,AG,DC的延长线交于点F,连接BC.(1)若AB=4,∠B=60°,求CD的长;(2)设∠DGF=β°,∠BCD=α°,求β关于α的函数表达式.【考点】圆周角定理.【分析】(1)连接OC.证明△OBC是等边三角形,解Rt△OEC即可解决问题;(2)利用圆周角定理即可解决问题;【解析】解:(1)连接OC.∵OB=OC,∠B=60°,∴△OBC是等边三角形,∴∠BOC=60°,OB=OC=2,∴DE=EC,∠OEC=90°,∴EC=OC•sin60°=√3,∴CD=2EC=2√3.(2)连接OD.∵∠AOD=2∠AGD=2(180﹣β°),∠DOB=2∠DCB=2α°,∵∠AOD+∠DOB=180°,∴2(180°﹣β°)+2α°=180°∴2β﹣2α=180,∴β=90+α(0<α<90).【小贴士】本题考查圆周角定理,垂径定理,勾股定理,等边三角形的判定和性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(2020•通州区一模)如图,⊙O的圆心O在△ABC的边AC上,AC与⊙O分别交于C,D两点,⊙O与边AB相切,且切点恰为点B.(1)求证:∠A+2∠C=90°;(2)若∠A=30°,AB=6,求图中阴影部分的面积.【考点】切线的性质和扇形面积的计算.【解析】(1)证明:连接OB,如图,∵O与边AB相切,且切点恰为点B.∴∠OBA =90°,∴∠A +∠AOB =90°,∵∠AOB =2∠C ,∴∠A +2∠C =90°;(2)解:在Rt △AOB 中,∵∠A =30°,∴∠AOB =60°,OB =√33AB =2√3,作OH ⊥BC 于H ,则BH =CH ,∵∠C =12∠AOB =30°,∴OH =12OC =√3,CH =√3OH =3,∴BC =2CH =6,∴图中阴影部分的面积=S △OBC +S 扇形BOD=12×6×√3+60×π×(2√3)2360 =3√3+2π.25.如图,在⊙O 中,半径OA ⊥OB ,过点OA 的中点C 作FD ∥OB 交⊙O 于D 、F 两点,且CD =√3,以O 为圆心,OC 为半径作CÊ,交OB 于E 点. (1)求⊙O 的半径OA 的长;(2)计算阴影部分的面积.【考点】垂径定理和扇形面积的计算.【解析】解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=√3,∴OD=2CO,设OC=x,∴x2+(√3)2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO=COOD=12,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S阴=S△CDO+S扇形OBD﹣S扇形OCE=12×1×√3+30π×22360−90π⋅12360=√32+π12.【小贴士】本题考查扇形面积、垂径定理、勾股定理、有一个角是30度的直角三角形的性质等知识,解题的关键是学会利用分割法求面积.学会把求不规则图形面积转化为求规则图形面积,属于中考常考题型.。

人教版九年级数学上册《第24章 圆》单元测试题(含答案)

人教版九年级数学上册《第24章 圆》单元测试题(含答案)

人教版九年级数学上册《第24章圆》单元测试题一.选择题(共10小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.122.如图,已知⊙C的半径为2,圆外一点O满足OC=3.5,点P为⊙C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为()A.2B.2.5C.3D.3.53.⊙O的半径为3,圆心O到直线l的距离为3,直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切4.如果圆锥的底面半径为3,母线长为6,那么它的侧面积等于()A.9πB.18πC.24πD.36π5.有一个正五边形和一个正方形边长相等,如图放置,则∠1的值是()A.15°B.18°C.20D.9°6.如图,△ABC是正三角形,曲线ABCDEF…叫做“正三角形的渐开线”,其中弧CD,弧DE,弧EF,…圆心依次按A,B,C循环,它们依次相连接,如果AB=1,那么曲线CDEF的长是()A.8πB.6πC.4πD.2π7.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8B.10C.D.8.如图,⊙O的半径为1,动点P从点A处沿圆周以每秒45°圆心角的速度逆时针匀速运动,即第1秒点P位于如图所示的位置,第2秒中P点位于点C的位置,……,则第2018秒点P所在位置的坐标为()A.(,)B.(0,1)C.(0,﹣1)D.(,﹣)9.如图,已知直线y=x﹣6与x轴、y轴分别交于B、C两点,A是以D(0,2)为圆心,2为半径的圆上一动点,连结AC、AB,则△ABC面积的最小值是()A.26B.24C.22D.2010.已知扇形的半径为3,圆心角为60°,则扇形的面积等于()A.B.πC.D.二.填空题(共8小题)11.有下列说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等圆,其中正确的是(填序号)12.如图,在平面直角坐标系中,已知点A(2,0),B(2﹣a,0),C(2+a,0)(a>0),若点P在以D(5,6)为圆心,2为半径的圆上运动,且始终满足∠BPC=90°,则a的取值范围是.13.若半径为6cm的圆中,一段弧长为3πcm,则这段弧所对的圆心角度数为.14.如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,则△ABC的面积为.15.如图,有一座石拱桥,上部拱顶部分是圆弧形,跨度BC=10m,拱高为(10﹣5)m,那么弧BC所在圆的半径等于.16.如图,AB是⊙O的直径,M、N分别是AO,BO的中点,CM⊥AB,DN⊥AB,则的度数.17.如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.18.一个边长为4的正四边形的半径是.三.解答题(共8小题)19.某隧道施工单位准备在双向道路中间全程增加一个宽为1米的隔离带,已知隧道截面是一个半径为4米的半圆形,点O是其圆心,AE是隔离带截面,问一辆高3米,宽1.9米的卡车ABCD 能通过这个隧道吗?请说明理由.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,若EC=BC,且∠1=∠2.求证:DC =BC.21.如图,⊙O的两条弦AB,CD交于点E,OE平分∠BED.(1)求证:AB=CD.(2)若∠BED=60°,EO=2,求BE﹣AE的值.22.如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(Ⅰ)求证:EF为⊙O的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求的长.23.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP上截取AE=CP,连接BE∵△ABC是正三角形∴AB=CB∵∠1和∠2的同弧圆周角∴∠1=∠2∴△ABE≌△CBP(2)如图2,四边形ABCD是⊙O的内接正方形,点P为上一动点,求证:PA=PC+PB.(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.24.已知△ABC内接于⊙O,AB=AC,∠ABC=75°,D是⊙O上的点.(Ⅰ)如图①,求∠ADC和∠BDC的大小;(Ⅱ)如图②,OD⊥AC,垂足为E,求∠ODC的大小.25.如图,已知OA、OB是⊙O的两条半径,C、D为OA、OB上的两点,且AC=BD.求证:AD =BC.26.Rt△ABC中,∠C=90°,点E在AB上,BE=AE=2,以AE为直径作⊙O交AC于点F,交BC于点D,且点D为切点,连接AD、EF.(1)求证:AD平分∠BAC;(2)求阴影部分面积.(结果保留π)参考答案与试题解析一.选择题(共10小题)1.解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.2.解:连接OP,PC,OC,∵OP≥OC﹣PC=3.5﹣2=1.5,∴当点O,P,C三点共线时,OP最小,最小值为1.5,∵OA=OB,∠APB=90°,∴AB=2OP,当O,P,C三点共线时,AB有最小值为2OP=3,故选:C.3.解:∵圆心到直线的距离=圆的半径,∴直线与圆的位置关系为相切.故选:B.4.解:圆锥的侧面积=×2π×3×6=18π.故选:B.5.解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠1=108°﹣90°=18°.故选:B.6.解:∵∠CAD,∠DBE,∠ECF是等边三角形的外角,∴∠CAD=∠DBE=∠ECF=120°AC=1∴BD=2,CE=3∴弧CD 的长=×2π×1弧DE 的长=×2π×2弧EF 的长=×2π×3∴曲线CDEF =×2π×1+×2π×2+×2π×3=4π. 故选:C .7.解:连接OB ,∵AO ⊥BC ,AO 过O ,BC =8,∴BD =CD =4,∠BDO =90°,由勾股定理得:OD ===3, ∴AD =OA +OD =5+3=8,在Rt △ADB 中,由勾股定理得:AB ==4, 故选:D .8.解:作PE ⊥OA 于E ,∵OP =1,∠POE =45°,∴OE =PE =,即点P 的坐标为(,), 则第2秒P 点为(0,1),根据题意可知,第3秒P 点为(﹣,),第4秒P 点为(﹣1,0),第5秒P 点为(﹣,﹣),第6秒P 点为(0,﹣1),第7秒P 点为(,﹣),第8秒P 点为(1,0), 2018÷8=252……2,∴第2018秒点P 所在位置的坐标为(0,1),故选:B .9.解:过D作DM⊥AB于M,连接BD,如图,由题意:B(8,0),C(0,﹣6),∴OB=8,OC=6,BC=10,则由三角形面积公式得,×BC×DM=×OB×DC,∴10×DM=64,∴DM=6.4,∴圆D上点到直线y=x﹣6的最小距离是6.4﹣2=4.4,∴△ABC面积的最小值是×10×4.4=22,故选:C.10.解:扇形的面积==,故选:A.二.填空题(共8小题)11.解:①半径是弦,错误,因为半径的一个端点为圆心;②半圆是弧,但弧不一定是半圆,正确;③面积相等的两个圆是等圆,正确,正确的结论有②③,故答案为:②③.12.解:∵A(2,0),B(2﹣a,0),C(2+a,0),∴AB=AC=a,∵∠BPC=90°,∴PA=AB=BC=a,∵DA==3,∴点P为直线AD与圆的交点重合时,a取最大和最小值,即3﹣2≤a≤3+2.故答案为3﹣2≤a≤3+2.13.解:圆心角的度数为3π×180°÷6π=90°.故答案为:90°.14.解:设CE=x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.=AC•BC∴S△ABC=(x+3)(x+4)=(x2+7x+12)=×(12+12)=12;故答案为:12.15.解:设圆弧所在圆的圆心为O,半径为r,连接OB,过O作OA⊥BC于D交于A,则BD=BC=5,AD=10﹣5,∴OD=r﹣10+5,∵OB2=BD2+OD2,∴r2=52+(r﹣10+5)2,解得:r=10,故答案为:10.16.解:∵AB是⊙O的直径,M、N分别是AO,BO的中点,∴2OM=OC,2ON=OD,∵CM⊥AB,DN⊥AB,∴∠CMO=∠DNO=90°,∴∠MCO=∠NDO=30°,∴∠MOC=∠NOD=60°,∴∠COD=180°﹣60°﹣60°=60°,∴的度数是60°,故答案为:60°17.解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.18.解:连接OA、OB,如图所示,∵四边形ABCD是正四边形,∴∠AOB==90°,∴△AOB是等腰直角三角形,∴OA=OB=AB=2;故答案为:2.三.解答题(共8小题)19.解:如图所示:连接OC,∵OA=AE=0.5m,∴OB=1.9+0.5=2.4m,∴BC===3.2>3m∴一辆高3米,宽1.9米的卡车能通过隧道.20.证明:∵EC=BC,∴∠CBE=∠CEB,∴∠1+∠CBD=∠2+∠BAC,∵∠1=∠2,∴∠CBD=∠BAC,∵∠BAC=∠BDC,∴∠CBD=∠BDC,∴BC=CD.21.(1)证明:过点O作AB、CD的垂线,垂足为M、N,如图,∵OE平分∠BED,且OM⊥AB,ON⊥CD,∴OM=ON,∴AB=CD;(2)解:∵∠BED=60°,OE平分∠BED,∴∠BEO=∠BED=30°,∵OM⊥AB,∴∠OME=90°,∵OE=2,∴∴=1,∴==,∵OM⊥AB,∴BM=AM,∴BE﹣AE=BM+EM﹣(AM﹣EM)=2EM=2.22.(Ⅰ)证明:连接OD,OB.∵D为的中点,∴∠BOD=∠COD.∵OB=OC,∴OD⊥BC,∴∠OGC=90°.∵EF∥BC,∴∠ODF=∠OGC=90°,即OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(Ⅱ)解:∵四边形ABDC是⊙O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDC=2∠A,∴∠A+2∠A=180°,∴∠A=60°,∵OA=OB,∴△OAB等边三角形,∵OB=AB=2,又∵∠BOC=2∠A=120°,∴=.23.证明:(1)延长BP至E,使PE=PC,连接CE.∵∠1=∠2=60°,∠3=∠4=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴CE=PC,∠E=∠3=60°;又∵∠EBC=∠PAC,∴△BEC≌△APC,∴PA=BE=PB+PC.(2分)(2)过点B作BE⊥PB交PA于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,又∵∠APB=45°,∴BP=BE,∴;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(4分)(3)答:;证明:在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.又∵∠APB=30°,∴∴(7分)24.解:(Ⅰ)∵四边形ABCD是圆内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=75°,∴∠ADC=105°,∵AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BDC=∠BAC=30°;(Ⅱ)如图②,连接BD,∵OD⊥AC,∴=,∴∠ABD=∠CBD=×75°=37.5°,∴∠ACD=∠ABD=37.5°,∵∠DEC=90°,∴∠ODC=90°﹣37.5°=52.5°.25.解:∵OA、OB是⊙O的两条半径,∴AO=BO,∵AC=BD,∴OC=OD,在△OCB和△ODA中,∴△OCB≌△ODA(SAS),∴AD=BC.26.(1)证明:连接OD交EF于M.∵BC切⊙O于D,∴OD⊥BC,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠DAC=∠ODA,∵OD=OA,∴∠OAD=∠ODA,∴∠OAD=∠DAC,∴AD平分∠ABC.(2)连接OF.∵AE是直径,∴∠AFE =90°,∵EF ∥BC ,∴==,∵∠C =∠AFE =∠ODC =90°, ∴四边形DMFC 是矩形,∴DM =CF =AF ,∵OM =DM =OD =OE , ∴∠OEM =30°,∴∠EOF =120°,∵BE =AE =2,∴OE =2,∴OM =1,EM =,EF ﹣2,∴S 阴=S 扇形OEF ﹣S △OEF =﹣×2×1=﹣.。

数学九年级上册《圆》单元检测题(附答案)

数学九年级上册《圆》单元检测题(附答案)
A. 24﹣4πB. 32﹣4πC. 32﹣8πD. 16
【答案】A
【解析】
试题分析:连接AD,OD,
∵等腰直角△ABC中,
∴∠ABD=45°.
∵AB是圆的直径,
∴∠ADB=90°,
∴△ABD也是等腰直角三角形,
∴ .
∵AB=8,
∴AD=BD=4 ,
∴S阴影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD- S△ABD)
(1)求证:BD=CD;
(2)若圆O的半径为3,求 的长.
17. 如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.
(1)AC与CD相等吗?为什么?
(2)若AC=2,AO= ,求OD 长度.
18.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为 的中点,连接DE,EB.
A.19B.16C.18D.20
【答案】D
【解析】
试题分析:延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.
A. B. C. D.
二、填空题
11.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=______度.
12.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.
13.如图,A,B,C,D是⊙O上 四个点,∠C=110°,则∠BOD=度.
延长AO交BC于D,作OE⊥BC于E;

九年级上学期数学《圆》单元测试题含答案

九年级上学期数学《圆》单元测试题含答案
OH= >OA,所以点H在⊙O外,
故选:A.
[点睛]此题是点与圆的位置关系,主要考查了网格中计算两点间的距离,比较线段长短的方法,计算距离是解本题的关键.点到圆心的距离小于半径,点在圆内,点到圆心的距离大于半径,点在圆外,点到圆心的距离大于半径,点在圆内.
4.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,C D切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PC D的周长为()
A. 40°B. 30°C. 20°D. 15°
[答案]C
[解析]
[详解]先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.
解:∵在⊙O中, = ,
∴∠AOC=∠AOB,
∵∠AOB=40°,
∴∠AOC=40°,
∴∠A D C= ∠AOC=20°,
故选C.
3.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形为边长均相等),现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()
A.15°B.20°C.25°D.30°
10.如图,A B是⊙O的直径,⊙O交B C的中点于D,DE⊥A C于点E,连接A D,则下列结论正确的个数是()
①A D⊥B C;②∠ED A=∠B;③OA= A C;④DE是⊙O的切线.
A.1个B.2个C.3个D.4个
二.填空题(每小题4分,共24分)
11.如图,四边形A B C D是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.
18.如图所示,本市新建一座圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B之间的距离与A,C之间的距离相等,并测得B C长为120米,A到B C的距离为4米,请你帮他们求出该湖的半径.

九年级上册数学《圆》单元测试卷(附答案)

九年级上册数学《圆》单元测试卷(附答案)
16.已知一条圆弧所在圆的半径为9,弧长为 π,则这条弧所对的圆心角是.
17.如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.
18.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是 中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,其中结论正确的是________(只需填写序号).
又∵∠AOD=30°,r=1cm
∴在△OEP1中OP1=2PE=2×1=2cm
又∵OP=6cm
∴P1P=6-2=4cm
∴圆P到达圆P1需要时间为:4÷1=4(s),
同理,当圆P在直线CD的右侧时,所需的时间为(6+2)÷1=8(s).
综上可知:P与直线CD相切时,时间为4s或8s,
故选D.
点睛:P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在P1,P2两点.当P在P1点时,根据切线的性质,在直角△O P1E中,由30°的角所对的直角边等于斜边的一半,即可求得O P1的长,进而求得P P1的长,从而求得由P到P1移动的时间;根据O P2=O P1,即可求得P P2,也可以求得求得由P到P2移动的时间.
4.如图,在⊙O中, = ,∠AOB=40°,则∠ADC的度数是()
A 40°B. 30°C. 20°D. 15°
【答案】C
【解析】
【详解】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.
解:∵在⊙O中, = ,
∴∠AOC=∠AOB,
∵∠AOB=40°,

人教版数学九年级上《第24章圆》单元综合测试试题(含答案)

人教版数学九年级上《第24章圆》单元综合测试试题(含答案)

圆单元综合测试试题一.选择题1.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A.2 B.4 C.8 D.162.如图,AB是⊙O的直径, BC是⊙O的弦,已知∠AOC=80°,则∠ABC的度数为()A.20°B.30°C.40°D.50°3.如图,AB是⊙O的直径,点C在⊙O上,∠ABC=30°,AC=4,则⊙O的半径为()A.4 B.8 C.D.4.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是()A.23°B.44°C.46°D.57°5.如图,正三角形ABC的边长为4cm,D,E,F分别为BC,AC,AB的中点,以A,B,C三点为圆心,2cm长为半径作圆.则图中阴影部分的面积为()A.(2﹣π)cm2B.(π﹣)cm2C.(4﹣2π)cm2D.(2π﹣2)cm2 6.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°7.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O上或在⊙O外8.已知⊙O的半径为4,直线l上有一点与⊙O的圆心的距离为4,则直线l与⊙O的位置关系为()A.相离B.相切C.相交D.相切、相交均有可能9.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.1010.如图,在矩形AB CD中,AB=8,AD=12,经过A,D两点的⊙O与边BC相切于点E,则⊙O的半径为()A.4 B.C.5 D.二.填空题11.若四边形ABCD是⊙O的内接四边形,∠A=120°,则∠C的度数是.12.如图,四边形ABCD内接于⊙O,∠C=130°,则∠BOD的度数是.13.如图,四边形ABCD是菱形,∠B=60°,AB=1,扇形AEF的半径为1,圆心角为60°,则图中阴影部分的面积是.14.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为.15.如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF⊥AB 于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为.16.如图,AB是⊙O的直径,弦BC=6cm,AC=8cm.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q以1cm/s的速度从A点出发沿着A→C的方向运动,当点P 到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为.三.解答题17.如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE于点D,AC平分∠DAB.(1)求证:直线CE是⊙O的切线;(2)若AB=10,CD=4,求BC的长.18.如图,⊙O的直径AB为10cm,弦BC=8cm,∠ACB的平分线交⊙O于点D,连接AD,BD,求四边形ACBD的面积.19.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若AB=10,CD=6,求BE的长.21.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O 分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.22.如图,AB=AC,CD⊥AB于点D,点O是∠BAC的平分线上一点,⊙O与AB相切于点M,与CD相切于点N(1)求证:∠AOC=135°;(2)若NC=3,BC=2,求DM的长.23.如图,AB是⊙O的直径,C为AB延长线上一点,过点C作⊙O的切线CD,D为切点,点F是的中点,连接OF并延长交CD于点E,连接BD,BF.(1)求证:BD∥OE;(2)若OE=3,tan C=,求⊙O的半径.参考答案一.选择题1.解:∵⊙O中最长的弦为8cm,即直径为8cm,∴⊙O的半径为4cm.故选:B.2.解:∵=,∴∠ABC=∠AOC=×80°=40°,故选:C.3.解:∵AB是直径,∴∠C=90°,∵∠ABC=30°,∴AB=2AC=8,∴OA=OB=4,故选:A.4.解:连接OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵∠COD=2∠A=46°,∴∠D=90°﹣46°=44°.故选:B.5.解:连接AD,∵△ABC是正三角形,BD=DC,∴∠B=60°,AD⊥BC,∴AD=AB=2,∴图中阴影部分的面积=×4×2﹣×3=(4﹣2π)cm2故选:C.6.解:由题意得,∠AOB=60°,则∠APB=∠AOB=30°.故选:C.7.解:∵点P的坐标是(3,4),∴OP==5,而⊙O的半径为5,∴OP等于圆的半径,∴点P在⊙O上.故选:C.8.解:∵若直线L与⊙O只有一个交点,即为点P,则直线L与⊙O的位置关系为:相切;若直线L与⊙O有两个交点,其中一个为点P,则直线L与⊙O的位置关系为:相交;∴直线L与⊙O的位置关系为:相交或相切.故选:D.9.解:∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选:B.10.解:如图,连结EO并延长交AD于F,连接AO,∵⊙O与BC边相切于点E,∴OE⊥BC,∵四边形ABCD为矩形,∴BC∥AD,∴OF⊥AD,∴AF=DF=AD=6,∵∠B=∠DAB=90°,OE⊥BC,∴四边形ABEF为矩形,∴EF=AB=8,设⊙O的半径为r,则OA=r,OF=8﹣r,在Rt△AOF中,∵OF2+AF2=OA2,∴(8﹣r)2+62=r2,解得r=,故选:D.二.填空题(共6小题)11.解:四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣∠A=60°,故答案为:60°.12.解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠C=130°,∴∠A=50°,∴∠BOD=2∠A=100°,故答案为100°.13.解:连接AC .∵四边形ABCD 是菱形,∴∠B =∠D =60°,AB =AD =DC =BC =1, ∴∠BCD =∠DAB =120°,∴∠1=∠2=60°,∴△ABC 、△ADC 都是等边三角形, ∴AC =AD =1,∵AB =1,∴△ADC 的高为,AC =1,∵扇形BEF 的半径为1,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AF 、DC 相交于HG ,设BC 、AE 相交于点G , 在△ADH 和△ACG 中,,∴△ADH ≌△ACG (ASA ),∴四边形AGCH 的面积等于△ADC 的面积,∴图中阴影部分的面积是:S 扇形AEF ﹣S △ACD =﹣×1×=﹣.故答案为﹣. 14.解:∵AB 是直径,∴∠ACB =90°,∵∠A =∠CDB =30°,∴BC =AB =1,故答案为1.15.解:如图,连接AE,OE.设BF=x.∵AC是直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∵OA=OE,∴∠OAE=∠OEA,∴∠EAB=∠AEO,∴OE∥AB,∴=,∴AF=6,CD=4,BF=x,∴AC=AB=x+6,∴OE=OA=OD=,∴=,整理得:x2+10x﹣24=0,解得x=2或﹣12(舍弃),经检验x=2是分式方程的解,∴BF=2.故答案为2.16.解:如图,∵AB是直径,∴∠C=90°.又∵BC=6cm,AC=8cm,∴根据勾股定理得到AB==10cm.则AP=(10﹣2t)cm,AQ=t.∵当点P到达点A时,点Q也随之停止运动,∴0<t≤2.5.①如图1,当PQ⊥AC时,PQ∥BC,则△APQ∽△ABC.故=,即=,解得t=.②如图2,当PQ⊥AB时,△APQ∽△ACB,则=,即=,解得t=.综上所述,当t=s或t=时,△APQ为直角三角形.故答案是: s或s.三.解答题(共7小题)17.(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)解:∵AB是直径,∴∠ACB=90°,∵AD⊥CD,∴∠ADC=∠ACB=90°,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,∴BC•AC=40,∵BC2+AC2=100,∴BC+AC=6,AC﹣BC=2或BC﹣AC=2,∴BC=2或4.18.解:∵AB为直径,∴∠ADB=90°,又∵CD平分∠ACB,即∠ACD=∠BCD,∴=,∴AD=BD,∵直角△ABD中,AD=BD,则AD=BD=AB=5,则S△ABD=AD•BD=×5×5=25(cm2),在直角△ABC中,AC===6(cm),则S△ABC=AC•BC=×6×8=24(cm2),则S四边形ADBC=S△ABD+S△ABC=25+24=49(cm2).19.(1)证明:连接AE,如图,∵AB为⊙O的直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:∵AB=AC,AE⊥BC,∴AE平分∠BAC,∴∠CAE=∠BAC=×54°=27°,∴∠DOE=2∠CAE=2×27°=54°,∴弧DE的长==π;(3)解:当∠F的度数是36°时,BF与⊙O相切.理由如下:∵∠BAC=54°,∴当∠F=36°时,∠ABF=90°,∴AB⊥BF,∴BF为⊙O的切线.20.(1)证明:∵直径AB⊥弦CD,∴弧BC=弧BD.∴∠A=∠BCD;(2)连接OC∵直径AB⊥弦CD,CD=6,∴CE=ED=3.∵直径AB=10,∴CO=OB=5.在Rt△COE中,∵OC=5,CE=3,∴OE==4,∴BE=OB﹣OE=5﹣4=1.21.解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.22.解:(1)如图,作OE⊥AC于E,连接OM,ON.∵⊙O与AB相切于点M,与CD相切于点N,∴OM⊥AB,ON⊥CD,∵OA平分∠BAC,OE⊥AC,∴OM=OE,∴AC是⊙O的切线,∵ON=OE,ON⊥CD,OE⊥AC,∴OC平分∠ACD,∵CD⊥AB,∴∠ADC=∠BDC=90°,∴∠AOC=180°﹣(∠DAC+∠ACD)=180°﹣45°=135°.(2)∵AD,CD,AC是⊙O的切线,M,N,E是切点,∴AM=AE,DM=DN,CN=CE=3,设DM=DN=x,AM=AE=y,∵AB=AC,∴BD=3﹣x,在Rt△BDC中,∵BC2=BD2+CD2,∴20=(3﹣x)2+(3+x)2,∴x=1或﹣1(舍弃)∴DM=1.23.(1)证明:∵OB=OF,∴∠1=∠3,∵点F是的中点,∴∠1=∠2.∴∠2=∠3,∴BD∥OE;(2)解:连接OD,如图,∵直线CD是⊙O的切线,∴OD⊥CD,在Rt△OCD中,∵tan C==,∴设OD=3k,CD=4k.∴OC=5k,BO=3k,∴BC=2k.∵BD∥OE,∴.即.∴DE=6k,在Rt△ODE中,∵OE2=OD2+DE2,∴(3)2=(3k)2+(6k)2,解得k=∴OB=3,即⊙O的半径的长.。

数学九年级上册《圆》单元测试题(含答案)

数学九年级上册《圆》单元测试题(含答案)

人版九年上期教数学级学《圆》元单测试(满分120分,考试用时120分钟)一、选择题(每小题3分,共30分)1. 已知的⨀O半径为3cm, 点P到圆心O的距离OP=2cm, 则点P( )A. 在⨀O外B. 在⨀O 上C. 在⨀O 内D. 无法确定2. 在 Rt△ABC 中,∠C=90°,BC=3cm,AC=4cm,以点C 为圆心,以2.5cm 为半径画圆,则⊙C与直线AB的位置关系是 ( )A. 相交B. 相切C. 相离D. 不能确定3. 如图,在⊙O中,若点C是 AB的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°4. 如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心 M 到坐标原点O 的距离是 ( )A. 10;B.C.D.5. 如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是( )55° B. 60° C. 65° D. 70°6. 如图,过⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别是A ,B ,OP 交⊙O 于点C ,点D 不与点A 、点C 重合的一个动点,连接AD ,CD ,若∠APB=80°,则∠ADC 的度数是( )A. 15°B. 20°C. 25°D. 30°7. 如图,AB 是⊙O 的直径,点C 在⊙O 上,ABC ∠=30°,AB =8,则BC 等于 ( )A. 4;B.C. ;D. 8;8. 在半径为2的圆中,弦AB 的长为2( )A. 3π9. 已知一块圆心角为(接缝忽略不计),圆锥的底面圆的直径是80cm ,则这块扇形铁皮的半径是( )A. 24cmB. 48cmC. 96cmD. 192cm10. 如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是弧AB 的中点,连接AC 、BC,则图中阴影部分面积是 ( )A. 43π-二、填空题(每小题4分,共32分)11. 用反证法证明“垂直于同一条直线的两条直线平行”时,第一个步骤是_____.12. 如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.13. 如图,点A,B,C,D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是________.∥,若 AB 和CD 之间的距离为14. 在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且 AB CD18,则弦CD 的长为.15. 如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是__.∥的16. 如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC OA长为.(结果保留π)17. 如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B面积为____.18. 如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离________cm.三、解答题(共58分)19. “五段彩虹展翅飞”,横跨南渡江的琼州大桥如图,该桥的两边均有五个红色的圆拱,如图(1).最高的圆拱的跨度为110m,拱高为22m,如图(2),那么这个圆拱所在圆的直径为多少米?20. 如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD,求证:AD=CD.21. 如图,已知在⊙O中,AB,AC是⊙O的直径,AC⊥BD于点F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.22. 已知一个圆的半径为6cm,这个圆的内接正六边形的周长和面积各是多少?23. 如图,以△边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.24. 如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE,求证:(1)AC平分∠DAB;(2)△PCF是等腰三角形.⊥点 M 是直线CD 上异于点25. 如图,⊙O 的半径为1,直线CD 经过圆心O,交⊙O 于C、D 两点,直径AB CD,C、O、D 的一个动点,AM 所在的直线交⊙O 于点N,点 P 是直线CD 上另一点,且PM=PN.(1)当点 M 在⊙O 内部,如图①,试判断 PN 与⊙O 的关系,并写出证明过程;(2)当点 M 在⊙O 外部,如图②,其他条件不变时,(1)的结论是否还成立? 请说明理由;(3)当点 M 在⊙O 外部,如图③,AMO∠=15°,求图中阴影部分的面积.参考答案一、选择题(每小题3分,共30分)1. 已知的⨀O 半径为3cm, 点P 到圆心O 的距离OP=2cm, 则点P ( )A. 在⨀O 外B. 在⨀O 上C. 在⨀O 内D. 无法确定【答案】C【解析】【分析】根据点到圆心的距离d 和圆的半径r 之间的大小关系,即可判断;【详解】∵⊙O 的半径为r =3cm ,点P 到圆心的距离OP =d =2cm ,∴d <r ,∴点P 在圆内,故选C.【点睛】本题考查了点与圆的位置关系.2. 在 Rt △ABC 中,∠C =90°,BC =3cm ,AC =4cm ,以点C 为圆心,以2.5cm 为半径画圆,则⊙C 与直线AB 的位置关系是 ( )相交B. 相切C. 相离D. 不能确定【答案】A【解析】试题分析:Rt △ABC 中,∠C =90°,BC =3cm,AC =4cm,可以求出斜边AB=5cm, 以点C 为圆心,以2.5cm 为半径画圆,则圆过AB 的中点,BC >r ,所以⊙C 与直线AB 的位置关系是相交.故选A.3. 如图,在⊙O 中,若点C 是AB 的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°【答案】A【解析】试题解析:50,,A OA OB ∠==∵点C的中点,故选A.点睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.4. 如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心 M 到坐标原点O 的距离是 ( )A. 10;【答案】D【解析】【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在Rt△AOM中求出OM即可.【详解】解:如图连接BM、OM,AM,作MH⊥BC于H.已知⊙M与x轴相切于点A(8,0),可得AM⊥OA,OA=8,即可得∠OAM=∠MH0=∠HOA=90°,所以四边形OAMH是矩形,根据矩形的性质可得AM=OH,因MH⊥BC,由垂径定理得HC=HB=6,所以OH=AM=10,在RT△AOM中,由勾股定理可求得故答案选D.【点睛】本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.5. 如图,A,B,C是⊙O上三点,∠ACB=25数是( )A. 55°B. 60°C. 65°D. 70°【答案】C【解析】【分析】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【详解】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠180°﹣50°)=65°.故选C.考点:圆周角定理.6. 如图,过⊙O外一点P引⊙O的两条切线PA,PB,切点分别是A,B,OP交⊙O于点C,点D是 ABC上不与点A、点C重合的一个动点,连接AD,CD,若∠APB=80°,则∠ADC的度数是( )A. 15°B. 20°C. 25°D. 30°【答案】C【解析】【详解】解;如图,连接OB,OA.因为PA,PB是圆O的切线,所以∠OBP=∠OAP=90°,PA=PB.由四边形的内角和定理,得∠BOA=360°-90°-90°-80°=100°.在△BPO和△APO中,PB=PA,PO=PO,OB=OA,所以△BPO≌△APO,所以∠BOC=∠AOB=50°.由圆周角定理,得∠ADC=12∠AOC=25°.故选C.7. 如图,AB 是⊙O 的直径,点C 在⊙O 上,∠ABC=30°,AB=8,则BC 等于 ( )A. 4; C. 4; D. 8;【答案】C【解析】试题分析:AB 是⊙O 的直径,点C 在⊙O 上,所以∠ACB=90°,又因∠ABC=30°,AB=8,所以AC=4,根据勾股定理得故选C.8. 在半径为2的圆中,弦AB的长为2( )πA. 3【答案】C【解析】【详解】试题分析:如图,连接OA、OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,故选C.【考点】弧长的计算.9. 已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是( )A. 24cmB. 48cmC. 96cmD. 192cm【答案】B【解析】【分析】利用底面周长=展开图的弧长可得.【详解】设这个扇形铁皮的半径为rcm ,由题意得300=80180r ππ⨯,解得r=48.故这个扇形铁皮的半径为48cm ,故选B .考点:圆锥的计算.10. 如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是弧AB 的中点,连接AC 、BC,则图中阴影部分面积是 ( )A. 43π-C. 43π-【答案】A【解析】试题分析:连接AB 、OC ,,所以可将四边形AOBC 分成三角形ABC 、和三角形AOB ,进行求面积,求得r 2所以阴影部分面积是扇形面积减去四边形面积即故选A.二、填空题(每小题4分,共32分)11. 用反证法证明“垂直于同一条直线的两条直线平行”时,第一个步骤是_____.【答案】垂直于同一条直线的两条直线相交【解析】试题分析:反证法有如下三个步骤:(1)提出反证,(2)推出矛盾,(3)肯定结论.所以第一步先提出反证垂直于同一条直线的两条直线相交.12. 如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.【答案】4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴,∵,△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.13. 如图,点A,B,C,D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是________.【答案】13【解析】【详解】连接AC,根据∠ABC=90°可得AC为直径,则∠ADC=90°,根据Rt△ACD的勾股定理可得:AC==14. 在周长为26π的⊙O 中,CD 是⊙O 的一条弦,AB 是⊙O 的切线,且 AB∥CD,若 AB 和CD 之间的距离为18,则弦CD 的长为.【答案】24【解析】【分析】如图,设AB与⊙O相切于点F,连接OF,OD,延长FO交CD于点E,首先证明OE⊥CD,在RT△EOD 中,利用勾股定理即可解决问题.【详解】如图,设AB与O相切于点F,连接OF,OD,延长FO交CD于点E.∵2πR=26π,∴R=13,∴OF=OD=13,∵AB是O切线,∴OF⊥AB,,AB CD∥∴EF⊥CD即OE⊥CD,∴CE=ED,∵EF=18,OF=13,∴OE=5,在RT△OED中∴CD=2ED=24.故答案为24.【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,利用垂径定理解决问题,属于中考常考题型.15. 如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是__.【解析】【分析】过点O作OC⊥AB于C,交⊙O于D、E两点,根据圆周角定理得△OAB为等腰直角三角形,所以AB=S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,可得到四边形MANB面积的最大值.【详解】过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴∵S 四边形MANB=S △MAB+S △NAB ,∴当M 点到AB 的距离最大,△MAB 的面积最大;当N 点到AB 的距离最大时,△NAB 的面积最大,即M 点运动到D 点,N 点运动到E 点,此时四边形MANB 面积的最大值= S 四边形DAEB =S △DAB +S △EAB=12AB•CD+12(CD+CE )=12考点:1.垂径定理;2.圆周角定理.16. 如图,AB 切⊙O 于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,劣弧BC 的弧长为 .(结果保留π)【解析】试题分析:连接OB ,OC ,由AB 为圆的切线,利用切线的性质得到△AOB 为Rt △,根据30度所对的直角边等于斜边的一半,由OA=2求出OB=1,且∠AOB=60°,再由BC ∥OA ,利用两直线平行内错角相等得到∠OBC=60°,又OB=OC ,得到△BOC 为等边三角形,得出∠BOC=60°,利用弧长公式考点:切线的性质;含30度角的直角三角形;弧长的计算.17. 如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B面积为____.【解析】试题分析:连结AO,连结PO交圆于C.∵PA,PB是⊙O的切线,A,B为切点,PA=3,∠P=60°,∴∠OAP=90°,OA=1,∴S阴影=2×(S△PAO S﹣扇形AOC)=故答案为考点:1.扇形面积的计算;2.切线的性质.18. 如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为10cm,母线OE(OF)长为10cm.在母线OF上的点A处有一块爆米花残渣,且FA=2cm,一只蚂蚁从杯口的点E处沿圆锥表面爬行到A点,则此蚂蚁爬行的最短距离________cm.【解析】试题分析:因为OE=OF=EF=10(cm),所以底面周长=10π(cm),将圆锥侧面沿OF剪开展平得一扇形,此扇形的半径OE=10(cm),弧长等于圆锥底面圆的周长10π(cm)设扇形圆心角度数为n,则根据弧长公式得:10π=,所以n=180°,即展开图是一个半圆,因为E点是展开图弧的中点,所以∠EOF=90°,连接EA,则EA就是蚂蚁爬行的最短距离,在Rt△AOE中由勾股定理得,EA2=OE2+OA2=100+64=164,所以EA=2(cm),即蚂蚁爬行的最短距离是2(cm).考点:平面展开-最短路径问题;圆锥的计算.三、解答题(共58分)19. “五段彩虹展翅飞”,横跨南渡江的琼州大桥如图,该桥的两边均有五个红色的圆拱,如图(1).最高的圆拱的跨度为110m,拱高为22m,如图(2),那么这个圆拱所在圆的直径为多少米?【答案】159.5m.【解析】试题分析:在三角形OCF中可求得OF=OE-EF,OE=OC,所以根据勾股定理可得OC2=OF2+CF2,CF=12 CD,求出半径OC的长,进而求出直径.设所在圆的圆心为O,作OE⊥CD 于点F,交圆拱于点E,连接OC.设圆拱的半径为rm,则OF=(r-22)m.∵OE⊥CD,∴CF=55(m).根据勾股定理,得OC2=CF2+OF2,即r2=552+(r-22) 2.解这个方程,得r=79.75.这个圆拱所在圆的直径是79.75×2=159.5(m).20. 如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD,求证:AD=CD.【答案】详见解析.【解析】试题分析:垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧.因为AB 为直径,所以°,又因OD∥BC,所以根据垂径定理得DO垂直且平分AC,根据垂直平分线的性质得AD=CD.证明:连接OC,∵OD∥BC,∴∠ODB=∠CBD,又OB=OD,∴∠ODB=∠OBD,∴∠OBD=∠CBD,∵∠AOD=2∠OBD,∠DOC=2∠CBD,∴∠AOD=∠DOC,∴AD=CD.21. 如图,已知在⊙O中,AB,AC是⊙O的直径,AC⊥BD于点F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.【答案】【解析】试题分析:(1)由∠A=30°,可求得∠BOC=60°,再根据垂径定理得∠BOD=120°,由勾股定理得出BF 以及OB 的长,从而计算出阴影部分的面积即扇形的面积.(2)直接根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得圆锥的底面圆的半径.试题解析:(1)∵AC ⊥BD 于F ,∠A=30°,∴∠BOC=60°,∠OBF=30°,∵∴BF=23 ,∴(2)设圆锥的底面圆的半径为r ,则周长为2πr ,∴21204180r ππ=⋅∴这个圆锥底面圆的半径为43 .考点:1.圆锥的计算,2.扇形面积的计算.22. 已知一个圆的半径为6cm,这个圆的内接正六边形的周长和面积各是多少?【答案】【解析】试题分析:连接圆心和六边形的顶点,将六边形分成六个全等的三角形,这六个三角形是等边三角形.所以正六边形的边长是6cm,所以周长就是36cm;计算每个三角形面积,过圆心作一个三角形的高,求得高是3cm2,故正六边形的面积是2.如图所示,⊙O 中内接正六边形,OA=6cm.∵正六边形内接于⊙O,∴中心角∠AOB=60°,∴△AOB 是等边三角形,∴AB=OA=6cm,∴周长为::6 AB=36cm.过O 点作OD⊥AB,∴∠AOD=30°,∴AD=3cm,∴由勾股定理可得OD=,∴S△OAB2),∴S正六边形=2).23. 如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【答案】(1)证明见【解析】【分析】(1)连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.【详解】解:(1)连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴【点睛】本题考查切线的判定.24. 如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE,求证:(1)AC平分∠DAB;(2)△腰三角形.【答案】证明见解析【解析】(1)连接OC∵PD切⊙O于点C,∴OC⊥PD.又∵AD⊥PD,∴OC∥AD.∴∠ACO=∠DAC.又∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACE=∠BCE,∴∠CAO+∠ACE=∠PCB+∠BCE,∴∠PEC=∠PCE,∴PC=PE,即△25. 如图,⊙O 的半径为1,直线CD 经过圆心O,交⊙O 于C 、D 两点,直径AB ⊥CD,点 M 是直线CD 上异于点C 、O 、D 的一个动点,AM 所在的直线交⊙O 于点N,点 P 是直线CD 上另一点,且PM =PN .(1)当点 M 在⊙O 内部,如图①,试判断 PN 与⊙O 的关系,并写出证明过程;(2)当点 M 在⊙O 外部,如图②,其他条件不变时,(1)的结论是否还成立? 请说明理由;(3)当点 M 在⊙O 外部,如图③,∠AMO =15°,求图中阴影部分的面积.【答案】(1)详见解析;(2)成立,理由详见解析;(3)124【解析】试题分析:(1)PN 与⊙O 相切.要证明O N 即可,连接O N ,PM =PN ,所以∠PNM =∠PMN ,∠AMO =∠PMN ,AB ⊥CD,所以∠PMN+∠MAO=90°,又因∠MAO=∠MNO,所以∠PNM+∠MNO=90°,所以PN 与⊙O 相切.(2)成立,进行等量代换,∠MAO+∠OMA=90°,因∠OMA=∠PNM ,∠MAO=∠ONA,所以∠PNM+∠ONA=90°,所以∠O NP=90°;(3)阴影部分的面积可通过+S 扇形AOC 求得. (1)PN 与⊙O 相切.证明:连接ON ,则∠ONA =∠OAN .∵PM =PN ,∴∠PNM =∠PMN .又∵∠AMO =∠PMN ,∴∠PNM =∠AMO .∴∠PNO =∠PNM +∠ONA =∠AMO +∠OAN =90°,即PN 与⊙O 相切.(2)成立.理由如下:连接ON ,则∠ONA =∠OAN .∵PM =PN ,∴∠PNM =∠PMN .在Rt △AOM 中,∠OMA +∠OAM =90°.∴∠PNM +∠ONA =90°,∴∠PNO =180°-90°=90°.即PN 与⊙O 相切.(3)连接ON ,由(2)可知∠ONP =90°.∵∠AMO =15°,PM =PN ,∴∠PNM =15°,∠OPN =30°,∴∠PON =60°,∠AON =30°.过点N 作NE ⊥OD ,垂足为点E .则OE ∴NE =2.∴S 阴影=S △AOC +S 扇形AON -S △CON +2301360π⋅⋅4∴4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学第二十四章圆测试题(A )时间:45分钟 分数:100分明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把 O 点靠在圆周上,读得刻度 OE=8个单位,OF=6个单位,则圆的直径为()A 、12个单位B 、10个单位C 、1个单位D 、15个单位6、如图24—A — 4, AB 为O O 的直径,点 C 在O O 上,若/ B=60 °,则/ A 等于()A 、80°B 、50°C 、40 °D 、30°7、 如图24—A — 5, P 为O O 外一点,PA 、PB 分别切O O 于A 、B , CD BO O 于点E ,分别交PA 、 PB 于点C 、D ,若PA=5,则△ PCD 的周长为( )A 、5B 、7C 、8D 、108、 若粮仓顶部是圆锥形, 且这个圆锥的底面直径为 4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡, 则这块油毡的面积是() 2 2 2 2A 、6mB 、6二mC 、12mD 、12 二m9、如图24—A — 6,两个同心圆,大圆的弦 AB 与小圆相切于点 P ,大圆的弦 CD 经过点P ,且CD=13 , PC=4,则两圆组成的圆环的面积是()A 、 16 nB 、 36 nC 、 52 nD 、 81 n10、已知在△ ABC 中,AB=AC=13 , BC=10,那么△ ABC 的内切圆的半径为( )1012A 、B 、C 、2D 、33 511、 如图24—A —乙 两个半径都是 4cm 的圆外切于点 C, 一只蚂蚁由点 A 开始依A 、B 、 C D 、E 、F 、C G A 的顺序沿着圆周上的 8段长度相等的路径绕行,蚂蚁在这 8段路 径上不断爬行,直到行走 2006 n cm 后才停下来,则蚂蚁停的那一个点为()A D 点B 、E 点C 、F 点D 、G 点二、填空题(每小题 3分,共30分)12、 如图24—A — 8,在O O 中,弦 AB 等于O O 的半径,OC 丄AB 交O O 于点C ,则/ AOC= ____ 。

13、如图24—A — 9, AB 、AC 与O O 相切于点 B 、C ,Z A=50 °, P 为O O 上异于B 、C 的一个动点,、选择题(每小题 3分,共33分)若O O 所在平面内一点 P 到O O 上的点的最大距离为 a ,最小距离为b (a>b ),则此圆的半径为() a+ba —bA 、-2 2如图24—A — 1 , O O 的直径为10, A 、4 B 、6 C 、7 已知点 O ABC 的外心,若/ A=80C 、160 1、 圆心 a +b 卡 a —bC 、或 一2 2O 到弦AB 的距离OMD 、8 则/ BOC 的度数为(120 ° D 、a b 或a 「b的长为3,则弦 AB 的长是()如 24 A3, B 、80°OD 、4、A 、40° 5、 图图 24— A —7则/ BPC的度数为_______ 。

220 n cm 面积为240 n cm ,则扇形的半径为 17、如图24— A —10,半径为2的圆形纸片,沿半径 OA 、OB 裁成1: 3两部分,用得到的扇形围成圆 锥的侧面,则圆锥的底面半径分别为 ________________ 。

18、 在Rt △ ABC 中,/ C=90 °, AC=5 , BC=12,以C 为圆心,R 为半径作圆与斜边 AB 相切,则 R 的 值为 ___________ 。

19、 已知等腰厶ABC 的三个顶点都在半径为 5的O O 上,如果底边 BC 的长为8,那么BC 边上的高 为 。

20、 已知扇形的周长为 20cm ,面积为16cm 2,那么扇形的半径为 ____________ 。

21、 如图24—A —11, AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。

若AC=8cm , DE=2cm ,贝U OD 的长为 ________ c m 。

三、作图题(7分)22、如图24— A — 12,扇形OAB 的圆心角为120°,半径为 6cm. ⑴请用尺规作出扇形的对称轴(不写做法,保留作图痕迹). ⑵若将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的底面积、选择题(每小题 3分,共30 分)14、 已知OO O 外一点, 为圆心且与O 为 _ 。

15、 一个圆 为4,则圆锥O 的半径为 OP 长为3, O 相切的圆 锥 的图 24 — A — 9底面半 的 侧面积16、扇形的弧长为 cm四、解答题(23小题8分、24小题10分,25小题12分,共30分)..: 23、如图 24— A — 13, AD 、BC 是O O 的两条弦,且 AD=BC ,求证:… . 一 AB=CD 。

24、如图24— A —14,已知O O 的半径为8cm,点A 为半径OB 「 : 图24— A—12的延长线 上一点,射线 AC BO O 于点C ,弧BC 的长为£二cm ,求线段AB ' _..的长。

25、已知:△ ABC 内接于O O ,过点A 作直线EF 。

(1) 如图24— A — 15, AB 为直径,要使 EF 为O O 的切线,(只需写出三种情况):① ___________ :② _______________ :③―还需添 图 24— A —14加的条件是O O 的切九年级数学第二十四章圆测试题(B )时间:45分钟分数:100分图 24— A —15图 24—A —8A2,点P 为 那么以P 的半径 径为3,高图 24—A —O/ CAEN B ,求证: EF 是图 24—A —161、 已知O O 的半径为4cm , A 为线段OP 的中点,当 OP=7cm 时,点A 与O O 的位置关系是A 、点A 在O O 内2、 过O O 内一点 M 的最长弦为 B 、点A 在O O 上10 cm ,最短弦长为 C 、点A 在O O 外 8cm ,贝U OM 的长为D 、不能确定 )A 、9cmB 、6cmC 、3cm■. 41cm3、在△ ABC 中, I 是内心,AB 与 的夹角为30°,切线CD 与AB BIC=130 °,则/ A 的度数为(65则CD 的长为()B 、 -.3 5、如图24— B — 2,若等边△ 的延长线交于点D , 若O O 的半径为3,C 、3D 、3.3A 1B 1C 1内接于等边△ ABC 的内切圆,则 的值为()AB6、 如图24 — B — 3, O M 与x 轴相切于原点, 若P 点的坐标是(2, 1),则圆心M 的坐标是( 5、 B 、(0,-) 2 平行于y 轴的直线交圆于 ) P 、Q 两点,P 点在Q 点的下方, A 、 (0,3) 7、 已知圆锥的侧面展开图的面积是 3 A 、一 cm 2 B 、3cm3 D 、(0,上) 215 n cm 2,母线长是5cm ,则圆锥的底面半径为( C 、 (0, 2) C 、4cm D 、6cm 8、 如图24 — B — 4,O O 1和O 。

2内切,它们的半径分别为 3和1,过。

1作O O ?的切线, O 1A 的长是()D 、 •、5 9、如图24— B — 5,O O 的直径为 AB ,周长为P 1, 且依次相外切的等圆,且其中左、右两侧的等圆分别与O 等圆的周长之和为 P 2,则P 1和P 2的大小关系是() A 、P 1< P 2 B 、P 1= P 2 C 、P 1> P 2 D 、不能确定 10、若正三角形、正方形、正六边形的周长相等,它们的面积分别是下列关系成立的是(A 、S 1=S 2=S 3 二、填空题(每小题 如图 24—B — 6,如图 24— B — 7, 在O O 内的 O 内切于 B 、P 1= P 2 S 1、S 2、S 3,则 11、12、) B 、S 1>S 2>S 33分,共30分) AB 是O O 的直径, AB 是O O 的直径, C 、S 1<S 2<S 3 D 、S 2>S 3>S 1 BC=BD ,/ A=25 °,则/ BOD= OD 丄 AC 于点 D , BC=6cm ,贝U13、 24 — 切点为A ,则 n 个圆心在AB 上 - A 、B ,若这n 个 O20、 如图24— B —15,正方形ABCD 的边长为1,点E 为AB 的中点,以E 为圆心,1为半径作圆,分 别交AD 、BC 于M 、N 两点,与DC 切于点P ,则图中阴影部分的面积是 ______________________________________________________________________ 。

三、作图题(8分)21、 如图24— B —16,已知在AO ABC 中,/ A=90 °,请用圆规和直尺作O P,使圆心P 在AC 上,且与 AB BC 两边都相切。

(要求保留作图痕迹,不必写出作法和证明)四、解答题(第 22、23小题每题各10分,第23小题1222、如图24— B —17 , AB 是O O 的弦(非直径),C 、 AC=BD 。

求证:OC=OD 。

23、 如图24— B — 18,在O O 中,AB 是直径,CD 是 (1) P 是优弧CAD 上一点(不与 C 、D 重合),求证:/ (2) 点P '在劣弧 CD 上(不与 C 、D 重合)时,/ CP ' 关系?请证明你的结论。

五、综合题24、如图24— A —19,在平面直角坐标系中,O C 与y 轴相切,且 0),直线I 过点A (— 1, 0),与O C 相切于点D ,求直线I 的解析式。

D 、E 分别是O O 的半径 OA 、OB 上的点,CD 丄OA , 是。

14、 如图 24— B — 9, BOC=. 15、 如图 24— B —10,16、 如图 24— B —11, CE 丄OB , CD=CE ,贝U AC 与BC 弧长的大小关系OB 、OC 是O O 的半径,A 是O O 上一点,若已知/ B=20° , / C=30° ,则/ 点M 在OB 边上运动,则当 正方形ABCD 内接于O O ,点 已知/ AOB=30 OM=P 在 AD 上, ,M 为OB 边上一点,以 cm 时, 则/ BPC= . M 为圆心,2cm 长为半径作O M ,若 24 —B — 12,在 O O 中,弦 18、 如图19、 如图 径是 O M 与OA 相切。

相关文档
最新文档