全等三角形难题集锦(整理)
全等三角形难题(含答案)
![全等三角形难题(含答案)](https://img.taocdn.com/s3/m/1cbc64b40722192e4436f63a.png)
全等三角形难题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP ,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形AD B CC∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)BB ACDF21 E∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
全等三角形难题集
![全等三角形难题集](https://img.taocdn.com/s3/m/4c5b9c4102d8ce2f0066f5335a8102d277a26147.png)
全等三角形难题集引言全等三角形是初等数学中的一个重要概念,也是几何学的基础之一。
全等三角形指的是在形状、大小、角度等各方面完全相同的两个三角形。
解决全等三角形的难题对于培养学生的逻辑思维能力和几何直观能力具有重要意义。
本文将介绍一些关于全等三角形的难题,希望能够帮助读者更好地理解和掌握全等三角形的相关知识。
难题一:全等三角形的判定给定两个三角形ABC和XYZ,判断它们是否全等。
请根据下列条件判断并给出理由:1.两个三角形的三边分别相等,即AB = XY,BC = YZ,AC = XZ。
2.两个三角形的三个角度分别相等,即∠A = ∠X,∠B = ∠Y,∠C = ∠Z。
3.两个三角形的两边和夹角分别相等,即AB = XY,AC = XZ,∠BAC = ∠YXZ。
理由:1.两个三角形的三边分别相等,根据全等三角形的定义,可以判断它们为全等三角形。
因为边长相等可以保证三角形的形状和大小完全相同。
2.两个三角形的三个角度分别相等,根据全等三角形的定义,可以判断它们为全等三角形。
因为角度相等可以保证三角形的形状和大小完全相同。
3.两个三角形的两边和夹角分别相等,根据全等三角形的定义,可以判断它们为全等三角形。
因为两边和夹角的相等关系可以保证三角形的形状和大小完全相同。
综上所述,根据给定的条件判断两个三角形ABC和XYZ为全等三角形。
难题二:全等三角形的性质全等三角形具有以下性质,请证明或反驳:1.全等三角形的周长相等。
2.全等三角形的面积相等。
3.全等三角形的高度和中线相等。
证明或反驳:1.全等三角形的周长相等:假设三角形ABC和XYZ为全等三角形,根据全等三角形的定义,可以知道它们的边长相等。
所以,周长也相等。
2.全等三角形的面积相等:假设三角形ABC和XYZ为全等三角形,根据全等三角形的定义,可以知道它们的底边和高相等。
由于面积等于底边乘以高的一半,所以面积也相等。
3.全等三角形的高度和中线相等:反驳。
全等三角形证明难题
![全等三角形证明难题](https://img.taocdn.com/s3/m/575f2a34dd36a32d737581f3.png)
FE DCBA1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .3.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF . 求证∠A =∠D .4.已知,如图,AB=AD ,DC=CB .求证:∠B=∠D 。
5.如图, AD =BC, AB =DC, DE =BF. 求证:BE =DF.AD C B1.如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .求证DC ∥AB .2.如图,△ABC ≌△A B C ''',AD ,A D ''分别是△ABC ,△A B C '''的对应边上的中线,AD 与A D ''有什么关系?证明你的结论.3.如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.4.已知:如图,AD ∥BC ,AD=CB ,求证:△ADC ≌△CBA .5.已知:如图AD ∥BC ,AD=CB ,AE=CF 。
求证:△AFD ≌△CEB .6.已知,如图,AB=AC ,AD=AE ,∠1=∠2。
求证:△ABD ≌△ACE .AC EDBAE B CFDAB CD2A CBE1H F ED CB A 7.已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF. 求证:AC ∥DF .8.已知:如图,AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .9.如图, 在△ABC 中, 分别延长中线BE 、CD 至F 、H, 使EF =BE, DH =CD, 连结AF 、AH . 求证:(1) AF =AH ;(2)点A 、F 、H 三点在同一直线上; (3)HF ∥BC.10.如图, 在△ABC 中, AC ⊥BC, AC =BC, 直线EF 交AC 于F, 交AB 于E, 交BC 的延长线于D, 连结AD 、BF, CF =CD. 求证:BF =AD, BF ⊥AD.11.证明:如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(提示:首先分清已知和求证,然后画出图形,再结合图形用数学符号表示已知和求证)AB E F12.证明:如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等.13.已知:如图,正方形ABCD ,BE =CF ,求证:(1)AE =BF ; (2)AE ⊥BF . 14.已知:E 是正方形ABCD 的边长AD 上一点,BF 平分∠EBC ,交CD 于F ,求证BE=AE+CF.(提示:旋转构造等腰)15.如图,△ABD 和△ACE 是△ABC 外两个等腰直角三角形,∠BAD=∠CAE=900.(1)判断CD 与BE 有怎样的数量关系;(2)探索DC 与BE 的夹角的大小.(3)取BC 的中点M ,连MA ,探讨MA 与DE 的位置关系。
(完整版)全等三角形难题超级好题汇总
![(完整版)全等三角形难题超级好题汇总](https://img.taocdn.com/s3/m/101f6b43dd36a32d72758106.png)
1. 如图,已知等边△ ABC,P在AC延长线上一点,以PA为边作等边△ APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE;(2)试证明:EM-PM=AM.3.已知,如图①所示,在△ABC和△ ADE中,AB AC,AD AE,BAC DAE ,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:① BE CD ;② AM AN ;2)在图①的基础上,将△ADE 绕点 A 按顺时针方向旋转180o,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立4、如图1,以△ ABC的边AB 、AC为边分别向外作正方形ABDE和正方形ACFG ,连结EG ,试判断△ABC与△AEG 面积之间的关系,并说明理由.2、点 C 为线段AB 上一点,△ ACM, △ CBN 都是等边三角形,线段AN,MC 交于点E,BM,CN交于点F。
求证:1)AN=MB. (2)将△ ACM 绕点 C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,1)中的结论是否依然成立?(3)AN 与BM 相交所夹锐角是否发生变化。
B图①CB图1)F7、已知 Rt △ ABC 中, AC BC ,∠C 90,D 为AB 边的中点, EDF 90°,EDF 绕 D 点旋转,它的两边分别交 AC 、 CB (或它们的延长线)于 E 、 F.1 当 EDF 绕 D 点旋转到 DE AC 于E时(如图1),易证S △DEF S △CEF S △ ABC .DEF CEF 2 ABC当 EDF 绕 D 点旋转到 DE 和 AC 不垂直时, 在图 2 和图 3 这两种情况下, 上述结论是否成立?若成立, 请给予证明;8. 已知 AC//BD, ∠CAB 和∠ DBA 的平分线 EA 、EB 与 CD 相交于点 E. 求证 :AB=AC+BD.5、如图所示,已知△ ABC 和△ BDE 都是等边三角形,且 A 、 HB 平分∠ AHD ;④∠ AHC=60 °,⑤△ BFG 是等边三角形;⑥ A .3个 B .4 个 C .5个 D .6 个B 、D 三点共线.下列结论:① AE=CD ;② BF=BG ;③ FG ∥AD .其中正确的有()6. 如图所示,△ ABC 是等腰直角三角形,∠ ACB =90°,AD 交 AD 于点 F ,求证:∠ ADC =∠ BDE .是 BC 边上的中线,过 C 作 AD 的垂线,交 AB 于点 E , 、 S △CEF 、 S △ABC 又有怎样的数量关系?请写出你的猜想,不需证明.图1若不成立,S △ DEF 图2图210、已知,如图1,在四边形ABCD 中,BC>AB,AD=DC,BD 平分∠ ABC 。
全等三角形难题集锦超级好
![全等三角形难题集锦超级好](https://img.taocdn.com/s3/m/71f2a44dff00bed5b9f31d85.png)
1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图B E3.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB ,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF4、在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;ADBECF 1A1CADBECF 1A1C5. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .ABCD EF6已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°, EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.A EC F BD图1图3ADFECBADBCE 图2F7、已知AC//BD,∠CAB和∠DBA的平分线EA、EB与CD相交于点E.求证:AB=AC+BD.8.等边△ABC,D为△ABC外一点,∠BDC=120°,BD=DC.∠MDN=60°射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,①当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系.②当点M、N在边AB、AC上,且DM≠DN时,猜想①中的结论还成立吗?若成立,请证明.③当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系.DCBA9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ;(2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;10、如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,AD+AB=2AE ,则∠B 与∠ADC 互补.为什么?ABCD FE 图2DBEAC图十一11如图,在△ABC 中∠ABC,∠ACB 的外角平分线交P.求证:AP 是∠BAC 的角平分线12、如图在四边形ABCD 中,AC 平分∠BAD ,∠ADC +∠ABC =180度,CE ⊥AD 于E ,猜想AD 、AE 、AB 之间的数量关系,并证明你的猜想,EBAC图2DCB13如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD14如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF15如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。
全等三角形难题集锦超级好题汇总
![全等三角形难题集锦超级好题汇总](https://img.taocdn.com/s3/m/d0d807a7844769eae009edb2.png)
1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ;(2)试证明:EM-PM=AM.2、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。
求证:(1)AN=MB.(2)将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立 (3)AN与BM 相交所夹锐角是否发生变化。
3.已知,如图①所示,在ABC △和ADE △中,AB AC =,ADAE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.22题PB EAB A B N CNA4、如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.5、如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC=60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( )A .3个B .4个C .5个D .6个6. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .AGFCBDE(图1)ABC DEF7、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEFABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系请写出你的猜想,不需证明.8.已知AC 求证:AB=AC+BD.A E C FBD图1图3ADFECBADBCE 图2FDCBA9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ;(2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;10、已知,如图1,在四边形ABCD 中,BC >AB ,AD=DC ,BD 平分∠ABC 。
(完整)全等三角形难题及答案
![(完整)全等三角形难题及答案](https://img.taocdn.com/s3/m/8394bd2349649b6649d74701.png)
1、 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF =.2、 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =.3、 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
求证:AB AC PB PC ->-。
4、如图,BD 、CE 分别是ABC ∆的边AC 、AB 上的高,F 、G 分别是线段DE 、BC 的中点求证:DE FG ⊥5、如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F ,求证:∠ADC=∠BDE6、如图,在锐角ABC ∆中,已知C ABC ∠=∠2,ABC ∠的平分线BE 与AD 垂直,垂足为D ,若cm BD 4=,求AC 的长参考答案1、 思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形.以线段AE 为边的ABE ∆绕点B 顺时针旋转90到CBF ∆的位置,而线段CF 正好是CBF ∆的边,故只要证明它们全等即可。
解答过程:90ABC ∠=,F 为AB 延长线上一点∴90ABC CBF ∠=∠=在ABE ∆与CBF ∆中AB BC ABC CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴ABE CBF ∆≅∆(SAS)∴AE CF =。
解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。
小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。
这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。
2、 思路分析:要证明“2AC AE =”,不妨构造出一条等于2AE 的线段,然后证其等于AC 。
(完整word版)全等三角形难题集锦(整理)
![(完整word版)全等三角形难题集锦(整理)](https://img.taocdn.com/s3/m/ee95828725c52cc58ad6bed3.png)
34、在等边 的两边AB,AC所在直线上分别有两点M,N,D为 外一点,且 , , ,探究:当点M,N分别爱直线AB,AC上移动时,BM,NC,MN之间的数量关系及 的周长与等边 的周长L的关系.
27、已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF
28、已知BE,CF是 的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系
29、已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE。求证:
30、已知PA= ,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧。
①当 旋转至如图②位置,点 , , 在同一直线上时, 与 的数量关系是.
②当 继续旋转至如图③位置时,(1)中的结论还成立吗? 与 存在怎样的数量关系?请说明理由.
10、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
20、如图1、图2、图3,△AOB,△COD均是等腰直角三角形,∠AOB=∠COD=90º,
(1)在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。
(2)若△COD绕点O顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗?为什么?
(3)若△COD绕点O顺时针旋转一定角度后,到达图3的位置,请问AC与BD还相等吗?还具有上问中的位置关系吗?为什么?
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证 ≌ ,所以 .
全等三角形(历年中考难题)
![全等三角形(历年中考难题)](https://img.taocdn.com/s3/m/0eb4928a168884868662d6a4.png)
红城教导培训黉舍数学教研组制造制造人:汪皞监制:汪校长 黄校长 童先生 全等三角形专题(一) 姓名:1.如图,OP 等分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2D. 42.如图所示,两块完整雷同的含30°角的直角三角形叠放在一路,且∠DAB=30°.有以下四个结论:①AF ⊥BC ;②△ADG ≌△ACF; ③O 为BC 的中点; ④AG :DE =3:4,个中准确结论的序号是.(错填得0分,少填酌情给分)3.如图,在Rt △ABC 中,∠BAC=90°,AC=2AB,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分离与 A.D 重合,贯穿连接BE.EC .试猜测线段BE 和EC 的数目及地位关系,并证实你的猜测.4.八(1)班同窗上数学活动课,应用角尺等分一个角(如图).设计了如下计划: (Ⅰ)∠AOB 是一个随意率性角,将角尺的直角极点P 介于射线OA.OB 之间,移动角尺使角尺双方雷同的刻度与M.N 重合,即PM=PN,过角尺极点P 的射线OP 就是∠AOB 的等分线.(Ⅱ)∠AOB 是一个随意率性角,在边OA.OB 上分离取OM=ON,将角尺的直角极点P 介于射线OA.OB 之间,移动角尺使角尺双方雷同的刻度与M.N 重合,即PM=PN,过角ABCDEON尺极点P 的射线OP 就是∠AOB 的等分线.(1)计划(Ⅰ).计划(Ⅱ)是否可行?若可行,请证实;若不成行,请解释来由. (2)在计划(Ⅰ)PM=PN 的情况下,持续移动角尺,同时使PM⊥OA,PN⊥OB.此计划是否可行?请解释来由.5.(2010湖南娄底)如图10,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,贯穿连接AE .BE ,BE ⊥AE ,延伸AE 交BC 的延伸线于点F .求证:(1)FC =AD ; (2)AB =BC +AD6.(2010江苏扬州)电子跳蚤游戏盘是如图所示的△ABC ,AB =6,AC =7,BC =8.假如跳蚤开端时在BC 边的P 0处,BP 0=2.跳蚤第一步从P 0跳到AC 边的P 1(第一次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第一次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第三次落点)处,且BP 3=BP 2;……;跳蚤按上述规矩一致跳下去,第n 次落点为P n (n 为正整数),则点P 2007与P 2010之间的距离为()A .1B .2C .3D .47.(2010安徽蚌埠)在ABC ∆中,E D 、分离是AC BC 、上的点,CD BD CE AE 2,2==,BE AD 、交于点F,若3=∆ABC S ,则四边形DCEF 的面积为________.8.(2010安徽蚌埠)三角形纸片内有100个点,连同三角形的极点共103个点,个中随意率性三点都不共线.现以这些点为极点作三角形,并把纸片剪成小三角形,则如许的三角形的个数为__________.9.不雅察图中每一个大三角形中白色三角形的分列纪律,则第5个大三角形中白色三角形有 个 .03第8题10.(2009临沂)数学课上,张先生出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经由思虑,小明展现了一种准确的解题思绪:取AB 的中点M ,衔接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基本上,同窗们作了进一步的研讨:(1)小颖提出:如图2,假如把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的随意率性一点”,其它前提不变,那么结论“AE =EF ”仍然成立,你以为小颖的不雅点准确吗?假如准确,写出证实进程;假如不准确,请解释来由;(2)小华提出:如图3,点E 是BC 的延伸线上(除C 点外)的随意率性一点,其他前提不变,结论“AE =EF ”仍然成立.你以为小华的不雅点准确吗?假如准确,写出证实进程;假如不准确,请解释来由.11.(2009年牡丹江)已知Rt ABC △中,90AC BC C D ==︒,∠,为AB边的中点,90EDF ∠=°,EDF ∠绕D 点扭转,它的双方分离交AC .CB (或它们的延伸线)于E .F .当EDF ∠绕D 点扭转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点扭转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请赐与证实;若不成立,DEF S △.CEF S △.ABC S △又有如何的数目关系?请写出你的猜测,不需证实.ADFC GE B图1ADF C GE B 图2 ADFGE B图3AADA12.(2008山东泰安)两个大小不合的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在统一条直线上,贯穿连接DC .(1)请找出图2中的全等三角形,并赐与证实(解释:结论中不得含有未标识的字母);(2)证实:DC BE ⊥.13.在等边ABC ∆的双方AB.AC 地点直线上分离有两点M.N,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探讨:当M.N 分离在直线AB.AC 上移动时,BM.NC.MN 之间的数目关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3(I )如图1,当点M.N 边AB.AC 上,且DM=DN 时,BM.NC.MN 之间的数目关系是;此时=L Q ;(II )如图2,点M.N 边AB.AC 上,且当DM ≠DN 时,猜测(I )问的两个结论还成立吗?写出你的猜测并加以证实;(III ) 如图3,当M.N 分离在边AB.CA 的延伸线上时, 若AN=x ,则Q=(用x .L 暗示).14.已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN∠绕B 点扭转,它的双方分离交AD DC ,(或它们的延伸线)于E F ,. 当MBN ∠绕B 点扭转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点扭转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请赐与证实;若不成立,线段AE CF ,,EF又有如何的数目关系?请写出图1图2(第22题)你的猜测,不需证实.15 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.16.如图①,OP 是∠MON 的等分线,请你应用该图形画一对以OP 地点直线为对称轴的全等三角形.请你参考这个作全等三角形的办法,解答下列问题: (1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD .CE 分离是∠BAC .∠BCA的等分线,AD .CE 订交于点F .请你断定并写出FE 与FD 之间的数目关系;(2)如图③,在△ABC 中,假如∠ACB 不是直角,而(1)中的其它前提不变,请问,中所得结论是否仍然成立?若成立,请证实;若不成立,请解释来由. 17.∠B=60°,△ABC 的角等分线AD,CE 订交于点O,求证:18.ABC 中,AD 等分∠BAC,DG ⊥BC 且等分BC,DE ⊥AB 于E,DF ⊥AC 于F.(1)解释BE=CF 的来由;(2)假如AB=a ,AC=b ,求AE.BE 的长. 1.如图,ABC ∆中,AB=2AC,AD 等分BAC ∠,且AD=BD,求证:CD ⊥AC全等三角形难题1.在△ABC 中,AB =AC,∠A =20°,D.E 分离是AB.AC 上的点,∠DCB =50°,∠EBC=60°,求∠DEB 的度数.2.在三角形ABC 中,AB=AC,AD 等分角ABC 交AC 于D,AD+BD=BC,求角A 的度数.3.在直角三角形ABC 中,∠BAC=90°,AB=AC,点D.E 是直线AC 上的两个动点,且CB(图1) A B CD E FM N (图2) A B CDE FM N (图3)ABCDE F MN (第23题图) AE B CD F ACEF BD图②图③E DGFCBAAD=EC,AM ⊥BD,垂足为M,AM 的延伸线交BC 于N,直线BD 直线NE 订交于点F,试断定三角形DEF的外形,并加以证实.4.如图,在△ABC 中,∠C = 2∠B ,D 是BC 上的一点,且AD ⊥AB ,点E 是BD 的中 点,贯穿连接AE .(1)求证:∠AEC = ∠C (2)求证:BD = 2AC(3)若AE = ,AD = 5,那么△ABE 的周长是若干?全等三角形中的动态几何问题汪先生:动态几何题,是指以几何常识和几何图形为布景,渗入渗出活动变更不雅点的一类试题;而经由过程对几何图形活动变更,使同窗们阅历由不雅察.想象.推理等发明.摸索的进程,是中考数学试题中,考核创新意识.创新才能的主要题型;解决这类问题,要擅长摸索图形的活动特色和纪律,抓住变更中图形的性质与特点,化动为静,以静制动.本文以中测验题中的全等三角形动态几何题为例,谈谈这类问题的解题思绪,供同窗们进修时参考.例1.(扬州)在△ABC 中,∠ACB=90°,AC=BC,直线MN 经由点C,且AD⊥MN 于D,BE⊥MN 于E .(1)当直线MN 绕点C 扭转到图1的地位时,求证:①△ADC≌△CEB;②DE=AD +BE;(2)当直线MN 绕点C 扭转到图2的地位时,求证:DE=AD -BE;(3)当直线MN 绕点C 扭转到图3的地位时,试问DE.AD.BE 具有如何的等量关系?请写出这个等量关系,并加以证实. 证实:C ED NMABCDEMACBEM′O评注:本题以直线MN 绕点C 扭转进程中与△ABC 的不合的地位关系为布景设置的三个小题,第(1)小题的两个小题中,①是②的台阶,只要证清楚明了①,不可贵到②;第(1)小题思绪又作为解决第(2)小题的借鉴;第(3)小题为摸索性问题,摸索的结论及证实进程可借鉴第(1).(2)两小题,全部试题考核了同窗们从具体.特别的情况动身去探讨活动变更进程中的纪律的才能.例2 (锦州)如图A,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共极点C,衔接AF 和BE .(1)线段AF 和BE 有如何的大小关系?请证实你的结论;(2)将图A 中的△CEF 绕点C 扭转必定的角度,得到图B,(1)中的结论还成立吗?作出断定并解释来由;(3)若将图A 中的△ABC 绕点C 扭转必定的角度,请你画山一个变换后的图形C (草图即可),(1)中的结论还成立吗?作出断定不必解释来由;(4)依据以上证实.说理.绘图,归纳你的发明. 答:全等三角形进步演习图所示,△ABC ≌△ADE,BC 的延伸线过点E,∠ACB=∠AED=105°,∠CAD=10°, ∠B=50°,求∠DEF 的度数.2.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针扭转52°得到△A ′OB ′边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为.3,在△ABC 中,∠A=90°,D,E 分离是AC,BC 上的点,若△ADB ≌△EDB ≌△EDC,则∠C 的度数是.4.如图所示,把△ABC 绕点C 顺时针扭转35°,得到△A ′B′C,A ′B ′交AC 于点D,若∠A ′DC=90°,则∠A=.5.已知,如图所示,AB=AC,AD ⊥BC 于D,且AB+AC+BC=50cm,而AB+BD+AD=40cm,则AD=.6.如图,Rt △ABC 中,∠BAC=90°,AB=AC,分离过点B,C,作过点A 的直线的垂线BD,CE,垂足为D,E,若BD=3,CE=2,则DE=.7.如图,AD 是△ABC 的角等分线,DE ⊥AB,DF ⊥AC,垂足分离是E,F,衔接EF,交AD 于G,AD 与EF 垂直吗?证实你的结论.AB DCD A ECB8.如图所示,在△ABC 中,AD 为∠BAC 的角等分线,DE ⊥AB 于E,DF ⊥AC 于F,△ABC 的面积是28cm 2,AB=20cm,AC=8cm,求DE 的长.9.已知,如图,AB=AE, ∠B=∠E, ∠BAC=∠EAD, ∠CAF=∠DAF. 求证:AF ⊥CD10.如图,AD=BD,AD ⊥BC 于D,BE ⊥AC 于E,AD 于BE 订交于点H,则BH 与AC 相等吗?为什么?11.如图所示,已知,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC,FD=CD. 求证:BE ⊥ACB D CFAE GAEFBDCADC12.△DAC,△EBC 均是等边三角形,AE,BD 分离与CD,CE 交于点M,N, 求证:(1)AE=BD (2)CM=CN (3)△CMN 为等边三角形(4)MN ∥BC13.已知:如图1,点C 为线段AB 上一点,△ACM,△CBN 都是等边三角形,AN 交MC于点E,BM 交CN 于点F . (1)求证:AN=BM; (2)求证:△CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针偏向扭转90 O,其他前提不变,在图2中补出相符请求的图形,并断定第(1).(2)两小题的结论是否仍然成立(不请求证实).14.如图所示,已知△ABC和△BDE 都是等边三角形.下列结论:① AE=CD;②BF=BG;③BH 等分∠AHD;④∠AHC=600,⑤△BFG 是等边三角形;⑥ FG ∥AD.个中准确的有( ) A 3个 B 4个 C 5个 D 6个15.已知:BD,CE 是△ABC 的高,点F 在BD 上,BF=AC,点G 在CE 的延伸线上,CG=AB. 求证:AG ⊥AFBAEHDCCBC16.如图:在△ABC 中,BE.CF 分离是AC.AB 双方上的高,在BE 上截取BD=AC,在CF 的延伸线上截取CG=AB,贯穿连接AD.AG. 求证:(1)AD=AG,(2)AD 与AG 的地位关系若何. 17.如图,已知E 是正方形ABCD 的边CD 的中点,点F 在BC上,且∠DAE=∠FAE.求证:AF=AD+CF18.如图所示,已知△ABC 中,AB=AC,D 是CB 延伸线上一点,∠ADB=60°,E 是AD 上一点,且DE=DB,求证:AC=BE+BC19.如图所示,已知在△AEC 中,∠E=90°,AD 等分∠EAC,DF ⊥AC,垂足为F,DB=DC. 求证:BE=CF.20.已知:如图3-50,AB=DE,直线AE,BD 订交于C,∠B +∠D=180°,AF ∥DE,交BD 于F .求证:CF=CD .21.如图,OC 是∠AOB 的等分线,P 是OC 上一点,PD ⊥OA 于D, PE ⊥OB 于E,F 是OC 上A B C EDAD EB CF CG HF E D CB A一点,衔接DF 和EF,求证:DF=EF.22.已知:如图,B F⊥AC 于点F,CE⊥AB 于点E,且BD=CD 求证:⑴△BDE≌△CDF⑵点D 在∠A 的等分线上 23如图,已知AB ∥CD,O 是∠ACD 与∠BAC 的等分线的交点,OE ⊥AC 于E,且OE =2,则AB与CD 之间的距离为24.如图,过线段AB 的两个端点作射线AM.BN,使AM ∥BN,按下列请求绘图并答复: 画∠MAB.∠NBA 的等分线交于E. (1)∠AEB 是什么角? (2)过点E 作一向线交AM 于D,交BN 于C,不雅察线段DE.CE,你有何发明?(3)无论DC 的两头点在AM.BN 若何移动,只要DC 经由点E,①AD+BC=AB;②AD+BC=CD 谁成立?并解释来由.26.如图,△ABC 的三边AB .BC .CA 长分离是20.30.40,其三条角等分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( )A .1︰1︰1B .1︰2︰3C .2︰3︰4D .3︰4︰527.正方形ABCD 中,AC.BD 交于O,∠EOF =90o ,已知AE =3,CF =4,则S △BEF 为___.29.如图,在R t △ABC 中,∠ACB=450,∠BAC=900,AB=AC,点D 是AB 的中点,AF ⊥CD 于H 交BC 于F,BE ∥AC 交AF 的延伸线于E,求证:BC 垂直且等分DE.△ABC 中,∠ACB =90o ,AC =BC,直线MN 经由点C,且AD ⊥MN 于D,BE ⊥MN 于E.⑴当直线MN 绕点C 扭转到图⑴的地位时,求证: DE =AD +BE⑵当直线MN 绕点C 扭转到图⑵的地位时,求证: DE =AD -BE;⑶当直线MN 绕点C 扭转到图⑶的地位时,试问DE.AD.BE 具有如何的等量关系?请直接写出这个等量关系. BA D CEF A B D C O E。
全等三角形难题(含答案解析)
![全等三角形难题(含答案解析)](https://img.taocdn.com/s3/m/5f2169835ef7ba0d4b733b1b.png)
全等三角形难题(含答案)1.已知:AB=4 ,AC=2 ,D 是BC 中点,AD 是整数,求ADAB CD解:延长A D 到E, 使AD=DE∵D 是 BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE= ∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE<AB+BE∵AB=4即4-2< 2AD <4+21<AD <3∴AD=212.已知: D 是 AB 中点,∠ACB=90 °,求证:CD AB2ADC B延长 CD 与P,使 D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3.已知: BC=DE ,∠B= ∠E,∠C= ∠D,F 是 CD 中点,求证:∠ 1=∠2A21B EC F D证明:连接BF 和 EF∵BC=ED,CF=DF, ∠BCF= ∠EDF∴三角形BCF 全等于三角形EDF( 边角边 )∴BF=EF, ∠CBF= ∠DEF连接 BE在三角形BEF 中,BF=EF∴∠EBF= ∠BEF 。
∵∠ABC= ∠AED 。
∴∠ABE= ∠AEB 。
∴AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF= ∠ABE+ ∠EBF= ∠AEB+ ∠BEF= ∠AEF∴三角形ABF 和三角形AEF 全等。
∴∠BAF= ∠EAF ( ∠1= ∠2)。
4.已知:∠1= ∠2,CD=DE ,EF//AB ,求证: EF=ACA21FCDEB过 C 作CG ∥EF 交 AD 的延长线于点GCG ∥EF,可得,∠EFD =CGDDE=DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又, EF∥AB∴,∠EFD =∠1∠1=∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC=CG又EF= CG∴EF =AC5.已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2 ∠CAD E证明:延长AB 取点E,使AE =AC,连接∵AD 平分∠BAC∴∠EAD =∠CAD∵AE= AC,AD =AD∴△AED ≌△ACD (SAS )∴∠E=∠C∵AC =AB+BD∴AE= AB+BD∵AE= AB+BE∴BD =BE∴∠BDE =∠E∵∠ABC =∠E+∠BDE∴∠ABC =2∠E∴∠ABC =2∠C6.已知:AC 平分∠BAD ,CE⊥AB ,∠B+∠D=180 °,求证:AE=AD+BE 证明:在AE 上取F,使EF =EB ,连接C F∵CE ⊥AB∴∠CEB =∠CEF =90 °∵EB= EF,CE =CE ,∴△CEB ≌△CEF∴∠B=∠CFE∵∠B+∠D=180 °,∠CFE +∠CFA =180 °∴∠D=∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE= AF+FE =AD+ BE7.如图,四边形ABCD 中,AB∥DC ,BE、CE 分别平分∠ ABC 、∠BCD ,且点 E 在 AD 上。
(完整版)全等三角形难题集锦超级好题汇总
![(完整版)全等三角形难题集锦超级好题汇总](https://img.taocdn.com/s3/m/cd5f83496f1aff00bed51ee5.png)
1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。
求证: (1)AN=MB.(2)将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立? (3)AN 与BM 相交所夹锐角是否发生变化。
3.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.22题PB EA B A B N CN 图①图②4、如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.5、如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC=60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( ) A .3个 B .4个 C .5个 D .6个6. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .AG FC BDE (图1) ABCD EFDCB A7、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.8.已知AC//BD,∠CAB 和∠DBA 的平分线EA 、EB 与CD 相交于点E. 求证:AB=AC+BD.9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ; (2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;A E C F BD图1图3ADFECBADBCE图2FAD FE图十一4321P A BC 10、已知,如图1,在四边形ABCD 中,BC >AB ,AD=DC ,BD 平分∠ABC 。
全等三角形的难题集锦
![全等三角形的难题集锦](https://img.taocdn.com/s3/m/f7b05b69783e0912a2162aa2.png)
全等中的经典题型----截长补短1. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C2.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B3. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BECDB ADCB A4.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .5.已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE6.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .FED CBAPED CB A习题:1.如图:DF=CE ,AD=BC ,∠D=∠C 。
求证:△AED ≌△BFC 。
2.如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
3.如图:在△ABC 中,BA=BC ,D 是AC 的中点。
求证:BD ⊥AC 。
FE DCBA M FECBAD CBA4.AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CF5.如图:AB=CD ,AE=DF ,CE=FB 。
求证:AF=DE 。
6.已知:如图所示,AB =AD ,BC=DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。
FDCBAF E DC BA7.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.8.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .9.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D、E ,BD 、CE 相交于点F ,求证:BE =CD .CAAC B DEF10.已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE .若AB = 5 ,求AD 的长?11.如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。
全等三角形的的性质与判定难题50道(含详细答案)
![全等三角形的的性质与判定难题50道(含详细答案)](https://img.taocdn.com/s3/m/c2ac316c3c1ec5da50e270e5.png)
全等三角形的的性质与判定难题50道1.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),⋯,按此方式依次操作,则第6个正六边形的边长为( )A .511()32a ⨯B .511()23a ⨯C .611()32a ⨯D .611()23a ⨯2.如图,在等边ABC ∆中,点D ,E 分别在边BC ,AC 上,且//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F ,(1)求F ∠的度数;(2)若3CD =,求DF 的长.3.数学课上,李老师出示了如下的题目:“在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,如图,试确定线段AE 与DB 的大小关系,并说明理由”. 小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论:AEDB (填“>”,“ <”或“=” ). (2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“ <”或“=” ).理由如下:如图2,过点E 作//EF BC ,交AC 于点F .(请你完成以下解答过程) (3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).4.如图,过等边ABC ∆的边AB 上一点P ,作P E A C ⊥于E ,Q 为BC 延长线上一点,且PA CQ =,连PQ 交AC 边于D . (1)求证:PD DQ =;(2)若ABC ∆的边长为1,求DE 的长.5.如图所示,已知等边ABC ∆的边长为a ,P 是ABC ∆内一点,//PD AB ,//PE BC ,//PF AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++= ,并证明你的猜想.6.如图,已知ABC ∆和CDE ∆均为等边三角形,且点B 、C 、D 在同一条直线上,连接AD 、BE ,交CE 和AC 分别于G 、H 点,连接GH .(1)请说出AD BE =的理由; (2)试说出BCH ACG ∆≅∆的理由;(3)试猜想:CGH ∆是什么特殊的三角形,并加以说明.7.如图,已知ABC ∆是边长为6cm 的等边三角形,动点P ,Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速运动,其中点P 运动的速度是1/cm s ,点Q 运动的速度是2/cm s ,当点Q 运动到点C 时,P ,Q 都停止运动.(1)出发后运动2s 时,试判断BPQ ∆的形状,并说明理由;那么此时PQ 和AC 的位置关系呢?请说明理由;(2)设运动时间为t ,BPQ ∆的面积为S ,请用t 的表达式表示S .8.已知:在等边ABC ∆中,点D 、E 、F 分别为边AB 、BC 、AC 的中点,点G 为直线BC 上一动点,当点G 在CB 延长线上时,有结论“在直线EF 上存在一点H ,使得DGH ∆是等边三角形”成立(如图①),且当点G 与点B 、E 、C 重合时,该结论也一定成立. 问题:当点G 在直线BC 的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.9.已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作ACD ∆和BCE ∆,且CA CD =,CB CE =,ACD BCE ∠=∠,直线AE 与BD 交于点F ,(1)如图1,若60ACD ∠=︒,则AFB ∠= ;如图2,若90ACD ∠=︒,则AFB ∠= ;如图3,若120ACD ∠=︒,则AFB ∠= ;(2)如图4,若ACD α∠=,则AFB ∠= (用含α的式子表示);(3)将图4中的ACD ∆绕点C 顺时针旋转任意角度(交点F 至少在BD 、AE 中的一条线段上),变成如图5所示的情形,若ACD α∠=,则AFB ∠与α的有何数量关系?并给予证明.10.如图1,ABC ∆为等边三角形,面积为S .1D 、1E 、1F 分别是ABC ∆三边上的点,且11112AD BE CF AB ===,连接11D E 、11E F 、11F D ,可得△111D E F 是等边三角形,此时△11AD F 的面积114S S =,△111D E F 的面积114S S =. (1)当2D 、2E 、2F 分别是等边ABC ∆三边上的点,且22213AD BE CF AB ===时如图2,①求证:△222D E F 是等边三角形;②若用S 表示△22AD F 的面积2S ,则2S = ;若用S 表示△222D E F 的面积2S ',则2S '= .(2)按照上述思路探索下去,并填空:当n D 、n E 、n F 分别是等边ABC ∆三边上的点,11n n n AD BE CF AB n ===+时,(n 为正整数)△n n n D E F 是 三角形;若用S 表示△n n AD F 的面积n S ,则n S = ;若用S 表示△n n n D E F 的面积n S ',则n S '= .11.如图,在等边ABC ∆的三边上分别取点D 、E 、F ,使AD BE CF ==. (1)试说明DEF ∆是等边三角形;(2)连接AE 、BF 、CD ,两两相交于点P 、Q 、R ,则PQR ∆为何种三角形?试说明理由.12.如图所示,一个六边形的六个内角都是120︒,其中连续四边的长依次是1、9、9、5.求这个六边形的周长.13.如图,已知D 是ABC ∆的边BC 上的一点,CD AB =,BDA BAD ∠=∠,AE 是ABD ∆的中线.(1)若60B ∠=︒,求C ∠的值; (2)求证:AD 是EAC ∠的平分线.14.如图,ABC ∆为等边三角形,BD 平分ABC ∠交AC 于点D ,//DE BC 交AB 于点E . (1)求证:ADE ∆是等边三角形.(2)求证:12AE AB =.15.如图.在等边ABC ∆中,ABC ∠与ACB ∠的平分线相交于点O ,且//OD AB ,//OE AC . (1)试判定ODE ∆的形状,并说明你的理由;(2)线段BD 、DE 、EC 三者有什么关系?写出你的判断过程.16.如图,ABC ∆是等边三角形,DF AB ⊥,DE CB ⊥,EF AC ⊥,求证:DEF ∆是等边三角形.17.用三根火柴棒可以搭成一个等边三角形,你能用9根火柴搭出5个等边三角形吗? 18.如图,ABC ∆是等边三角形,AD 是高,并且AB 恰好是DE 的垂直平分线. 求证:ADE ∆是等边三角形.19.如图,60AOB ∠=︒,OC 平分AOB ∠,C 为角平分线上一点,过点C 作CD OC ⊥,垂足为C ,交OB 于点D ,//CE OA 交OB 于点E . (1)判断CED ∆的形状,并说明理由;(2)若3OC=,求CD的长.20.如图,在ABC∆中,AB AC=,120BAC∠=︒,D、F分别为AB、AC的中点,且DE AB⊥,FG AC⊥,点E、G在BC上,18BC cm=,求线段EG的长.(提示:需要添加辅助线)21.已知,如图,ABC∆是正三角形,D,E,F分别是各边上的一点,且AD BE CF==.请你说明DEF∆是正三角形.22.如图所示,DEF∆是等边三角形,且123∠=∠=∠,试问:ABC∆是等边三角形吗?请说明理由.23.如图,ABC∆为等边三角形,BD平分ABC∠,//DE BC.(1)求证:ADE∆是等边三角形;(2)求证:12AE AB=.24.如图ABC∆是等边三角形(1)如图①,//∆是等边三角形;DE BC,分别交AB、AC于点D、E.求证:ADE(2)如图②,ADE∆仍是等边三角形,点B在ED的延长线上,连接CE,判断BEC∠的度数及线段AE、BE、CE之间的数量关系,并说明理由.25.如图,E是AOB⊥,C、D是垂足,连接CD ∠的平分线上一点,EC OB⊥,ED OA交OE于点F,若60∠=︒.AOB(1)求证:OCD∆是等边三角形;(2)若5EF=,求线段OE的长.26.如图,ABCBCD CBE∠=∠=︒,BAC∆中,60∠=︒,点D、E分别在AB、AC上,30 BE、CD相交于点O,OG BC+=.OE OD OG⊥于点G,求证:227.如图,在ABC∠=∠=︒,EBC E∠,60∆中,AB AC=,D、E是ABC∆内两点,AD平分BAC若30=,则BC=cm.DE cmBE cm=,228.如图,已知ABC=,∆为等边三角形,D为BC延长线上的一点,CE平分ACD∠,CE BD 求证:ADE∆为等边三角形.29.如图,ABC∆∠=︒,DE与ABC ∆为等边三角形,D为BC边上一点,以AD为边作60ADE的外角平分线CE交于点E,连接AE,且CE BD∆是等边三角形.=.求证:ADE30.如图,在ABC+=.求ABD∠=︒,BD DC AB ∆中,AB AC=,D是三角形外一点,且60证:60∠=︒.ACD31.如图,在等边ABCOD AB,//OE AC.∠与ACB∠的平分线相交于点O,且//∆中,ABC(1)求证:ODE∆是等边三角形.(2)线段BD、DE、EC三者有什么数量关系?写出你的判断过程.(3)数学学习不但要能解决问题,还要善于提出问题.结合本题,在现有的图形上,请提出两个与“直角三角形”有关的问题.(只要提出问题,不需要解答)32.已知:如图,在ABC∠=︒,BD是中线,延长BC至点E,使C E C D=.A=,60∆中,AB AC求证:DB DE=.33.如图,ABD∆和BCD∆均是边长为2的等边三角形,E、F分别是AD、CD上的两个动点,且满足2+=.AE CF(1)求证:BDE BCF∆≅∆;(2)判断BEF∆的形状,并说明理由.34.已知:如图,四边形ABCD中,AB BC CD DA a∠=︒,M为BC上====,120BAD的点(M不与B、C重合),若AMN∆有一角等于60︒.(1)当M 为BC 中点时,则ABM ∆的面积为 (结果用含a 的式子表示); (2)求证:AMN ∆为等边三角形;(3)设AMN ∆的面积为S ,求出S 的取值范围(结果用含a 的式子表示).35.如图,点O 是等边ABC ∆内一点,110AOB ∠=︒,BOC α∠=,将B O C ∆绕点C 按顺时针方向旋转60︒得ADC ∆,连接OD . (1)COD ∆是什么三角形?说明理由;(2)若21AO n =+,21AD n =-,2(OD n n =为大于1的整数),求α的度数; (3)当α为多少度时,AOD ∆是等腰三角形?36.已知:如图,ABC ∆、CDE ∆都是等边三角形,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点. (1)求证:AD BE =; (2)求DOE ∠的度数;(3)求证:MNC ∆是等边三角形.37.已知:在AOB ∆和COD ∆中,OA OB =,OC OD =.(1)如图①,若60AOB COD ∠=∠=︒,求证:①AC BD =②60APB ∠=︒.(2)如图②,若A O B C O D α∠=∠=,则AC 与BD 间的等量关系式为 ,APB ∠的大小为 (直接写出结果,不证明)38.如图,ABC ∆是等边三角形,D 是AC 上一点,BD CE =,12∠=∠,试判断ADE ∆形状,并证明你的结论.39.等边ABC ∆边长为6,P 为BC 上一点,含30︒、60︒的直角三角板60︒角的顶点落在点P 上,使三角板绕P 点旋转.(1)如图1,当P 为BC 的三等分点,且PE AB ⊥时,判断EPF ∆的形状;(2)在(1)问的条件下,FE 、PB 的延长线交于点G ,如图2,求EGB ∆的面积; (3)在三角板旋转过程中,若2CF AE ==,()CF BP ≠,如图3,求PE 的长.40.为了使同学们更好地解答本题,我们提供了思路点拨,你可以依照这个思路填空,并完成本题解答的全过程,当然你也可以不填空,只需按照解答的一般要求,进行解答即可. 如图,已知AB AD =,60BAD ∠=︒,120BCD ∠=︒,延长BC ,使C E C D =,连接DE ,求证:BC DC AC +=. 思路点拨:(1)由已知条件AB AD=,60BAD∠=︒,可知:ABD∆是三角形;(2)同理由已知条件120BCD∠=︒得到DCE∠=,且CE CD=,可知;(3)要证BC DC AC+=,可将问题转化为两条线段相等,即=;(4)要证(3)中所填写的两条线段相等,可以先证明⋯.请你完成证明过程:41.已知ABC∆是等边三角形,点P是AC上一点,PE BC⊥于点E,交AB于点F,在CB 的延长线上截取BD PA=,PD交AB于点I,PA nPC=.(1)如图1,若1n=,则EBBD=,FIED=;(2)如图2,若60EPD∠=︒,试求n和FIED的值;(3)如图3,若点P在AC边的延长线上,且3n=,其他条件不变,则EBBD=.(只写答案不写过程)42.如图ABC∆为等边三角形,直线//a AB,D为直线BC上任一动点,将一60︒角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)求证:ADE∆是等边三角形;(2)若D为直线BC上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.43.如图,在等边ABC=,点P从点C出发沿CB边向点B点以2/cm s的速AB cm∆中,9度移动,点Q点从B点出发沿BA边向A点以5/cm s速度移动.P、Q两点同时出发,它们移动的时间为t秒钟.(1)你能用t表示BP和BQ的长度吗?请你表示出来.(2)请问几秒钟后,PBQ∆为等边三角形?(3)若P、Q两点分别从C、B两点同时出发,并且都按顺时针方向沿ABC∆三边运动,请问经过几秒钟后点P与点Q第一次在ABC∆的哪条边上相遇?44.如图:在ABC⊥于Q.==,AE CD∆中,AB BC AC=,AD与BE相交于点P,BQ AD求证:①ADC BEA∆≅∆;②2=.BP PQ45.如图1,点B是线段AD上一点,ABC∆分别是等边三角形,连接AE和CD.∆和BDE(1)求证:AE CD=;(2)如图2,点P、Q分别是AE、CD的中点,试判断PBQ∆的形状,并证明.46.如图:已知ABC∆是等边三角形,D、E、F分别是AB、AC、BC边的中点,M是直线BC上的任意一点,在射线EF上截取EN,使EN FM=,连接DM、MN、DN.(1)如图①,当点M在点B左侧时,请你按已知要求补全图形,并判断DMN∆是怎样的特殊三角形(不要求证明);(2)请借助图②解答:当点M在线段BF上(与点B、F不重合),其它条件不变时,(1)中的结论是否依然成立?若成立,请证明;若不成立,请说明理由;(3)请借助图③解答:当点M在射线FC上(与点F不重合),其它条件不变时,(1)中的结论是否仍然成立?不要求证明.47.如图,ABC∆是等边三角形,点D、E、F分别是线段AB、BC、CA上的点,(1)若AD BE CF∆是等边三角形吗?试证明你的结论;==,问DEF(2)若DEF∆是等边三角形,问AD BE CF==成立吗?试证明你的结论.48.如图,已知ABC=,连∆为等边三角形,延长BC到D,延长BA到E,并且使AE BD 接CE,DE.求证:EC ED=.49.如图,已知ABC ∆与ACD ∆都是边长为2的等边三角形,如图有一个60︒角的三角板绕着点A 旋转分别交BC 、CD 于点P 、Q 两点(不与端点重合). (1)试说明:PAQ ∆是等边三角形; (2)求四边形APCQ 的面积;(3)填空:当BP = 时,APQ S ∆最小.50.如图,A 、B 、C 三点在同一直线上,ABM ∆和BCN ∆是正三角形,P 是AN 中点,Q 是CM 中点.求证:BPQ ∆是正三角形.全等三角形的的性质与判定难题50道参考答案与试题解析一.选择题(共1小题)1.边长为a 的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),⋯,按此方式依次操作,则第6个正六边形的边长为( )A .511()32a ⨯B .511()23a ⨯C .611()32a ⨯D .611()23a ⨯【解答】解:连接AD 、DF 、DB . 六边形ABCDEF 是正六边形,ABC BAF AFE ∴∠=∠=∠,AB AF =,120E C ∠=∠=︒,EF DE BC CD ===, 30EFD EDF CBD BDC ∴∠=∠=∠=∠=︒, 120AFE ABC ∠=∠=︒, 90AFD ABD ∴∠=∠=︒,在Rt ABD ∆和RtAFD 中 AF ABAD AD =⎧⎨=⎩Rt ABD Rt AFD(HL)∴∆≅∆, 1120602BAD FAD ∴∠=∠=⨯︒=︒,60120180FAD AFE ∴∠+∠=︒+︒=︒, //AD EF ∴,G 、I 分别为AF 、DE 中点,////GI EF AD ∴,60FGI FAD ∴∠=∠=︒,六边形ABCDEF 是正六边形,QKM ∆是等边三角形, 60EDM M ∴∠=︒=∠,ED EM ∴=,同理AF QF =, 即AF QF EF EM ===, 等边三角形QKM 的边长是a ,∴第一个正六边形ABCDEF 的边长是13a ,即等边三角形QKM 的边长的13,过F 作FZ GI ⊥于Z ,过E 作EN GI ⊥于N , 则//FZ EN , //EF GI ,∴四边形FZNE 是平行四边形,13EF ZN a ∴==,11112236GF AF a a ==⨯=,60FGI ∠=︒(已证), 30GFZ ∴∠=︒,11212GZ GF a ∴==,同理112IN a =, 1111123122GI a a a a ∴=++=,即第二个等边三角形的边长是12a ,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是1132a ⨯;同理第第三个等边三角形的边长是1122a ⨯,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是111322a ⨯⨯;同理第四个等边三角形的边长是111222a ⨯⨯,第四个正六边形的边长是11113222a ⨯⨯⨯;第五个等边三角形的边长是11112222a ⨯⨯⨯,第五个正六边形的边长是1111132222a ⨯⨯⨯⨯;第六个等边三角形的边长是1111122222a ⨯⨯⨯⨯,第六个正六边形的边长是111111322222a ⨯⨯⨯⨯⨯, 即第六个正六边形的边长是511()32a ⨯,故选:A .二.解答题(共49小题)2.如图,在等边ABC ∆中,点D ,E 分别在边BC ,AC 上,且//DE AB ,过点E 作EF DE ⊥,交BC 的延长线于点F ,(1)求F ∠的度数;(2)若3CD =,求DF 的长.【解答】解:(1)ABC ∆是等边三角形,60B ∴∠=︒, //DE AB ,60EDC B ∴∠=∠=︒,EF DE ⊥,90DEF ∴∠=︒,9030F EDC ∴∠=︒-∠=︒;(2)60ACB ∠=︒,60EDC ∠=︒,EDC∴∆是等边三角形.∴==,ED DC3∠=︒,F90∠=︒,30DEF∴==.DF DE263.数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED EC=,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE =DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作//EF BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED EC∆的边=.若ABC 长为1,2AE=,求CD的长(请你直接写出结果).【解答】解:(1)故答案为:=.(2)过E作//EF BC交AC于F,等边三角形ABC,∴∠=∠=∠=︒,AB AC BC==,ABC ACB A60AFE ACB∴∠=∠=︒,60∠=∠=︒,AEF ABC60即60∠=∠=∠=︒,AEF AFE A∴∆是等边三角形,AEFAE EF AF ∴==,60ABC ACB AFE ∠=∠=∠=︒,120DBE EFC ∴∠=∠=︒,60D BED FCE ECD ∠+∠=∠+∠=︒,DE EC =,D ECD ∴∠=∠,BED ECF ∴∠=∠,在DEB ∆和ECF ∆中DEB ECF DBE EFC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,DEB ECF ∴∆≅∆,BD EF AE ∴==,即AE BD =,故答案为:=.(3)解:1CD =或3,理由是:分为两种情况:①如图1过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,则//AM EN ,ABC ∆是等边三角形,1AB BC AC ∴===,AM BC ⊥, 1122BM CM BC ∴===, DE CE =,EN BC ⊥,2CD CN ∴=,//AM EN ,AMB ENB ∴∆∆∽, ∴AB BM BE BN=, ∴11221BN=-, 12BN ∴=, 13122CN ∴=+=, 23CD CN ∴==;②如图2,作AM BC ⊥于M ,过E 作EN BC ⊥于N ,则//AM EN ,ABC ∆是等边三角形,1AB BC AC ∴===,AM BC ⊥,1122BM CM BC ∴===, DE CE =,EN BC ⊥,2CD CN ∴=,//AM EN , ∴AB BM AE MN=, ∴1122MN=, 1MN ∴=,11122CN ∴=-=,21CD CN ∴==,即3CD =或1.4.如图,过等边ABC ∆的边AB 上一点P ,作P E A C ⊥于E ,Q 为BC 延长线上一点,且PA CQ =,连PQ 交AC 边于D .(1)求证:PD DQ =;(2)若ABC ∆的边长为1,求DE 的长.【解答】(1)证明:如图,过P 做//PF BC 交AC 于点F ,AFP ACB ∴∠=∠,FPD Q ∠=∠,PFD QCD ∠=∠ABC ∆为等边三角形,60A ACB ∴∠=∠=︒,60A AFP ∴∠=∠=︒,APF ∴∆是等边三角形;AP PF =,AP CQ =,PF CQ ∴=PFD QCD ∴∆≅∆,PD DQ ∴=.(2)APF ∆是等边三角形,PE AC ⊥,AE EF ∴=,PFD QCD ∆≅∆,CD DF ∴=,12DE EF DF AC =+=, 1AC =,12DE =. 5.如图所示,已知等边ABC ∆的边长为a ,P 是ABC ∆内一点,//PD AB ,//PE BC ,//PF AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++= a ,并证明你的猜想.【解答】解:PD PE PF a ++=.理由如下:如图,延长EP 交AB 于G ,延长FP 交BC 于H ,//PE BC ,//PF AC ,ABC ∆是等边三角形,60PGF B ∴∠=∠=︒,60PFG A ∠=∠=︒,PFG ∴∆是等边三角形,同理可得PDH ∆是等边三角形,PF PG ∴=,PD DH =,又//PD AB ,//PE BC ,∴四边形BDPG是平行四边形,∴=,PG BD∴++=++==.PD PE PF DH CH BD BC a故答案为a.6.如图,已知ABC∆均为等边三角形,且点B、C、D在同一条直线上,连接AD、∆和CDEBE,交CE和AC分别于G、H点,连接GH.(1)请说出AD BE=的理由;(2)试说出BCH ACG∆≅∆的理由;(3)试猜想:CGH∆是什么特殊的三角形,并加以说明.【解答】解:(1)ABC∆均为等边三角形∆和CDE=∴=,EC DCAC BC∠=∠=︒ACB ECD60∴∠=∠ACD ECBACD BCE∴∆≅∆∴=;AD BE(2)ACD BCE∆≅∆∴∠=∠CBH CAGACB ECD∠=∠=︒,点B、C、D在同一条直线上60∴∠=∠=∠=︒ACB ECD ACG60又AC BC=ACG BCH∴∆≅∆;(3)CGH∆是等边三角形,理由如下:ACG BCH∆≅∆∴=(全等三角形的对应边相等)CG CH又60∠=︒ACG∴∆是等边三角形(有一内角为60度的等腰三角形为等边三角形);CGH7.如图,已知ABC∆是边长为6cm的等边三角形,动点P,Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1/cm s,cm s,点Q运动的速度是2/当点Q运动到点C时,P,Q都停止运动.(1)出发后运动2s时,试判断BPQ∆的形状,并说明理由;那么此时PQ和AC的位置关系呢?请说明理由;(2)设运动时间为t,BPQ∆的面积为S,请用t的表达式表示S.【解答】解:(1)BPQ∆是等边三角形,//PQ AC,(2分)运动至2s时,2AP=,4BQ=,BP AB AP BQ∴=-==(4分)4又ABC∆是边长为6cm的等边三角形∴∠=︒B60∴∆是等边三角形(6分)BPQ∴∠=∠=︒60BPQ A∴.//PQ AC(2)过Q作QH AB⊥于H,=,30∠=︒,BQHBQ t2∴=,QH=.(10分)BH t=-BP t6213(6)3(6)2S t t t t ∴=-=-=+. (12分)8.已知:在等边ABC ∆中,点D 、E 、F 分别为边AB 、BC 、AC 的中点,点G 为直线BC上一动点,当点G 在CB 延长线上时,有结论“在直线EF 上存在一点H ,使得DGH ∆是等边三角形”成立(如图①),且当点G 与点B 、E、C 重合时,该结论也一定成立. 问题:当点G 在直线BC 的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.【解答】证明:连接DE 、EF 、DF .(1)当点G 在线段BE 上时,如图①,在EF 上截取EH 使EH BG =.D 、E 、F 是等边ABC ∆三边中点,DEF ∴∆、DBE ∆也是等边三角形且12DE AB BD ==. 在DBG ∆和DEH ∆中,60DB DE DBG DEH BG EH =⎧⎪∠=∠=︒⎨⎪=⎩,()DBG DEH SAS ∴∆≅∆,DG DH ∴=.BDG EDH ∴∠=∠.60BDE GDE BDG ∠=∠+∠=︒,60GDH GDE EDH ∴∠=∠+∠=︒∴在直线EF 上存在点H 使得DGH ∆是等边三角形.(2)当点G 在射线EC 上时,如图②,在EF 上截取EH 使EH BG =.由(1)可证DBG DEH ∆≅∆.DG DH ∴=,BDG EDH ∠=∠.60BDE BDG EDG ∠=∠-∠=︒,60GDH EDH EDG ∴∠=∠-∠=︒.∴在直线EF 上存在点H 使得DGH ∆是等边三角形.(3)当点G 在BC 延长线上时,如图③,与(2)同理可证,结论成立.综上所述,点G 在直线BC 上的任意位置时,该结论成立.9.已知点C 为线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作ACD ∆和BCE ∆,且CA CD =,CB CE =,ACD BCE ∠=∠,直线AE 与BD 交于点F ,(1)如图1,若60ACD ∠=︒,则AFB ∠= 120︒ ;如图2,若90ACD ∠=︒,则AFB ∠= ;如图3,若120ACD ∠=︒,则AFB ∠= ;(2)如图4,若ACDα∠=(用含α的式子表示);∠=,则AFB(3)将图4中的ACD∆绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若ACDα∠与α的有何数量关系?并给予∠=,则AFB证明.【解答】解:(1)如图1,CA CD∠=︒,ACD=,60所以ACD∆是等边三角形.∠=∠=︒,ACD BCE=,60CB CE所以ECB∆是等边三角形.AC DC∠=∠+∠,BCD BCE DCE∠=∠+∠,=,ACE ACD DCE又ACD BCE∠=∠,∴∠=∠.ACE BCDAC DC=,=,CE BC∴∆≅∆.ACE DCB∴∠=∠.EAC BDC∠是ADFAFB∆的外角.∴∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒AFB ADF FAD ADC CDB FAD ADC EAC FAD ADC DAC120.如图2,AC CD=,∠=∠=︒,EC CBACE DCB=,90∴∆≅∆.ACE DCB∴∠=∠,AEC DBC又FDE CDB∠=︒,DCB∠=∠,9090EFD ∴∠=︒.90AFB ∴∠=︒.如图3,ACD BCE ∠=∠,ACD DCE BCE DCE ∴∠-∠=∠-∠.ACE DCB ∴∠=∠.又CA CD =,CE CB =,ACE DCB ∴∆≅∆.EAC BDC ∴∠=∠.180180(180)120BDC FBA DCB ACD ∠+∠=︒-∠=︒--∠=︒, 120FAB FBA ∴∠+∠=︒.60AFB ∴∠=︒.故填120︒,90︒,60︒.(2)ACD BCE ∠=∠,ACD DCE BCE DCE ∴∠+∠=∠+∠.ACE DCB ∴∠=∠.CAE CDB ∴∠=∠.DFA ACD ∴∠=∠.180180180AFB DFA ACD α∴∠=︒-∠=︒-∠=︒-.(3)180AFB α∠=︒-;证明:ACD BCE α∠=∠=,则ACD DCE BCE DCE ∠+∠=∠+∠, 即ACE DCB ∠=∠.在ACE ∆和DCB ∆中AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,则()ACE DCB SAS ∆≅∆.则CBD CEA ∠=∠,由三角形内角和知EFB ECB α∠=∠=. 180180AFB EFB α∠=︒-∠=︒-.10.如图1,ABC ∆为等边三角形,面积为S .1D 、1E 、1F 分别是ABC ∆三边上的点,且。
全等三角形难题集锦
![全等三角形难题集锦](https://img.taocdn.com/s3/m/26da03bd85868762caaedd3383c4bb4cf7ecb789.png)
全等三角形难题集锦1.已知△ABC中,∠ABC=45°,CD⊥XXX于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。
1)证明BF=AC;2)证明CE=BF/2;3)推导CE与BC的大小关系。
2.已知△ABC为等边三角形,点D为直线BC上的一动点,以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF。
1)当点D在边BC上时,证明BD=CF和AC=CF+CD;2)当点D在边BC的延长线上时,AC≠CF+CD,AC、CF、CD之间存在什么数量关系;3)当点D在边BC的延长线上时,补全图形并直接写出AC、CF、CD之间的数量关系。
3.在△ABC中,BC边在直线l上,AC⊥BC,且AC=BC。
△EFP的边FP也在直线l上,XXX与XXX重合,且EF=FP。
1)通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;2)将△EFP沿直线l向左平移到图中的位置时,猜想并写出BQ与AP所满足的数量关系和位置关系,并证明猜想;3)将△EFP沿直线l向左平移到图中的位置时,EP的延长线交AC的延长线于点Q,猜想并说明BQ与AP的数量关系和位置关系是否仍然成立。
4.△AOB,△COD均为等腰直角三角形,∠AOB=∠COD=90º。
1)在图1中,证明AC与BD相等且垂直;2)当△COD绕点O顺时针旋转到图2的位置时,AC与BD不相等且不垂直;3)当△COD绕点O顺时针旋转到图3的位置时,AC与BD不相等但仍然垂直。
复“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”XXX是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.解答:1)由已知得,∠QAP=∠BAC。
全等三角形难题(含答案解析)
![全等三角形难题(含答案解析)](https://img.taocdn.com/s3/m/26f7ec624a7302768e99396a.png)
全等三角形难题(含答案 )1. 已知: AB=4 , AC=2 , D 是 BC 中点, AD 是整数,求ADAB CD解:延长 AD 到 E, 使 AD=DE∵D是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE= ∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE < AE < AB+BE∵AB=4即4-2 < 2AD < 4+21<AD <3∴AD=212. 已知: D 是 AB 中点,∠ACB=90 °,求证:CD AB2ADC B延长 CD 与 P ,使 D 为 CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3.已知: BC=DE ,∠B= ∠E,∠C= ∠D, F 是 CD 中点,求证:∠ 1= ∠2A1 2B EC F D证明:连接 BF 和 EF∵B C=ED,CF=DF, ∠BCF= ∠EDF∴三角形 BCF 全等于三角形EDF( 边角边 )∴ BF=EF, ∠CBF= ∠DEF连接 BE在三角形 BEF 中 ,BF=EF∴ ∠EBF= ∠BEF 。
∵ ∠ABC= ∠AED 。
∴ ∠ABE= ∠AEB 。
∴A B=AE 。
在三角形 ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF= ∠ABE+ ∠EBF= ∠AEB+ ∠BEF= ∠AEF∴三角形 ABF 和三角形AEF 全等。
∴ ∠BAF= ∠EAF ( ∠1= ∠2) 。
4.已知:∠1= ∠2 , CD=DE ,EF//AB ,求证: EF=ACA12FCDEB过 C 作 CG ∥EF 交 AD 的延长线于点GCG ∥EF ,可得,∠ EFD =CGDDE=DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CG∠CGD =∠EFD又, EF ∥AB∴,∠EFD =∠1∠1= ∠2∴∠CGD =∠2∴△AGC 为等腰三角形,AC=CG又EF= CG∴EF = AC5.已知: AD 平分∠BAC , AC=AB+BD ,求证:∠ B=2∠C A证明:延长 AB 取点 E,使 AE =AC ,连接 DE∵AD 平分∠BAC∴∠EAD =∠CAD∵AE = AC , AD =AD∴△AED ≌△ACD ( SAS )∴∠E=∠C∵AC = AB+BD∴AE = AB+BD∵AE = AB+BE∴BD = BE∴∠BDE =∠E∵∠ABC =∠E+ ∠BDE∴∠ABC = 2 ∠E∴∠ABC = 2 ∠C6. 已知: AC 平分∠BAD , CE ⊥AB ,∠B+ ∠D=180 °,求证:AE=AD+BE 证明:在AE 上取 F,使 EF = EB ,连接 CF∵CE ⊥AB∴∠CEB =∠CEF = 90 °∵EB= EF,CE =CE ,∴△CEB ≌△CEF∴∠B=∠CFE∵∠B+∠D =180 °,∠CFE +∠CFA =180 °∴∠D=∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC = AC∴△ADC ≌△AFC ( SAS )∴AD = AF∴AE= AF+FE =AD+ BE12. 如图,四边形 ABCD 中, AB ∥DC ,BE 、CE 分别平分∠ ABC 、∠BCD ,且点 E 在 AD 上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
恒成立的结论有 (把你认为正确的序号都填上)1、( 1 )如图1,点0是线段AD 的中点,分别以 AO 和DO 为边在线段AD 的同侧作等边三角形 OAB 和等边三 角形OCD ,连结AC 和BD ,相交于点 E ,连结BC .求/ AEB 的大小;(2 )如图2, △ OAB 固定不动,保持 △ OCD 勺形状和大小不变,将 △ OCD 绕着点O 旋转(△ OA 审△ OCD 不能 重叠),求/ AEB 的大小.2、(1 )如图1,现有一正方形 ABCD ,将三角尺的指直角顶点放在 A 点处,两条直角边也与 CB 的延长线、DC 分别交于点E 、F .请你通过观察、测量,判断 AE 与AF 之间的数量关系,并说明理由.(2)将三角尺沿对角线平移到图 2的位置,PE 、PF 之间有怎样的数量关系,并说明理由.求证:AH AB .4、C 为线段AE 上一动点(不与点A , E 重合),在AE 同侧分别作等边 ABC 和等边 CDE , AD 与BE 交于点O , AD 与BC 交于点P , BE 与CD 交于点Q ,连结PQ .以下五个结论: ① AD=BE ;② PQ // AE ;③ AP=BQ ;④DE=DP ; ⑤ AOB 60 ⑥CP=CQ⑦△CPQ 为等边三角形.⑧共有2对全等三角形 ⑨CO 平分 AOE ⑩CO 平分 BCD请说明(33、5、D 为等腰Rt ABC 斜边AB 的中点,DM 丄DN , DM , DN 分别交BC , CA 于点E , F 。
(1 )当 MDN 绕点D 转动时,求证:DE=DF 。
(2 )若AB=2,求四边形DECF 的面积。
分别交AB 、AC 边于M 、N 两点,连接 MN .探究:线段 BM 、MN 、NC 之间的关系,并加以证明.6、如图,ABC 是正三角形,ABDC 是顶角 BDC 120的等腰三角形,以 D 为顶点作一个 60。
角,角的两边7、点 C 为线段AB 上一点,△ACM , MBN 都是等边三角形,线段 AN , MC 交于点 E , 求证: (1 ) AN=MB .(2) 将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,成立?(3) AN 与BM 相交所夹锐角是否发生变化。
图①8、复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在 ABC 中, BM , CN 交于点F 。
(1 )中的结论是否依然AB=AC , P 是 ABC 内 部任意一点,将 AP 绕A 顺时针旋转至 AQ ,使 QAP BAC ,连接 BQ 、CP ,贝U BQ=CP •”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ 经ACP ,从而证得 BQ=CP 之后,将点P 移到等ANB图②NAA AC9、将一张透明的平行四边形胶片沿对角线剪开, 得到图①中的两张三角形胶片ABC 和DEF •且 ABC 也DEF 。
将这两张三角形胶片的顶点 B 与顶点E 重合,把 DEF 绕点B 顺时针方向旋转,这时 AC 与DF 相交于点0 •①当DEF 旋转至如图②位置,点 B(E) , C , D 在同一直线上时, ___ AFD 与DCA 的数量关系是②当DEF 继续旋转至如图③位置时,(1 )中的结论还成立吗?A0与DO 存在怎样的数量关系?请说明理由.1所示放置,图2是由它抽象出的几何图形, B , C , E 在同一条直线上,连结 DC •(1 )请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母) (2)证明:DC 丄BE •11、两个全等的含30 °、60角的三角板 ADE 和三角板ABC 放置在一起, DEA ACB 90 , DAE ABC 30 , E 、A 、C 三点在一条直线上,连接 BD ,取BD 中点M ,连接ME 、MC ,试判断AEMC 的形状,并说明理由.10、两个大小不同的等腰直角三角形三角板如图图1图212、如图,AD//BC , AD=BC , AE丄AD , AF 丄AB,且AE=AD , AF=AB,求证:AC=EFD C13、如图,AE 丄 AB , AD 丄 AC , AB=AE , Z B= /E ,求证:(1) BD=CE ; (2) BD 丄 CE .分线上15、如图1 , A 、E 、F 、C 在同一条直线上, AE=CF ,过E 、F 分别作 DE 丄AC , BF 丄AC , (1 )若AB=CD ,试说明BD 平分EF ;(2)若将ADEC 的边EC 沿AC 方向移动变为图2时,其余条件不变,16、如图①,0P 是Z MON 的平分线,请你利用该图形画一对以 0P 所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:(1) 如图②,在 ABC 中,Z ACB 是直角,Z B=60 ° AD 、CE 分别是Z BAC 、Z BCA 的平分线,AD 、CE 相交 于点F 。
请你判断并写出 FE 与FD 之间的数量关系;(2 )如图③,在 ABC 中,如果Z ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是14、如图,BF 丄AC 于点F , CE 丄AB 于点E ,且BD=CD 。
求证:(1)BD 是否还平分EF ,请说明理由。
△BDECDF ; (2)C否仍然成立?若成立,请证明;若不成立,请说明理由。
点B 逆时针旋转60。
得到BN ,连接EN . (1 )求证:△AMB 空ENB ;(3 )小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图 向外作等边 A ABE 和等边A ACF ,连接CE 、BF ,设交点为M ,则点M 即为 ABC 的费尔马点.试说明这种作法 的依据.18、如图1,四边形ABCD 是正方形,M 是AB 延长线上一点。
直角三角尺的一条直角边经过点 D ,且直角顶点E 在AB 边上滑动(点E 不与点A , B 重合),另一条直角边与 Z CBM 的平分线BF 相交于点F.(1 )如图1,当点E 在AB 边的中点位置时: ① 通过测量DE , EF 的长度,猜想DE 与EF 满足的数量关系是 ② 连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是 ③ 请证明你的上述两猜想与EF 有怎样的数量关系并证明17、如图1,点M 为锐角 ABC 内任意一点,连接 AM 、BM 、AB 为一边向外作等边 ABE ,将BM 绕(2 )若AM+BM+CM 的值最小,则称点M 为 ABC 的费尔马点. 若点 ABC 的费尔马点,试求此时 AMB 、BMC 、CMA 的度数;2,分别以 ABC 的AB 、AC 为一边(2) 如图2,当点E 在AB 边上的任意位置时,请你在AD 边上找到一点N ,使得NE=BF ,进而猜想此时DEP迟劉CD19、如图1 ,在正方形ABCD 中,点E 、F 分别为边BC 、CD 的中点,AF 、DE 相交于点G,则可得结论:①AF=DE ; ②AF I DE.(不需要证明)(1 )如图2,若点E 、F 不是正方形 ABCD 的边BC 、CD 的中点,但满足 CE=DF .则上面的结论①、②是否仍 然成立?(请直接回答“成立”或“不成立”)(2)如图3,若点E 、F 分别在正方形 ABCD 的边CB 的延长线和DC 的延长线上,且 CE=DF ,此时上面的结 论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由20、如图1、图2、图3, △AOB , A COD 均是等腰直角三角形, Z AOB =Z COD =90o,(1 )在图1中,AC 与BD 相等吗,有怎样的位置关系?请说明理由。
系吗?为什么?置关系吗?为什么?ABC 中,BC 边在直线I 上,AC 丄BC ,且AC = BC . AEFP 的边FP 也在直线I 上,边EF 与边AC 重合,且EF=FP .(1 )在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将AEFP 沿直线I 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP , BQ .猜想并写出BQ 与AP(2)若 MOD 绕点O 顺时针旋转一定角度后,到达图2的位置,请问AC 与BD 还相等吗,还具有那种位置关(3)若△COD 绕点O 顺时针旋转一定角度后,到达图3的位置,请问 AC 与BD 还相等吗?还具有上问中的位21、如图1,在所满足的数量关系和位置关系,请证明你的猜想;(3)将址卩卩沿直线I 向左平移到图3的位置时,EP 的延长线交 AC 的延长线于点 Q ,连结AP , BQ .你认为 (2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.四边形ABCD 是正方形,点 E 是边BC 的中点. AEF 90,且EF 交正方形外角DCG 的平分线 CF 于点F ,求证:AE=EF .AB 的中点 M ,连接 ME ,贝U AM=EC ,易证 AME 也ECF ,所以 AE EF .在此基础上,同学们作了进一步的研究:(1 )小颖提出:如图 2,如果把“点E 是边BC 的中点”改为“点 E 是边BC 上(除B , C 夕卜)的任意一点”, 其它条件不变,那么结论“ AE=EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不 正确,请说明理由;(2 )小华提出:如图3,点E 是BC 的延长线上(除 C 点外)的任意一点,其他条件不变,结论“ AE=EF ”22、如图①所示,在ABC 和 ADE 中, AB AC , AD AE , BAC DAE ,且点A , D 在一条直线上,连接 BE , CD , M ,N 分别为BE , CD 的中点.(1 )求证:①BECD •,② AM AN ;(2 )在图①的基础上,将ADE 绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立23、数学课上,张老师出示了问题:如图 1 ,经过思考,小明展示了一种正确的解题思路:取 IID图①A图②仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.24、问题背景,如下命题:贝U AN=NM 。
AN=NM 。
贝U AN=NM 。
任务要求:(1 )请你证明以上三个命题; (2)请你继续完成下面的探索:问当Z ANM 等于多少度时,结论 AN=NM 成立(不要求证明)②如图5,在梯形 ABCD 中,AD II BC , AB=BC=CD , N 为BC 延长线上一点, ANM= Z ABC ,请问AN=NM 是否还成立?若成立,请给予证明;若不成立,请说明理由①如图4,在正n ( n >3)边形ABCDEF …中,N 为BC 边上任一点,CM 为正 n 边形外角Z DCK 的平分线,①如图1,在正三角形 ABC 中,BC 边上任一点, CM 为正三角形外角 Z ACK 的平分线,若 ANM 60 ,②如图2,在正方形 ABCD 中,N 为BC 边上任一点,CM 为正方形外角Z DCK 的平分线,若 ANM 90,则③ 如图3,在正五边形 ABCDE 中,N 为BC 边上任一点,CM 为正五边形外角 Z DCK 的平分线,若 ANM 180,CM 为Z DCN 的平分线,若Z图1图2图3图2图3MK图5若不成立 BOBAAE BBD6DFE AM BCQAFEPE B请写出你的猜想,不需证明 AE 丄AB , AF 丄AC , AE=AB(1 )当三角形绕点 C 旋转到CD 与OA 垂直时(如图 26、已知 28、已知 27、已知 1 ),易证:CD=CE(2)当三角板绕点C 旋转到CD 与OA 不垂直时,在图2图3这两种情况下,上述结论是否成立,请给予证明C ,将一个三角板的直角顶点与点 C 重合,它的两条直角25、已知Z AOB=90 ° Z AOB 的平分线 OM 上有一点 BE , CF 是 ABC 的高,且BP=AC , CQ=AB ,试确定AP 与AQ 的数量关系和位置关系边分别与OA 、OB 或它们的反向延长线相交于 D 、E F EAF=AC 。