新人教版《整式的加减》单元测试卷
【数学测试6套】新人教版初中数学七年级上册第2章《整式加减》单元测试卷(答案).doc
人教版初中数学七年级上册第二章《整式的加减》单元测试一、选一选,看完四个选项再做决定! 1.下列各式:1+-x ,3+π,29>,y x y x +-,ab S 21=,其中代数式的个数是( ) A. 5B. 4C. 3D. 22. 以下代数式书写规范的是( )A. 2)(÷+b aB.y 56C. x 311D. y x +厘米3. 在下列各组的两个式子中,是同类项的是( )A. abc ab 32与B.222121mn n m 与 C. 0与21- D. 3与c4. 下列合并同类项中,正确的是( )A. xy y x 633=+B. 332532a a a =+C. 033=-nm mnD. 257=-x x5. 下列各式,正确的是( )A. 6)6(--=--x xB. )(b a b a +-=+-C. )6(530x x -=-D. 243)8(3-=-x x6. 图1的面积用代数式表示是( )A. bc ab +B. )((c a d d b c -+-C. )(d b c ad -+D. cd ab -7. 已知222653z y x A ++=,222822z y x B --=,222352y x z C --=,则C B A ++的值为( )A. 0B. 2xC. 2yD. 2z8. 当x =2时,下列代数式中与代数式12+x 的值相等的是( )A. 21x -B. 13+xC. 23x x -D. 12+x9. 已知做某件工作,每个人的工效相同,m 个人做n 天可完成,如果增加a 人,则完成工作所需天数为( ) A.am mn+B. a n -C. a nn +D. a n +10.按下面图2所示的程序计算,若开始输入的数为x =3,则最后输出的结果是( )abcd图1图2A. 6B. 21C. 156D. 231二、填一填,要相信自己的能力!11.今年小明m 岁,去年小明__________岁,8年后小明__________岁.12.一个长方形的宽为a cm ,长比宽的2倍少1cm ,这个长方形的长是______cm . 13.代数式x y y x -+-2312是________________________三项的和,它们的系数分别是__________________.14. 合并同类项:a a 83-=__________,a a a ---=___________.15.设x 表示一个数,用代数式表示“比这个数的平方小3的数”是_________. 16.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为________________.17.53是一两位数,个位数字是3,十位数字是5,可将53写成5×10+3. 如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的代数式表示这个两位数是______________. 18. 化简:)]2([b a ---=___________. 19. 观察下列各式:121312⨯+=⨯ 222422⨯+=⨯ 323532⨯+=⨯ ……请你将猜想到的规律用自然数n (n ≥1)表示出来__________________. 20.用黑白两种颜色的正六边形地面砖按如图3所示的规律,拼成若干个图案:第1个 第2个 第3个(1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块. 三、做一做,要注意认真审题! 21.计算:(每小题4分,共12分)(1) 233323)3()2(2a a a a a +-+-++(2) 2222224)()3(8)4(5b a b a ab ab b a ab +-+--+-+(3) )58()37(z y z y ---(4) )6(4)2(322-++--xy x xy x22.(8分)一个多项式减去6142-+x x ,小明错误的当成了加法计算,从而得到结果是322+-x x ,请问正确的结果是多少?23.(9分)某市出租车收费标准是:起步价10元,3千米后每千米2元,某乘客乘坐了x人教版七年级上册第2章《整式的加减》单元检测卷一、选择题1.下列说法正确的是( )A .3不是单项式B .x 3y 2没有系数C .-18是一次一项式 D .-14xy 3是单项式2.下列说法错误的是( ) A .x 是单项式 B .3x 4是四次单项式 C .的系数是D .x 3﹣xy 2+2y 3是三次多项式3.下列选项中的单项式,与 2xy 是同类项的是( )A. 2x 2y 2B. 2xC. xyD. 2y 4.下列各式计算结果正确的是( )A. a+a=a 2B. (a ﹣1)2=a 2﹣1C. a•a=a 2D. (3a )3=9a 2 5.-(a 2-b 3+c 4)去括号后为( )A .-a 2-b 3+c 4B .-a 2+b 3+c 4C .-a 2-b 3-c 4D .-a 2+b 3-c 46.若﹣3x 2m y 3与2x 4y n 的和是一个单项式,则|m ﹣n |的值是( ) A .0B .1C .7D .﹣17.下列说法中,正确的是()A. 2不是单项式B. ﹣ab2的系数是﹣1,次数是3C. 6πx3的系数是6D. ﹣2x2y/3的系数是﹣28.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.下列各项中,去括号正确的是()A.x2-2(2x-y+2)=x2-4x-2y+4B.-3(m+n)-mn=-3m+3n-mnC.-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2D.ab-5(-a+3)=ab+5a-310.将2(x+y)+3(x+y)﹣4(x+y)合并同类项,得()A.x+y B.﹣x+y C.﹣x﹣y D.x﹣y11.关于多项式﹣3x2y3﹣2x3y2﹣y/2 ﹣3,下列说法正确的是()A. 它是三次四项式B. 它是关于字母y的降幂排列C. 它的一次项是y/2D. 3x2y3与﹣2x3y2是同类项12.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题13.用代数式表示“a的平方的6倍与3的差”为__________.14.“x2的3倍与y的倒数的和”,用代数式表示为.15.去括号:-[a-(b-c)]=________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________ 17.设A,B,C表示整式,且A-B=3x2-2x+1,B-C=4-2x2,则C-A=__________.18.观察下列等式:(1+2)2-4×1=12+4,(2+2)2-4×2=22+4,(3+2)2-4×3=32+4,(4+2)2-4×4=42+4,…,则第n个等式是________.三、解答题19.化简:(1)2x-5y-3x+y(2)20.先化简再求值(1)-(9x3-4x2+5)-(-3-8x3+3x2),其中x=-2;(2)5xy﹣[x2+4xy﹣y2﹣(x2+2xy﹣2y2)]其中,.21.已知多项式2x2+my-12与多项式nx2-3y+6的差中不含有x,y,求m+n+mn的值.22.已知A=x2﹣2xy,B=y2+3xy.(1)求2A﹣3B?(2)若A﹣B+C=0,试求C?(3)若x=﹣2,y=﹣3时,求2A﹣B+C的值?23.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.24.某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.(1)写出第n排的座位数;(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?25.小明做一道数学题:“已知两个多项式A,B,A=……,B=x2+3x-2,计算2A+B的值.”小明误把“2A+B”看成“A+2B”,求得的结果为5x2-2x+3,请求出2A+B的正确结果.答案一、1.D.2 C.3. C. 4.C. 5.D.6 B.7. B 8. C9.C10. A.11. B 12. B二、13.6a2-3.14.33x2+.15.-a+b-c 16.x n+n217.-x2+2x-518.(n+2)2-4n=n2+4三、19.(1)解:2x-5y-3x+y =(2-3)x+(-5+1)y=-x-4y(2)解:2(a+2b)-3(a-3b) =2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b20. (1)解:原式= = .当时,原式=. -6(2)解:原式=3xy-y2 ,当x=-2, y=-3时,原式=9 .21.解:由题意得(2x2+my-12)-(nx2-3y+6)=(2-n)x2+(m+3)y-18,因为差中不含有x,y,所以2-n=0,m+3=0,所以n=2,m=-3,故m+n+mn=-3+2+(-3)×2=-7.22.(1)∵A=x2﹣2xy,B=y2+3xy,∴2A﹣3B=2(x2﹣2xy)﹣3(y2+3xy)=2x2﹣4xy﹣3y2﹣9xy=2x2﹣13xy﹣3y2;(2)∵A﹣B+C=0,∴C=B﹣A=(y2+3xy)﹣(x2﹣2xy)=y2+3xy﹣x2+2xy=y2+5xy﹣x2;(3)∵A=x2﹣2xy,B=y2+3xy,C=y2+5xy﹣x2,∴2A﹣B+C=2(x2﹣2xy)﹣(y2+3xy)+(y2+5xy﹣x2)=2x2﹣4xy﹣y2﹣3xy+y2+5xy﹣x2=x2﹣2xy,当x=﹣2,y=﹣3,原式=4﹣2×6=﹣8.23.(1)④4×6﹣52=﹣1(2)(2n ﹣1)(2n+1)﹣(2n )2=﹣1(3)解:左边=(2n ﹣1)(2n+1)﹣(2n )2=4n 2﹣1﹣4n 2=﹣1 所以(2)中所写的等式一定成立 24..(1)m +2(n ﹣1).(2)①当m =20,n =25时,m +2(n ﹣1)=20+2×(25﹣1)=68(个); ②m +m +2+m +2×2+…+m +2×(25﹣1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).解:(1)第一排有m 个座位,后边的每一排比前一排多两个座位,第n 排有m +2(n ﹣1)=2n +m ﹣2(个);(2)当m =20时,25排:2×25+20﹣2=68(个);(3)25排最多可以容纳:(20+68)×25÷2=88×25÷2=1100(位) 25.解:由题意得,A =5x 2-2x +3-2(x 2+3x -2)=5x 2-2x +3-2x 2-6x +4=3x 2-8x +7. 所以2A +B =2(3x 2-8x +7)+(x 2+3x -2)=6x 2-16x +人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个C .7个D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( ) A .b =(1+12.5%×2)a B .b =(1+12.5%)2a C .b =(1+12.5%)×2 a D .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和三、(13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用. 五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,当a=1,b=2时,求A ﹣2B+3C 的值(先化简再求值).22.阅读材料:“如果代数式5a +3b 的值为-4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =-4两边同乘以2,得10a +6b =-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2019的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.B2.D3.D4.A5.C6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b -c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y -的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ).22.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)24.、两仓库分别有水泥吨和吨,、两工地分别需要水泥吨和吨.已知从、仓库到、工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式 的系数是 ,次数=2+1+3=6. 故选:C .2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 【答案】A解A 、单项式﹣a 的系数是﹣1,次数是1,故此选项错误,符合题意;B 、12xy 是二次单项式,正确,不合题意; C 、﹣23ab 系数是﹣23,正确,不合题意;D 、数字0也是单项式,正确,不合题意; 故选:A .3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元【答案】C解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C . 4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3 B .6C .﹣3D .0【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( ) A .33(2)6x x = B .33x x x ÷=C .325x x x ? D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误;B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误; 故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b), ∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7. 故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<,0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c , 所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++,()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,, b=1a=-3∴, ,当b=1,a=-3时 , a+2b=-3+2=-1, 所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式 D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误; B 、P−Q人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y -的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ).22.(1)化简 :()()222252423-+-+-a b ab c c a b ab;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)24.、两仓库分别有水泥吨和吨,、两工地分别需要水泥吨和吨.已知从、仓库到、工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式的系数是,次数=2+1+3=6.故选:C.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 【答案】A解A 、单项式﹣a 的系数是﹣1,次数是1,故此选项错误,符合题意;B 、12xy 是二次单项式,正确,不合题意; C 、﹣23ab 系数是﹣23,正确,不合题意;D 、数字0也是单项式,正确,不合题意; 故选:A .3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元【答案】C解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C . 4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3 B .6C .﹣3D .0【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( ) A .33(2)6x x = B .33x x x ÷= C .325x x x ? D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误;B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误;故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b), ∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7. 故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<,0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c , 所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0 B .1- C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++,()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,, b=1a=-3∴, ,当b=1,a=-3时 , a+2b=-3+2=-1, 所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式 D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误; B 、P−Q人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n+2-5x2-n+6是关于x的三次多项式,求代数式n3-2n+3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣2 3 8.111a +80 9.-8 10.111.2c -a -b 解析:由图可知a <c <0<b ,∴a -c <0,b -c >0,∴原式=c -a -(b -c )=c -a -b +c =2c -a -b .故答案为2c -a -b .12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题 13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分)14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分) 15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a-b=-3,∴3(a-b)-a+b+5=3×(-3)-(-3)+5=-1.(6分)(3)∵a2+2ab=-2,ab-b2=-4,∴2a2+5ab-b2=2a2+4ab+ab-b2=2×(-2)+(-4)=-8.(9分)。
七年级数学《整式的加减》单元检测题(人教版)
七年级数学《整式的加减》单元检测题(人教版)整式的加减单元综合检测题(带答案人教版)题号一二三四五六总分得分一、选择题(每小题3分,共30分)1、计算的结果是()A、B、C、D、2、下列方程中,是一元一次方程的是()A.B.C.D.3、如果是同类项,那么a、b的值分别是()A、B、C、D、4、已知代数式的值为9,则的值为()A、18B、12C、9D、75、三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时购买这种商品最划算应到的超市是()A、甲B、乙C、丙D、乙或丙6、减去-2x等于-3x2+2x+1的多项式是()A、-3x2+4x-1B、3x2-4x-1C、-3x2+1D、3x2-17、与-125a3bc2是同类项的是()A、a2b3cB、ab2c3C、0.35ba3c2D、13a3bc38、下面计算正确的是()A、3-=3B、3+2=5C、3+=3D、-0.25+=09方程的解是()。
A.B.C.D.无解10、如果-=,那么-3(-)的值时()A、-B、C、D、二、填空题(每小题3分,共18分)11、多项式是________次________项式,常数项是________;12、写出含有字母x、y的四次单项式__________(只要写出一个).13、单项式-的系数是,次数是.14、13的倒数的相反数是.15、一个三位数,十位数字为a,百位数字比十位数字大2,个位数字比十位数字小1,则这个三位数为.16、化简3-2(-3)的结果是.19、3(-2+3)-(2-)+620、-[(-)+4]-四、先化简,再求值(每小题6分,共12分)21、22、4-[6-2(4-2)-]+1,其中=-,=-1五、解答题(每小题7分,14分)23、2019年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a-1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米.(1)用含a的代数式表示s;(2)已知a=11,求s的值.24、某工厂第一车间有人,第二车间比第一车间人数的少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?。
人教版数学《整式的加减》单元测试题(含答案)
《整式的加减》单元测试题一.选择题(共10小题,满分24分)1.代数式:;,5xy+x2,,,﹣3中,不是整式的有()A.4个B.3个C.2个D.1个2.下列单项式中与xy2是同类项()A.x2y B.x2y2C.2xy2D.3xy3.代数式,4xy,,a,2009,,中单项式的个数是()A.3B.4C.5D.64.若单项式2x2y m与﹣x n y4可以合并成一项,则n m的值为()A.8B.10C.14D.165.下列各式的计算结果正确的是()A.2x+3y=xy B.5x﹣3x=2x2C.9a2b﹣4ba2=5a2b D.7y2﹣5y2=26.已知x+y+2(﹣x﹣y+1)=3(1﹣y﹣x)﹣4(y+x﹣1),则x+y等于()A.﹣B.C.﹣D.7.将(a+1)﹣(﹣b+c)去括号,应该等于()A.a+1﹣b﹣c B.a+1﹣b+c C.a+1+b+c D.a+1+b﹣c8.若A与B都是二次多项式,则A﹣B:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零.上述结论中,不正确的有()个.A.5B.4C.3D.29.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=()A.﹣1B.1C.5D.﹣510.下列说法正确的是()A.若|a|=﹣a,则a<0B.的系数是C.一个有理数与它的相反数之积一定不大于0D.多项式3xy2﹣4x3y+12的次数为7二.填空题(共6小题,满分24分,每小题4分)11.下列式子中:①﹣;②a+b,③,④,⑤a2﹣2a+1,⑥x,是整式的有(填序号)12.若7a x b2与﹣a3b y的和为单项式,则y x=.13.﹣5的绝对值是,﹣的次数是.14.已知﹣5a2m b和3a4b3﹣n是同类项,则m﹣n的值是.15.在式子:、、、﹣、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.16.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.三.解答题(共8小题,满分48分)17.化简:(1)x2+5y﹣4x2﹣3y﹣1.(2)﹣3(a﹣3b)3+2(3b﹣a)2+4(a﹣3b)2+2(3b﹣a)3.18.先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2﹣(a+b)﹣(a+b)2+(﹣3)2(a+b).19.(6分)若“三角形”表示运算a﹣b+c,“方框”表示运算x﹣y+z+w,求:﹣表示的运算,并计算结果.20.(8分)将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式﹣3x5﹣4x2+3x3﹣2的值,把它的后两项放在:①前面带有“+”号的括号里;②前面带有“﹣”号的括号里.③说出它是几次几项式,并按x的降幂排列.21.(8分)一个两位数,它的十位数字为a,个位数字为b,若把它的十位数字和个位数字对调,得到一个新的两位数.(1)计算新数与原数的和,这个和能被11整除吗?为什么?(2)计算新数与原数的差,这个差有什么性质?22.(8分)历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)的形式来表示,把x 等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f(﹣1),则f(﹣1)=﹣7.已知f(x)=ax5+bx3+3x+c,且f(0)=﹣1(1)c=.(2)若f(1)=2,求a+b的值;(3)若f(2)=9,求f(﹣2)的值.23.(8分)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.24.(10分)阅读下列材料:我们知道|x|=现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,令x+1=0,求得x=﹣1;令x﹣2=0,求得x=2(称﹣1,2分别为|x+1|,|x﹣2|的零点值).在有理数范围内,零点值﹣1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x≤2时,原式=x+1﹣(x﹣2)=3;③当x>2时,原式=x+1+x﹣2=2x﹣1.综上所述,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x+2|和|x﹣4|的零点值;(2)化简代数式|x+2|+|x﹣4|.参考答案一.选择题(共10小题,满分24分)1.C.2.C.3.C.4.D.5.C.6.D.7.D.8.C.9.A.10.C.二.填空题(共6小题,满分24分,每小题4分)11.①②③⑤⑥.12.8.13.5,4.14.﹣1.15.3.16.(﹣1)n+1•2n•x n.三.解答题(共8小题,满分48分)17.解:(1)原式=x2﹣4x2+5y﹣3y﹣1=﹣3x2+2y﹣1;(2)原式=﹣3(a﹣3b)3+2(3b﹣a)3+2(3b﹣a)3+4(a﹣3b)2=﹣3(a﹣3b)3﹣2(a﹣3b)3+2(a﹣3b)2+4(a﹣3b)2,=﹣5(a﹣3b)3+6(a﹣3b)2.18.解:(1)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(2)原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=x2﹣3xy+2y2;(3)原式=2x﹣2x﹣6y+3x﹣6y=3x﹣12y;(4)原式=﹣(a+b)﹣(a+b)2+9(a+b)=﹣(a+b)2+(a+b).19.解:根据题意得:﹣=(m﹣n+p)﹣(p+m+1﹣n)=m﹣n+p ﹣p﹣m﹣1+n=﹣1.20.解:(1)将式子4x+(3x﹣x)=4x+3x﹣x,4x﹣(3x﹣x)=4x﹣3x+x分别反过来,得到4x+3x﹣x=4x+(3x﹣x),4x﹣3x+x=4x﹣(3x﹣x),添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号;(2)①﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2+(3x3﹣2);②﹣3x5﹣4x2+3x3﹣2=﹣3x3﹣4x2﹣(﹣3x3+2);③它是五次四项式,按x的降幂排列是﹣3x5+3x3﹣4x2﹣2.21.解:根据题意得:原两位数为10a+b,调换后的新数为10b+a,(1)新数与原数的和为(10a+b)+(10b+a)=11(a+b),能被11整除;(2)新数与原数的差为(10b+a)﹣(10a+b)=9(b﹣a),能被9整除.22.解:(1)∵f(x)=ax5+bx3+3x+c,且f(0)=﹣1,∴c=﹣1,故答案为﹣1.(2)∵f(1)=2,c=﹣1∴a+b+3﹣1=2,∴a+b=0(3)∵f(2)=9,c=﹣1,∴32a+8b+6﹣1=9,∴32a+8b=4,∴f(﹣2)=﹣32a﹣8b﹣6﹣1=﹣4﹣6﹣1=﹣11.23.解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.24.解:(1)令x+2=0,解得x=﹣2,所以|x+2|的零点值为﹣2,令x﹣4=0,解得x=4,所以|x﹣4|的零点值是4.(2)当x<﹣2时,原式=﹣(x+2)﹣(x﹣4)=﹣x﹣2﹣x+4=﹣2x+2;当﹣2≤x≤4,原式=(x+2)﹣(x﹣4)=x+2﹣x+4=6;当x>4时,原式=(x+2)+(x﹣4)=2x﹣2.。
【名校习题6套】人教版数学七年级上册第二章整式的加减单元测试及答案.doc
人教版七年级上册第二章整式的加减单元测试一、选择题(每题3分,共21分)1. 下列说法正确的是( )A.213x π的系数为13B.212xy 的系数为12x C. ()23x -的系数为3D. ()23x π-的系数为3π-2. 下列各组式子中,是同类项的是( )A. 2233x y xy -与B. 222x x 与C. 32xy yx -与D. 55xy yz 与3. 下面计算正确的是( )A. 2233x x -=B. 235325a a a +=C. 33x x +=D. 10.2504ab ba -+=4. 如果12a b -=,那么()3b a --的值是( ) A. 35-B. 23C.32D.165. 将()()()24x y x y x y +++-+合并同类项得( )A. x y +B. x y -+C. x y --D. x y -6. 若8a =,3b =,且a b <,则a b -的值为( )A. 11-B. 5-C. 5-或5D. 11-或5-7. 观察图中正方形四个顶点所标的数字规律,可知数2013应标在( )A. 第503个正方形的左上角B. 第503个正方形的右下角C. 第504个正方形的左上角D. 第504个正方形的右下角二、填空题(每题3分,共21分)8. 已知单项式23m a b 与4123n a b --人教版数学七年级上册通关宝典(9)-《整式的加减》单元检测一、选择题(共10小题;共30分) 1. 下列说法正确的是 A.的系数是 B. 单项式 的系数为 ,次数为C. 的次数为D. 的系数为2. 下列说法中,正确的有①的系数是;②的次数是;③多项式的次数是;④和都是整式.A. 个B. 个C. 个D. 个3. 多项式的次数及最高次项的系数分别是A. ,B. ,C. ,D. ,4. 在如图所示的年元月份的月历表中,任意框出表中竖列上四个数,这四个数的和可能是星期一星期二星期三星期四星期五星期六星期日A. B. C. D.5. 化简的结果等于A. B. C. D.6. 若,则的值为A. B. C. D.7. 若与是同类项,则的值为A. B. C. D.8. 已知,当时,的值是,当时,的值是A. B. C. D. 无法确定9. 古希腊著名的毕达哥拉斯学派把,,,这样的数称为“三角形数”,而把,,,这样的数称为“正方形数”.从图形可以发现,任何一个大于的“正方形数”,都可以看作两个相邻“三角形数”之和.下列等式中符合这一规律的是A. B. C. D.10. 下面每个表格中的四个数都是按相同规律填写的:根据此规律确定的值为A. B. C. D.二、填空题(共6小题;共18分)11. 如果,则.12. 单项式的系数是,次数是.13. 如果是五次多项式,那么.14. 填空:;.15. 若与的和是单项式,则式子的值是.16. 下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是.三、解答题(共6小题;共52分)17. 去括号,并合并同类项:(1);(2).18. 将式子,分别反过来,你得到两个怎样的等式?(1)比较你得到的等式,你能总结添括号的法则吗?(2)根据上面你总结出的添括号法则,不改变多项式的值,把它的后两项放在:①前面带有“”号的括号里;②前面带有“”号的括号里.19. 如果关于的多项式不含项和人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分)1.计算3a3+a3,结果正确的是()A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A . 6B . -6C . 12D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y ,0中,单项式共有( )A .5个B .6个C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n+2-5x2-n+6是关于x的三次多项式,求代数式n3-2n+3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分)14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分)15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2)=5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个C .7个D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6B . -6C . 12D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( ) A .b =(1+12.5%×2)a B .b =(1+12.5%)2a C .b =(1+12.5%)×2 a D .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值; (2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2019的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参 考 答 案:一、选择题 1.B 2.D 3.D 4.A 5.C 6.B二、填空题7.﹣2 3 8.111a +80 9.-8 10.111.2c -a -b 解析:由图可知a <c <0<b ,∴a -c <0,b -c >0,∴原式=c -a -(b -c )=c -a -b +c =2c -a -b .故答案为2c -a -b .12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分)14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分)15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52.22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分) (3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6B . -6C . 12D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( )A .b =(1+12.5%×2)aB .b =(1+12.5%)2aC .b =(1+12.5%)×2 aD .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值; (2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用. 五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,当a=1,b=2时,求A ﹣2B+3C 的值(先化简再求值).22.阅读材料:“如果代数式5a +3b 的值为-4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =-4两边同乘以2,得10a +6b =-8.仿照上面的解题方法,完成下面的问题: (1)已知a 2+a =0,求a 2+a +2019的值; (2)已知a -b =-3,求3(a -b )-a +b +5的值;(3)已知a 2+2ab =-2,ab -b 2=-4,求2a 2+5ab -b 2的值. 六、(本大题共12分) 23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.B2.D3.D4.A5.C6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52.22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分) (3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版初中数学七年级上册第2章《整式加减》单元测试卷一、单选题(每小题只有一个正确答案) 1.下列各式:ab ,2x y -,2x,–xy 2,0.1,1π,x 2+2xy+y 2,其中单项式有( )A .5个B .4个C .3个D .2个2.多项式x 3–2x 2y 2+3y 2每项的系数和是( ) A .1B .2C .5D .63.若单项式–2335a bc 的系数、次数分别是m 、n ,则( )A .m=−35,n=6 B .m=35,n=6 C .m=–35,n=5 D .m=35,n=5 4.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy5.对[()]a b c d --+去括号后的结果是( ). A .a b c d --+ B .a b c d +-- C .a b c d -++D .a b c d -+-6.单项式﹣x 2y 的系数与次数分别是( ) A.-,3B.-,4C.-π,3D.-π,47.下列各式计算正确的是( ). A .(2)2a a b b --=- B .2(3)242xy y xy xy y --=- C .233336ab a b ab +=D .3()3xy y xy y +-=8.下列各组单项式属于同类项的是( ).A .2a 与22aB .3m -与2mC .223a b 与22ab D .22a 与23a9.一个两位数,十位上的数字比个位上的数字小2,设十位上的数字为x ,则这个两位数可以表示为( ). A .22x +B .22x -C .112x -D .112x +10.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .611.规定一种新运算,a *b =a +b ,a #b =a ﹣b ,其中a 、b 为有理数,化简a 2b *3ab +5a 2b #4ab 的结果为( ) A .6a 2b +abB .﹣4a 2b +7abC .4a 2b ﹣7abD .6a 2b ﹣ab12.一个多项式加上2325y y --得到多项式3546y y --,则原来的多项式为( ) A.325321y y y ++- B.325326y y y --- C.325321y y y +-- D.325321y y y ---二、填空题13.多项式2239x xy π++。
人教版七年级上册第2章《整式的加减》单元测试卷(含答案)
人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。
2024-2025学年 第二章 整式加减测试卷(人教版)
第二章整式的加减单元测试题(人教版)一、选择题(本大题共10个小题,每题3分,共30分,在每个小题的四个选项中只有一项是符合题目要求的)1.在3a,x+1,-2,3b-,0.72xy,2π,314x-中单项式的个数有()A.2个B.8个C.4个D.5个2.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.2ab2是二次单项式D.﹣xy2的系数是﹣13.多项式3x3﹣4x2y2+x+3是()A.三次四项式B.四次四项式C.三次三项式D.四次三项式4.下列各组中的两个单项式,属于同类项的是()A.6xy和6xyz B.x3与53C.2a2b与﹣ab2D.0.85xy4与﹣y4x5.若3x m+6y2与23x8y n-4的差是一个单项式,则代数式n m的值为()A.﹣8 B.6 C.36 D.86.若代数式a2﹣3a的值是4,则a2﹣a﹣6的值是()A.﹣2 B.﹣3 C.﹣4 D.﹣57.观察下列图形变化的规律,我们发现每一个图形都分为上、下两层,下层都是由黑色正方形构成,其数量与编号相同;上层都是由黑色正方形或白色正方形构成(第1个图形除外),则第2021个图形中,黑色正方形的数量共有()个A.3031B.3032C.3033D.30348.某两位数,十位上的数字为a,个位上的数字为b,交换个位与十位数字后,新的两位数可表示为()A.ab B.a+b C.10a+b D.10b+a9.某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元10.如图是一组按照某种规律摆放而成的图形,第1个图中有3条线段,第2个图有8条线段,第3个图有15条段线,则第7个图中线段的条数为( )A .35B .48C .63二、填空题(本题共5个小题;每个小题3分,共15分,把正确答案填在横线上)11.多项式﹣2x ﹣x 3+4x 2+1,按x 的升幂排列为12.观察下面的一列单项式:2x ,-4x 2,8x 3,-16x 4,…根据你发现的规律,第n 个单项式为__________. 13.观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+= 若字母n 表示自然数,请把你观察到的规律用含有n 的式子表示出来:14. 当x =2022时,代数式ax 5+bx 3+cx ﹣3的值为2018,则当x =﹣2022时代数式ax 5+bx 3+cx ﹣1的值为 .15.如图,阴影部分面积用代数式表示为 .三、解答题(本题共8道题,16-18每题7分,19-20每题8分,21-22每题9分,满分55分) 16.若2x m y 2﹣(n ﹣3)x+1是关于x 、y 的三次二项式,求m 、n 的值.17.先化简,再求值:3x 2y 2﹣5xy 2+(4xy 2﹣9)+2x 2y 2,其中,y =2. .18.,,A B C 均为多项式,小元在计算“A B -”时,误将符号抄错而计算成了“A B +”,得到结果是C ,其中221132A x x C x x =+-=+,,请正确计算A B -.19.已知22A x mx =-+,221B nx x =+-,且化简2A B -的结果与x 无关.(1)求m 、n 的值;(2)求式子2222223(2)[2(2)5]m n mn m n mn m n mn ---+--的值.20.如图是某种窗户的形状,其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为am ,计算:(1)窗户的面积;(2)窗框的总长;(3)若a =1,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用是多少元(π取3.14,结果保留整数).21.我们规定:若有理数a,b满足a+b=ab,则称a,b互为“特征数”,其中a叫做b的“特征数”,b也叫a的“特征数”.例如:因为2+2=4,2×2=4,所以2+2=2×2,则2与2互为“特征数”.请根据上述规定解答下列问题:(1)有理数﹣1的“特征数”是;(2)有理数1 (填“有”或“没有”)“特征数”;(3)若m的“特征数”是3,n的“特征数”是﹣2,求4m+21n的值.22.如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示)留下一个“T”型的图形(阴影部分).(1)用含x,y的代数式表示“T”型图形的面积并化简.(2)若y=3x=30米,“T”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.。
人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案)
人教版七年级数学上册《第二章整式的加减》单元测试卷(含答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.单项式πr2ℎ的次数是()A.1 B.2 C.3 D.42.在代数式x2+5,﹣1,x2﹣3x+4,π,5m 和x2+1x+1中,整式有()A.3个B.4个C.5个D.6个3.下列说法正确的是()A.1x +1是多项式B.3x+y3是单项式C.−mn5是五次单项式D.−x2y−2x3y是四次多项式4.多项式36x2−3x+5与3x3+12mx2−5x+7相加后,不含二次项,则常数m的值是()A.2 B.-8 C.-2 D.-35.下列选项中的单项式,与−ab2是同类项的是()A.−a2b B.3ab2C.3ab D.ab2c6.下面计算正确的是()A.3x2y−2y2x=xy B.ab−ba2=12abC.2a2+a=3a3D.m4+m4=m87.若整式−100a−m b2+100a3b n+4经过化简后结果等于4,则m n的值为()A.−8B.8 C.−9D.9 8.若x−2y=3,则2(x−2y)−x+2y−5的值是()A.−2B.2 C.4 D.−4二、填空题9.请写出一个只含有a,b两个字母的单项式,要求系数为−4,次数3,这个单项式可以是.10.多项式3x2﹣2xy2+xyz3的次数是.11.如果单项式5a m+1b n+5与a2m+1b2n+3是同类项,则m=,n=12.多项式(m﹣2)x|m|+mx﹣3是关于x的二次三项式,则m= .13.已知x2+2y-3=0,则3(x2+2xy)-(x2+6xy)+4y的值为14.化简:(1)3xy2−4x2y−2xy2+5x2y;(2)(mn+3m2)−(m2−2mn)15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.a2−3ab−2且a、b互为倒数,求3A−2B的值.17.若A=a2−4ab−5,B=3218.今年十月份,为方便民众出行,连江县成立了出租车公司,收费标准是:起步价5元,可乘坐3千米;3千米之后每千米加收1.8元.若某人乘坐了x千米(1)用代数式表示他应支付的费用;(2)若他乘坐了13千米,应支付多少元?1.C2.B3.D4.D5.B6.B7.D8.A9.−4ab 2或−4a 2b10.511.0;212.-213.614.(1)xy 2+x 2y(2)3mn +2m 215.﹣7.16.−2x +2y ,10.17.−6ab −11,−17. 18.(1)①当0x <≤3时,支付的费用为5;②当3x >时,支付的费用为()1.80.4x -元(2)23元。
人教版2024-2025学年七年级上册数学单元检测(整式的加减)含答案
A. B. C. D.1(4)2a -124a -124a +324a +9.多项式是关于x.y 的四次二项式,则m 的值为( )2||2(2)1m x ym xy --+A.2B.-B.-2 C.±2 D.±110.当0a >,0b <时,化简|65||81||32|b b a b -+---的结果是( )A.35a b ++B.3117a b -+C.D.355a b -++3117a b --+二、填空题(每小题4分,共20分)11.若的系数是m ,的系数是n ,则的值为__________.2a b -23xy -m n +12.化简:________________.()()17372x x ---=13.若,则的值为________.244239m n x y ax y x y +=a m n ++14.若一个多项式加上,结果是,则这个多项式为___________.234y xy +-2325xy y +-15.阅读下面材料:计算.123499100++++++ 如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度..12399100(1100)(299)(5051)101505050+++++=++++++=⨯= 根据材料中提供的方法,计算:_________.()(2)(3)(100)a a m a m a m a m +-+-+-++-= 三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)已知多项式243352261079x x x x +-+-.(1)把这个多项式按x 的降幂重新排列;(2)该多项式是几次几项式?直接写出它的常数项.17.(8分)已知下列式子:(1)计算小长方形C的周长(用含(2)小明发现阴影图形A与阴影图形(3)已知,,求的值.22x xy +=2235y xy +=222116x xy y ++21.(12分)观察下列单项式:,,,解答下列问题:23x 35x 47x ⋅⋅⋅⋅⋅⋅(1)对这组单项式,你发现了什么规律?(2)根据你发现的规律,第5个单项式和第6个单项式分别是什么?(3)根据上面的归纳,你猜想第n 个单项式是什么?(4)请你根据猜想,写出第2022个单项式.答案以及解析1.答案:B解析:单项式的系数和次数分别是和3.22a b -2-2.答案:A解析:多项式的次数是3,最高次项是,22325xy xy -+23xy -的系数是,23xy -3-所以多项式的次数和最高次项的系数分别是3,,22325xy xy -+3-故选:A.3.答案:D解析:选项A ,多项式的项数是3、次数是2,故此选项不符合题意;221x y -+选项B ,多项式的项数是2、次数是3,故此选项不符合题意;33x y -选项C ,多项式的项数是3、次数是4,故此选项不符合题意;37xy y ++选项D ,多项式的项数是3、次数是3,故此选项符合题意.故选D.222x x y y ++4.答案:C解析:多项式的次数是4,有3项,是四次三项式,故A 项、B 项错误;22521ab a bc --它的常数项是-1,故D 项错误.5.答案:A解析:A.是同类项,此选项符合题意;B.字母a 的次数不相同,不是同类项,故此选项不符合题意;C.相同字母的次数不相同,不是同类项,故此选项不符合题意;D.相同字母的次数不相同,不是同类项,故此选项不符合题意.故选:A.6.答案:C解析:剩余白色长方形的长为b ,宽为,()b a -所以剩余白色长方形的周长.()2242b b a b a =+-=-故选:C.7.答案:A解析:A 、是四次三项式,故该选项正确,符合题意.22521ab a bc --B 、单项式的系数是1,故该选项错误,不符合题意.xy C 、的常数项是,故该选项错误,不符合题意.231x x --1-D 、最高次项是,故该选项错误,不符合题意.23231x y xy -+33xy -故选:A.8.答案:C解析:由题意得第三边的长为.11111(4)2242424a a a a a a a ---=--+=+9.答案:A解析:多项式是关于x ,y 的四次二项式,2||2(2)1m x y m xy --+且,2m ∴=20m -=.2m ∴=故选:A.10.答案:D解析:因为,,所以,,,所以0a >0b <650b ->810b -<320a b ->.|65||81|3265(81)(32)6581323117b b a b b b a b b b a b a b -+---=-----=--+-+=--+∣∣11.答案:53-解析:因为的系数是m ,的系数是n ,2a b -23xy -所以,,则的值为.1m =-23n =-m n +25133--=-12.答案:10x -解析:()()17372x x ---17372x x =--+10x=-故答案为.10x-13.答案:12解析:, 244239m n x y ax y x y +=,,,∴4m =2n =39a +=,∴6a =,∴64212a m n ++=++=故12.14.答案:21y -解析:依题意这个多项式为.故答案为.()()2222232534325341xy yy xy xy y y xy y +--+-=+---+=-21y -15.答案:1015050a m-解析:()(2)(3)(100)101(23100)a a m a m a m a m a m m m m +-+-+-++-=-++++ 101[(100)(299)(398)(5051)]101101501015050a m m m m m m m m a m a m=-++++++++=-⨯=- 16.答案:(1)432351022679x x x x -++-(2)四次五项式,59-解析:(1)含有5项,分别是、243352261079x x x x +-+-222x 、、6x 、,x 的次数分别是2、4、0、1、3,437x 59-310x -这个多项式按x 的降幂重新排列为.∴432351022679x x x x -++-(2)由(1)得,该多项式是四次五项式,常数项是.59-17.答案:(1)①②⑦;、、143- 6.1-(2)④⑥;3、2解析:(1)单项式是由数字与字母的积组成的整式,,,a 是单项式,243x y ∴-226.1a b -即①②⑦是单项式,的系数为,的系数为,a 的系数是1,243x y ∴-43-226.1a b - 6.1-故答案为①②⑦;、、1;43- 6.1-(2)多项式是由若干个单项式相加组成的整式,,,233a ab b ∴-+2412m n -+即④⑥,的次数为3,的次数为2,233a ab b ∴-+2412m n -+故答案为④⑥;3、2.18.答案:(1)216y -(2)见解析解析:(1)因为小长方形C 的宽为4,所以小长方形C 的长为,12y -所以小长方形C 的周长为.2(124)216y y ⨯-+=-(2)由题图可知,阴影图形A 的较长边长为,较短边长为,12y -8x -阴影图形B 的较长边长为12,较短边长为,(12)12x y x y --=-+所以阴影图形A 和阴影图形B 的周长之和为,2(128)2(1212)2402482248y x x y y x x y x -+-++-+=-+++-=+所以阴影图形A 与阴影图形B 的周长之和与y 值无关.19.答案:(1),322x y -+(2),54223a b ab -解析:(1)()()22222322x xy y x yx y +--+-222223224x xy y x yx y =+---+,22x y =-+将代入中得:1x =-2y =,22x y -+;22143x y -+=-+=(2)22225343a b ab ab a b---+()2222155412a b ab ab a b=-+-,223a b ab =-将,代入中得.2a =-3b =223a b ab -()2233432954a b ab -=⨯⨯--⨯=20.答案:(1)22()m n -(2)10(3)19解析:(1)把看成一个整体,2()m n -2223()4()3()m n m n m n ---+-()2343()m n =-+-;22()m n =-故;22()m n -(2),224x y += ;()2236232234210x y x y ∴+-=+-=⨯-=故10;(3),,22x xy += 2235y xy +=①,②,2224x xy ∴+=26915y xy +=得,,+①②222269415x xy y xy +++=+.22219161x xy y +=∴+21.答案:(1)系数是从3开始连续的奇数,次数是从2开始连续的整数;(2),611x 713x (3)()121n n x++(4)20234045x 解析:(1)观察下列单项式:,,,……23x 35x 47x 可得,系数是从3开始连续的奇数,次数是从2开始连续的整数;(2)由(1)发现的规律可得,第5个单项式为,第6个单项式为;611x 713x (3)由(1)发现的规律可得,第n 个单项式为()121n n x++;(4)由(3)中的猜想可得,第2022个单项式为()2022120232202214045x x +⨯+=.。
人教版七年级上册数学第2章《整式的加减》单元测试卷(Word版,含答案)
人教版七年级上册数学第2章《整式的加减》单元测试卷题号一二三 总分 19 2021 22 23 24分数一.选择题(每题3分,共30分) 1.下列关于多项式﹣3a 2b +ab ﹣2的说法中,正确的是( ) A .最高次数是5 B .最高次项是﹣3a 2b C .是二次三项式D .二次项系数是02.下列说法中,不正确的是( ) A .﹣ab 2c 的系数是﹣1,次数是4 B .﹣1是整式C .6x 2﹣3x +1的项是6x 2、﹣3x ,1D .2πR +πR 2是三次二项式3.如果单项式3a m b 2c 是6次单项式,那么m 的值是( ) A .2B .3C .4D .54.若代数式2x |m |﹣(m +3)x +7是关于x 的三次二项式,那么m 的值为( ) A .﹣3B .3C .±3D .05、已知a ﹣b=3,c+d=2,则(b+c )﹣(a ﹣d )的值为( ) A 、1 B 、-1 C 、-5 D 、56、多项式1+2xy ﹣3xy 2的次数及最高次项的系数分别是( ) A 、3,﹣3 B 、2,﹣3 C 、5,﹣3 D 、2,37.当2x =时,多项式35ax bx -+的值是4,求当2x =-时,多项式35ax bx -+的是为( ) A .4-B .6C .5D .98.已知:||3a =,||4b =,则a b -的值是( ) A .1-B .1-或7-C .1±或7±D .1或79.设237M x x =++,234N x x =-+-,那么M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .无法确定10.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.222221131(3)(4)2222x xy y x xy y x -+---+-=-2y +,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是( ) A .7xy -B .7xy +C .xy -D .xy +二、 填空题(每题3分,共24分) 11.若与是同类项,则a 的值是______.12.若多项式是关于x ,y 的三次多项式,则______.13.已知﹣5x 3y |a |﹣(a ﹣5)x ﹣6是关于x 、y 的八次三项式,则a 的值为 . 14.多项式3﹣2xy 2+4x 2yz 的次数是 .15.如果单项式2x m ﹣1y 2与﹣3x 2y n +1是同类项,那么m +n = . 16.计算:2a 2﹣(a 2+2)= . 17.多项式中不含xy 项,则常数k 的值是 .18.如图所示的运算程序中,如果开始输入的x 值为,我们发现第1次输出的结果为,第2次输出的结果为,,第2021次输出的结果为 .三.解答题(共46分,19题6分,20 ---24题8分) 19.化简:(1)(5a 2+2a ﹣1)﹣4[3﹣2(4a +a 2)]. (2)3x 2﹣[7x ﹣(4x ﹣3)﹣2x 2].20.先化简,再求值:2ab +6(a 2b +ab 2)﹣[3a 2b ﹣2(1﹣ab ﹣2ab 2)],其中a 为最大的负整数,b 为最小的正整数.。
七年级数学上册《整式的加减》单元测试卷及答案
人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。
第二章整式的加减(人教版)单元测试题(含答案)
第二章整式的加减(人教版)单元测试题(含答案)第二章整式的加减单元测试一、填空题(每题3分,共27分)1、单项式-3x减去单项式-4x2y+2x2y-5x2的和,列算式为,-5x2-4x2y-3x。
化简后的结果是-5x2-4x2y-3x。
2、当x=-2时,代数式-x+2x-1=1,x-2x+1=-x+1.3、写出一个关于x的二次三项式,使得它的二次项系数为-5,则这个二次三项式为-5x^2+2x+1.5、XXX从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则XXX卖报收入为0.5b-0.4a元。
6、计算:3x-3+5x-7=8x-10,(5a-3b)+(9a-b)=14a-4b。
7、计算:(m+3m+5m+…+2009m)-(2m+4m+6m+…+2008m)=1005m。
8、-a+2bc的相反数是a-2bc,3-π≈-0.1416,最大的负整数是-1.9、若多项式2x+3x^2+7的值为10,则多项式6x+9x^2-7的值为26.10、若(m+2)2x^3yn^-2是关于x,y的六次单项式,则m≠0,n=2.11、已知a^2+2ab=-8,b^2+2ab=14,则a^2+4ab+b^2=6.12、多项式3x^3-2x^2-7x+1是三次多项式,最高次项是3x^3,常数项是1.二、选择题(每题3分,共18分)13、下列等式中正确的是(D)。
A、2x-5=-(5-2x)B、7a+3=7(a+3)C、-a-b=-(a-b)D、2x-5=-(2x-5)14、下面的叙述错误的是(A)。
A、(a+2b)的意义是a与b的2倍的和的平方。
B、a+2b的意义是a与b的2倍的和。
C、(a^2/2b)的意义是a的立方除以2b的商。
D、2(a+b)^2的意义是a与b的和的平方的2倍。
15、下列代数式书写正确的是(C)。
A、a48B、x÷yC、a(x+y)D、116、-(a-b+c)变形后的结果是(B)。
人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案
人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案一、单选题1.式子222,,2,59b x y a x -++-中,单项式有( ) A .1个 B .2个 C .3个 D .4个2.单项式2ab -的系数、次数分别是( )A .0、3B .1-、2C .0、2D .1-、33.下列各题中的两个项,不属于同类项的是( )A .22x y 与212yx -B .1与23-C .2a b 与22510ba ⨯D .213m n 与2n m 4.系数为-12且只含有 x 、y 的三次单项式(不需要包含每个字母),可以写出( ) . A .2 个 B .3 个 C .4 个 D .5 个5.下列说法正确的是( )A .1a +不是一个代数式B .单项式223ab π-的系数是23- C .一个多项式的次数为5,那么这个多项式的各项的次数都小于5D .0是一个单项式6.13⎛⎫-- ⎪⎝⎭的倒数是( ) A .13 B .13- C .﹣3 D .3 7.()()1333m m --+⋅-的值是( ) A .1 B .1- C .0 D .()13m +-8.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简a b c b a +--+的结果是( )A .22a b +B .22a b c +-C .c -D .2b c --9.若()()2221x mx x -++的结果中x 的二次项系数和一次项系数相等,则m 的值为( )A .3B .-3C .4D .110.如图是2022年12月的日历表,在此日历表中用阴影十字框选中5个数(如2、8、9、10、16).若这样的阴影十字框上下左右移动选中这张日历表中的5个数,则这5个数的和可能为( )A .41B .46C .75D .116二、填空题11.单项式4367x y -的系数与次数的积是 . 12.在23b 32xy + 2- 5ab x + 3xy 1a b +,单项式有 .多项式有 ,整式有 .13.已知25,29a b c d -=-=,那么()()2a c b d ---的值为 .14.已知多项式()()2224331x mx y x y nx +-+--+-的值与字母x 的取值无关,其中m 、n 是常数,那么m n = .15.一个两位数m 的十位上的数字是a ,个位上的数字是b ,记()f m a b =+为这个两位数m 的“衍生数”.如494913f(1)若()11f m =,则满足条件的两位数m 的个数有 个;(2)现有2个两位数x 和y ,且满足100x y +=,则()()f x f y += .三、解答题16.化简 (1)2227a b a b - (2)347x y x y -++(3)()12ab ba ab --+ (4)()()225223x x x x -+--+17.已知关于x 、y 的多项式214310922m x x y x x +--+-是六次五项式.(1)m 的值是______,该多项式的常数项是______;(2)将此多项式按x 的降幂排列.18.已知代数式2232A x xy y =++ 2B x xy x =-+.(1)求2A B -;(2)当1x =-,3y =时,求2A B -的值;(3)若2A B -的值与x 的取值无关,求y 的值. 19.观察下面的三行单项式x 22x 34x 48x 516x …①2x - 24x 38x - 416x 532x -…②2x 23x - 35x 49x - 517x …③根据你发现的规律,完成以下各题:(1)第①行第8个单项式为 ;第②行第2024个单项式为 .(2)第③行第n 个单项式为 .(3)取每行的第9个单项式,令这三个单项式的和为A .计算当12x =时,12564A ⎛⎫ ⎪⎝⎭+的值. 参考答案1.B2.D3.D4.C5.D6.D7.C8.C9.B10.C11.6-12. 23b 2- 32xy + 5ab x + 23b 2- 32xy + 5ab x + 13.4-14.8-15. 8 19或1016.(1)257a b(2)103x y - (3)52ab(4)22x x ++17.(1)4;22-(2)542103922x y x x x --++- 18.(1)522xy y x +-(2)7- (3)25y =19.(1)782x ;202420242x(2)()()11121n n n x ---+ (3)1292。
第二章整式的加减(人教版)单元测试题(含标准答案)
第二章整式的加减单元测试一、填空题(每题3分,共36分)1、单项式3x2减去单项式4x2y, 5x2,2x2y的和,列算式______________ ?化简后的结果是2、当x 2 时,代数式一x2 2x 1 = ____________ , x2 2x 1 = ___________ 。
3、写出一个关于x的二次三项式,使得它的二次项系数为-5 ,则这个二次三项式为 ________________________________ 。
4、已知:x 11,则代数式(x $2010 x - 5的值是_________________ 。
x x x5、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 ______ 元。
6 计算:3x 3 5x7 ______________ ,(5a 3b) (9a b) = ___________ 。
7 、计算:(m 3m 5m 2009 m) (2m 4m 6m 2008m) = _________________________ 。
8、一a 2bc的相反数是 __________ ,3 = _________ ,最大的负整数9、若多项式2x2 3x 7的值为10,则多项式6x2 9x 7的值为。
10、若(m 2)2 x3y n 2是关于x, y的六次单项式,则m ________ ,n= _______ 。
11、已知a2 2ab 8, b2 2ab 14,则a2 4ab b2 _______________a2b212、多项式3x2 2x 7x3 1是___________ 次 ______ 项式,最高次项是______常数项是。
二、选择题(每题3分,共30分)13、下列等式中正确的是()A 、2x 5 (5 2x) 、7a 3 7(a 3) C 、一 a b (a b) 、2x 5(2x 5)14、 F 面的叙述错误的是( (a 2b )2的意义是a 与b 的2倍的和的平方 B 、 a 2b 2的意义是a 与b 2的2倍的和C、 (詡3的意义是a 的立方除以2b 的商 2(a b )2的意义是a 与b 的和的平方的2倍 15、下列代数式书写正确的是( A 、a48 、a(x y)1、1- abc216、一 (a b c )变形后的结果是A 、一 a 17、下列说法正确的是( b cB 、一 a) A 、0不是单项式B 、x 没有系数是多项式xy 5是单项式列各式中,去括号或添括号正确的是( 1& 、a 2(2a b c) a 2 2a b c B 、a 3x 2y 1 a ( 3x 2y 1) 、3x [5x (2x 1)] 3< 5x 2x 1 D 、一 2x 1 (2x y) (a 1)19、代数式a 1 , a b ,4x y ,_^ ; 、4 2aB 20、若A 和B 都是4次多项式,则 A 、8次多项式 BC 、次数不高于4次的整式 1 2 ,a,2009_a bG 2 C A+B —定是(3mn 中单项式的个数是( 4 、5 D )、4次多项式D 、次数不低于4次的整式21、已知 2m 6 n 与5x m 2x n y 是同类项,贝9(3A 、x2, y1B 、x3, y1C 、x , y 1D 、x 3, y 0222、下列计算中正确的是( )A > 6a 5a 1B 、5x 6x 11xC 、m 2 m mD 、x 3 6x 3 7x 3 三、化简下列各题(每题3分,共18分)四、化简求值(每题5分,共10分) 1 29、2x 2 [x 22(x 2 3x 1) 3(x 2 1 2x )]其中:x .223、5 6(2a24、2a (5b a) b25、- 3(2x y) 2(4x 1 y) 2009226、一2m 3(m n 1) 2 127、3(x 2 y 2) (y 2 z 2) 4(z 2 y 2)28 x 2 {x 2 [x 2 (x 2 1) 1] 1} 130、 2(ab 2 2 a 2 b) 3(ab 2 a 2b) (2ab 2 2a 2b) 其中:a 2,b 1.五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:m,x,y满足:(1)— (x 5)25 m 0; (2) 2a2b y 1与7b3a2是同类项. 3求代数式:2x2 6y2 m(xy 9y2) (3x2 3xy 7y2)的值。
人教版七年级数学上册《第四章整式的加减》单元测试卷带答案
人教版七年级数学上册《第四章整式的加减》单元测试卷带答案学校:___________班级:___________姓名:___________考号:___________复习巩固1. 下列整式中哪些是单项式? 哪些是多项式? 是单项式的指出系数和次数,是多项式的指出项和次数:−12a2b,m4n27,x2+y2−1,x,3x2−y+3xy2+x4−1,32t3,2x−y.2. 写出一个单项式,使它与多项式m+2n²的和为单项式.3. 计算:(1)x²y−3x²y;(2)−32a2bc+12a2bc;(3)14mn−13mn+2;(4)5x⁴+3x²y−8−3x²y−x⁴−2;(5)7ab−3a²b²+7+8ab²+2a²b²−3−5ab.4. 计算:(1)(4a³b−10b³)+(−3a²b²+10b³);(2)(4x²y−5xy²)−(3x²y−4xy²);(3)3(2a²+4b)+3(−5a²−2b);(4)3(x²−2xy)−4(2x²−xy+1);(5)5a²−(a²+(5a²−2a)−2(a²−3a)];(6)3x2−[5x−(12x−3)+2x2].5. 先化简,再求值:(1)5x²+4−3x²−5x−2x²−5+6x,其中x=--3;(2)2(a2b+12ab2)−3(a2b−1)−2ab2−1,其中a=-2, b=2.综合运用6. (1) 列式表示比a 的5倍大4的数与比a 的2倍小3的数,并计算这两个数的和;(2) 列式表示比b的7 倍小3的数与比b 的6 倍大5的数,并计算这两个数的差.7. 某轮船先顺水航行3h ,后逆水航行1.5h ,已知轮船在静水中的速度是a km/h ,水流速度是b km/h ,轮船共航行了多少千米?8. 如图,边长相等的小正方形组成一组有规律的图案,其中部分小正方形涂有颜色. 按照这样的规律,第4个图案中有多少个涂色的小正方形? 第n 个图案呢?拓广探索9. 用代数式表示十位上的数字是a 、个位上的数字是b 的两位数,再把这个两位数的十位上的数字与个位上的数字交换位置,计算所得数与原数的和. 这个和能被11整除吗?10. 把(a+b)和(x+y)各看成一个整体,对下列各式进行化简: (1) 4(a+b)+2(a+b)--(a+b);(2)3(x +y )²−7(x +y )+8(x +y )²+6(x +y ).参考答案1.【答案】解: 单项式 -12a²bm4n²7x 32t³ 系数 -1/2 171 32 次数 3613多项式 x²+y²-1 3x²-y+3xy²+x ⁴-1 2x -y 项x²,y²,-13x²,-y,3xy²,x ⁴,-12x,-y次数241 2.-m.(答案不唯一)mn+2;3.解:(1)-2x²y;(2)-a²bc; (3)−112(4)4x⁴-10;(5)8ab²-a²b²+2ab+4.4.【答案】解:( (1)(4a³b−10b³)+(−3a²b²+10b³)=4a³b−10b³−3a²b²+10b³=4a³b−3a²b².(2)(4x²y−5xy²)−(3x²y−4xy²)=4x²y−5xy²−3x²y+4xy²=x²y−xy².(3)3(2a²+4b)+3(−5a²−2b)=6a²+12b−15a²−6b=−9a²+6b,(4)3(x²−2xy)−4(2x²−xy+1)=3x²−6xy−8x²+4xy−4=−5x²−2xy−4.(5)5a²−[a²+(5a²−2a)−2(a²−3a)]=5a²−(a²+5a²−2a−2a²+6a)=5a²−a²−5a²+2a+2a²−6a=a²−4a.x−3)+2x2](6)3x2−[5x−(12x+3+2x2)=3x2−(5x−12x−3−2x2=3x2−5x+12x−3.=x2−925.【答案】解:( (1)5x²+4−3x²−5x−2x²−5+6x=(5−3−2)x²+(−5+6)x−1=x-1.当x=-3时,原式= - 3-1 = - 4.ab2)−3(a2b−1)−2ab2−1(2)2(a2b+12=2a²b+ab²−3a²b+3−2ab²−1=−a²b−ab²+2.当a=-2,b =2时原式:=−(−2)²×2−(−2)×2²+2= - 4×2-(-2)×4+2 = - 8-(-8)+2=--8+8+2 = 2.6.解:(1)比a的5倍大4的数可表示为5a+4,比a的2倍小3的数可表示为2a-3,它们的和为(5a+4)+(2a-3)=5a+4+2a-3 = 7a+1.(2)比b的7倍小3的数可表示为7b-3,比b的6倍大5的数可表示为6b+5,它们的差为(7b-3)-(6b+5)=7b-3-6b-5 = b-8.7.【答案】解:轮船顺水航行3(a+b) km,轮船逆水航行1.5(a-b) km,轮船一共航行3(a+b)+1.5(a-b)=3a+3b+1.5a-1.5b=(4.5a+1.5b)( km)即轮船共航行(4.5a+1.5b) km.8.【答案】解:第4个图案中涂色的小正方形有5+3×4 = 17(个).第n个图案中涂色的小正方形有5+4(n-1)=(4n+1)(个).9.【答案】解:原数是10a+b交换位置后所得两位数是10b+a所以所得数与原数的和为(10b+a)+(10a+b)= 11(a+b).所以这个数能被11整除.10.【答案】解:(1)4(a+b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).(2)3(x+y)²−7(x+y)+8(x+y)²+6(x+y)=(3+8)(x+y)²+(-7+6)(x+y)=11(x+y)²−(x+y).。
【数学】新人教版数学七年级(上)第二章单元质量检测试卷、答案.doc
人教版初中数学七年级上册第2章《整式加减》单元测试卷(答案)一、选择题(每小题3分,共30分)1、用式子表示“比y 的相反数少3的数”是( ) A 3y - B 3y + C 3y -+ D 3y --2、下列式子中是单项式的是( ) A 8x + B 43s t + C13mx D 1n- 3、多项式3233524x x y y -++的次数是( ) A 2 B 3 C 4 D 5 4、多项式5225x y -+的项为( ) A525x -,2y B 2x -,2y C x ,25,2y D x ,25-,2y 5、代数式2346x x -+的值为9,则2463x x -+的值为( )A 7B 18C 12D 96、下列合并同类项的结果中,正确的是( )A 550xy xy --=B 22330a b ba -=C 235235m m m +=D 2232a a -= 7、计算22(321)(235)a a a a -+-+-的结果是( )A 256a a -+B 254a a --C 24a a +-D 26a a ++ 8、若2214m x y -与2n x y --是同类项,则()n m --的值为( ) A 8 B 16 C 32 D 649、下列计算中,错误的是( )(1)3232549(5)(49)x x x x x x --+=---+;(2)32325499(54)x x x x x x --+=-++;(3)()a b c d a b c d --+=-++;(4)2()2a b c a b c --+=+-A 1个B 2个C 3个D 4个10、若22M a b =,27N ab =,24P a b =-,则下列等式正确的是( )A 29M N a b +=人教版七年级数学上册第二章整式加减单元测试(含答案)一、单选题1.单项式-23x y的系数、次数分别是( )A.-1,3B.1,3C.13,3 D.-13,3 2.下列式子中代数式的个数为( ) ①-2ab ,②π,③s =12(a +b )h ,④x +3≥y ,⑤a (b +c )=ab =ac ,⑥1+2 A .2B .3C .4D .53.下列说法中,正确的是( ) A .5mn 不是整式 B .abc 的系数是0C .3是单项式D .多项式22x y xy-的次数是54.如果m ,n 都是正整数,那么多项式 的次数是( ) A.B.mC.D.m ,n 中的较大数5.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元D. 万元6.已知两个完全相同的大长方形,长为 ,宽为 ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么 与 之间的关系是( )A. B.C.D.7.若单项式212a b a b x y +-与333x y -是同类项,则b a 的值是( ) A .2B .1C .3D .48.[]()a b c --+去括号后应为( ) A .-a-b+cB .-a+b-cC .-a-b-cD .-a+b+c9.一个多项式减去x 2-2y 2等于x 2-2y 2,则这个多项式是( )A .-2x 2+y 2B .x 2-2y 2C .2x 2-4y 2D .-x 2+2y 210.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .2211. 等于( ) A.B.C.D.12.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8二、填空题13.已知212a a -+=人教版初中数学七年级上册第2章《整式加减》单元测试卷(含答案)一、选择题(每小题3分,共24分)1.单项式32yx -的系数是( )A.0B.-1C.31 D.31- 2.小明说2a 2b 与5-2ab 是同类项;小颖说2a 2b 与ab 2c 是同类项;小华说2a 2b 与-ba 2是同类项,他们三人说法正确的是( )A 小明 B.小颖 C.小华 D.三人都正确 3.多项式-x 2-3x-2的各项分别是( )A.-x 2,3x ,2B.-x 2,-3x ,-2C.x 2,3x ,2D.x 2,-3x ,-24.若单项式5x a-2y 3与-32x 4y b的和仍是单项式,则a ,b 的值分别为( ) A.4,3 B.4,-3 C.6,3 D.6,-35.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( )A.2(x-y )=2x-yB.-(m-n )=-m+nC.2(a+61)=2a+121D.-(3x 2+2y )=-3x 2+2y 6.化简(x-3y )-(-3x-2y )的结果是( ) A.4x-5y B.4x-y C.-2x-5y D.-2x-y 7.化简x-[y-2x-(x-y )]等于( ) A.-2x B.2x C.4x-2y D.2x-2y8.如果m-n=51,那么-3(n-m )的结果是( ) A.53 B.35 C.53 D.151二、填空题(每小题3分,共24分)9.代数式2x 2y-3x+xy-1-x 3y 2是_______次________项式,次数最高的项是_______. 10.单项式-3m 与3m 的和是________,差是________.11.今年来,国家加大房价调控力度.受此影响,某地房价第二、第三季度不断下跌,第二季度下降a 元/m 2,第三季度又下降了第二季度所降房价的2倍,则该地两季度房价共下降________元/m 2.12.把(a-b )当作一个整体,多项式5(a-b )+7(a-b )-3(a-b )合并同类项的结果是________.13.若x-y=3,则5-x+y=________.14.如果单项式-21x 2y 3与0.35x m y n 是同类项,则(m-n )2019=_______. 15.一个多项式与3x 2-2+x 的和是x 2-2x ,则这个多项式是_______.16.长方形的一边长为a-3b ,一邻边比这边长2a+b ,则这个长方形的周长为________. 三、解答题(共52分) 17.(8分)已知多项式-73x m+1y 3+x 3y 2+xy 2-5x 5-9是六次五项式,单项式32a 2nb 3-mc 的次数与多项式的次数相同,求n 的值.18.(12分)先化简,再求值:(1)2+(-6x+1)-2(3-4x ),其中x=-21; (2)(2a 3-3a 2b-2ab 2)-(a 3-2ab 2+b 3-a )+(3a 2b-a 3-b 3-b ),其中a=2019,b=-2.19.(10分)贝贝和晶晶两人共同化简:2(m 2n+mn )-3(m 2n-mn )-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n-3mn-4m 2n=-5m 2n-mn. 晶晶:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+mn-3m 2n-mn-4m 2n=-5m 2n. 如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简写下来.20.(10分)有一道题:“先化简,再求值:15a 2-(6a 2+5a )-(4a 2+a-3)+(-5a 2+6a+2019)-3,其中a=2020.”乐乐做题时,把“a=2020”错写成“a=-2020”.但他的计算结果却是正确的,你知道这是为什么吗?21.(12分)某单位要印刷“市民文明出行,遵守交通安全”的宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收150元的制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费设在同一家印刷厂一次印制数量为x 份(x 为正整数) (1)根据题意,填写下表创新提高(满分50分,时间30分钟) 一、选择题(每小题4分,共12分)1.若m 2+mn=2,nm+n 2=-1,则m 2+2mn+n 2的值为( ) A.0 B.-1 C.1 D.无法确定2.若A=2x 2+xy+3y 2,B=x 2-xy+2y 2,则当x=2,y=1时,A-B 的值为( ) A.0 B.1 C.6 D.93.若(ax 2-2xy+y 2)-(-ax 2+bxy+2y 2)=6x 2-9xy+cy 2成立,则a 、b 、c 的值分别是( ) A.a=3,b=-7,c=-1 B.a=-3,b=7,c=-1 C.a=3,b=7,c=-1 D.a=-3,b=-7,c=1 二、填空题(每小题5分,共15分)4.若多项式3x 3-2x 2+3x-1与多项式x 2-2mx 3+2x+3的和是关于x 的二次三项式,则m=________.5.请你写出一个以32为系数,包含z y x 、、的五次单项式_________. 6.若多项式2x 2+3x+1的值为0,则多项式4x 2+6x+2021的值为_________. 三、解答题(共23分)7.(11分)由于看错了运算符号,“小马虎”把一个整式减去多项式2ab-3bc+4,误认为加上这个多项式,结果得出答案是2bc-1-2ab ,问原题的正确答案是多少?8.(12分)已知m 是绝对值最小的有理数,且-2a m+2b y 与3a x b 2是同类项,试求2x 3-3xy+6y 2-3mx 3+mxy-9my 2的值.参考答案 基础训练一、1.D 2.C 3.B 4.C 5.B 6.B 7.C 8.C 二、9.五,五,-x 3y 2 10.0,-6m 11.3a 12.9(a-b ) 13.2 14.-1 15.-2x 2-3x+2 16.8a-10b 三、17.解:由多项式是六次五项式可知m+1+3=6,所以m=2.又单项式与单项式的次数相同,所以2n+3-m+1=6,即2n+3-2+1=6,所以n=2. 18.解:(1)原式=2-6x+1-6+8x=2x-3.当x=-21时,原式=2×(-21)-3=-4. (2)原式=2a 3-3a 2b-2ab 2-a 3+2ab 2+b 3+a+3a 2b-a 3-b 3-b=a-b. 当a=2019,b=-2时,原式=2019-(-2)=2021. 19.贝贝、晶晶的计算都不正确.正确答案如下:2(m 2n+mn )-3(m 2n-mn )-4m 2n=2m 2n+2mn-3m 2n+3mn-4m 2n=-5m 2n+5mn. 20.解:原式=15a 2-6a 2-5a-4a 2-a+3)-5a 2+6a+2019-3=2019.由于计算后的结果中不含字母a ,可知此代数式的值与字母a 的取值无关.所以乐乐将a=2020错写成a=-2020,计算的结果不变. 21. 解:(1)甲每份材料收1元印刷费,另收150元的制版费; 故答案为160,170,150+x ; 乙每份材料收2.5元印刷费, 故答案为25,50,2.5x ;(2)对甲来说,印刷大于800份时人教版初中数学七年级上册第2章《整式的加减》单元同步检测试题一、选择题(每小题3分,共18分) 1. 在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个 D .8个 2.计算3a 3+a 3,结果正确的是( ) A .3a 6B .3a 3C .4a 6D .4a 33.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( ) A . 6 B . -6 C . 12 D . -124.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( ) A .-2 B .25. 若x =1时,ax 3+bx +7式子的值为2033,则当x =﹣1时,式子ax 3+bx +7的值为( ) A .2018 B .2019 C .﹣2019 D .﹣20186. 据市统计局发布:2018年我市有效发明专利数比2017年增长12.5%.假定2019年的年增长率保持不变,2017年和2019年我市有效发明专利分别为a 万件和b 万件,则( ) A .b =(1+12.5%×2)a B .b =(1+12.5%)2a C .b =(1+12.5%)×2 a D .b =12.5%×2 a二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________.10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2019的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1. 16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值. 19.已知A =2x 2+xy +3y -1,B =x 2-xy . (1)若(x +2)2+|y -3|=0,求A -2B 的值;(2)若A -2B 的值与y 的取值无关,求x 的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a 元,学生每人b 元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a 、b 的式子表示)?并计算当a =300,b =200时的旅游费用. 五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,当a=1,b=2时,求A ﹣2B+3C 的值(先化简再求值).22.阅读材料:“如果代数式5a +3b 的值为-4,那么代数式2(a +b )+4(2a +b )的值是多少?”我们可以这样来解:原式=2a +2b +8a +4b =10a +6b .把式子5a +3b =-4两边同乘以2,得10a +6b =-8.仿照上面的解题方法,完成下面的问题: (1)已知a 2+a =0,求a 2+a +2019的值;(2)已知a -b =-3,求3(a -b )-a +b +5的值;(3)已知a 2+2ab =-2,ab -b 2=-4,求2a 2+5ab -b 2的值. 六、(本大题共12分) 23.探究题.用棋子摆成的“T”字形图,如图所示:(1)(2)写出第(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T ”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参 考 答 案:一、选择题 1.B 2.D 3.D 4.A 5.C 6.B二、填空题7.﹣2 3 8.111a +80 9.-8 10.111.2c -a -b 解析:由图可知a <c <0<b ,∴a -c <0,b -c >0,∴原式=c -a -(b -c )=c -a -b +c =2c -a -b .故答案为2c -a -b .12.-4 解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a +b =a +b +c ,解得c =-4,a +b +c =b +c +6,解得a =6,∴数据从左到右依次为-4、6、b 、-4、6、b 、-4、6、-2.由题意易得第9个数与第6个数相同,即b =-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4. 三、解答题 13.解:解:(1)原式=4a ;(3分)(2)原式=3a ﹣2﹣3a+15=13;(6分) 14.解:2(x -3y )-(2y -x )=2x -6y -2y +x =3x -8y .(6分) 15.解:原式=-9y +6x 2+3y -2x 2=4x 2-6y .(3分)当x =2,y =-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A ,∴A =2(a 2b +ab 2)+(a 2b -2ab 2)-ab 2=3a 2b -ab 2,(5分)∴捂住的多项式为3a 2b -ab 2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy +3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2,∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2019=0+2019=2019.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式 的系数和次数分别是( ) A.2,2B.2,3C.3,2D.2,42.下列说法正确的是( ) A .ab +c 是二次三项式 B .多项式2x 2+3y 2的次数是4 C .0是单项式 D .34ba是整式 3.下列各式中,代数式有( )个 (1)a+b=b+a;(2)1;(3)2x-1 ;(4)23x x+;(5) s = πr 2;(6) -6kA .2B .3C .4D .54.a 的5倍与b 的和的平方用代数式表示为( )A .(5a +b )2B .5a +b 2C .5a 2+b 2D .5(a +b )25.下列各式中,不是整式的是( ). A .3aB .2x = 1C .0D .xy6.23-x yz 的系数和次数分别是( ) A .系数是0,次数是5 B .系数是1,次数是6 C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( ) A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______.15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy - 人教版数学七上第二章单元质量检测试卷及答案一、选择题(共10小题;共30分)1. 已知 ,则 的值为A. B. C. 或 D. 或2. 下列说法正确的是A. 单项式 的系数是 ,次数是B. 单项式 的系数是 ,次数是C. 是二次三项式D. 单项式 的次数是 ,系数为3. 下面的计算正确的是A. B.C. D.4. 下列式子,符合代数式书写格式的是A. B. C. D.5. 下列说法中,正确的是A. 一定是负数B. 一定是正数C. 一定是正数D. 一定是正数6. 化简结果为A. B. C. D.7. 单项式与单项式是同类项,则的值是A. B. C. D.8. 已知的值为,则代数式的值为A. B.。
七年级数学上册《第2章 整式的加减》单元测试卷及答案详解
人教新版七年级上册《第2章整式的加减》单元测试卷(2)一.选择题(共5小题)1.下列式子中是单项式的个数为()①,②,③0,④,⑤,⑥2x2﹣1,⑦,⑧﹣1.96,⑨m﹣2,⑩.A.5个B.6个C.7个D.8个2.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣3.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y24.给出下列判断:①单项式5×103x2的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是4;④几个非0有理数相乘,当负因数有奇数个时,积为负.其中判断正确的个数有()A.1个B.2个C.3个D.4个5.小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a ﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2﹣5a+6C.a2+a﹣4D.﹣3a2+a﹣4二.填空题(共12小题)6.单项式﹣的系数是,次数是.7.多项式3x2y﹣7x4y2﹣xy3+28是次项式,最高次项的系数是.8.若x a+2y4与﹣2x3y2b和仍为一个单项式,则(a﹣b)2021的值是.9.多项式是关于x的四次三项式,则m的值是.10.已知2a m b+4a2b n=6a2b,则m+n为.11.多项式﹣﹣(m﹣2)x﹣7是关于x的二次三项式,则m=.12.观察下面的一列单项式:x,﹣2x2,3x3,﹣4x4,…根据你发现的规律,第100个单项式为;第n个单项式为.13.关于x,y的代数式axy﹣3x2+2xy+bx2+y中不含二次项,则(a+b)2020=.14.化简:3(m﹣n)﹣(m﹣n)﹣2(n﹣m)的结果是.15.若a﹣5b=3,则17﹣3a+15b=.16.已知等式a2﹣2a﹣3=0,则代数式11+6a﹣3a2的值为.17.按如图所示的程序进行计算,如果输入x的值是正整数,输出结果是150,则开始输入x的值可能是.三.解答题(共7小题)18.(1)化简2x2﹣3x﹣1+4x﹣3x2;(2)计算﹣14﹣8÷(﹣2)3+22×(﹣3)19.化简:(1)﹣5x﹣2y+7x+9y(2)5(3a2b﹣ab2)﹣3(ab2+5a2b)+220.已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.21.(1)计算:﹣12018﹣(1+0.5)×÷(﹣4)(2)先化简,再求值:5xy2﹣2x2y+[3xy2﹣2(2xy2﹣x2y)],其中x=﹣2,y=﹣1.22.化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.23.马虎同学在计算A﹣(ab﹣2bc+4ac﹣3)时,由于马虎,将“A﹣”错看成了“A+”,求得的结果为3ab﹣2ac+5bc.(1)请你帮助马虎同学求出这道题的正确结果;(2)当字母a和b满足什么关系时,正确的计算结果与字母c的取值无关.24.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值.(2)若代数式4A﹣(3A﹣2B)的值与a的取值无关,求b4A+b3B的值.人教新版七年级上册《第2章整式的加减》单元测试卷(2)参考答案与试题解析一.选择题(共5小题)1.下列式子中是单项式的个数为()①,②,③0,④,⑤,⑥2x2﹣1,⑦,⑧﹣1.96,⑨m﹣2,⑩.A.5个B.6个C.7个D.8个【考点】单项式.【分析】直接利用单项式定义分析得出答案.【解答】解:单项式有:①,③0,④,⑤,⑦,⑧﹣1.96,⑩,共7个.故选:C.2.单项式﹣的系数和次数是()A.系数是,次数是3B.系数是﹣;,次数是5C.系数是﹣,次数是3D.系数是5,次数是﹣【考点】单项式.【分析】直接利用单项式的次数与系数定义分析得出答案.【解答】解:单项式﹣的系数和次数是:﹣,5.故选:B.3.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y2【考点】单项式.【分析】根据同类项的概念解答.【解答】解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.4.给出下列判断:①单项式5×103x2的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是4;④几个非0有理数相乘,当负因数有奇数个时,积为负.其中判断正确的个数有()A.1个B.2个C.3个D.4个【考点】多项式;有理数的乘法.【分析】根据有理数的乘法,多项式和单项式的概念求解.【解答】解:①单项式5×103x2的系数是5×103,故本项错误;②x﹣2xy+y是二次三项式,本项正确;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故本项正确;④几个非0有理数相乘,当负因数有奇数个时,积为负,故本项正确.正确的有3个.故选:C.5.小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a ﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2﹣5a+6C.a2+a﹣4D.﹣3a2+a﹣4【考点】多项式.【分析】先根据加减互逆运算关系得出这个多项式为(a2+a﹣4)﹣(2a2+3a﹣5),去括号、合并同类项可得此多项式,再根据题意列出算式(﹣a2﹣2a+1)﹣(2a2+3a﹣5),进一步计算可得.【解答】解:根据题意,这个多项式为(a2+a﹣4)﹣(2a2+3a﹣5)=a2+a﹣4﹣2a2﹣3a+5=﹣a2﹣2a+1,则正确的结果为(﹣a2﹣2a+1)﹣(2a2+3a﹣5)=﹣a2﹣2a+1﹣2a2﹣3a+5=﹣3a2﹣5a+6,故选:B.二.填空题(共12小题)6.单项式﹣的系数是﹣,次数是5.【考点】单项式.【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.据此解答即可.【解答】解:单项式﹣的系数是﹣,次数是5.故答案是:﹣,5.7.多项式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.【考点】多项式.【分析】根据多项式的定义即可得结论.【解答】解:多项式3x2y﹣7x4y2﹣xy3+28是六次四项式,最高次项的系数是﹣7.故答案为六、四、﹣78.若x a+2y4与﹣2x3y2b和仍为一个单项式,则(a﹣b)2021的值是﹣1.【考点】合并同类项;单项式.【分析】利用同类项定义可得a+2=3,2b=4,再解即可.【解答】解:由题意得:a+2=3,2b=4,解得:a=1,b=2,则(a﹣b)2021=(1﹣2)2021=﹣1,故答案为:﹣1.9.多项式是关于x的四次三项式,则m的值是﹣4.【考点】多项式;绝对值.【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【解答】解:∵多项式x|m|﹣(m﹣4)x+7是关于x的四次三项式,∴|m|=4,m﹣4≠0,∴m=﹣4.故答案为:﹣4.10.已知2a m b+4a2b n=6a2b,则m+n为3.【考点】合并同类项.【分析】由2a m b+4a2b n=6a2b可知2a m b与4a2b n是同类项,根据同类项是字母相同,相同字母的指数相等,可得m、n的值,再根据m、n的值,可得m+n的值.【解答】解:∵2a m b+4a2b n=6a2b,∴m=2,n=1,∴m+n=2+1=3.故答案为:3.11.多项式﹣﹣(m﹣2)x﹣7是关于x的二次三项式,则m=﹣2.【考点】多项式;绝对值.【分析】根据二次三项式的定义可得:|m|=2,且m﹣2≠0,再解即可.【解答】解:由题意得:|m|=2,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.12.观察下面的一列单项式:x,﹣2x2,3x3,﹣4x4,…根据你发现的规律,第100个单项式为﹣100x100;第n个单项式为(﹣1)n+1nx n.【考点】单项式.【分析】根据单项式系数与指数的变化,可判断单项式.【解答】解:第100个单项式为:(﹣1)100+1•100•x100=﹣100x100,第n个单项式为:(﹣1)n+1•n•x n,故答案为:﹣100x100,(﹣1)n+1•n•x n.13.关于x,y的代数式axy﹣3x2+2xy+bx2+y中不含二次项,则(a+b)2020=1.【考点】合并同类项;多项式.【分析】直接利用多项式中不含二次项,则二次项系数都是0,进而得出a,b的值,即可得出答案.【解答】解:∵关于x,y的代数式axy﹣3x2+2xy+bx2+y中不含二次项,∴a+2=0,b﹣3=0,解得:a=﹣2,b=3.∴(a+b)2020=12020=1.故答案为:1.14.化简:3(m﹣n)﹣(m﹣n)﹣2(n﹣m)的结果是4(m﹣n).【考点】合并同类项.【分析】先去括号,然后合并同类项即可.【解答】解:3(m﹣n)﹣(m﹣n)﹣2(n﹣m)=3(m﹣n)﹣(m﹣n)+2(m﹣n)=(3﹣1+2)(m﹣n)=4(m﹣n).故答案为:4(m﹣n).15.若a﹣5b=3,则17﹣3a+15b=8.【考点】代数式求值.【分析】把a﹣5b的值代入代数式进行计算即可得答案.【解答】解:∵a﹣5b=3,∴17﹣3a+15b=17﹣3(a﹣5b),=17﹣3×3,=17﹣9,=8.故答案为:8.16.已知等式a2﹣2a﹣3=0,则代数式11+6a﹣3a2的值为2.【考点】代数式求值.【分析】将a2﹣2a﹣3=0变形为a2﹣2a=3,11+6a﹣3a2=11﹣3(a2﹣2a),整体代入即可求出所求的结果.【解答】解:∵a2﹣2a﹣3=0,∴a2﹣2a=3,∴11+6a﹣3a2=11﹣3(a2﹣2a)=11﹣3×3=2.故答案为:2.17.按如图所示的程序进行计算,如果输入x的值是正整数,输出结果是150,则开始输入x的值可能是3或10或38.【考点】代数式求值;有理数的混合运算.【分析】当输入数字为x,输出数字为150时,4x﹣2=150,解得x=38;当输入数字为x,输出数字为38时,得到4x﹣2=38,解得x=10,当输入数字为x,输出数字为10时,4x﹣2=10,解得x=3,当输入数字为x,输出数字为3时,4x﹣2=3,解得x=不和题意.【解答】解:当4x﹣2=150时,解得;x=38;当4x﹣2=38时,解得;x=10;当4x﹣2=10时,解得;x=3;当4x﹣2=3时,解得;x=不合题意.所以开始输入x的值可能是3或10或38.故答案为:3或10或38.三.解答题(共7小题)18.(1)化简2x2﹣3x﹣1+4x﹣3x2;(2)计算﹣14﹣8÷(﹣2)3+22×(﹣3)【考点】合并同类项;有理数的混合运算.【分析】(1)根据合并同类项法则计算;(2)根据有理数的混合运算法则计算.【解答】解:(1)2x2﹣3x﹣1+4x﹣3x2=(2﹣3)x2+(﹣3+4)x﹣1=﹣x2+x﹣1;(2)﹣14﹣8÷(﹣2)3+22×(﹣3)=﹣1﹣8÷(﹣8)+4×(﹣3)=﹣12.19.化简:(1)﹣5x﹣2y+7x+9y(2)5(3a2b﹣ab2)﹣3(ab2+5a2b)+2【考点】整式的加减.【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)﹣5x﹣2y+7x+9y,=﹣5x+7x+9y﹣2y,=2x+7y,(2)5(3a2b﹣ab2)﹣3(ab2+5a2b)+2,=15a2b﹣5ab2﹣3ab2﹣15a2b+2,=﹣8ab2+2.20.已知A=x3﹣5x2,B=x2﹣11x+6,当x=﹣1时,求:﹣(A+3B)+2(A﹣B)的值.【考点】整式的加减—化简求值.【分析】解法一:先将所求式子化简,再把A与B代入,去括号合并得到最简结果,把x的值代入计算即可求出值.解法二:先计算A和B的值,再将所求式子化简后代入即可.【解答】解:解法一:∵A=x3﹣5x2,B=x2﹣11x+6,∴﹣(A+3B)+2(A﹣B),=﹣A﹣3B+2A﹣2B,=A﹣5B,=x3﹣5x2﹣5(x2﹣11x+6),=x3﹣5x2﹣5x2+55x﹣30,=x3﹣10x2+55x﹣30,当x=﹣1时,原式=(﹣1)3﹣10×(﹣1)2+55×(﹣1)﹣30=﹣96.解法二:当x=﹣1时,A=x3﹣5x2=﹣1﹣5=﹣6,B=x2﹣11x+6=1+11+6=18,∴﹣(A+3B)+2(A﹣B),=﹣A﹣3B+2A﹣2B,=A﹣5B,=﹣6﹣5×18,=﹣96.21.(1)计算:﹣12018﹣(1+0.5)×÷(﹣4)(2)先化简,再求值:5xy2﹣2x2y+[3xy2﹣2(2xy2﹣x2y)],其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值;有理数的混合运算.【分析】(1)根据有理数的混合运算法则计算;(2)根据整式的加减混合运算法则化简,代入计算即可.【解答】解:(1)﹣12018﹣(1+0.5)×÷(﹣4)===;(2)5xy2﹣2x2y+[3xy2﹣2(2xy2﹣x2y)]=5xy2﹣2x2y+3xy2﹣2(2xy2﹣x2y)=5xy2﹣2x2y+3xy2﹣4xy2+2x2y=4xy2,当x=﹣2,y=﹣1时,原式=4×(﹣2)×(﹣1)2=﹣8.22.化简求值:(1)(8x﹣7y)﹣3(4x﹣5y)其中:x=﹣2,y=﹣1.(2)已知多项式(﹣2x2+3)的2倍与A的差是2x2+2x﹣7,当x=﹣1时,求A的值.【考点】整式的加减—化简求值.【分析】(1)先去括号,然后再进行同类项的合并,最后将x=﹣2,y=﹣1代入;(2)根据题意列式,再利用去括号法则与合并同类项法则化简,再把x的值代入A计算即可.【解答】解:(1)(8x﹣7y)﹣3(4x﹣5y),=8x﹣7y﹣12x+15y,=﹣4x+8y,当x=﹣2,y=﹣1时,原式=﹣4×(﹣2)+8×(﹣1)=0.(2)由题意得:2(﹣2x2+3)﹣A=2x2+2x﹣7,∴A=﹣4x2+6﹣2x2﹣2x+7=﹣6x2﹣2x+13,当x=﹣1时,A=﹣6×(﹣1)2﹣2×(﹣1)+13=9.23.马虎同学在计算A﹣(ab﹣2bc+4ac﹣3)时,由于马虎,将“A﹣”错看成了“A+”,求得的结果为3ab﹣2ac+5bc.(1)请你帮助马虎同学求出这道题的正确结果;(2)当字母a和b满足什么关系时,正确的计算结果与字母c的取值无关.【考点】整式的加减.【分析】(1)先根据题意列出整式相加减的式子进行计算即可.(2)将ab﹣10ac+9bc+6写成(9b﹣10a)c+ab+6,即可得到当b=a时,正确的计算结果与字母c的取值无关.【解答】解:(1)由题意得,(3ab﹣2ac+5bc)﹣2(ab﹣2bc+4ac﹣3)=3ab﹣2ac+5bc﹣2ab+4bc﹣8ac+6=ab﹣10ac+9bc+6,∴正确结果为ab﹣10ac+9bc+6;(2)ab﹣10ac+9bc+6=(9b﹣10a)c+ab+6,由题可得,9b﹣10a=0,∴b=a,∴当b=a时,正确的计算结果与字母c的取值无关.24.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+.(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值.(2)若代数式4A﹣(3A﹣2B)的值与a的取值无关,求b4A+b3B的值.【考点】整式的加减—化简求值.【分析】(1)先化简整式,再代入值即可求解;(2)代数式4A﹣(3A﹣2B)的值与a的取值无关可知a的系数为0,可求出b的值,进而求解.【解答】解:(1)4A﹣(3A﹣2B)=4A﹣3A+2B=A+2B因为A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+,所以A+2B=2a2+3ab﹣2a﹣1+2(﹣a2+ab+)=2a2+3ab﹣2a﹣1﹣2a2+ab+=4ab﹣2a+当a=﹣1,b=﹣2时,原式=8+2+=10;(2)因为4A﹣(3A﹣2B)=4ab﹣2a+=a(4b﹣2)+因为代数式的值与a无关,所以4b﹣2=0,解得b=∵b4A+b3B=b3(bA+B)=(A+B)=(A+2B)=(4ab﹣2a+)=.答:b4A+b3B的值为.。
人教版七年级数学上册《第四章整式的加减》单元检测卷及答案
人教版七年级数学上册《第四章整式的加减》单元检测卷及答案(时间:45分钟 满分:100分)一、选择题(每小题5分,共40分) 1.下列计算正确的是( ) A.4a+3b=7ab B.3x 2y-x 2y=2 C.b 2+4b 3=5b 5 D.-4a 2b+2ba 2=-2a 2b 2.在整式-0.3x 2y,0,x+12,-22abc 2,13x 2,-14y,-13ab 2+12中,单项式有( )A.3个B.4个C.5个D.6个3.在下列各组代数式中,是同类项的是( ) A.2a 2b 与2ab 2 B.x 2y 与x 2z C.mnp 与mn D.-pq 与12qp4.(易错题)下列说法正确的是( ) A.p 不是单项式 B.-a 3b 2是四次单项式,系数是-12C.m 2n 2-m 2+n-1是三次四项式D.5m 2n 与-4nm 2不是同类项5.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为( )A.xyB.x+yC.10y+xD.10x+y6.如果单项式-x a+2y3与13xy b能合并,那么a b的值是( )A.1B.-1C.3D.-37.若3x|k|-(k-2)x+1是二次三项式,则k的值为( )A.±3B.-3C.±2D.-28.表示x,y两数的点在数轴上的位置如图所示,则|x-1|-|y+x|等于( )A.y+1B.1+y-2xC.1-y-2xD.2x-y-1二、填空题(每小题4分,共16分)9.在①xy,②-x5,③7ab-5,④-2a+b,⑤0,⑥-45x2+1,⑦-x+y2,⑧-4x,⑨b2π中,单项式是 ,多项式是 (填序号).10.3a-(-2b-c)去括号得 .11.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m+n=-2,mn=-4,则2(mn-3m)-3(2n-mn)的值为 .12.若多项式2(x2-xy-3y2)-(3x2-axy+y2)中不含xy项,则a= .三、解答题(共44分)13.(10分)计算:(1)3ab-4ab-(-2ab);(2)4a2+2(3ab-2a2)-(7ab-1).14.(10分)(2024昆明呈贡区期末)先化简,再求,y=-1.值:4xy-[(2x2+5xy-y2)-2(x2+3xy-2y2)],其中x=1215.(12分)小明做一道数学题:“已知两个多项式A,B,B=x2+2x-3,计算2A+B的值.”小明误把“2A+B”看成“A+2B”,求得的结果为7x2-2x+3,请求出2A+B的正确结果.16.(12分)将正整数1至2 024按一定规律排列成如图所示的8列,规定从上到下依次为第1行,第2行,第3行,…,从左往右依次为第1列至第8列.(1)数56在第行列;(2)平移图中带阴影的方框,使方框框住相邻的三个数,若被框住的三个数中最大的一个数为x,则被框的三个数的和能否等于2 019?若能,请求出x;若不能,请说明理由.参考答案一、选择题(每小题5分,共40分)1.下列计算正确的是(D)A.4a+3b=7abB.3x2y-x2y=2C.b2+4b3=5b5D.-4a2b+2ba2=-2a2b2.在整式-0.3x 2y,0,x+12,-22abc 2,13x 2,-14y,-13ab 2+12中,单项式有(C)A.3个B.4个C.5个D.6个3.在下列各组代数式中,是同类项的是(D) A.2a 2b 与2ab 2 B.x 2y 与x 2z C.mnp 与mn D.-pq 与12qp4.(易错题)下列说法正确的是(B) A.p 不是单项式 B.-a 3b 2是四次单项式,系数是-12C.m 2n 2-m 2+n-1是三次四项式D.5m 2n 与-4nm 2不是同类项5.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为(D)A.xyB.x+yC.10y+xD.10x+y6.如果单项式-x a+2y 3与13xy b 能合并,那么a b 的值是(B)A.1B.-1C.3D.-37.若3x |k|-(k-2)x+1是二次三项式,则k 的值为(D) A.±3 B.-3 C.±2 D.-28.表示x,y 两数的点在数轴上的位置如图所示,则|x-1|-|y+x|等于(A)A.y+1B.1+y-2xC.1-y-2xD.2x-y-1二、填空题(每小题4分,共16分)9.在①xy,②-x5,③7ab-5,④-2a+b,⑤0,⑥-45x2+1,⑦-x+y2,⑧-4x,⑨b2π中,单项式是①②⑤⑨,多项式是③⑥⑦(填序号).10.3a-(-2b-c)去括号得3a+2b+c .11.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m+n=-2,mn=-4,则2(mn-3m)-3(2n-mn)的值为-8 .12.若多项式2(x2-xy-3y2)-(3x2-axy+y2)中不含xy项,则a= 2 .三、解答题(共44分)13.(10分)计算:(1)3ab-4ab-(-2ab);(2)4a2+2(3ab-2a2)-(7ab-1).解:(1)3ab-4ab-(-2ab)=3ab-4ab+2ab=ab.(2)4a2+2(3ab-2a2)-(7ab-1)=4a2+6ab-4a2-7ab+1=-ab+1.14.(10分)(2024昆明呈贡区期末)先化简,再求值:4xy-[(2x2+5xy-y2)-2(x2+3xy-2y2)],其中x=12,y=-1.解:4xy-[(2x2+5xy-y2)-2(x2+3xy-2y2)]=4xy-(2x2+5xy-y2-2x2-6xy+4y2)=4xy-(-xy+3y2)=4xy+xy-3y2=5xy-3y2,y=-1时当x=12×(-1)-3×(-1)2原式=5×12-3=-52.=-11215.(12分)小明做一道数学题:“已知两个多项式A,B,B=x2+2x-3,计算2A+B的值.”小明误把“2A+B”看成“A+2B”,求得的结果为7x2-2x+3,请求出2A+B的正确结果.解:A=7x2-2x+3-2(x2+2x-3)=7x2-2x+3-2x2-4x+6=5x2-6x+9.所以2A+B=2(5x2-6x+9)+(x2+2x-3)=10x2-12x+18+x2+2x-3=11x2-10x+15.16.(12分)将正整数1至2 024按一定规律排列成如图所示的8列,规定从上到下依次为第1行,第2行,第3行,…,从左往右依次为第1列至第8列.(1)数56在第行列;(2)平移图中带阴影的方框,使方框框住相邻的三个数,若被框住的三个数中最大的一个数为x,则被框的三个数的和能否等于2 019?若能,请求出x;若不能,请说明理由.解:(1)7 8(2)不能.理由如下:因为被框住的三个数中,最大的一个数为x,则另外两个数为x-2x-1所以三个数之和为x-2+x-1+x=3x-3.根据题意,得3x-3=2 019,解得x=674.因为674=84×8+2所以数674在第85行2列.因为方框框住相邻的三个数中最大的数x,至少位于第3列所以x=674不符合题意所以三个数的和不能等于2 019.自我诊断知识分类题号总分评价整式相关概念2,3,4,5,6,7,91,8,10,11,12整式的加减13,14,15,16。
2024-2025学年人教新版七年级上册数学《第4章 整式的加减》单元测试卷(有答案)
2024-2025学年人教新版七年级上册数学《第4章整式的加减》单元测试卷一.选择题(共8小题,满分24分)1.代数式x2+5,﹣1,x2﹣8x+2,π,,中,整式有()A.3个B.4个C.5个D.6个2.已知﹣2x6y与5x2m y n是同类项,则()A.m=2,n=1B.m=3,n=1C.m=,n=1D.m=3,n=03.下列计算正确的是()A.5a﹣2a=3B.2a2+6a2=8a4C.x2y﹣2xy2=﹣xy2D.3mn﹣2mn=mn4.在等式1﹣a2+2ab﹣b2=1﹣()中,括号里应填()A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b25.若a<0,则|a﹣(﹣a)|等于()A.﹣a B.0C.2a D.﹣2a6.如图是小明完成的线上作业,他的得分是()判断题(每小题2分,共10分)①1是单项式.(×)②非负有理数不包括零.(×)③绝对值不相等的两个数的和一定不为零.(√)④单项式﹣a的系数与次数都是1.(√)⑤将34.945精确到十分位为34.95.(×)A.4分B.6分C.8分D.10分7.在下列各整式中,次数为5的是()A.8x3y B.m+n2+q2C.52c3D.x2y38.若代数式2(mx2+x﹣1)﹣(x2﹣nx+1)的值与x的取值无关,则m2023n2025的值为()A.﹣4B.4C.D.二.填空题(共8小题,满分24分)9.有一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写.10.已知关于x的整式x3﹣x2+x a﹣2x﹣2bx中不含有x的一次项和二次项,则a+b=.11.若关于x,y,z的单项式﹣mx3y n与单项式的次数相同,系数互为倒数,则该单项式是.12.多项式x2+x+1的次数是.13.若2a m+1b2与﹣3a3b n是同类项,则m+n的值为.14.若一个四位自然数M各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M为“幸福数”.把四位数M的前两位数字和后两位数字整体交换得到新的四位自然数N.规定.例如:M=2344,∵2+3=5,4+4=8,∴2344是“幸福数”,则.若P是最大的“幸福数”,则F(P)=;若S是“幸福数”,且F(S)恰好能被8整除,则所有满足题意的S的值共有个.15.如果a2﹣3a﹣7=0,那么代数式(a﹣1)2+a(a﹣4)﹣2的值为.16.设x、y互为相反数,且xy≠0.m的绝对值为8,则的值为.三.解答题(共6小题,满分52分)17.已知单项式﹣3xy2的系数和次数分别是a,b,求ab+a b的值.18.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.【问题呈现】(1)已知代数式mx﹣y﹣3x+4y﹣1的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形ABCD 内,未被覆盖的两部分的面积分别记为S1,S2,当AB的长度变化时,S1﹣S2的值始终不变,求a与b 的数量关系.20.已知多项式A=(m﹣3)2﹣(2﹣m)(2+m)+6m.(1)化简多项式A;(2)若m2﹣4=5,求多项式A的值.21.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值等于0或1的项是“强同类项”,例如:﹣x3y4与2x4y3是“强同类项”.(1)给出下列四个单项式:①5x2y5,②﹣x5y5,③4x4y4,④﹣2x3y6.其中与x4y5是“强同类项”的是(填写序号);(2)若x3y4z m﹣2与﹣2x2y3z6是“强同类项”,求m的值;(3)若C为关于x、y的多项式,C=(n﹣5)x5y6+3x4y5﹣7x4y n,当C的任意两项都是“强同类项”,求n的值;(4)已知2a2b s、3a t b4均为关于a,b的单项式,其中s=|x﹣1|+k,t=2k,如果2a2b s、3a t b4是“强同类项”,那么x的最大值是,最小值是.22.定义:若非零实数a,b,c满足,则称c是a和b的“协调数”.如4是3和6的“协调数”.(1)问:是不是﹣2和﹣3的“协调数”?(2)若2m是p和q的“协调数”,用m,q的代数式表示q.参考答案与试题解析一.选择题(共8小题,满分24分)1.B2.B3.D4.A5.D6.B7.D8.A二.填空题(共8小题,满分24分)9.3x.10.1.11.﹣3x3y2.12.2.13.4.14.30,3.15.13.16.16或﹣16.三.解答题(共6小题,满分52分)17.﹣36.18.解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.19.(1)3;(2)a﹣2b=0.20.(1)2m2+5;(2)23.21.(1)②③④;(2)m=7,8,9;(3)n=5或n=6;(4),.22.(1)是;(2).。
新人教版《整式的加减》单元测试卷
新人教版《整式的加减》单元测试卷新人教版《整式的加减》单元测试姓名。
班级。
学号。
分数:一。
选择题(每小题3分,共15分)1.下列各组单项式中,是同类项的是()A、-2ab和1/2abc;B、a^2b和ab^2;C、-3x^2y和3yx^2;D、-5a和-50;2.下列说法正确的是()A、πx^2的系数是1/2;B、1/3xy^2的系数是1/3x;C、-5x^2的系数是-5;D、3x^2的系数是3;3.关于多项式-3x^2+x-1,下列说法不正确的是()A、这是一个二次三项式;B、常数项是1;C、二次项的系数是-3;D、它按字母x的降幂排列;4.买一个足球需要m元,买一个篮球需要n元,则买4个足球,7个篮球共需要元;A、4m+7n;B、28mn;C、7m+4n;D、11mn;5.下列计算正确的是()A、4x-9x+6x=-x;B、(11/2)a-(2/a)=;C、x^3-x^2=x;D、xy-2xy=3xy;二。
填空题(每小题3分,共15分)6.已知单项式-2x^2y^3与-5xayb是同类项,则a+b=8;7.计算:-(x-2y-3z)= -x+2y+3z;8.x的4倍与x的2.5倍的和为9.5x;9.已知单项式2amb^3与-8a^4的次数相同,则m=2;10.某种液晶电视机的原价为a元,现降价20%销售,则降价后的销售价格为0.8a元;三。
解答题(共70分)11.(-6ab+ba+8ab)=2ba+2ab=4ab;12.计算:3x^2y-2xy^2-5x^2y+3xy^2=-2x^2y+x^2y=-x^2y;13.计算3x-2(x-y)=3x-2x+2y=x+2y;14.计算:(3x-2y)-(x-5y)=3x-2y-x+5y=2x+3y;15.计算:2(4x-0.5)+3(1-1/3x)=8x-1+3-1/x=8x-1/x+2;16.计算:(8xy-x^2+y^2)-(x^2-y^2+8xy)=7xy+y^2-x^2;17.已知A=x^2-2xy+y^2,B=2x^2-6xy+4y^2,求A-B=-x^2+4xy-3y^2;18.先化简下列多项式,再求值:1/2x-2(x-1/3y^2)+(-3/2x+1/3y^2),其中:x=-2,y=1/2;化简得-5/2x+11/6y^2,代入x=-2,y=1/2,得-25/4+11/12=-47/12;19.一个多项式加上5a^2+3a-2的2倍,得1-3a^2+a,求这个多项式;设这个多项式为P,则P+2(5a^2+3a-2)=1-3a^2+a,化简得P=-3a^2+a-9;20.某轮船顺水航行3小时,逆水航行1.5小时,已知轮船在静水中的速度为a千米/小时,水流的速度为y千米/小时;1)轮船两次共航行4.5a千米;2)轮船顺水航行比逆水航行多1.5a千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版《整式的加减》单元测试
姓名: 班级: 学号: 分数: 一.选择题(每小题3分,共15分)
1.下列各组单项式中,是同类项的是( )
A 、2ab -和1
2
abc ; B 、2a b 和2ab ; C 、23x y -和23yx ; D 、5a -和50-;
2.下列说法正确的是( )
A 、212x π的系数是12;
B 、21
3
xy 的系数是13x ;
C 、25x -的系数是5;
D 、2
3x 的系数是3;
3.关于多项式231x x -+-,下列说法不正确的是( ) A 、这是一个二次三项式; B 、常数项是1;
C 、二次项的系数是3-;
D 、它按字母x 的降幂排列;
4.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球,7个篮球共需要( )元;
A 、47m n +;
B 、28mn ;
C 、74m n +;
D 、11mn ; 5.下列计算正确的是( )
A 、496x x x x -+=-;
B 、11
022
a a -=; C 、32x x x -=; D 、23xy xy xy -=;
二.填空题(每小题3分,共15分)
6.已知单项式232x y -与5a b x y -是同类项,则a b += ; 7.计算:(23)x y z ---= ;
8.x 的4倍与x 的2.5倍的和为 ; 9.已知单项式32m a b 与48a -的次数相同,则m = ;
10.某种液晶电视机的原价为a 元,现降价20%销售,则降价后的销售价格为 ;
三.解答题(共70分)
11.(5分)68ab ba ab -++; 12.(5分)计算:2222
3253x y xy x y xy --+;
13.(5分)计算32()x x y --; 14.(5分)计算:(32)(5)x y x y ---;
15.(5分)计算:12(40.5)3(1)3
x x -+-;16.(5分)计算:2222
(8)(8)xy x y x y xy -+--+;
17.(6分)已知2
2
2A x xy y =-+,22
264B x xy y =-+,求A B -;
18(6分).先化简下列多项式,再求值:
2211312()()2323x x y x y --+-+,其中:2x =-,12y =;
19.(6分)一个多项式加上2532a a +-的2倍,得213a a -+,求这个多项式; 20.(7分)某轮船顺水航行3小时,逆水航行1.5小时,已知轮船在静水中的速度为a 千米/小时,水流的速度为y 千米/小时; (1)轮船两次共航行多少千米?
(2)轮船顺水航行比逆水航行多多少千米?
21.(7分)做一道数学题时,已知两个多项式A 和B ,其中2456B x x =--,试求试求A B +。
某同学错误的将“A B +”看成了“A B -”,结果求出的答案是
271012x x -++,那么请你帮他算出正确的“A B +”的值。
22.(8分)如图,在一个长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为r 米,广场长为a 米,宽为b 米。
(1)请列式表示广场空地的面积;
(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留π);。