2010年7月数字信号处理02356t7
北京信息科技大学-[2010年]-数字信号处理-试卷A及参考答案.介绍
《数字信号处理》课程期末考试试卷(A )填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是 ,若对这两个序列做64点圆周卷积,则圆周卷积结果中n= 至 为线性卷积结果。
2. DFT 是利用nkN W 的 、 和 三个固有特性来实现FFT 快速运算的。
3. IIR 数字滤波器设计指标一般由 、 、 和 等四项组成。
4. FIR 数字滤波器有 和 两种设计方法,其结构有 、和 等多种结构。
一、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。
( )2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。
( )3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。
( )4. 冲激响应不变法不适于设计数字带阻滤波器。
( )5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。
( )6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。
( )7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。
( )8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。
( )二、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k ==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?三、IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。
1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。
数字信号处理(姚天任江太辉第三版)课后习题答案 清晰版
k n0
x1(k ) ,y2(n)= x 2(k ) ,由于
k n 0 k n0
n
y(n)=T[ax1(n)+ bx2(n)]=
[ax (k ) bx (k )]
1 2
n
= a
k n0
x1(k ) +b x 2(k ) =ay1(n)+by2(n)
k n 0
n
n
故该系统是线性系统。 因 y(n-k)=
解
5 2 16 。因此 是有理数,所以 8 5
是周期序列。最小周期等于 N=
16 k 16(k取5) 。 5
(2)对照复指数序列的一般公式 x(n)=exp[ j ]n,得出 是周期序列。
1 2 。因此 16 是无理数,所以不 8
(3) 对照正弦型序列的一般公式 x(n)=Acos( n ), 又 x(n)=Asin( = Acos( N=
2 (n-k)+ ]| 3 6 2 =|x(n)|| sin[ (n-k)+ ]| 3 6
≤M|sin[
2 (n- k)+ ]|≤M 3 6
故系统是稳定系统。 因 y(n)只取决于现在和过去的输入 x(n),不取决于未来的输入,故该系统是因果系统。 (3)设 y1(n)=
k
(2)y(n)= x(n)sin[
2 n+ ] 3 6
(3)y(n)=
k
x(k )
(4)y(n)=
k n0
x(k )
n
(5)y(n)= x(n)g(n)
解 (1)设 y 1 (n)=2x 1(n)+3,y 2 (n)=2x 2 (n)+3,由于 y(n)=2[x 1(n)+x 2 (n)]+3 ≠y 1 (n)+ y 2 (n) =2[x 1(n)+x 2 (n)]+6 故系统不是线性系统。 由于 y(n-k)=2x(n-k)+3,T[x(n-k)]=2x(n-k)+3,因而 y(n-k) = T[x(n-k)] 故该系统是非移变系统。 设|x(n)|≤M,则有 |y(n)|=|2x(n)+3|≤|2M+3|<∞ 故该系统是稳定系统。 因 y(n)只取决于现在和过去的输入 x(n),不取决于未来的输入,故该系统是因果系统。 (2)设
数字信号处理习题答案
部分练习题参考答案第二章2.1 )1(2)(3)1()2(2)(-+++-+=n n n n n x δδδδ)6()4(2)3()2(-+-+-+-+n n n n δδδδ2.2 其卷积过程如下图所示)5(5.0)4()3()2(5.2)1(5)(2)(-------+-+=n n n n n n n y δδδδδδ2.3 (1)3142,73==ωππω这是有理数,因此是周期序列。
周期N =14。
(2)k kp ππ168/12==,k 取任何整数时,p 都不为整数,因此为非周期序列。
(3)k kp k k p 45.02,5126/5221====ππππ,当p 1,p 2 同时为整数时k =5,x (n )为周期序列,周期N =60。
(4)k kp πππ25.16.12==,取k =4,得到p =6,因此是周期序列。
周期N =6。
2.4 (1) ∑∞-∞=-=*=m m n R m Rn h n x n y )()()()()(45(a) 当n <0 时,y (n )=0-0.5 -1 2.55h (m ) x (m ) 00 mm-121 0.51 2 h (0-m)m-121 h (-1-m)m-12 1h (1-m) 0m-121y (n )n-12(b) 当30≤≤n 时,11)(0+==∑=n n y nm(c) 当74≤≤n 时,n n y n m -==∑-=81)(34(d) 当n>7时,y (n )=0所以74307081)(≤≤≤≤><⎪⎩⎪⎨⎧-+=n n n n n n n y 或 (2))2(2)(2)]2()([)(2)(444--=--*=n R n R n n n R n y δδ )]5()4()1()([2-----+=n n n n δδδδ(3)∑∞-∞=--=*=m mn m n u m Rn y n x n y )(5.0)()()()(5∑∞-∞=--=m mnm n u m R )(5.0)(5.05(a) 当n <0 时,y (n )=0(b) 当40≤≤n 时,nn nnm mnn y 5.0221215.05.05.0)(1-=--==+=-∑(c) 当5≥n 时,nnm mnn y 5.03121215.05.05.0)(54⨯=--==∑=-最后写成统一表达式:)5(5.031)()5.02()(5-⨯+-=n u n R n y nn(4)∑∞-∞=-=*=m mn m Rn h n x n y 5.0)()()()(3(a) 当n ≤0 时,y (n )=0(b) 当31≤≤n 时,nnnn m mnn y 5.0121215.05.05.0)(1-=--==∑-=- (c) 当54≤≤n 时,25.05.01621)21(25.05.05.0)(6232-⨯=--==---=-∑nnn nn m mnn y(d) 当n ≥6时,y (n )=0)5(25.0)4(75.0)3(875.0)2(75.0)1(5.0)(-+-+-+-+-=n n n n n n y δδδδδ2.6 (1)非线性、移不变系统(2)线性、移不变系统 (3)线性、移变系统 (4)非线性、移不变系统 (5)线性、移变系统2.7 (1)若∞<)(n g ,则稳定,因果,线性,时变(2)不稳定,0n n ≥时因果,0n n <时非因果,线性,时不变 (3)线性,时变,因果,不稳定 2.8 (1)因果,不稳定(2)因果,稳定(3)因果,稳定 (4)因果,稳定 (5)因果,不稳定 (6)非因果,稳定 (7)因果,稳定 (8)非因果,不稳定 (9)非因果,稳定 (10)因果,稳定2.9 因为系统是因果的,所以0)(,0=<n h n令)()(n n x δ=,)1(5.0)()1(5.0)()(-++-==n x n x n h n h n y 1)1(5.0)0()1(5.0)0(=-++-=x x h h15.05.0)0(5.0)1()0(5.0)1(=+=++=x x h h 5.0)1(5.0)2()1(5.0)2(=++=x x h h25.0)2(5.0)3()2(5.0)3(=++=x x h h 15.0)1(5.0)()1(5.0)(-=-++-=n n x n x n h n h所以系统的单位脉冲响应为)1(5.0)()(1-+=-n u n n h n δ 2.10 (1)初始条件为n <0时,y (n )=0设)()(n n x δ=,输出)(n y 就是)(n h 上式可变为)()1(5.0)(n n h n h δ+-=可得 11)1(5.0)0(=+-=h h 依次迭代求得5.00)0(5.0)1(=+=h h25.00)1(5.0)2(=+=h hnn h n h 5.00)1(5.0)(=+-=故系统的单位脉冲响应为)(5.0)(n u n h n= (2)初始条件为n ≥0时,y (n )=0)]()([2)1(n x n y n y -=-0,0)(≥=n n h2)]0()0([2)1(-=-=-x h h22)]1()1([2)2(-=---=-x h h 32)]2()2([2)3(-=---=-x h hnn h n h 2)1(2)(-=+=所以)1(2)(---=n u n h n2.11 证明(1)因为∑∞-∞=-=*m m n h m x n h n x )()()()(令m n m -=',则)()()'()'()()('n x n h m h m n x n h n x m *=-=*∑∞-∞=(2)利用(1)证明的结果有)]()([)()]()([)(1221n h n h n x n h n h n x **=**∑∞-∞=-*-=m m n h m n hm x )]()()[(12 ∑∑∞-∞=∞-∞=--=m k k m n h k hm x )()()(12交换求和的次序有∑∑∞-∞=∞-∞=--=**k m k m n hm x k h n h n h n x )()()()]()([)(1221∑∞-∞=-*-=k k n h k n x k h)]()()[(12)]()([)(12n h n x n h **=)()]()([21n h n h n x **=(3)∑∞-∞=-+-=+*m m n h m n hm x n h n h n x )]()()[()]()([)(2121∑∑∞-∞=∞-∞=-+-=m m m n hm x m n h m x )()()()(21)()()()(21n h n x n h n x *+*=2.12 ∑∞-∞=--=*=m mn Nm n u am Rn y n x n y )()()()()(∑∞-∞=--=m mNnm n u am Ra)()((a) 当n <0 时,y (n )=0(b) 当10-≤≤N n 时,11/11)/1(1)(11--=--==++=-∑a aa a aaan y n n nnm mn(c) 当N n ≥时,1)/1(1)/1(1)(111--=--==+-+-=-∑a aaa a aaan y N n n NnN m mn最后写成统一表达式:)(1)(11)(111N n u a aa n R a an y N n n N n ---+--=+-++2.13 )]4()([*)()()()(11--=*=n n n u n h n x n y δδ)()4()(4n R n u n u =--=)()()()()(421n u a n R n h n y n y n*=*= )4(1)(113141---+--=-++n u a aan R a an n n2.14 (1)采样间隔为005.0200/1==T)()82sin()(ˆ0nT t nT f t xn a -+=∑∞-∞=δππ)()8100sin(nT t nT n -+=∑∞-∞=δππ (2))85.0sin()(ππ+=n n x数字频率πω5.0=,42=ωπ,周期N =42.15 (1)0)()(0n j n nj j eenn eX ωωωδ-∞-∞=-=-=∑(2)∑∑∞=-+-∞-∞=-==)(0)()(n nj n j n nj j eeen x eX ωωαωω∑∞=--=0)(0n nj eeωωα)(01ωωα---=j ee(3)∑∑∑∞=+-∞=--∞-∞=-===0)(0)()(n nj n nj nn nj j eeeen x eX ωαωαωω)(11ωαj e+--=(4)∑∑∞=--∞-∞=-==00cos )()(n nj nn nj j ne een x eX ωαωωω∑∑∞=----+---∞=-+=+=)()(0][21)(210000n nj j nj j nj nj nj n neeeeeeωωαωωαωωωααωαωαωωωαωωαωω2200)()(cos 21cos 111112100------+----+--=⎥⎦⎤⎢⎣⎡-+-=e e e e e e eeee j j j j j (5)nj N N n n nj j e n N en x eX ωωωπ--=∞-∞=-∑∑⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+==12cos 1)()( ∑∑-=---=-++=1212)(21N Nn nj nNjnNjN Nn nj eeeeωππω⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--+--=+-+-+-------)()()()()()(1)1(1)1(211)1(ωπωπωπωπωπωπωωωNj NNj NNj Nj NN j NNj j Nj Nj eeeeee eee-0.92-0.380.920.38x (n ) 0nωωωωωωππωωN jj j j N j eN e eNeN eN 232)123()2cos(cos21cos12sin)2sin(------+--+=2.16 (1)⎰⎰⎰-==--πωπωππωωωπωπωπ2121)(21)(d jed jed eeH n h nj nj nj j⎪⎩⎪⎨⎧=--=为奇数为偶数n n n n nππ20)1(1(2))sin()()()(011n n h n x n y ω=*=)cos()()()(022n n h n x n y ω-=*=2.17 (1))(ωj e X -*(2))]()([21ωωj j eX eX -*+(3))]()([2122ωωjje X eX -+(4))(2ωj eX2.18采样间隔为25.0=T ,采样频率π8=Ωs)(1t y a 没有失真,因为输入信号的频率π21=Ω小于π42=Ωs)(2t y a 失真,因为输入信号频率π52=Ω大于π42=Ωs第三章3.1 设)(ωj eX 和)(ωj eY 分别是)(n x 和)(n y 的傅里叶变换,试求下列序列的傅里叶变换: (1))(0n n x - (2) )(*n x (3) )(n x - (4) )(*)(n y n x (5) )()(n y n x ∙ (6) )(n nx(7) )2(n x (8))(2n x(9)⎩⎨⎧===奇数,偶数n n n x n x 0),2()(9解:(1) FT[)(0n n x -]=∑∞-∞=--n nj enn x ω)(0令0n n n -=',0n n n +'=,则FT[)(0n n x -]=)()(00)(ωωωj n j n n n j eX een x -∞-∞=+''-='∑(2) FT[)(*n x ]=)(*])([)(**ωωωj n nj n nj eX en x en x-∞-∞=-∞-∞=-∑∑==(3) FT[)(n x -]=∑∞-∞=--n nj en x ω)(令n n -=',则FT[)(n x -]=∑∞-∞=''n n j en x ω)()(ωj eX -=(4) FT[)(*)(n y n x ]=)(ωj e X )(ωj e Y证明 )(*)(n y n x =∑∞-∞=-m m n y m x )()(FT[)(*)(n y n x ]=∑∑∞-∞=-∞-∞=-n nj m em n y m x ω)]()([令m n k -=,则FT[)(*)(n y n x ]=mj k kj m eek y m x ωω-∞-∞=-∞-∞=∑∑)]()([=mj k m kj em x ek y ωω-∞-∞=∞-∞=-∑∑)()(=)(ωj eX )(ωj eY(5) FT[)()(n y n x ∙] =∑∞-∞=-n nj en y n x ω)()(=∑⎰∞-∞=-'-''n nj nj j ed eeY n x ωωππωωπ])(21)[(=ωπωωππω'∑⎰∞-∞='---'d en x e Y n nj j )()()(21=ωπωωππω''--'⎰d eX eY j j )()(21)(或者 FT[)()(n y n x ]=)(*)(21ωωπj j e Y eX(6) 因为∑∞-∞=-=n nj j en x e X ωω)()(,对该式两边对ω求导,得到j en nx jd e dX n nj j -=-=∑∞-∞=-ωωω)()(FT[)(n nx ]因此 FT[)(n nx ]=ωωd e dX jj )((7) FT[)2(n x ]=∑∞-∞=-n nj en x ω)2(令n n 2=',则FT[)2(n x ]=∑''-'取偶数n n j en x 2)(ω=nj nn en x n x ω21)]()1()([21-∞-∞=-+∑=])()([212121nj n nj nj n e n x een x ωπω-∞-∞=-∞-∞=∑∑+=)]()([21)21(21πωω-+j j eX eX或者FT[)2(n x ]=)()]()([21212121ωωωj j j eX eX eX =+(8) FT[)(2n x ]=∑∞-∞=-n nj en xω)(2利用(5)题结果,令)()(n y n x =,则FT[)(2n x ]=)(*)(21ωωπj j eX eX =ωπωωππω''--'⎰d eX eX j j )()(21)((9) FT[)(9n x ]=∑∞-∞=-取偶数n n nj en x ω)2( 令∞≤'≤∞-='n n n ,2,则FT[)(9n x ]=)()(22ωωj n n n j eX en x ='∑∞-∞='-取偶数3.2 已知⎩⎨⎧≤<<=πωωωωω||,0||,1)(00j eX求)(ωj e X 的傅里叶反变换)(n x 。
数字信号处理试卷及答案 两份
数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分) 1.δ(n)的Z变换是( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT的是( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z变换的收敛域为|z|>2,则该序列为()A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0B.∞C. -∞D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
数字信号处理(姚天任江太辉第三版)课后习题答案
第二章2.1 判断下列序列是否是周期序列。
若是,请确定它的最小周期。
(1)x(n)=Acos(685ππ+n ) (2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n ) 解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于N=)5(16516取k k =。
(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于N=)3(838取k k =2.2在图2.2中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。
(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n)2.3 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λnu(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0 即y(n)=λλ--+111n u(n)2.4 图P2.4所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a nu(n),|a|<1,求系统的输出y(n).解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥32.5 已知一个线性非移变系统的单位取样响应为h(n)=an-u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。
(完整版)数字信号处理试卷及答案_程培青(第三版),推荐文档
《数字信号处理》试卷 A 第 6 页 ( 共 6 页 )
数字信号处理基础 试卷答案及评分标准
一、 填空题:(共 28 分,每空 2 分)
7
建议收藏下载本文,以便随时学习! (1)2y(n),y(n-3) (2)f≥2fs (3)N,抽样 (4) X (k) xnWNnk n0
(5)递归型
(6)8
Z-1 0.5 -1.4
Z-1 -0.8 1
Z-1
Z-1
-0.8
1
3、
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格
复加所需时间T1 0.5106 N N 1 0.5106 512 511 0.130816s
所以T T1 T2 1.441536s
2、用 FFT 计算
复乘所需时间
T1
5 106
N 2
log2
N
5 106
512 2
log2
512
0.01152s
复加所需时间T2 0.5106 N log2 N 0.5106 512 log2 512 0.002304s
3、请画出 8 点的按频率抽取的(DIF)基-2 FFT 流图,要求输入自然数顺序,输出倒 位序。
2、用级联型结构实现以下系统函数,试问一共能构成几种级联型网络,并画出结构 图。
4Z 1Z 2 1.4Z 1 H (z) Z 0.5Z 2 0.9Z 0.8
专业班级:
学院名称
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格
。
A. 1
B.δ(w)
C. 2πδ(w)
7月浙江自考数字信号处理试题及答案解析
1浙江省2018年7月自学考试数字信号处理试题课程代码:02356一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.若信号频带宽度有限,要想对该信号抽样后能够不失真地还原出原信号,则抽样频率Ωs和信号谱的最高频率Ωc 必须满足( ) A.Ωs <Ωc B.Ωs >ΩcC.Ωs <2ΩcD.Ωs >2Ωc2.下列系统(其中y (n )为输出序列,x (n )为输入序列)中哪个属于线性系统?( ) A.y (n )=y (n -1)x (n ) B.y (n )=nx (n ) C.y (n )=x (2n ) D.y (n )=x (n )-y (n -1)3.序列x (n )=cos ⎪⎭⎫⎝⎛n 5π3的周期为( ) A.3 B.5 C.10D.∞4.序列x (n )=0.5n u (n )的能量为( ) A.0.5 B.2 C.5D.∞5.已知某序列Z 变换的收敛域为∞>|z |>0,则该序列为( ) A.有限长序列 B.右边序列 C.左边序列D.双边序列6.序列共轭对称分量的傅里叶变换等于序列傅里叶变换的( ) A.共轭对称分量 B.共轭反对称分量 C.实部D.虚部7.线性移不变系统的系统函数的收敛域为|z |<2,则可以判断系统为( ) A.因果稳定系统 B.因果非稳定系统 C.非因果稳定系统D.非因果非稳定系统2 8.下面说法中正确的是( )A.连续非周期信号的频谱为非周期连续函数B.连续周期信号的频谱为非周期连续函数C.离散非周期信号的频谱为非周期连续函数D.离散周期信号的频谱为非周期连续函数9.已知序列x (n )=R N (n ),其N 点的DFT 记为X (k ),则X (0)=( ) A.N -1 B.1 C.0D.N10.已知符号W N =Nj eπ2-,则∑-=1N n nN NW=( )A.0B.1C.N -1D.N11.已知DFT [x (n )]=X (k ),0≤n ,k <N ,下面说法中正确的是( ) A.若x (n )为虚数圆周偶对称序列,则X (k )为实数圆周奇对称序列 B.若x (n )为虚数圆周偶对称序列,则X (k )为实数圆周偶对称序列 C.若x (n )为虚数圆周偶对称序列,则X (k )为虚数圆周奇对称序列 D.若x (n )为虚数圆周偶对称序列,则X (k )为虚数圆周偶对称序列12.已知N 点有限长序列X (k )=DFT [x (n )],0≤n ,k <N ,则N 点DFT [nlN W -x (n )]=( )A.X ((k +l ))N R N (k )B.X ((k -l ))N R N (k )C.km N W -D.kmN W13.如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为( )A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器14.对5点有限长序列[1 3 0 5 2]进行向右1点圆周移位后得到序列( )A.[1 3 0 5 2]B.[2 1 3 0 5]C.[3 0 5 2 1]D.[3 0 5 2 0]15.下列各种滤波器的结构中哪种不是IIR滤波器的基本结构?( )A.直接型B.级联型C.频率抽样型D.并联型二、判断题(本大题共5小题,每小题2分,共10分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。
(完整word版)数字信号处理试卷及答案两份.docx
数字信号处理试卷及答案1一、填空题(每空1分, 共 10分)1.序列x(n)sin(3n / 5) 的周期为。
2.线性时不变系统的性质有律、律、律。
3.对x(n)R4(n)的Z 变换为,其收敛域为。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为。
5.序列 x(n)=(1 ,-2,0,3;n=0,1,2,3), 圆周左移 2 位得到的序列为。
6 .设LTI系统输入为x(n),系统单位序列响应为h(n) ,则系统零状态输出y(n)=。
7.因果序列x(n) ,在Z→∞时,X(Z)=。
二、单项选择题(每题 2 分 ,共 20分)1(.)A.1δ(n)B.δ ( ω)的ZC.2πδ (ω )变换D.2 π是2.序列x(1n)的长度为4,序列x(2n)的长度为3,则它们线性卷积的长度是()A. 3 B. 4 C. 6 D. 73.LTI系统,输入x(n)时,输出y( n);输入为3x( n-2),输出为()A. y (n-2)B.3y ( n-2)C.3y( n)D.y (n)4 .下面描述中最适合离散傅立叶变换DFT()的是A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号() A. 理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D. 理想带阻滤波器6.下列哪一个系统是因果系统() A.y(n)=x(n+2) B.y(n)=cos(n+1)x (n) C.y(n)=x(2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴B.原点C.单位圆D.虚轴8.已知序列 Z变换的收敛域为| z | >2 ,则该序列为() A. 有限长序列 B.无限长序列 C.反因果序列 D. 因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k) 恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是()A.N≥ MB.N ≤MC.N≤ 2MD.N≥ 2M10.设因果稳定的LTI系统的单位抽样响应h(n) ,在 n<0时, h(n)=()A.0 B . ∞ C.-∞ D.1三、判断题(每题 1 分 ,共 10分)1 .序列的傅立叶变换是频率ω 的周期函数,周期是2 π。
数字信号处理习题及解答..
X (e j0 )
n 3
x ( n) 6
x(n)e jn
7
π
π
X (e j )d x(0) 2π 4π
X (e jπ )
n
n 3
7
(1) n x(n) 2
数字信号处理习题及解答
第三章 信号的傅里叶变换 2 试求如下序列的傅里叶变换: (1) x1(n)=δ(n-3)
第一章离散时间信号与离散时间系统数字信号处理习题及解答2解答第一章离散时间信号与离散时间系统数字信号处理习题及解答3第一章离散时间信号与离散时间系统数字信号处理习题及解答3解答第一章离散时间信号与离散时间系统数字信号处理习题及解答4第一章离散时间信号与离散时间系统数字信号处理习题及解答4解答第一章离散时间信号与离散时间系统数字信号处理习题及解答4解答第一章离散时间信号与离散时间系统数字信号处理习题及解答1第二章z变换及离散时间系统分析数字信号处理习题及解答1解答第二章z变换及离散时间系统分析数字信号处理习题及解答1解答第二章z变换及离散时间系统分析数字信号处理习题及解答2第二章z变换及离散时间系统分析数字信号处理习题及解答2解答第二章z变换及离散时间系统分析数字信号处理习题及解答2解答第二章z变换及离散时间系统分析数字信号处理习题及解答2第二章z变换及离散时间系统分析数字信号处理习题及解答2解答第二章z变换及离散时间系统分析数字信号处理习题及解答2解答第二章z变换及离散时间系统分析数字信号处理习题及解答2解答第二章z变换及离散时间系统分析数字信号处理习题及解答2解答第二章z变换及离散时间系统分析数字信号处理习题及解答3已知第二章z变换及离散时间系统分析112122113??????zzzx求出对应xz的各种可能的序列表达式
《数字信号处理》第三版课后实验答案_西安电子科技大学出版社
程序清单及波形显示: clc;close all;clear all;%======内容1:调用filter 解差分方程,由系统对u(n)的响应判断稳定性======A=[1,-0.9];B=[0.05,0.05]; %系统差分方程系数向量B 和A x1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号x1(n)=R8(n) x2n=ones(1,128); %产生信号x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对x1(n)的响应y1(n) n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,'.'); title('(a) 系统对R8(n)的响应y1(n)');xlabel('n');ylabel('y1(n)');y2n=filter(B,A,x2n); %求系统对x2(n)的响应y2(n) n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,'.'); title('(b) 系统对u(n)的响应y2(n)');xlabel('n');ylabel('y2(n)');hn=impz(B,A,58); %求系统单位脉冲响应h(n) n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,'.'); title('(c) 系统单位脉冲响应h(n)');xlabel('n');ylabel('h(n)');(a) 系统对R8(n)的响应y1(n)ny 1(n )(b) 系统对u(n)的响应y2(n)ny 2(n )(c) 系统单位脉冲响应h(n)nh (n )%===内容2:调用conv 函数计算卷积============================x1n=[1 1 1 1 1 1 1 1 ]; %产生信号x1(n)=R8(n) h1n=ones(1,10); h2n=[1 2.5 2.5 1 ];y21n=conv(h1n,x1n); y22n=conv(h2n,x1n); figure(2)n=0:length(h1n)-1;subplot(2,2,1);stem(n,h1n); title('(d) 系统单位脉冲响应h1n');xlabel('n');ylabel('h1(n)'); n=0:length(y21n)-1;subplot(2,2,2);stem(n,y21n); title('(e) h1(n)与R8(n)的卷积y21n');xlabel('n');ylabel('y21(n)'); n=0:length(h2n)-1;subplot(2,2,3);stem(n,h2n); title('(f) 系统单位脉冲响应h2n');xlabel('n');ylabel('h2(n)'); n=0:length(y22n)-1;subplot(2,2,4);stem(n,y22n); title('(g) h2(n)与R8(n)的卷积y22n');xlabel('n');ylabel('y22(n)');nh 1(n )ny 21(n )(f) 系统单位脉冲响应h2nnh 2(n)(g) h2(n)与R8(n)的卷积y22nny 22(n )%=========内容3:谐振器分析======================== un=ones(1,256); %产生信号u(n) n=0:255;xsin=sin(0.014*n)+sin(0.4*n); %产生正弦信号A=[1,-1.8237,0.9801];B=[1/100.49,0,-1/100.49]; %系统差分方程系数向量B 和Ay31n=filter(B,A,un); %谐振器对u(n)的响应y31(n) y32n=filter(B,A,xsin); %谐振器对u(n)的响应y31(n) figure(3)n=0:length(y31n)-1;subplot(2,1,1);stem(n,y31n,'.'); title('(h) 谐振器对u(n)的响应y31n');xlabel('n');ylabel('y31(n)'); n=0:length(y32n)-1;subplot(2,1,2);stem(n,y32n,'.'); title('(i) 谐振器对正弦信号的响应y32n');xlabel('n');ylabel('y32(n)');050100150200250300(h) 谐振器对u(n)的响应y31nny 31(n )(i) 谐振器对正弦信号的响应y32nny 32(n )程序清单及波形显示:% DTMF 双频拨号信号产生6位电话号码 %clear all;clc;tm=[1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68]; % DTMF 信号代表的16个数N=205;K=[18,20,22,24,31,34,38,42];f1=[697,770,852,941]; % 行频率向量 f2=[1209,1336,1477,1633]; % 列频率向量 TN=input('键入6位电话号码= '); % 输入6位数字TNr=0; %接收端电话号码初值为零for l=1:6;d=fix(TN/10^(6-l)) TN=TN-d*10^(6-l); for p=1:4; for q=1:4;if tm(p,q)==abs(d); break,end % 检测码相符的列号q endif tm(p,q)==abs(d); break,end % 检测码相符的行号p endn=0:1023; % 为了发声,加长序列x = sin(2*pi*n*f1(p)/8000) + sin(2*pi*n*f2(q)/8000);% 构成双频信号sound(x,8000); % 发出声音 pause(0.1)% 接收检测端的程序X=goertzel(x(1:205),K+1); % 用Goertzel 算法计算八点DFT样本val = abs(X); % 列出八点DFT向量subplot(3,2,l);stem(K,val,'.');grid;xlabel('k');ylabel('|X(k)|') % 画出DFT(k)幅度axis([10 50 0 120])limit = 80; %for s=5:8;if val(s) > limit, break, end % 查找列号endfor r=1:4;if val(r) > limit, break, end % 查找行号endTNr=TNr+tm(r,s-4)*10^(6-l);enddisp('接收端检测到的号码为:') % 显示接收到的字符disp(TNr)显示结果:键入6位电话号码= 123456d = 1d = 2d = 3d = 4d = 5d = 6接收端检测到的号码为:123456050100|X (k )||X (k )|050100k|X (k )|050100k|X (k )|050100k|X (k )|050100k|X (k )|% DTMF 双频拨号信号产生8位电话号码 %clear all;clc;tm=[1,2,3,65;4,5,6,66;7,8,9,67;42,0,35,68]; % DTMF 信号代表的16个数 N=205;K=[18,20,22,24,31,34,38,42];f1=[697,770,852,941]; % 行频率向量 f2=[1209,1336,1477,1633]; % 列频率向量 TN=input('键入8位电话号码= '); % 输入8位数字TNr=0; %接收端电话号码初值为零for l=1:8;d=fix(TN/10^(8-l)) TN=TN-d*10^(8-l); for p=1:4; for q=1:4;if tm(p,q)==abs(d); break,end % 检测码相符的列号q endif tm(p,q)==abs(d); break,end % 检测码相符的行号p endn=0:1023; % 为了发声,加长序列 x = sin(2*pi*n*f1(p)/8000) + sin(2*pi*n*f2(q)/8000);% 构成双频信号 sound(x,8000); % 发出声音 pause(0.1)% 接收检测端的程序X=goertzel(x(1:205),K+1); % 用Goertzel 算法计算八点DFT 样本val = abs(X); % 列出八点DFT 向量 subplot(4,2,l);stem(K,val,'.');grid;xlabel('k');ylabel('|X(k)|') % 画出DFT(k)幅度axis([10 50 0 120])limit = 80; % for s=5:8;if val(s) > limit, break, end % 查找列号 endfor r=1:4;if val(r) > limit, break, end % 查找行号 endTNr=TNr+tm(r,s-4)*10^(8-l); enddisp('接收端检测到的号码为:') % 显示接收到的字符 disp(TNr) 显示结果:键入8位电话号码= 12345678 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8接收端检测到的号码为:12345678|X (k )||X (k )||X (k )||X (k )||X (k )||X (k )|k|X (k )|k|X (k )|程序清单及波形显示: % 时域采样理论验证程序Tp=64/1000; %观察时间Tp=64微秒Fs=1000;T=1/Fs; M=Tp*Fs;n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xat=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xat,M); %M点FFT[xat)]subplot(3,2,1); stem(n,xat,'.'); xlabel('n');ylabel('x1(n)'); title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz');xlabel('\omega/hz');ylabel('(H1(ejw))');axis([0,Fs,0,1.2*max(abs(Xk))]);Fs=300;T=1/Fs; M=Tp*Fs;n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xat=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xat,M); %M点FFT[xat)]subplot(3,2,3); stem(n,xat,'.'); xlabel('n');ylabel('x2(n)'); title('(b)Fs=300Hz');k=0:M-1;fk=k/Tp;subplot(3,2,4);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=300Hz');xlabel('\omega/hz');ylabel('(H2(ejw))');axis([0,Fs,0,1.2*max(abs(Xk))]);Fs=200;T=1/Fs; M=Tp*Fs;n=0:M-1;t=n*T;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xat=A*exp(-alph*t).*sin(omega*t);Xk=T*fft(xat,M); %M点FFT[xat)]subplot(3,2,5); stem(n,xat,'.'); xlabel('n');ylabel('x3(n)'); title('(c) Fs=200Hz');k=0:M-1;fk=k/Tp;subplot(3,2,6);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=200Hz');xlabel('\omega/hz');ylabel('(H3(ejw))');axis([0,Fs,0,1.2*max(abs(Xk))])nx 1(n )(a) Fs=1000Hz(a) T*FT[xa(nT)],Fs=1000Hzω/hz(H 1(e j w ))nx 2(n )(b) Fs=300Hz(a) T*FT[xa(nT)],Fs=300Hzω/hz(H 2(e j w ))nx 3(n )(c) Fs=200Hz(a) T*FT[xa(nT)],Fs=200Hzω/hz(H 3(e j w ))%频域采样理论验证程序 clc;clear;close all; M=27;N=32;n=0:M; xa=0:(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb]; %产生M 长三角波序列x(n) Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32) ;%32点FFT[x(n)] x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n) X16k=X32k(1:2:N); %隔点抽取X32k 得到X16(K) x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n) subplot(3,2,2);stem(n,xn,'.'); title('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20]) k=0:1023;wk=2*k/1024; subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]'); xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200]) k=0:N/2-1; subplot(3,2,3);stem(k,abs(X16k),'.'); title('(c) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200]) n1=0:N/2-1; subplot(3,2,4);stem(n1,x16n,'.'); title('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]); k=0:N-1; subplot(3,2,5);stem(k,abs(X32k),'.'); title('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200]);n1=0:N-1; subplot(3,2,6);stem(n1,x32n,'.');box on title('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])(b) 三角波序列x(n)nx (n )0100200(a)FT[x(n)]ω/π|X (e j ω)|(c) 16点频域采样k|X 16(k)|102030(d) 16点IDFT[X 16(k)]nx 16(n)(e) 32点频域采样k|X 32(k )|(f) 32点IDFT[X 32(k)]nx 32(n )程序清单及波形显示:% 用FFT 对信号作频谱分析 clear all;close all %实验内容(1)=================================================== x1n=[ones(1,4)]; %产生序列向量x1(n)=R4(n) M=8;xa=1:(M/2); xb=(M/2):-1:1; x2n=[xa,xb]; %产生长度为8的三角波序列x2(n) x3n=[xb,xa]; X1k8=fft(x1n,8); %计算x1n 的8点DFT X1k16=fft(x1n,16); %计算x1n 的16点DFT X2k8=fft(x2n,8); %计算x1n 的8点DFT X2k16=fft(x2n,16); %计算x1n 的16点DFT X3k8=fft(x3n,8); %计算x1n 的8点DFT X3k16=fft(x3n,16); %计算x1n 的16点DFT %以下绘制幅频特性曲线 subplot(1,2,1);stem(X1k8,'.'); %绘制8点DFT 的幅频特性图 title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度'); subplot(1,2,2);stem(X1k16,'.'); %绘制16点DFT 的幅频特性图 title('(1b)16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');figure(2)subplot(2,2,1);stem(X2k8,'.'); %绘制8点DFT 的幅频特性图 title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,2);stem(X2k16,'.'); %绘制16点DFT 的幅频特性图 title('(2b)16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(X3k8,'.'); %绘制8点DFT 的幅频特性图 title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,4);stem(X3k16,'.'); %绘制16点DFT 的幅频特性图 title('(3b)16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度');-2.5-2-1.5-1-0.500.511.522.5(1a) 8点DFT[x 1(n)]ω/π幅度-2.5-2-1.5-1-0.500.511.522.5(1b)16点DFT[x 1(n)]ω/π幅度2468-4-2024(2a) 8点DFT[x 2(n)]ω/π幅度5101520-20-1001020(2b)16点DFT[x 2(n)]ω/π幅度2468-4-2024(3a) 8点DFT[x 3(n)]ω/π幅度-10-50510(3b)16点DFT[x 3(n)]ω/π幅度%实验内容(2) 周期序列谱分析==================================N=8;n=0:N-1; %FFT 的变换区间N=8 x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n); %计算x4n 的8点DFT X5k8=fft(x5n); %计算x5n 的8点DFT N=16;n=0:N-1; %FFT 的变换区间N=16 x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n); %计算x4n 的16点DFT X5k16=fft(x5n); %计算x5n 的16点DFT figure(3)subplot(2,2,1);stem(X4k8,'.'); %绘制8点DFT 的幅频特性图 title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,3);stem(X4k16,'.'); %绘制16点DFT 的幅频特性图 title('(4b)16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,2);stem(X5k8,'.'); %绘制8点DFT 的幅频特性图 title('(5a) 8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');subplot(2,2,4);stem(X5k16,'.'); %绘制16点DFT 的幅频特性图title('(5b)16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');2468-1012x 10-15(4a) 8点DFT[x 4(n)]ω/π幅度5101520-4-2024x 10-15(4b)16点DFT[x 4(n)]ω/π幅度2468-4-2024(5a) 8点DFT[x 5(n)]ω/π幅度5101520-4-2024x 10-15(5b)16点DFT[x 5(n)]ω/π幅度%实验内容(3) 模拟周期信号谱分析=============================== figure(4) Fs=64;T=1/Fs; N=16;n=0:N-1; %FFT 的变换区间N=16 x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)16点采样 X6k16=fft(x6nT); %计算x6nT 的16点DFT X6k16=fftshift(X6k16); %将零频率移到频谱中心 Tp=N*T;F=1/Tp; %频率分辨率F k=-N/2:N/2-1;fk=k*F; %产生16点DFT 对应的采样点频率(以零频率为中心) subplot(3,1,1);stem(fk,abs(X6k16),'.');box on %绘制8点DFT 的幅频特性图 title('(6a) 16点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度'); axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k16))])N=32;n=0:N-1; %FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)32点采样X6k32=fft(x6nT); %计算x6nT的32点DFTX6k32=fftshift(X6k32); %将零频率移到频谱中心Tp=N*T;F=1/Tp; %频率分辨率Fk=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,2);stem(fk,abs(X6k32),'.');box on %绘制8点DFT的幅频特性图title('(6b) 32点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k32))])N=64;n=0:N-1; %FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)64点采样X6k64=fft(x6nT); %计算x6nT的64点DFTX6k64=fftshift(X6k64); %将零频率移到频谱中心Tp=N*T;F=1/Tp; %频率分辨率Fk=-N/2:N/2-1;fk=k*F; %产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,3);stem(fk,abs(X6k64),'.'); box on%绘制8点DFT的幅频特性图title('(6a) 64点|DFT[x_6(nT)]|');xlabel('f(Hz)');ylabel('幅度');axis([-N*F/2-1,N*F/2-1,0,1.2*max(abs(X6k64))])-30-20-1001020300510(6a) 16点|DFT[x 6(nT)]|f(Hz)幅度010(6b) 32点|DFT[x 6(nT)]|f(Hz)幅度020(6a) 64点|DFT[x 6(nT)]|f(Hz)幅度程序清单及波形显示: clc;clear all;close all;fc1=250; fm1=15; fc2=500; fm2=50; fc3=1000; fm3=100;N=800; Fs=10000;Ts=1/Fs; n=[0:N-1];t=n*Ts;x11=cos(2*pi*fc1*t); x12=cos(2*pi*fm1*t); x1=x11.*x12; subplot(3,1,1);plot(t,x11,'g');plot(t,x12,'r');plot(t,x1,'b'); legend('载波','调制波 ','已调 ');xlabel('t/s');ylabel('波形')x=cos(2*pi*fc1*t).*cos(2*pi*fm1*t)+cos(2*pi*fc2*t).*cos(2*pi*fm2*t)+cos(2*pi*fc3*t).*cos(2*pi*fm3*t); subplot(3,1,2);plot(t,x);X=fft(x)subplot(3,1,3)k=[0:(N-1)/2]stem(k*2/N,abs(X(k+1))/max(abs(X(k+1))),'.');axis([0,0.3,0,1]);xlabel('\omeg a/\pi');ylabel('幅度');wp=[0.04,0.06];ws=[0.03,0.07];rp=0.1;rs=60;[N1,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N1,rp,rs,wp);y1=filter(B,A,x);figuresubplot(3,1,1);plot(t,x);xlabel('t/s');title('3路混合信号波形')subplot(3,1,2);[H1,w1]=freqz(B,A,N);plot(w1/pi,20*log10(abs(H1)));axis([0,0.5,-80,1]);xlabel('\omega/\pi');ylabel('|H(e^j\omega)|');title('中心频率为250Hz的频率响应');subplot(3,1,3);plot(t,y1);xlabel('t/s');ylabel('y1(t)');title('中心频率为250H的滤波信号')wp=[0.08,0.12];ws=[0.07,0.13];rp=0.1;rs=60;[N1,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N1,rp,rs,wp);y1=filter(B,A,x);figuresubplot(3,1,1);plot(t,x);xlabel('t/s');title('3路混合信号波形');subplot(3,1,2)[H1,w1]=freqz(B,A,N);plot(w1/pi,20*log10(abs(H1)));axis([0,0.5,-90,2]);xlabel('\omega/\pi');ylabel('|H(e^j\omega)|');title('中心频率为500Hz的频率响应')subplot(3,1,3);plot(t,y1);xlabel('t/s');ylabel('y1(t)');title('中心频率为500H的滤波信号')wp=[0.17,0.23];ws=[0.16,0.24];rp=0.1;rs=60;[N1,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N1,rp,rs,wp);y1=filter(B,A,x);figuresubplot(3,1,1);plot(t,x);xlabel('t/s');title('3路混合信号波形');subplot(3,1,2);[H1,w1]=freqz(B,A,N);plot(w1/pi,20*log10(abs(H1)));axis([0,0.5,-100,10]);xlabel('\omega/\pi');ylabel('|H(e^j\omega)|');title('中心频率为1000Hz的频率响应')subplot(3,1,3);plot(t,y1);xlabel('t/s');ylabel('y1(t)');title('中心频率为1000H的滤波信号')00.010.020.030.040.050.060.070.08-101t/s波形00.010.020.030.040.050.060.070.08-505ω/π幅度-505t/s3路混合信号波形-80-60-40-200ω/π|H (e j ω)|中心频率为250Hz 的频率响应-202t/sy 1(t )中心频率为250H 的滤波信号0.010.020.030.040.050.060.070.08-505t/s3路混合信号波形0.050.10.150.20.250.30.350.40.450.5-80-60-40-200ω/π|H (e j ω)|中心频率为500Hz 的频率响应0.010.020.030.040.050.060.070.08-202t/sy 1(t )中心频率为500H 的滤波信号0.010.020.030.040.050.060.070.08-505t/s3路混合信号波形0.050.10.150.20.250.30.350.40.450.5-100-500ω/π|H (e j ω)|中心频率为1000Hz 的频率响应0.010.020.030.040.050.060.070.08-202t/sy 1(t )中心频率为1000H 的滤波信号程序清单及波形显示: clc;clear;clear allN=1000; Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10; mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt ,频率为f0 ct=cos(2*pi*fc*t); %产生载波正弦波信号ct ,频率为fc xt=mt.*ct; %相乘产生单频调制信号xt nt=2*rand(1,N)-1; %产生随机噪声ntfp=150; fs=200;Rp=0.1;As=70; % 滤波器指标fb=[fp,fs];m=[0,1]; % 计算remezord 函数所需参数f,m,devdev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez 函数所需参数hn=remez(n,fo,mo,W); % 调用remez 函数进行设计,用于滤除噪声nt 中的低频成分yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,生成高通噪声yt xt=xt+yt; %噪声加信号 fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(2,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');axis([0,Tp/5,min(xt),max(xt)]);title('(a) 信号加噪声波形')subplot(2,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) 信号加噪声的频谱')axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度')-10-50510t/sx (t )(a) 信号加噪声波形0501001502002503003504004505000.51(b) 信号加噪声的频谱f/Hz幅度%==调用xtg 产生信号xt, xt 长度N=1000,并显示xt 及其频谱,========= N=1000;xt=xtg(N);fp=120; fs=150;Rp=0.2;As=60;Fs=1000; % 输入给定指标% (1) 用窗函数法设计滤波器wc=(fp+fs)/Fs; %理想低通滤波器截止频率(关于pi归一化)B=2*pi*(fs-fp)/Fs; %过渡带宽度指标Nb=ceil(11*pi/B); %blackman窗的长度Nhn=fir1(Nb-1,wc,blackman(Nb));Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性ywt=fftfilt(hn,xt,N); %调用函数fftfilt对xt滤波subplot(4,1,1);plot(f,Hw);xlabel('f/Hz');ylabel('幅度'); title('(a)低通滤波器幅频特性');subplot(4,1,2);plot(t,ywt); title('(b)滤除噪声后的信号波形');xlabel('t/s');ylabel('ywt');% (2) 用等波纹最佳逼近法设计滤波器fb=[fp,fs];m=[1,0]; % 确定remezord函数所需参数f,m,dev dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];[Ne,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(Ne,fo,mo,W); % 调用remez函数进行设计Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性yet=fftfilt(hn,xt,N); % 调用函数fftfilt对xt滤波subplot(3,1,1);plot(f,Hw);xlabel('f/Hz');ylabel('幅度'); title('(c)低通滤波器幅频特性');subplot(3,1,2);plot(t,yet);title('(d)滤除噪声后的信号波形');xlabel('t/s');ylabel('yet');。
数字信号处理西安电子高西全课后答案
因果系统
因果系统是指系统的输出仅与输入的时间点有关,与输入的时间点无关。
信号与系统的关系
01
系统对信号的作用
系统对信号的作用可以改变信号 的幅度、频率和相位等基本属性 。
02
信号在系统中的传 播
信号在系统中传播时,会受到系 统的特性影响,从而改变信号的 基本属性。
03
系统对信号的响应
系统对信号的响应可以反映系统 的特性,从而可以用来分析和设 计系统。
02 离散傅里叶变换的定义
离散傅里叶变换是针对离散时间信号和系统的傅 里叶变换,它将离散时间信号分解成不同频率的 正弦波的叠加。
03 离散傅里叶变换的性质
离散傅里叶变换具有周期性、对称性和Parseval 等重要性质。
快速傅里叶变换算法
1 2 3
快速傅里叶变换算法的定义
快速傅里叶变换是一种高效计算离散傅里叶变换 的算法,它利用了循环卷积和分治的思想来降低 计算的复杂度。
03
数字信号处理技术能够提高通信系统的抗干扰性能、
传输效率和可靠性。
数字信号处理在通信中的应用
调制解调技术
调制是将低频信号转换为适 合传输的高频信号,解调是 将高频信号还原为原始的低
频信号。
通过调制解调技术,可以实 现信号的多路复用和高效传 输。
数字信号处理在通信中的应用
01
信道编码技术
02
信道编码是在发送端对信号进行编码,以增加信号的冗余 度,提高信号的抗干扰能力。
FIR数字滤波器的优 点
FIR数字滤波器具有稳定性好、易 于实现、没有递归运算等优点, 因此在一些需要稳定的系统中得 到广泛应用。
08
信号处理的应用
数字信号处理在通信中的应用
数字信号处理实验(吴镇扬)答案-2
(1) 观察高斯序列的时域和幅频特性,固定信号)(n x a 中参数p=8,改变q 的值,使q 分别等于2、4、8,观察他们的时域和幅频特性,了解当q 取不同值时,对信号序列的时域和幅频特性的影响;固定q=8,改变p,使p 分别等于8、13、14,观察参数p 变化对信号序列的时域和幅频特性的影响,注意p 等于多少时会发生明显的泄漏现象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。
()()⎪⎩⎪⎨⎧≤≤=-其他0150,2n e n x q p n a解:程序见附录程序一:P=8,q 变化时:t/T x a (n )p=8 q=2k X a (k )t/T x a (n )p=8 q=4k X a (k )p=8 q=4t/Tx a (n )p=8 q=8kX a (k )p=8 q=8幅频特性时域特性t/T x a (n )p=8 q=8k X a (k )p=8 q=8t/T x a (n )p=13 q=851015k X a (k )p=13 q=8t/Tx a (n )p=14 q=851015kX a (k )p=14 q=8时域特性幅频特性分析:由高斯序列表达式知n=p 为期对称轴; 当p 取固定值时,时域图都关于n=8对称截取长度为周期的整数倍,没有发生明显的泄漏现象;但存在混叠,当q 由2增加至8过程中,时域图形变化越来越平缓,中间包络越来越大,可能函数周期开始增加,频率降低,渐渐小于fs/2,混叠减弱;当q 值固定不变,p 变化时,时域对称中轴右移,截取的时域长度渐渐地不再是周期的整数倍,开始无法代表一个周期,泄漏现象也来越明显,因而图形越来越偏离真实值,p=14时的泄漏现象最为明显,混叠可能也随之出现;(2) 观察衰减正弦序列 的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现的位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f ,使f 分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现的位置,有无混叠和泄漏现象?说明产生现象的原因。
数字信号处理____第一章 离散时间信号与系统
2 N 1
x (n ( N 1) R )
| | 1
0 .5 ( 0 .5 ) x( n) 0
n
, n 1 , n 1
原声:
混响1:
混响2:
=0.3, R=5000
2
n
, n 1 , n 1
| x(n) |
n N
P [ x ( n )]
1 N
N 1
| x(n) |
n0
2
周期信号
6、序列的移位
x(n) x(n m ) x(n m ) m 0
0 .5 ( 0 .5 ) x ( n 1) 0
n 1
, n 1 1 , n 1 1
u (n)
(n k ) (k )
k 0 k
x(n) a u (n)
n
|a|<1,序列收敛; |a|>1,序列发散。
21 22
§1. 1 离散时间信号——序列
5、复指数序列
x(n) e
x(n) e
( j 0 ) n
§1. 1 离散时间信号——序列
主要内容
第一章 离散时间信号与系统
1.1 离散时间信号-----序列 1.2 线性移不变系统 1.3 常系数线性差分方程 1.4 连续时间信号的抽样
1
2
§1. 1 离散时间信号——序列
一、离散时间信号——序列 是连续时间信号以时间T等间隔采样得到。 T称为采样间隔(单位:秒)。
x ( n ) x a (t )
其中: A 幅度 ω0 数字域频率 φ 初始相位
(完整word版)数字信号处理试卷
…………试卷装订线………………装订线内不要答题,不要填写考生信息………………试卷装订线…………23…………试卷装订线………………装订线内不要答题,不要填写考生信息………………试卷装订线…………5…………试卷装订线 ………………装订线内不要答题,不要填写考生信息………………试卷装订线 …………30286)1(1221+-+=---z z z…………试卷装订线………………装订线内不要答题,不要填写考生信息………………试卷装订线…………7…………装订线………………装订线内不要答题,不要填写信息………………装订线…………武汉理工大学考试试题答案(A卷)2010 ~2011 学年2 学期《数字信号处理》课程一、1.由于3142/2/73ππωπ==是有理数,所以()x n是周期的,周期为14。
(4分)2. 令输入为12()()()x n ax n bx n=+,系统的输出为121212 [][()][()()](31)(31)()() y n T x n T ax n bx n ax n bx n ay n by n ==+=+++=+故系统是线性系统。
假设输入为1()()x n x n m=-,则111[][()](31)(31)y n T x n x n x n m==+=+-又因为()(3()1)(313)y n m x n m x n m-=-+=+-很明显11()[()][()]()y n T x n T x n m y n m==-≠-,所以系统不是时不变系统.由系统的输入与输出关系可以看出,当0≥n时,()y n与将来时刻的输入)13(+nx有关,由因果系统的定义可知,该系统为非因果系统。
假设输入有界,即()xx n B≤<∞此时输出满足∞<≤+=xBnxny)13()(因此系统为稳定系统。
(6分)二、根据奈奎斯特定理可知,因为1()ax t的频谱中最高频率为,所以输出信号1()ay t无失真。
数字信号处理 (唐向宏 著) 浙江大学出版社 课后答案
kh
3− 1 −1 1 z )(1 − z −1 ) 4 3 5 −1 z 6 =
da
(3)稳定 (2)非因果稳定
(2)非因果
课
后 答
(3)时不变
(3)因果(n0>0) ;非因果(n0<0)
1 2 + 1 1 (1 − z −1 ) (1 − z −1 ) 4 3
w.
案 网
co
m
1 1 x(n) = [( ) n + 2( ) n ]u (n) 4 3 1 1 1 1 x(n) = ( ) n u (n) − 2( ) n u (−n − 1) < z< (2) 4 3 4 3 1 1 1 x(n) = [−( ) n − 2( ) n ]u (− n − 1) (2) z < 4 4 3 (1) z >
N=1
+∞
π
π
m
(4) x(n)=xa(nT)=2cos(100πn+π/2) 1-17:(c):{-2 1-22:(1)线性 1-23:(1)时变 1-24:(1)非因果 1-25:(1)稳定 5 0 -1}1
(2)线性 (2)时变
(3)线性
(2)稳定
1-26:(1)因果不稳定
1-27:y(n)=x(n)*h1(n)*[h1(n)+h2(n)]
-1
-1
ww
w.
kh
-2-
da
课
后 答
w.
-8 4 -1 -1 -1
案 网
co
-10 -10
m
第四章 4-1:
FFT:N log 2 N (复加)
N 512 log 2 N (复乘) 512 log 2 512(0.5s ) log 2 512(5s ) 2 2 13824 s 0.014 s
数字信号处理2.5zt
数字信号处理
第二章 时域离散信号和系统的频域分析
2)部分分式展开法
X ( z )为有理分式
分解
常用的ZT对
( n) 1
全z平面
常见的部分分式之和
利用
u ( n)
常用的 ZT 对分别求逆
组合
1 | z | 1 1 z 1 1 | z || a | a n u ( n) 1 1 az 1 n | z || a | a u (n 1) 1 1 az
将例1和例2进行比较,两者Z变换的函数表达式一样,但收敛域却不相 同,对应的原序列也不同,因此正确地确定收敛域是很重要。
例3: x(n) a ,其中
n
a
为实数,求其Z变换其收敛域。
n n n n a z a z n 0 1
解:
X ( z)
n
n a z n
6)初值定理 (因果序列) 7)终值定理 (因果序列)
x (0 )
lim
z
X (z)
lim
n
x (n ) x ( )
lim
z1
( Z 1) X ( z )
条件: ( Z 1) X ( z )的极点在单位圆内,或 ROC 含单位圆。
8)序列卷积
x(n ) y (n )
n
a nzn a nzn
n 1 n 0
1
az 1
如果 如果
z a
az 1 1 z a
za
1
a 1
a 1
a ,则ROC为圆环区域:
,则无ROC。
1)有限长序列
x(n) 0, n1 n n2
《数字信号处理》期末考试复习
《数字信号处理》期末考试复习题库一、选择题1。
δ(n)的z 变换是( A )。
A 。
1 B.δ(w) C 。
2πδ(w) D 。
2π2. )(ωj e H 以数字角频率ω的函数周期为( B ).A 。
2B 。
π2 C. j π2 D 。
不存在 3。
序列x (n)=cos ⎪⎭⎫⎝⎛n 8π3的周期为( C ) A 。
3 B 。
8 C.16D 。
不存在 4。
已知某序列Z 变换的收敛域为6〉|z |>4,则该序列为( D ) A 。
有限长序列 B.右边序列C.左边序列D.双边序列5. 线性移不变系统的系统函数的收敛域为|Z |〉5,则可以判断系统为( B ) A 。
因果稳定系统 B.因果非稳定系统C.非因果稳定系统D.非因果非稳定系统6. 下面说法中正确的是( B )A 。
连续非周期信号的频谱为非周期离散函数B 。
连续周期信号的频谱为非周期离散函数C.离散非周期信号的频谱为非周期离散函数D.离散周期信号的频谱为非周期离散函数7. 若离散系统为因果系统,则其单位取样序列( C )。
A. 当n 〉0时, h (n )=0B. 当n>0时, h(n)≠0C 。
当n<0时, h(n )=0D 。
当n<0时, h(n )≠08. 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs 与信号最高频率fm 关系为( A )。
A 。
fs ≥2fmB 。
fs ≤2fm C. fs ≥fm D. fs ≤fm9. 序列x (n )的长度为4,序列h (n )的长度为3,则它们线性卷积的长度和5 点圆周卷积的长度分别是( B ) 。
A. 5, 5B. 6, 5 C 。
6, 6 D. 7, 510。
若离散系统的所有零极点都在单位圆以内,则该系统为( A )。
A 。
最小相位超前系统 B. 最大相位超前系统C. 最小相位延迟系统 D 。
最大相位延迟系统11. 处理一个连续时间信号,对其进行采样的频率为3kHz ,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为( B )A 。
数字信号处理基础书后题答案中文版
Chapter 2 Solutions2.1 最小采样频率为两倍的信号最大频率,即44.1kHz 。
2.2 (a)、由ω = 2πf = 20 rad/sec ,信号的频率为f =3.18 Hz 。
信号的奈奎斯特采样频率为6.37 Hz 。
(b)、35000π=ω,所以f = 833.3 Hz ,奈奎斯特采样频率为1666.7 Hz 。
(c)、73000π=ω,所以f = 214.3 Hz ,奈奎斯特采样频率为428.6 Hz 。
2.3 (a) 12580001f 1T S S ===μs (b)、最大还原频率为采样频率的一半,即4000kHz 。
2.4 ω = 4000 rad/sec ,所以f = 4000/(2π) = 2000/π Hz ,周期T = π/2000 sec 。
因此,5个周期为5π/2000 = π/400 sec 。
对于这个信号,奈奎斯特采样频率为2(2000/π) = 4000/π Hz 。
所以采样频率为f S = 4(4000/π) = 16000/π Hz 。
因此5个周期收集的采样点为(16000/π samples/sec )(π/400 sec) = 40。
2.5 ω = 2500π rad/sec ,所以f = 2500π/(2π) = 1250 Hz ,T = 1/1250 sec 。
因此,5个周期为5/1250 sec 。
对于这个信号,奈奎斯特采样频率为2(1250) = 2500 Hz ,所以采样频率为f S = 7/8(2500) = 2187.5 Hz 。
采样点数为(2187.5 点/sec)(5/1250 sec) = 8.75。
这意味着在模拟信号的五个周期内只有8个点被采样。
事实上,对于这个信号来说,在整数的模拟周期中,是不可能采到整数个点的。
2.62.7 信号搬移发生在kf S ± f 处,换句话说,频谱搬移发生在每个采样频率的整数倍 (a) 采样频率满足奈奎斯特采样定理,所以没有混叠发生。