机械振动课程期终考试卷-答案.doc
机械振动习题及答案完整版.docx
1.1试举出振动设计'系统识别和环境预测的实例。
1.2如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3设有两个刚度分别为心,心的线性弹簧如图T-1.3所示,试证明:1)它们并联时的总刚度k eq为:k eq = k x+ k22)它们串联时的总刚度匕满足:丿-畔+ 土keq & k2解:1)对系统施加力P,则两个弹簧的变形相同为X,但受力不同,分别为: P x = k x x<由力的平衡有:P = ^ + P,=(k1+k2)xp故等效刚度为:k eq^- = k1+k2x2)对系统施加力P,则两个弹簧的变形为:P%i=r 111,弹簧的总变形为:x = x}+x2= P(——I ---- )故等效刚度为:k =—Xk x k2k,2+ k、1 1=—l-------k、k21.4求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为心, 解:对系统施加扭矩T,则两轴的转角为:VTrx系统的总转角为:0 = G + g = Hy- + T-)褊k,i故等效刚度为:犒=二+二1.5两只减振器的粘性阻尼系数分别为q, C2,试计算总粘性阻尼系数"在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P,则两个减振器的速度同为厂受力分别为:P{ - c x x<P2=C2X由力的平衡有:P=£ + E =(q+C2)Xp故等效刚度为:c eq=- = c]+c2X2)对系统施加力P,则两个减振器的速度为:p 1 1故等效刚度为:c eq=- = - + -1.6 一简谐运动,振幅为0. 5cm,周期为0.15s,求最大速度和加速度。
解:简谐运动的a>n= — = /5),振幅为5x10 3m ;= 5x10-cos(^_ 2/r即:—5x10'丽fsin(丽血/s)*610=(話讥。
期中考试练习题
期中考试练习题(电磁感应、交流电、传感器、机械振动、机械波)1.(2010年东城一模,17)图中两条平行虚线之间存在匀强磁场,虚线的距离为l ,磁场方向垂直纸面向里。
abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为l 。
t =0时刻,bc 边与磁场区域边界重合,如图所示。
现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域。
取沿a →b →c →d →a 的感应电流为正,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是A .B..2.(2010年东城一模,18)一列沿x 轴传播的简谐横波某时刻的波形图线如图中甲所示,若从此时刻开始计时,则A.若该波沿x 轴正方向传播,则图乙可能是a 质点的振动图线B .若该波沿x 轴正方向传播,则图乙可能是c 质点的振动图线C .若该波沿x 轴负方向传播,则图乙可能是b 质点的振动图线D .若该波沿x 轴负方向传播,则图乙可能是d 质点的振动图线3.(2010年西城一模,17)一理想变压器原、副线圈匝数比n 1∶n2 =5∶3。
原线圈两端接一正弦式交变电流,其电压u 随时间t 变化的规律如图所示。
当副线圈仅接入一个100Ω的纯电阻用电器时,用电器恰能正常工作。
则 A .该用电器的额定电压为100VB .该用电器的额定电压为602VC .变压器的输入功率是36WD .原线圈中的电流是0.60A4.(2010年西城一模,19)如图所示,空间存在一有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L 。
一个质量为m 、边长也为L 的正方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行。
t =0时刻导线框的上边恰好与磁场的下边界重合(图中位置Ⅰ),导线框的速度为v 0。
经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零。
此后,导线框下落,经过一段时间回到初始位置Ⅰ。
大学机械专业《大学物理(下册)》期中考试试题 含答案
5、光的吸收:在光的照射下,原子吸收光而从低能级跃迁到高能级的现象。
6、波函数:波函数是量子力学中用来描述粒子的德布罗意波的函数。
三、选择题(共10小题,每题2分,共20分)
1、B
2、B
3、D
4、C
5、C
6、B
7、B
8、C
9、A
10、一维保守力的势能曲线如图所示,则总能量 为 的粒子的运动范围为________;在 ________时,粒子的动能 最大; ________时,粒子的动能 最小。
二、名词解释(共6小题,每题2分,共12分)
1、瞬时速度:
2、玻尔兹曼分布律:
3、光的衍射现象:
4、波的干涉:
5、光的吸收:
6、波函数:
A.凸起,且高度为 / 4
B.凸起,且高度为 / 2
C.凹陷,且深度为 / 2
D.凹陷,且深度为 / 4
6、把理想气体的状态方程写成 恒量时,下列说法中正确的是( )。
A. 对一定质量的某种气体,在不同状态下,此恒量不等
B. 对摩尔数相同的不同气体,此恒量相等
C. 对不同质量的同种气体,此恒量相等
D. 以上说法都不对
10、C
四、解答题(共4小题,每题12分,共48分)
1、解:
2、解:
(1)外力做的功
(2)设弹力为 ,
(3)此力为保守力,因为其功的值仅与弹簧的始末态有关。
3、解:设a状态的状态参量为 ,则
∵ ∴ ∵ pc Vc =RTc ∴ Tc = 27T0
(1) 过程Ⅰ
过程Ⅱ
过程Ⅲ
(2)
4、解:
(1)开始转动的瞬间
最经典机械振动总结、试题及答案(全)
最经典机械振动总结、试题及答案(全)一、简谐运动(一)知识要点1.定义:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F = -kx⑴简谐运动的位移必须是指偏离平衡位置的位移。
也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。
⑵回复力是一种效果力。
是振动物体在沿振动方向上所受的合力。
⑶“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)⑷F=-kx 是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x 、回复力F 、加速度a 、速度v 这四个矢量的相互关系。
⑴由定义知:F ∝x ,方向相反。
⑵由牛顿第二定律知:F ∝a ,方向相同。
⑶由以上两条可知:a ∝x ,方向相反。
⑷v 和x 、F 、a 之间的关系最复杂:当v 、a 同向(即 v 、 F 同向,也就是v 、x 反向)时v 一定增大;当v 、a 反向(即 v 、 F 反向,也就是v 、x 同向)时,v 一定减小。
3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。
因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所须的时间。
⑴振幅A 是描述振动强弱的物理量。
(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的) ⑵周期T 是描述振动快慢的物理量。
(频率f =1/T 也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。
任何简谐振动都有共同的周期公式:km T π2=(其中m 是振动物体的质量,k 是回复力系数,即简谐运动的判定式F = -kx 中的比例系数,对于弹簧振子k 就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。
机械振动考试题和答案
机械振动考试题和答案一、单项选择题(每题2分,共20分)1. 简谐运动的振动周期与振幅无关,与()有关。
A. 质量B. 频率C. 弹簧常数D. 初始条件答案:C2. 阻尼振动中,振幅逐渐减小的原因是()。
A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:C3. 两个简谐运动合成时,合成运动的频率等于()。
A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:D4. 受迫振动的频率与()有关。
A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:A5. 阻尼振动中,阻尼系数越大,振动周期()。
A. 越大B. 越小C. 不变D. 无法确定答案:B6. 受迫振动中,当驱动力频率接近系统固有频率时,会发生()。
A. 共振B. 反共振C. 振动增强D. 振动减弱答案:A7. 简谐运动的振动周期与()成正比。
B. 频率C. 弹簧常数D. 质量的平方根答案:D8. 阻尼振动中,阻尼系数越小,振动周期()。
A. 越大B. 越小C. 不变D. 无法确定答案:C9. 受迫振动中,当驱动力频率等于系统固有频率时,振动的振幅()。
A. 最小C. 不变D. 无法确定答案:B10. 简谐运动的振动周期与()无关。
A. 质量B. 频率C. 弹簧常数D. 初始条件答案:D二、多项选择题(每题3分,共15分)11. 简谐运动的振动周期与以下哪些因素有关?()A. 质量C. 弹簧常数D. 初始条件答案:AC12. 阻尼振动中,振幅逐渐减小的原因包括()。
A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:CD13. 两个简谐运动合成时,合成运动的频率等于以下哪些选项?()A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:BD14. 受迫振动的频率与以下哪些因素有关?()A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:AB15. 阻尼振动中,阻尼系数越大,振动周期的变化情况是()。
长春市机械振动试题(含答案)
长春市机械振动试题(含答案)一、机械振动 选择题1.如图所示为某物体系统做受迫振动的振幅A 随驱动力频率f 的变化关系图,则下列说法正确的是A .物体系统的固有频率为f 0B .当驱动力频率为f 0时,物体系统会发生共振现象C .物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定D .驱动力频率越大,物体系统的振幅越大2.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( )A .p EB .12p EC .13p E D .14p E 3.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A .弹簧的弹性势能和物体动能总和不变B .物体在最低点时的加速度大小应为2gC .物体在最低点时所受弹簧的弹力大小应为mgD .弹簧的最大弹性势能等于2mgA4.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以t =0时刻作为计时起点,其振动图像如图所示,则A.t=14T时,货物对车厢底板的压力最大B.t=12T时,货物对车厢底板的压力最小C.t=34T时,货物对车厢底板的压力最大D.t=34T时,货物对车厢底板的压力最小5.如图所示是在同一地点甲乙两个单摆的振动图像,下列说法正确的是A.甲乙两个单摆的振幅之比是1:3B.甲乙两个单摆的周期之比是1:2C.甲乙两个单摆的摆长之比是4:1D.甲乙两个单摆的振动的最大加速度之比是1 :46.如图所示,固定的光滑圆弧形轨道半径R=0.2m,B是轨道的最低点,在轨道上的A点(弧AB所对的圆心角小于10°)和轨道的圆心O处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则()A.两小球同时到达B点B.A点释放的小球先到达B点C.O点释放的小球先到达B点D.不能确定7.如图所示,水平方向的弹簧振子振动过程中,振子先后经过a、b两点时的速度相同,且从a到b历时0.2s,从b再回到a的最短时间为0.4s,aO bO,c、d为振子最大位移处,则该振子的振动频率为()A.1Hz B.1.25HzC .2HzD .2.5Hz8.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示.不计空气阻力,g 取10m/s 2.对于这个单摆的振动过程,下列说法中不正确的是( )A .单摆的位移x 随时间t 变化的关系式为8sin(π)cm x t =B .单摆的摆长约为1.0mC .从 2.5s t =到 3.0s t =的过程中,摆球的重力势能逐渐增大D .从 2.5s t =到 3.0s t =的过程中,摆球所受回复力逐渐减小 9.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( )A .T =2πr GM lB .T =2πr l GMC .T =2πGM r lD .T =2πlr GM 10.悬挂在竖直方向上的弹簧振子,周期T=2s ,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是( )A .t=1.25s 时,振子的加速度为正,速度也为正B .t=1.7s 时,振子的加速度为负,速度也为负C .t=1.0s 时,振子的速度为零,加速度为负的最大值D .t=1.5s 时,振子的速度为零,加速度为负的最大值11.一简谐振子沿x 轴振动,平衡位置在坐标原点.0t =时刻振子的位移0.1m x =-;4s 3t =时刻0.1m x =;4s t =时刻0.1m x =.该振子的振幅和周期可能为( ) A .0.1 m ,8s 3 B .0.1 m, 8s C .0.2 m ,8s 3 D .0.2 m ,8s12.装有一定量液体的玻璃管竖直漂浮在水中,水面足够大,如图甲所示。
大学机械振动考试题目及答案
大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。
A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。
A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。
A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。
A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。
A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。
答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。
答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。
答案:线性9. 振动系统的动态响应可以通过______分析法求解。
答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。
答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。
答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。
在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。
12. 解释什么是阻尼振动,并说明其特点。
答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。
其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。
13. 描述什么是受迫振动,并给出其稳态响应的条件。
答案:受迫振动是指系统在周期性外力作用下的振动。
当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。
机械振动测试题及解析
机械振动测试题及解析1.[多选](2019·江苏高考)一单摆做简谐运动,在偏角增大的过程中,摆球的() A.位移增大B.速度增大C.回复力增大D.机械能增大解析:选AC在单摆的偏角增大的过程中,摆球远离平衡位置,故位移变大,速度变小,回复力变大,机械能保持不变,选项A、C正确。
2.[多选]关于简谐运动,以下说法正确的是()A.间隔一个周期的整数倍的两个时刻,物体的振动情况相同B.间隔半个周期的奇数倍的两个时刻,物体的速度和加速度可能同时相同C.半个周期内物体的动能变化一定为零D.一个周期内物体的势能变化一定为零E.经过一个周期质点通过的路程变为零解析:选ACD根据周期的定义可知,物体完成一次全振动,所有的物理量都恢复到初始状态,故选项A、D正确。
当间隔半个周期的奇数倍时,所有的矢量都变得大小相等、方向相反,且物体的速度和加速度不同时为零,故选项B错误,C正确。
经过一个周期,质点通过的路程为4A,选项E错误。
3.[多选]用弹簧将一物块悬挂于天花板上,使物块在竖直方向做简谐振动,其振动图像如图所示,则()A.该简谐振动的周期为2.0 sB.t=1.0 s时刻系统能量达到最小值C.t=1.0 s和t=2.0 s两个时刻物块动能相等D.t=0.5 s和t=1.5 s两个时刻弹簧的弹性势能相等E.t=0.5 s和t=1.5 s两个时刻物块的加速度均为最大值但不相同解析:选ACE由题图读出周期为T=2.0 s,故A正确。
物块做简谐运动的过程中系统的机械能守恒,各时刻的机械能都是相等的,故B错误。
由题图可知t=1.0 s和t=2.0 s两个时刻物块都在平衡位置,则两个时刻的动能相等且为最大值,故C正确。
由题图看出,t=0.5 s物块位于正的最大位移处,t=1.5 s时物块位于负的最大位移处,两时刻物块的位移大小相等、方向相反;由于物块在平衡位置时,弹簧处于拉长状态,所以t=0.5 s和t=1.5 s两个时刻弹簧的弹性势能不相等,故D错误。
物理机械振动考试题及答案
物理机械振动考试题及答案一、单项选择题(每题3分,共30分)1. 简谐运动的振动周期与振幅无关,与以下哪个因素有关?A. 质量B. 弹簧常数C. 初始位移D. 初始速度答案:B2. 阻尼振动中,振幅逐渐减小的原因是:A. 摩擦力B. 重力C. 弹力D. 空气阻力答案:A3. 以下哪个量描述了简谐运动的振动快慢?A. 振幅B. 周期C. 频率D. 相位答案:C4. 两个简谐运动的合成,以下哪个条件可以产生拍现象?A. 频率相同B. 频率不同C. 振幅相同D. 相位相反答案:B5. 以下哪个量是矢量?A. 位移B. 速度C. 加速度D. 以上都是答案:D6. 单摆的周期与以下哪个因素无关?A. 摆长B. 摆球质量C. 重力加速度D. 摆角答案:B7. 以下哪个量描述了简谐运动的能量?A. 振幅C. 频率D. 相位答案:A8. 以下哪个因素会影响单摆的周期?A. 摆长B. 摆球质量C. 摆角D. 重力加速度答案:A9. 阻尼振动中,振幅减小到原来的1/e时,经过的时间为:A. 1/2TB. TC. 2T答案:C10. 以下哪个现象不是简谐运动?A. 弹簧振子B. 单摆C. 弹簧振子的振幅逐渐减小D. 单摆的振幅逐渐减小答案:C二、填空题(每题4分,共20分)11. 简谐运动的周期公式为:T = 2π√(____/k),其中m为质量,k为弹簧常数。
答案:m12. 单摆的周期公式为:T = 2π√(L/g),其中L为摆长,g为重力加速度。
答案:L13. 阻尼振动的振幅公式为:A(t) = A0 * e^(-γt),其中A0为初始振幅,γ为阻尼系数,t为时间。
答案:A014. 简谐运动的频率公式为:f = 1/T,其中T为周期。
答案:1/T15. 简谐运动的相位公式为:φ = ωt + φ0,其中ω为角频率,t 为时间,φ0为初始相位。
答案:ωt + φ0三、计算题(每题10分,共50分)16. 一个质量为2kg的物体,通过弹簧连接在墙上,弹簧的弹簧常数为100N/m。
《机械振动》测试题(含答案)
《机械振动》测试题(含答案)一、机械振动选择题1.如图所示为某物体系统做受迫振动的振幅A随驱动力频率f的变化关系图,则下列说法正确的是A.物体系统的固有频率为f0B.当驱动力频率为f0时,物体系统会发生共振现象C.物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定D.驱动力频率越大,物体系统的振幅越大2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。
图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A、B、C、D,用刻度尺测出A、B间的距离为x1;C、D间的距离为x2。
已知单摆的摆长为L,重力加速度为g,则此次实验中测得的物体的加速度为()A .212()x x gLπ-B .212()2x x gLπ-C .212()4x x gLπ-D .212()8x x gLπ-4.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上做振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A .弹簧的弹性势能和物体动能总和不变B .物体在最低点时的加速度大小应为2gC .物体在最低点时所受弹簧的弹力大小应为mgD .弹簧的最大弹性势能等于2mgA5.在“用单摆测定重力加速度”的实验中,用力传感器测得摆线的拉力大小F 随时间t 变化的图象如图所示,已知单摆的摆长为l ,则重力加速度g 为( )A .224l tπB .22l t πC .2249l t πD .224l tπ6.如图所示的弹簧振子在A 、B 之间做简谐运动,O 为平衡位置,则下列说法不正确的是( )A .振子的位移增大的过程中,弹力做负功B .振子的速度增大的过程中,弹力做正功C .振子的加速度增大的过程中,弹力做正功D .振子从O 点出发到再次回到O 点的过程中,弹力做的总功为零7.质点做简谐运动,其x —t 关系如图,以x 轴正向为速度v 的正方向,该质点的v —t 关系是( )A .B .C .D .8.某质点做简谐运动,其位移随时间变化的关系式为5sin 4x t π=(cm) ,则下列关于质点运动的说法中正确的是( )A .质点做简谐运动的振幅为 10cmB .质点做简谐运动的周期为 4sC .在 t=4s 时质点的加速度最大D .在 t=4s 时质点的速度最大9.如图所示,质量为A m 的物块A 用不可伸长的细绳吊着,在A 的下方用弹簧连着质量为B m 的物块B ,开始时静止不动。
机械振动学(参考答案).docx
机械振动学试题(参考答案)一、判断题:(对以下论述,正确的打“J”,错误的打“X”,每题2 分,共20分)1、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。
(丁)2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。
(X)3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。
(丁)4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。
(X)5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。
(X)6、当初始条件为零,即*产;=0时,系统不会有自由振动项。
(X)7、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。
(丁)8、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。
(X )9、隔振系统的阻尼愈大,则隔振效果愈好。
(X)10、当自激振动被激发后,若其振幅上升到一定程度并稳定下来,形成一种稳定的周期振动,则这种振幅自稳定性,是由于系统中的某些非线性因素的作用而发生的。
(J)二、计算题:1、一台面以f频率做垂直正弦运动。
如果求台面上的物理保持与台面接触,则台面的最大振幅可有多大?(分)解:台面的振动为:x = X sin(tyZ - cp)x = —a>2X sin(or —cp)最大加速度:无max = "X如台面上的物体与台面保持接触,贝U :九《=g (9・81米/秒2)。
所以,在f 频率(/=仝)时,最大振幅为:2nX max =x< g/4^72= 9.81/4* 严(米)2、质量为ni 的发电转子,它的转动惯量J 。
的确定采用试验方法:在转子经向Ri 的 地方附加一小质量mi 。
试验装置如图1所示,记录其振动周期。
机械振动与机械波部分往年期中考试真题
取(π2=10)则:
4、有一摆长为 L 的单摆,悬点正下方某处有一小钉 悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时 当摆球经过平衡位置向左摆动时,摆 线的上部被小钉挡住,使摆长发生变化 使摆长发生变化,现使摆球做小幅度摆动,摆球从 右边最高点 M 至 左边最高点 N 运动过程的闪光照片如图所示 (悬点和小钉未被摄入) 。 P 为摆动中的最低点 为摆动中的最低点, 已知每相邻两次闪光的时间间隔相等 已知每相邻两次闪光的时间间隔相等,由此 可知,小钉与悬点间的距离为( ( 3 A. L 4 1 C. L 4 【答案】C 设 每 相 邻 两 次 闪 光 的 时 间 间 隔 为 t, 则 摆 球 在 右 侧 摆 动 的 周 期 为 T 1=8t, 在 左 侧 B. 1 L 2 )
机械振动与机械波部分往年期中考试真题 单摆 1、如图,弹簧振子以O点为平衡位置做简谐运动 点为平衡位置做简谐运动 ,并从O点开始计时,振子第一次到达 振子第一次到达 M 点用了 0.3s 时间,又经过 0.2s 第二次通过 M 点, 则振子第三次通过 M 点, ,还要通过的时间 可能是: ( A. 1 s
3
)
B
O M
A
B.8 sຫໍສະໝຸດ 15C.1.4s; D.1.6s 【答案】AC
2、质量为 m 的木块放在弹簧上,弹簧在竖直方向作简谐振动,当振幅为 的木块放在弹簧上 A 时,物体 时 对弹簧压力的最大值是物体重量的 1.5 倍,物体对弹簧的最小压力是 使物体在振动中不离开弹簧 使物体在振动中不离开弹簧,振幅不能超过 【答案】0.5mg,2A 。欲
震源
7、两列简谐波在同一种介质中传播时发生了干涉现象,则 A B C 在振动加强区域,质点的位移总比振动减弱区域质点的位移大 在振动加强区域,质点的振幅总比振动减弱区域质点的振幅大 在振动加强区域,质点的位移随时间作周期性变化
机械振动试题与答案.docx
1.一个机器内某零件的振动规律为x=0.5sinwt+0.3coswt, x的单位是cm, w=10pei 1/s.这个振动是否简谐振动,求出它的振幅,最大速度,最大加速度,并用旋转矢量表示三者之间的关系(10分)2.如图所示不计质量的杠杆系统,求坐标x的等效质量和等效刚度(10分)解(I)按能就法系统的幼能及势■能分别为T~ \ S ;z + 十叭(j x ) Z 乙> » I z=;3 + #血)>匕、、I i 'U=捉,/+ 捉(:J=2 S * 5因此简化后的弹黄质反系统的等效质用及等效刚度为M上A.虬二 + / ; m? .K,-加+ 'E设使系统在X坐标上产生单位位移需要施加力P,则在弹簧加及奴处将有图2 W)所示的弹性恢复力,对支点取矩有3.质量弹簧系统,W=150N,而=lcm,*l=0.8cm,A21=0.16cm 。
求阻尼系数 c 。
(10 分)解:_A_=. ..h^=(e nT d yo 1 A R 1 0.8 _(〃皿)20 麻一 * )i T _ 2。
奂“2 勿 1115=20奂“写= --- ,由于,很小,ln5«40^ =0.122(N-s/cm)4. 电机转速1760 W 分,由于未很好平衡,产生不平衡力70公斤使支座振动,支座弹簧常 数11000公斤/厘米,配有阻尼装置,其c=35公斤/厘米,电机重300公斤。
求:振幅,无 阻尼时的振幅,固有频率fn 。
(15分)解:激振力频率co = ------ x 1760 = 184 弧度/秒60于是 P 70 B=°, , = =0.0108 cm+(E T J(11000-|^X 1 842 )2 +352 xl 842 当c=o 时, 70 B ' = --------------- — ---------------- = 0.109 cm11000 ---------- x 184 2 981可见,由于阻尼的存在使振幅下降为原来的l/10o它与激振力频率1760转/分很接近。
机械振动测试卷(含答案)
高二物理3-4机械振动一.选择题(本题共10小题,每题4分,满分40分。
每题所给的选项中,有的只有一个是正确的,有的有几个是正确的。
将正确选项的序号选出填入后面表格中。
全部选对的得4分,部分选对的得2分,有错选或不选的得0分)1.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中,逐渐增大的物理量是( )A 、振子所受的回复力B 、振子的位移C 、振子的速度D 、振子的加速度2.图1表示一个弹簧振子作受迫振动时的振幅与驱动力频率之间的关系,由此可知( )A .振子振动频率为f 2时,它处于共振状态B .驱动力的频率为f 3时,振子振动的频率为f 2C .假如撤去驱动力让振子作自由振动,它的频率是f 3D .振子作自由振动时,频率可以是f 1、f 2、f 33.当摆角很小时(<100),单摆的振动是简谐运动,此时单摆振动的回复力是( ) A .摆球重力与摆线拉力的合力 B .摆线拉力沿圆弧切线方向的分力C .摆球重力、摆线拉力及摆球所受向心力的合力D .摆球重力沿圆弧切线方向的分力4.如图2所示,是一个单摆(θ<5o),其周期为T ,则下列正确的说法是( ) A .把摆球的质量增加一倍,其周期变小B .把摆角变小时,则周期也变小C .此摆由O →B 运动的时间为T/4D .摆球B →O 时,动能向势能转化 5.一质点做简谐运动,先后以相同的速度依次通过A 、B 两点,历时1s ,质点通过B 点后再经过1s 又第2次通过B 点,在这两秒钟内,质点通过的总路程为12cm ,则质点的振动周期和振幅分别为( )A .3s ,6cmB .4s ,6cmC .4s ,9cmD .2s ,8cm6.一个弹簧振子在光滑的水平面上作简谐运动,其中有两个时刻弹簧对振子的弹力大小相等,但方向相反,那么这两个时刻弹簧振子的( )A .速度一定大小相等,方向相反B .加速度一定大小相等,方向相反C .位移一定大小相等,方向相反D .以上三项都不一定大小相等,方向相反7.水平方向做简谐运动的弹簧振子,其质量为m,最大速率为v,则下列说法中正确的是( )A .振动系统的最大弹性势能为21mv 2B .当振子的速率减为2v时,此振动系统的弹性势能为42mvC .从某时刻起,在半个周期内,弹力做的功可能不为零D .从某时刻起,在半个周期内,弹力做的功一定为21mv 2 8.如图3表示质点做简谐运动的图象,则以下说法中正确的是( )A .t 1、t 2时刻的速度相同B.从t 1到t 2这段时间内,速度和加速度方向是相同的C.从t 2到t 3这段时间内,速度变大,加速度变小D.t 1、t 3时刻的速度大小是相同的。
机械振动试题(含答案)
机械振动试题(含答案)一、机械振动 选择题1.做简谐运动的水平弹簧振子,振子质量为m ,最大速度为v ,周期为T ,则下列说法正确的是( ) A .从某时刻算起,在2T的时间内,回复力做的功一定为零 B .从某一时刻算起,在2T的时间内,速度变化量一定为零 C .若Δt =T ,则在t 时刻和(t +Δt )时刻,振子运动的速度一定相等 D .若Δt =2T,则在t 时刻和(t +Δt )时刻,弹簧的形变量一定相等 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2π2L g D .C 的周期为2π1L g3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A 56T B 65TC .摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2πrGMlB .T =2πrl GM C .T =2πGMr lD .T =2πlr GM5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
物理机械振动考试题及答案
物理机械振动考试题及答案一、选择题1. 简谐振动的频率与振幅无关,这是由什么决定的?A. 振子的质量B. 振子的弹性系数C. 振子的阻尼D. 振子的初始条件答案:B2. 在阻尼振动中,振幅随时间如何变化?A. 保持不变B. 逐渐减小C. 逐渐增大D. 先增大后减小答案:B3. 以下哪个不是简谐振动的特点?A. 周期性B. 振幅不变C. 频率恒定D. 振子质量不变答案:D4. 什么是共振现象?A. 振子的振动频率等于系统固有频率时的现象B. 振子的振幅达到最大时的现象C. 振子的振动频率等于外部驱动频率时的现象D. 振子的振动频率等于外部阻尼频率时的现象答案:A5. 以下哪个公式描述了简谐振动的位移?A. \( x = A \sin(\omega t + \phi) \)B. \( x = A \cos(\omega t + \phi) \)C. \( x = A \tan(\omega t + \phi) \)D. \( x = A \sec(\omega t + \phi) \)答案:B二、填空题6. 一个物体在水平面上做简谐振动,其振动周期 \( T \) 与振动频率 \( f \) 的关系是 \[ T = \frac{1}{f} \]。
7. 阻尼振动中,振幅随时间的衰减速度与振子的________成正比。
8. 共振现象中,振子的振动频率等于系统的________频率。
9. 简谐振动的位移公式中,\( \omega \) 表示________,\( \phi \) 表示________。
10. 阻尼振动的振幅随时间的衰减可以表示为 \( A(t) = A_0 e^{-\alpha t} \),其中 \( \alpha \) 表示________。
三、简答题11. 简述什么是阻尼振动,并说明其振幅随时间的变化趋势。
答案:阻尼振动是指在振动过程中,由于存在阻力(如空气阻力、摩擦力等),振子的振动能量逐渐减小,导致振幅逐渐减小的振动。
机械振动试题(含答案)
机械振动试题(含答案)一、机械振动选择题1.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值2.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h3.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。
物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。
图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A、B、C、D,用刻度尺测出A、B间的距离为x1;C、D间的距离为x2。
已知单摆的摆长为L,重力加速度为g,则此次实验中测得的物体的加速度为()A .212()x x gL π-B .212()2x x gL π-C .212()4x x gLπ-D .212()8x x gLπ-4.如图所示是扬声器纸盆中心做简谐运动的振动图象,下列判断正确的是A .t =2×10-3s 时刻纸盆中心的速度最大B .t =3×10-3s 时刻纸盆中心的加速度最大C .在0〜l×10-3s 之间纸盆中心的速度方向与加速度方向相同D .纸盆中心做简谐运动的方程为x =1.5×10-4cos50πt (m )5.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。
湖北省沙市中学《机械振动》测试题(含答案)
湖北省沙市中学《机械振动》测试题(含答案)一、机械振动选择题1.如图所示为某物体系统做受迫振动的振幅A随驱动力频率f的变化关系图,则下列说法正确的是A.物体系统的固有频率为f0B.当驱动力频率为f0时,物体系统会发生共振现象C.物体系统振动的频率由驱动力频率和物体系统的固有频率共同决定D.驱动力频率越大,物体系统的振幅越大2.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。
已知弹簧的劲度系数为k,则下列说法中正确的是()A.细线剪断瞬间A的加速度为0B.A运动到最高点时弹簧弹力为mgC.A运动到最高点时,A的加速度为gD.A振动的振幅为2mg k3.如图所示,弹簧下面挂一质量为m的物体,物体在竖直方向上做振幅为A的简谐运动,当物体振动到最高点时,弹簧正好处于原长,弹簧在弹性限度内,则物体在振动过程中A.弹簧的弹性势能和物体动能总和不变B.物体在最低点时的加速度大小应为2gC.物体在最低点时所受弹簧的弹力大小应为mgD.弹簧的最大弹性势能等于2mgA4.如图甲所示,一个有固定转动轴的竖直圆盘转动时,固定在圆盘上的小圆柱带动一个T形支架在竖直方向振动,T形支架的下面系着一个由弹簧和小球组成的振动系统.圆盘静止时,让小球做简谐运动,其振动图像如图乙所示.圆盘匀速转动时,小球做受迫振动.小球振动稳定时.下列说法正确的是( )A .小球振动的固有频率是4HzB .小球做受迫振动时周期一定是4sC .圆盘转动周期在4s 附近时,小球振幅显著增大D .圆盘转动周期在4s 附近时,小球振幅显著减小5.质点做简谐运动,其x —t 关系如图,以x 轴正向为速度v 的正方向,该质点的v —t 关系是( )A .B .C .D .6.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议,可行的是( ) A .适当加长摆线B .质量相同,体积不同的摆球,应选用体积较大的C .单摆偏离平衡位置的角度要适当大一些D .当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期7.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示.不计空气阻力,g 取10m/s 2.对于这个单摆的振动过程,下列说法中不正确的是( )A .单摆的位移x 随时间t 变化的关系式为8sin(π)cm x tB .单摆的摆长约为1.0mC .从 2.5s t =到 3.0s t =的过程中,摆球的重力势能逐渐增大D .从 2.5s t =到 3.0s t =的过程中,摆球所受回复力逐渐减小8.如右图甲所示,水平的光滑杆上有一弹簧振子,振子以O 点为平衡位置,在a 、b 两点之间做简谐运动,其振动图象如图乙所示.由振动图象可以得知( )A .振子的振动周期等于t 1B .在t =0时刻,振子的位置在a 点C .在t =t 1时刻,振子的速度为零D .从t 1到t 2,振子正从O 点向b 点运动9.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中( )A .甲的最大速度大于乙的最大速度B .甲的最大速度小于乙的最大速度C .甲的振幅大于乙的振幅D .甲的振幅小于乙的振幅 10.如图所示,将可视为质点的小物块用轻弹簧悬挂于拉力传感器上,拉力传感器固定于天花板上,将小物块托起一定高度后释放,拉力传感器记录了弹簧拉力F 随时间t 变化的关系如图所示。
机械振动试题(含答案)(1)
18.铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就会受到一次冲击.由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动.普通钢轨长为12.6m,列车固有振动周期为0.315s.下列说法正确的是( )
(3)他以摆长(L)为横坐标、周期的二次方(T2)为纵坐标作出了T2-L图线,由图象测得的图线的斜率为k,则测得的重力加速度g=_________.(用题目中给定的字母表示)
(4)小俊根据实验数据作出的图象如图所示,造成图象不过坐标原点的原因可能是_________.
24.将一单摆装置竖直悬挂于某一深度为h(未知)且开口向下的小筒中(单摆的下部分露于筒外),如图(甲)所示,将悬线拉离平衡位置一个小角度后由静止释放,设单摆振动过程中悬线不会碰到筒壁,如果本实验的长度测量工具只能测量出筒的下端口到摆球球心间的距离 ,,并通过改变 而测出对应的摆动周期T,再以T2为纵轴、 为横轴做出函数关系图象,就可以通过此图象得出小筒的深度h和当地重力加速度g.
机械振动试题(含答案)(1)
一、机械振动选择题
1.如图所示,物块M与m叠放在一起,以O为平衡位置,在 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x随时间t的变化图像如图,则下列说法正确的是( )
A.在 时间内,物块m的速度和所受摩擦力都沿负方向,且都在增大
B.从 时刻开始计时,接下来 内,两物块通过的路程为A
A.t0时刻弹簧弹性势能最大B.2t0站时刻弹簧弹性势能最大
C. 时刻弹簧弹力的功率为0D. 时刻物体处于超重状态
13.如图所示为某物体系统做受迫振动的振幅A随驱动力频率f的变化关系图,则下列说法正确的是
西藏自治区拉萨中学《机械振动》测试题(含答案)
西藏自治区拉萨中学《机械振动》测试题(含答案)一、机械振动选择题1.如图所示,一个弹簧振子在A、B两点之间做简谐运动,其中O为平衡位置,某时刻物体正经过C点向上运动,速度大小为v c,已知OC=a,物体的质量为M,振动周期为T,则从此时刻开始的半个周期内A.重力做功2mgaB.重力冲量为mgT 2C.回复力做功为零D.回复力的冲量为02.如图所示的单摆,摆球a向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a球摆动的最高点与最低点的高度差为h,摆动的周期为T,a球质量是b球质量的5倍,碰撞前a球在最低点的速度是b球速度的一半.则碰撞后A 5 6 TB 6 5 TC.摆球最高点与最低点的高度差为0.3hD.摆球最高点与最低点的高度差为0.25h3.如图所示,质量为m的物块放置在质量为M的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T,振动过程中m、M之间无相对运动,设弹簧的劲度系数为k、物块和木板之间滑动摩擦因数为μ,A.若t时刻和()t t+∆时刻物块受到的摩擦力大小相等,方向相反,则t∆一定等于2T的整数倍B.若2Tt∆=,则在t时刻和()t t+∆时刻弹簧的长度一定相同C.研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力D.当整体离开平衡位置的位移为x时,物块与木板间的摩擦力大小等于mkxm M+4.某质点做简谐运动,其位移随时间变化的关系式为5sin4x tπ=(cm) ,则下列关于质点运动的说法中正确的是( )A.质点做简谐运动的振幅为 10cm B.质点做简谐运动的周期为 4sC.在 t=4s 时质点的加速度最大D.在 t=4s 时质点的速度最大5.沿某一电场方向建立x轴,电场仅分布在-d≤x≤d的区间内,其电场场强与坐标x的关系如图所示。
规定沿+x轴方向为电场强度的正方向,x=0处电势为零。
一质量为m、电荷量为+q的带点粒子只在电场力作用下,沿x轴做周期性运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R )
&&
ka
g
2ቤተ መጻሕፍቲ ባይዱ
2
I
PR2
即:
ka(rad/s),故T
2
g
(s)
2
n
PR2
n
ka
I
g
、(19分)图2所示为3自由度无阻尼振动系统,
kt 1kt 2kt 3kt 4k,I1I2/ 5 I3I。
1)求系统的质量矩阵和刚度矩阵和频率方程;
(6分)
2)求出固有频率;
(7分)
3)求系统的振型,并做图。
9.多自由度振动系统微分方程可能存在惯性耦合、刚度耦合和黏性耦合三种耦合情况。(本
小题3分)
二、简答题
1、什么是机械振动?振动发生的内在原因是什么?外在原因是什么?
答:机械振动是指机械或结构在它的静平衡位置附近的往复弹性运动。
振动发生的内在原因是机械或结构具有在振动时储存动能和势能,而且释放动能和势能并能使动能和
U2
keq
2
2
2
令ET1
ET 2,可得等效转动惯量为:
Ieq
I1i2
I2
令U1
U2,可得等效转动惯量为:
kteq
kt1i2
kt 2
6.已知某单自由度系统自由振动微分方程为
x
n
2x
0
,则其自由振动的振幅为
x(0)
x0
, x(0) x0
2
A
x02x0
,初相角
arctg
x0
n
。(本小题4分)
n
x0
7.已知库仑阻尼产生的摩擦阻力
R与a均已知。
1)写出系统的动能函数和势能函数;(5分)
2)求系统的运动方程; (4分)
2)求出系统的固有频率。(5分)
解:取轮的转角
为坐标,顺时针为正,系统平衡时
0,则当轮子有
转角时,系统有:
1
2
1 P
&
21
P
2
2
ET
I
&
( I
R
)
&
2 g
( R)
g
2
2
U1k( a)2
2
由d(ETU )
P
2
2
2
0
2
kt 2(
1
2)
2
kt 3
(2
3)
2kt 4 3
1(kt 1
kt 2)12
1(kt 2
kt 3)22
1(kt 3kt 4)32
kt 2 1 2kt 3 2 3
2
2
2
求偏导也可以得到
M
, K
。
2)设系统固有振动的解为:
1
u1
,代入(a)可得:
u2
2
cos t
3
u3
u1
(b)
( K
2
)
u2
0
M
u3
得到频率方程:V(2)
一、填空题
1、机械振动按不同情况进行分类大致可分成(线性振动 )和非线性振动; 确定性振动和 (随机振动 );
(自由振动 )和强迫振动。
2、周期运动的最简单形式是(简谐运动 ),它是时间的单一(正弦)或( 余弦 )函数。
3、单自由度系统无阻尼自由振动的频率只与(质量 )和( 刚度 )有关,与系统受到的激励无关。
2k
2I
k
0
k
2k
42I
k
0
0
k
2k
2I
即:V(2)(2 k2I )(4 I2410kI22k2)0
解得:
2
(5
17)k和
4
I
所以:
1
(5
17)k
4I
将(c)代入(b)可得:
2
2
2k
I
2
k
3
(
5
17 k
(c)
m
4
)
I
2k
5
17
kg
k
0
(
)
I
4
I
u1
(5
17)kg4I
k
2k
k
u20
4
I
u3
2k (5
0
1.振动基本研究课题中的系统识别是指根据已知的激励和响应特性分析系统的性质,并可得到振动系统的全部参数。 (本小题2分)
2.振动按激励情况可分为自由振动
和
强迫振动
两类。(本小题2分)。
3.图(a)所示n个弹簧串联的等效刚度
k
1
;图(b)所示n个粘性阻尼串联的等效粘
n
1
i 1
ki
性阻尼系数Ce
1
。(本小题3
4
0
;
所以:
0
0
I3
0
0
1
kt 1
kt 2
kt 2
0
2
1 0
K
kt 2
kt2
kt 3
kt3
k 1 2
1
0
kt 3
kt3
kt 4
0
1 2
&
系统运动微分方程可写为:
1
1
(a)
M
&
K
2
2
0
&
3
3
或者采用能量法:系统的动能和势能分别为
ET
1
&2
1
&2
1
&2
2
I1 1
I2 2
I
3 3
2
2
1
2
1
2
1
2
1
2
U
2kt 1 1
答:如果系统的第j个自由度沿其坐标正方向有一个单位位移,其余各个自由度的位移保持为零,为
保持系统这种变形状态需要在各个自由度施加外力,其中在第i个自由度上施加的外力就是kij。
1、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。
答:实际阻尼是度量系统消耗能量的能力的物理量,阻尼系数c是度量阻尼的量;临界阻尼是
1
X0
n
ln
Xn
式中:Xn是经过n个循环后的振幅。并计算阻尼系数
0.01时,振幅减小到
50%以下所需
的循环数。
解:对数衰减率为相隔两个自然周期的两个振幅之比的自然对数,所以:
lnX0
lnX0
X1
Xn 1
lnX0
lnX1
lnXn 1
n
Xn
X1
X2
Xn
X1
X2
Xn
1
X0
所以:
ln
n
Xn
单自由度系统阻尼自由振动的响应为:
K1
与K2的总刚度:
K1K2
2)系统总刚度:
K
1K2
K3
K12
K
K1K2
K1
K2
3)系统固有频率:
K1K2
K3
K
K1
K2
(也可用能量法,求得系统运动方程,即可得其固有频率
)
I
I
、(14分)如图所示,轮子可绕水平轴转动,对转轴的转动惯量为
I,轮缘绕有软绳,下端挂有重量为P
的物体,绳与轮缘之间无滑动。在图示位置,由水平弹簧维持平衡。半径
1:3 17:1)
4
系统的三阶振型如图:
、(14分)如图所示中,两个摩擦轮可分别绕水平轴O1,O2转动,无相对滑动;摩擦轮的半径、质量、
转动惯量分别为
11
1和
2
2
2。轮2的轮缘上连接一刚度为
k
的弹簧,轮
1的轮缘上有软绳悬
r、m、I
r
、m、I
挂质量为m的物体,求:
1)系统微振的固有频率;(10分)
2)系统微振的周期; (4分)。
值之间的关系。而周期振动可以通过方程的求解,由初始条件确定未来任意时刻系统的状态。
三、计算题(45分)
、(12
分)如图
1所示的扭转系统。系统由转动惯量
I、扭转刚度由
K1、K2、K3组成。
1)求串联刚度K1与K2的总刚度(3分)
2)求扭转系统的总刚度(3分)
3)求扭转系统的固有频率(6分)。
1)串联刚度
2
dn1;
共振的角度看,随着系统能力的增加、增幅和速度增加,阻尼消耗的能量也增加,当阻尼消耗能力与
系统输入能量平衡时,系统的振幅不会再增加,因此在有阻尼系统的振幅并不会无限增加。
3、简述无阻尼多自由度系统振型的正交性。
答:属于不同固有频率的振型彼此以系统的质量和刚度矩阵为权正交。
其数学表达为: 如果当r s
{ us}T[ M ]{ ur} 0
时,
r
s,则必然有
{ us}T[ K ]{ ur} 0。
4、用数学变换方法求解振动问题的方法包括哪几种?有什么区别?
答:有傅里叶变换方法和拉普拉斯变换方法两种。
前者要求系统初始时刻是静止的,即初始条件为零;后者则可以计入初始条件。
5、简述刚度矩阵[K]中元素kij的意义。
2、在离散系统中,弹性元件储存(势能),惯性元件储存(动能),(阻尼)元件耗散能量。
4、叠加原理是分析(线性)系统的基础。
5、系统固有频率主要与系统的(刚度)和( 质量)有关,与系统受到的激励无关。
6、系统的脉冲响应函数和(频响函数)函数是一对傅里叶变换对,和(传递函数)函数是一对拉
普拉斯变换对。
7、机械振动是指机械或结构在平衡位置附近的(往复弹性)运动。