流体力学与传热课件Heat-Exchange Equipment
合集下载
流体力学与传热学ppt课件
动(泵、风机等)
2) 流动状态
h紊流 h层流
层流运动:流体微团沿着主流方向做有规 则的分层运动
湍流运动:流体质点做复杂无规则的运动
3) 流体有无相变
h相变 h单相
单相换热:流体显热的变化实现对流换热中的热量
变换
相变换热:在有相变的换热过程中,流体相变热
(潜热)的释放或吸收常常其主要作用
4) 换热表面的几何因素
换热表面的形状,大小,换热表面与流体运动方向的相对位置以及换热表 面的状态(光滑或粗糙)
5) 流体的物理性质 流体的热物理性质对换热的影响很大: 热导率λ ;密度ρ;比热容c ; 动力粘度η ;运动粘度ν ;体胀系数β 综上所述,表面传热系数是众多因素的函数
h f (v, tw , t f , , cp , , ,, l)
在稳定的状态下 壁面与流体之间的对流传热量就等于贴壁处静止流体层的导热量
hx
tw
t
t y
w
,
x
对流传热过程微分方程式
hx取决于流体热导率、温度差和贴壁的温度梯度
要求解一个对流换热问题,获得该问题的对流传热系数或交换的热流量
获得流场的温度分布,即温度场
确定壁面上的温度梯度
计算出在参考温差下的对流传热系数
温度梯度或温度场取决于流体热物性、流动状态(层流或湍流)、流速的大 小及其分布、表面粗糙度等。
温度场取决于流场
§8.2 对流传热问题的数学描写
1、假设条件
为简化分析,对于影响常见对流换热问题的主要因素,做如下假设:
1) 流动是二维的; 2) 流体为不可压缩的牛顿型流体; 3) 流体物性为常数,无内热源;
流体力学与传热电子教案--chapter10
t-Δt
t
t+Δt
Q
dA n
温度梯度是一个点的概念。
温度梯度是一个向量。 方向垂直于该点所在等温面,以温度增加的方向为正
Basic law of conduction
Fourier’s law (傅立叶定律)
dq = −k ∂T dA ∂n
(10-1)
negative --- gradient is opposite that of
Heat transfer by conduction Equal temperature surface 等温面
在同一时刻,温度场中所有温度相同的点组成的面。
★不同温度的等温面不相交
等温
t1
面
t2
Q
t1>t2
temperature gradient 温度梯度
r grad t
=
lim
Δt
=
∂t
Δn→0 Δn ∂n
Chapter10. Heat transfer by conduction Basic conception
¾Steady-state conduction 稳态导热
( ) Ttimhtee=,tceamnfpbexera,thtyuer,fezuanrcetiionn∂∂dθtoepf=epn0odsietniotnof,
对流--- 流体内部质点发生相对位移的热量传递过程
Newton’s law of cooling
q A
=
h(ts
−
t
f
)
h---heat transfer coefficient
ts--- surface temperature
流体力学与传热课件Principles of Heat Flow in Fluids
4.3 Principles of Heat Flow in Fluids
• Heat transfer from a warmer fluid to a cooler fluid, usually through a solid wall separating the two fluids, is common in chemical engineering practice.
mh c ph (T t ) mcc pc (t2 t1 ) (4.3-7)
4.3.3 Heat Flux and HeatTransfer Coefficients
Heat flux
In many types of heat-transfer equipment the transfer surfaces are constructed from tubes.
The two fluids enter at different ends of the exchanger and pass in opposite directions through the unit.
It is called counterflow or countercurrent flow. The temperature-length curves for this case shown in figure.
Temp of condensing vapor T
Δt2 Δt Δt1
Length of tube L
Double-tube heat exchanger
It is assembled of standard metal pipe and standarized return bends and return heads. shown in figure.
• Heat transfer from a warmer fluid to a cooler fluid, usually through a solid wall separating the two fluids, is common in chemical engineering practice.
mh c ph (T t ) mcc pc (t2 t1 ) (4.3-7)
4.3.3 Heat Flux and HeatTransfer Coefficients
Heat flux
In many types of heat-transfer equipment the transfer surfaces are constructed from tubes.
The two fluids enter at different ends of the exchanger and pass in opposite directions through the unit.
It is called counterflow or countercurrent flow. The temperature-length curves for this case shown in figure.
Temp of condensing vapor T
Δt2 Δt Δt1
Length of tube L
Double-tube heat exchanger
It is assembled of standard metal pipe and standarized return bends and return heads. shown in figure.
《热工与流体力学基础》课件第十三章 对流换热
Nu f (Re, Pr)
m n
升力的影响较大, Re的影响可忽略
其指数函数形式为 Nu CRe Pr
上式称为准则关联式,其中C、m、n为常数,均由不 同情况时的具体条件进行实验测定后,再由该式计算表面 传热系数h。
表面传热系数的一般关联式
在使用准则关联式确定表面传热系数h时,必须注意: 1.应用范围 即建立准则关联式时的实验范围,一般指Re、Pr、 Gr的数值范围,使用时不能超出该范围。 2.定性温度 确定准数中流体物性所依据的温度就是定性温度。 其确定方法不尽相同。 3.特征尺寸
本章难点
1.对流换热过程的分析比较抽象,较难理解。学习中结合 对流换热的流动状况和温度分布图会有较为直观的理 解。 2.无因次准数的含义比较抽象,较难理解。学习中应重点 掌握无因次准数的计算方法。 3.应用准则关联式求解表面传热系数需要一定的技巧,有 一定的难度。应注意公式的适用范围,定性温度和特 征尺寸的选取,并应结合例题与习题加强练习。
h
5~12 12~100
对流换热方式
高压水蒸气强制对流 水沸腾
h
500~3500 600~50000
水自然对流
水强制对流
200~1000
1000~15000
蒸汽膜状凝结
蒸汽珠状凝结
4500~18000
45000~140000
四、影响表面传热系数的主要因素
1.流体流动的起因
影响流体的速度分布 。 一般来说,强制对流的流速比自然对流高,因而表面 传热系数也高。
一、表面传热系数的一般关联式
流体无相变时对流换热的表面传热系数可表示为
h f v, t , , cp , , , V , l ,
经分析,可得流体无相变时对流换热的准数关系式为
m n
升力的影响较大, Re的影响可忽略
其指数函数形式为 Nu CRe Pr
上式称为准则关联式,其中C、m、n为常数,均由不 同情况时的具体条件进行实验测定后,再由该式计算表面 传热系数h。
表面传热系数的一般关联式
在使用准则关联式确定表面传热系数h时,必须注意: 1.应用范围 即建立准则关联式时的实验范围,一般指Re、Pr、 Gr的数值范围,使用时不能超出该范围。 2.定性温度 确定准数中流体物性所依据的温度就是定性温度。 其确定方法不尽相同。 3.特征尺寸
本章难点
1.对流换热过程的分析比较抽象,较难理解。学习中结合 对流换热的流动状况和温度分布图会有较为直观的理 解。 2.无因次准数的含义比较抽象,较难理解。学习中应重点 掌握无因次准数的计算方法。 3.应用准则关联式求解表面传热系数需要一定的技巧,有 一定的难度。应注意公式的适用范围,定性温度和特 征尺寸的选取,并应结合例题与习题加强练习。
h
5~12 12~100
对流换热方式
高压水蒸气强制对流 水沸腾
h
500~3500 600~50000
水自然对流
水强制对流
200~1000
1000~15000
蒸汽膜状凝结
蒸汽珠状凝结
4500~18000
45000~140000
四、影响表面传热系数的主要因素
1.流体流动的起因
影响流体的速度分布 。 一般来说,强制对流的流速比自然对流高,因而表面 传热系数也高。
一、表面传热系数的一般关联式
流体无相变时对流换热的表面传热系数可表示为
h f v, t , , cp , , , V , l ,
经分析,可得流体无相变时对流换热的准数关系式为
传热学对流传热的理论基础课件
特征数方程中的 几位人物
传热学对流传热的理论基础课件
(4) 与 t 之间的关系及 Pr
对于外掠平板的层流流动: uco,n st
动量方u程 u x: v u y y 2u 2
d d
p 0 x
此时动量方程与能量方程的形式完全一致:
u
t x
v
t y
a
2t y2
表明:此情况下动量传递与热量传递规律相似
上述理论解与实验值吻合。
普朗特边界层理论在流体力学发展史上具有划时代的意义!
传热学对流传热的理论基础课件
5.3 流体外掠等温平板传热的理论分析
当壁面与流体间有温差时,会产生温度梯度很大的温度 边界层(热边界层, thermal boundary layer )
厚度t 范围 — 热边界层或温度边界层
预期解的形式
传热学对流传热的理论基础课件
4. 如何指导实验
• 同名的已定特征数相等 • 单值性条件相似:初始条件、边界条件、几何条件、
物理条件
实验中只需测量各特征数所包含的物理量,避免了测量的盲 目性——解决了实验中测量哪些物理量的问题 按特征数之间的函数关系整理实验数据,得到实用关联式 ——解决了实验中实验数据如何整理的问题 可以在相似原理的指导下采用模化试验 —— 解决了实物 试验很困难或太昂贵的情况下,如何进行试验的问题
Nu — 待定特征数 (含有待求的 h)
Re,Pr,Gr — 已定特征数
特征关联式的具体函数形式、定性温度、特征长度等的确 定需要通过理论分析,同时又具有一定的经验性。
传热学对流传热的理论基础课件
关联式中的待定参数需由实验数据确定,通常由图解法 和最小二乘法确定。如通过相似原理或理论分析,预期
《流体力学与传热学》课件
总结词
04
传热学应用实例
建筑节能是传热学的重要应用领域,通过合理利用传热学原理,可以有效降低建筑能耗,提高能源利用效率。
建筑设计时,利用传热学原理,合理设计建筑物的保温、隔热、通风等系统,可以有效降低建筑物的热量损失和冷热负荷,从而减少能源消耗。例如,利用保温材料和密封技术减少墙体热传导,利用自然通风和热压差通风降低室内温度等。
流体静力学的基本概念、原理和应用
详细描述
流体静力学是研究流体在静止状态下力学行为的一门学科。主要研究流体内部的压力分布、液体对容器壁的侧压力等,在工程实际中有广泛应用。
总结词
流体动力学的基本概念、原理和应用
详细描述
流体动力学是研究流体在运动状态下力学行为的一门学科。主要研究流体的速度、压力、密度等物理量的变化规律,以及流体与固体壁面的相互作用等,在航空航天、交通运输等领域有重要应用。
随着计算机技术的不断发展,数值模拟与仿真技术在流体力学与传热学中发挥着越来越重要的作用。这些技术可以对流体流动和传热过程进行精确模拟和预测,为实验研究和工程应用提供有力支持。
数值模拟与仿真技术在流体力学与传热学中广泛应用于各种领域。例如,在能源领域,通过对流体流动和传热的数值模拟,优化核能、风能等可再生能源的开发和利用。在环境领域,通过对污染物扩散的数值模拟,评估环境治理措施的有效性。在生物医学领域,通过对生物体内的流体流动和传热的数值模拟,揭示生理过程和疾病机制,为诊断和治疗提供依据。
THANKS
感谢观看
总结词
新能源技术是未来能源发展的方向,传热学在新能源技术的开发和利用中发挥着重要作用。
要点一
要点二
详细描述
太阳能、风能等新能源的开发和利用过程中,传热学原理被广泛应用于设备的热回收、热利用和热控制等方面。例如,太阳能热水器利用传热学原理将太阳能转化为热能,风力发电设备的散热系统和热回收系统也涉及到传热学的知识。
04
传热学应用实例
建筑节能是传热学的重要应用领域,通过合理利用传热学原理,可以有效降低建筑能耗,提高能源利用效率。
建筑设计时,利用传热学原理,合理设计建筑物的保温、隔热、通风等系统,可以有效降低建筑物的热量损失和冷热负荷,从而减少能源消耗。例如,利用保温材料和密封技术减少墙体热传导,利用自然通风和热压差通风降低室内温度等。
流体静力学的基本概念、原理和应用
详细描述
流体静力学是研究流体在静止状态下力学行为的一门学科。主要研究流体内部的压力分布、液体对容器壁的侧压力等,在工程实际中有广泛应用。
总结词
流体动力学的基本概念、原理和应用
详细描述
流体动力学是研究流体在运动状态下力学行为的一门学科。主要研究流体的速度、压力、密度等物理量的变化规律,以及流体与固体壁面的相互作用等,在航空航天、交通运输等领域有重要应用。
随着计算机技术的不断发展,数值模拟与仿真技术在流体力学与传热学中发挥着越来越重要的作用。这些技术可以对流体流动和传热过程进行精确模拟和预测,为实验研究和工程应用提供有力支持。
数值模拟与仿真技术在流体力学与传热学中广泛应用于各种领域。例如,在能源领域,通过对流体流动和传热的数值模拟,优化核能、风能等可再生能源的开发和利用。在环境领域,通过对污染物扩散的数值模拟,评估环境治理措施的有效性。在生物医学领域,通过对生物体内的流体流动和传热的数值模拟,揭示生理过程和疾病机制,为诊断和治疗提供依据。
THANKS
感谢观看
总结词
新能源技术是未来能源发展的方向,传热学在新能源技术的开发和利用中发挥着重要作用。
要点一
要点二
详细描述
太阳能、风能等新能源的开发和利用过程中,传热学原理被广泛应用于设备的热回收、热利用和热控制等方面。例如,太阳能热水器利用传热学原理将太阳能转化为热能,风力发电设备的散热系统和热回收系统也涉及到传热学的知识。
流体力学与传热课件4.5.2 Heat Transfer to Boiling Liquids
The high rate of heat transfer in nucleate boiling is primarily the result of the turbulence generated in the liquid by the dynamic action of the bubbles.
Eventually, however, so many bubbles are present that they tend to coalesce and cover portions of the heating surface with a layer of insulating vapor.
As the temperature drop increases, the heat flux rises, slowly at first and then more rapidly as radiation heat transfer becomes important.
The boiling action in this region is known as film boiling.
Film boiling is not usually desired in commercial equipment because the heat transfer rate is low for such a large temperature drop.
Heat-transfer apparatus should be so designed and operated that the temperature drop in the film of boiling liquid is smaller than the critical temperature drop.
传热学-对流换热PPT课件
传热学-对流换热
对流换热:工程上流体流过一物体表面时的热量传递过程。 自然界中的种种对流现象 电子器件冷却 强制对流与自然对流
沸腾换热原理 空调蒸发器、冷凝器 动物的身体散热
➢ 热对流(Convection)
流体中(气体或液体)温度不同的各部分之间,由于 发生相对的宏观运动而把热量由一处传递到另一处的现象。
ρ↑、c ↑(单位体积流体能携带更多能量)→h↑ 4、动力粘度 µ [N.s/m2]、运动粘度 ν=µ/ ρ [m2/s]
µ ↑(有碍流体流动,不利于热对流)→h↓ 5、体膨胀系数 α [1/k]
α ↑(自然对流换热增强)→h↑
四、换热壁面的几何尺寸、形状及位置
影响到流体沿壁面的流动状态、速度分布和温度, 从而影响对流换热系数。
内部流动对流换热: 管内或槽内
外部流动对流换热: 外掠平板、圆管、 管束
五、 流体有无相变(流体相变):
单相换热 Single phase heat transfer: 相变换热 Phase change:
凝结、沸腾、升华、凝固、融化等
流体相变时吸收或放出汽化潜热比比热容大得多, 且破坏了层流底层强化了传热。
5、层流底层(贴壁流体层)
流体在做湍流运动时,在管壁附近形成一层 流速很低的极薄的层流,称为层流底层。
层流底层的厚度随着流速的增加(即Re增加) 而减薄。
湍流核心
层流底层
二、边界层
(一)速度(流动)边界层
1、速度边界层的形成原因 粘性流体流过固体壁面时,
由于流体与壁面之间摩擦阻力 的影响,壁面附近的流体速度 会减小,即从来流速度减小到 壁面的零速度。 2、速度边界层图,见右图。
W/(m2 C)
——当流体与壁面温度相差 1°C时、单位壁面面积 上、单位时间内所传递的热量。
对流换热:工程上流体流过一物体表面时的热量传递过程。 自然界中的种种对流现象 电子器件冷却 强制对流与自然对流
沸腾换热原理 空调蒸发器、冷凝器 动物的身体散热
➢ 热对流(Convection)
流体中(气体或液体)温度不同的各部分之间,由于 发生相对的宏观运动而把热量由一处传递到另一处的现象。
ρ↑、c ↑(单位体积流体能携带更多能量)→h↑ 4、动力粘度 µ [N.s/m2]、运动粘度 ν=µ/ ρ [m2/s]
µ ↑(有碍流体流动,不利于热对流)→h↓ 5、体膨胀系数 α [1/k]
α ↑(自然对流换热增强)→h↑
四、换热壁面的几何尺寸、形状及位置
影响到流体沿壁面的流动状态、速度分布和温度, 从而影响对流换热系数。
内部流动对流换热: 管内或槽内
外部流动对流换热: 外掠平板、圆管、 管束
五、 流体有无相变(流体相变):
单相换热 Single phase heat transfer: 相变换热 Phase change:
凝结、沸腾、升华、凝固、融化等
流体相变时吸收或放出汽化潜热比比热容大得多, 且破坏了层流底层强化了传热。
5、层流底层(贴壁流体层)
流体在做湍流运动时,在管壁附近形成一层 流速很低的极薄的层流,称为层流底层。
层流底层的厚度随着流速的增加(即Re增加) 而减薄。
湍流核心
层流底层
二、边界层
(一)速度(流动)边界层
1、速度边界层的形成原因 粘性流体流过固体壁面时,
由于流体与壁面之间摩擦阻力 的影响,壁面附近的流体速度 会减小,即从来流速度减小到 壁面的零速度。 2、速度边界层图,见右图。
W/(m2 C)
——当流体与壁面温度相差 1°C时、单位壁面面积 上、单位时间内所传递的热量。
《第四章传热》PPT课件
gradt dt dx
2. 傅立叶定律 傅立叶定律是热传导的基本定律,它表示热传导的速率与温度 梯度和垂直于热流方向的导热面积成正比。
Q S t 或:q t
n
n
热传导中,Q S,Q t n
Q——传热速率,W;
λ——导热系数,W/(m·K) 或W/(m·℃);
S——导热面积,垂直于热流方向的截面积,m2;
946℃。试求:
(1)单位面积的热损失;(2)保温砖与建筑砖之间界面的温度;
(3)建筑砖外侧温度。
解 t3为保温砖与建筑砖的界面温度,t4为建筑砖的外侧温度。
(1)热损失q
q=
Q A
1
b1
t1
t2
1.06 0.15
(1000-946)
=381.6W/m2
(2) 保温砖与建筑砖的界面温度t3 由于是稳态热传导,所以 q1=q2=q3=q
典型换热设备: 间壁式换热器(冷、热流体间的换热设备) 例:列管式换热器 3、本章研究的主要问题 1)三种传热机理(传热速率计算) 2)换热器计算 3)换热设备简介
4.1.1传热的基本方式
根据传热机理不同,传热的基本方式有三种: 热传导、热对流和热辐射。
1.热传导 热传导(导热):物体各部分之间不发生相对位移,依靠原子、 分子、自由电子等微观粒子的热流运动而引 起的热量传递。
t t'∞
t∞
u
tw-t=
t' t
tw
图4-13 流体流过平壁被加热时的温度边界
2、热边界层的厚度
tw t 0.99(tw t )
3、热边界层内(近壁处) 认为:集中全部的温差和热阻
dt 0 dy
热边界层外(流体主体)
2. 傅立叶定律 傅立叶定律是热传导的基本定律,它表示热传导的速率与温度 梯度和垂直于热流方向的导热面积成正比。
Q S t 或:q t
n
n
热传导中,Q S,Q t n
Q——传热速率,W;
λ——导热系数,W/(m·K) 或W/(m·℃);
S——导热面积,垂直于热流方向的截面积,m2;
946℃。试求:
(1)单位面积的热损失;(2)保温砖与建筑砖之间界面的温度;
(3)建筑砖外侧温度。
解 t3为保温砖与建筑砖的界面温度,t4为建筑砖的外侧温度。
(1)热损失q
q=
Q A
1
b1
t1
t2
1.06 0.15
(1000-946)
=381.6W/m2
(2) 保温砖与建筑砖的界面温度t3 由于是稳态热传导,所以 q1=q2=q3=q
典型换热设备: 间壁式换热器(冷、热流体间的换热设备) 例:列管式换热器 3、本章研究的主要问题 1)三种传热机理(传热速率计算) 2)换热器计算 3)换热设备简介
4.1.1传热的基本方式
根据传热机理不同,传热的基本方式有三种: 热传导、热对流和热辐射。
1.热传导 热传导(导热):物体各部分之间不发生相对位移,依靠原子、 分子、自由电子等微观粒子的热流运动而引 起的热量传递。
t t'∞
t∞
u
tw-t=
t' t
tw
图4-13 流体流过平壁被加热时的温度边界
2、热边界层的厚度
tw t 0.99(tw t )
3、热边界层内(近壁处) 认为:集中全部的温差和热阻
dt 0 dy
热边界层外(流体主体)
流体力学与传热课件Heat Transfer and Its Applications
Experiment does confirm the independence of k for a wide range of temperature gradients except for porous solids.
On the other hand, k is a function of temperature, but not a strong one.
The negative sign reflects the physical fact that heat flow occurs from hot to cold and the sign of the gradient is opposite that of the heat flow.
In using equation it must be clearly understood that the area A is that of a surface perpendicular to the flow of heat and distance n is the length of path measured perpendicularly to area A.
• k vary over a wide range. They are highest for metals and lowest for finely powdered materials from which air has been evacuated.
Fourie’s law states that k is independent of the temperature gradient.
4.2 Heat Transfer by Conduction
Conduction is most easily understood by considering heat flow in homogeneous isotropic solids because in these there is no convection and the effect of radiation is negligible.
On the other hand, k is a function of temperature, but not a strong one.
The negative sign reflects the physical fact that heat flow occurs from hot to cold and the sign of the gradient is opposite that of the heat flow.
In using equation it must be clearly understood that the area A is that of a surface perpendicular to the flow of heat and distance n is the length of path measured perpendicularly to area A.
• k vary over a wide range. They are highest for metals and lowest for finely powdered materials from which air has been evacuated.
Fourie’s law states that k is independent of the temperature gradient.
4.2 Heat Transfer by Conduction
Conduction is most easily understood by considering heat flow in homogeneous isotropic solids because in these there is no convection and the effect of radiation is negligible.
第4章传热-PPT精品
列管式换热器
2、间壁式换热和间壁式换热器
主要特点:冷热两种流体被一固体间壁所隔开, 在换热过程中,两种流体互不接触,热量由热流 体通过间壁传给冷流体。
设备:列管式换热器、套管式换热器。 适用范围:不许直接混合的两种流体间的热交换。
2、间壁式换热和间壁式换热器
冷、热流体通过间壁两侧的传热过程包括以下三个步骤: (1)热流体以对流方式将热量传递给管壁; (2)热量以热传导方式由管壁的一侧传递至另一侧; (3)传递至另一侧的热量又以对流方式传递给冷流体。
物质的导热系数主要与物质的种类和温度有关。
纯金属>合金>非金属建筑材料>液体>绝缘材料>气体
1、 固体的导热系数
金属:金属是最好的导热体。
纯金属:熔融状态时λ变小。
合金:随纯度↑—λ↑。
随T↑—λ↓ 。
非金属建筑材料和绝热材料 λ与温度、组成和结构的紧密程度有关。 随T↑—λ↑ , 随密度↑—λ↑ ,存在最佳密度,使λ最小。
q Q A
六、传热速率方程式
传热过程的推动力:两流体的温度差,通常用平均温度差 Δtm进行计算,单位为K或℃。
经验指出,在稳态传热过程中,传热速率Q与传热面积A 和两流体的温度差Δtm成正比。即传热速率方程式为:
QKAtm
tm 1
推动力 热阻
KA
其中,比例系数K为总传热系数(overall heat transfer coefficient),单位为W/(m2.K)
2、多层平壁的热传导
在稳定传热时,通过串联平壁的导热速率
都是相等的。
Q(t1t2)(t2t3)(t3t4)
b1
b2
b3
1A
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
When the resistance of the tube wall is neglected, the overall coefficient can be written in the following form
Single-pass r, because it has one shell-side pass and one tube-pass, is a 1-1 exchanger.
In an exchanger the shell-side and tube-side heat-transfer coefficients are of comparable important, and both must be large if a satisfactory overall coefficient is to be attained.
An even number of tube-side passes are used in multipass exchangers. The shell side may be either single-pass or multipass.
In multipass exchangers, floating heads are frequently used.
2-4 exchanger The 1-2 exchanger has an important
limitation. Because of the parallel-flow pass, the exchanger is unable to bring the exit temperature of one fluid very near to the entrance temperature of the other.
In the second, called contact condensers, the coolant and vapor streams are physically mixed.
Extended-surface equipment
Difficult heat-exchange problem arise when one of two fluid streams has a much lower heattransfer coefficient than the other.
The fluid stream having the lower coefficient is brought into contact with the extended surface and flows outside the tubes , while the other fluid, having high coefficient, flows through the tubes.
Metal plate, usually with corrugated faces, are supported in a frame; hot fluid passes between alternate pairs of plates, exchanging heat with the cold fluid in the adjacent spaces.
In simple devices these quantities can be evaluated easily and with considerable accuracy,
but in complex processing units the evaluation may be difficult and subject to considerable uncertainty.
Multipass construction increases the fluid velocity, with a corresponding increase in the heat-transfer coefficient.
The disadvantages for a multipass construction are that (1) the exchanger is slightly more complicated ;
The heat recovery of a 1-2 exchanger is inherently poor.
A better recovery can be obtained by adding a longitudinal baffle to give two shell passes.
Correction of LMTD in multipass exchangers
4.7 Heat-Exchange Equipment
In industrial processes heat energy is transferred by a variety of methods.
Including conduction-convection in exchangers, boilers, and condensers; radiation in furnaces and radiant heat dryer.
In multipass exchangers which have more tube passes than shell passes, the flow is countercurrent in some sections and parallel in others.
The LMTD, as given by Eq 5.4-27 does not apply in this case, and it is customary to define a correction factor f.
multipass exchanger
The 1-1 exchanger has limitations, because when the tube-side flow is divided evenly among all the tubes, the velocity may be quite low, giving a low heat transfer coefficient.
Special heat-transfer devices used to liquefy vapors by removing their latent heats are called condensers.
Condensers fall into two classes. In the first, called shell-and-tube condenser, the condensing vapor and coolant are separated by a tube wall.
Z T1 T2 t2 t1
The factor Z is the ratio of the fall temperature of the hot fluid to the rise in temperature of the cold fluid.
And the abscissas are values of the dimensionless ratio η
t2 t1
T1 t1
The factor η is the heating effectiveness.
From the numerical values of Z and η, factor f is read from Figure, and multiplied by the LMTD for countercurrent flow to give the true mean temperature
From material and energy balances, the required heat-transfer rate is calculated. Then, using the overall coefficient and the average T, the required heat-transfer area is determined.
The velocity and turbulence of the shell-side liquid are as important as those of the tubeside fluid.
To promote crossflow and raise the average velocity of the shell-side fluid, baffles are installed in the shell.
Extended surfaces have been developed in which the outside area of tube is multiplied.
Types of extended surface: (a) longitudinal fins; (b) transverse fins.
Δtm = f • LMTD
Figure shows factor f for 1-2 exchangers,
Figure shows factor f for 2-4 exchangers,
Plate-type exchanger
For heat transfer between fluids at low or moderate pressure, below about 20 atm, plate–type exchangers are competitive with shell-and-tube exchangers, especially where corrosion-resistant materials are required
The plates are typically 5mm apart.