指数、对数函数专题(强烈推荐)
高考学生指数与对数函数知识点小结及典型例题
高考学生指数与对数函数知识点小结及典型例题高考中经常考到指数函数和对数函数的概念和性质,下面来介绍一些基础知识。
一、指数与指数幂的运算1.根式的概念:如果 $x^n=a$,那么 $x$ 叫做 $a$ 的$n$ 次方根,其中 $n>1$,且 $n\in N$。
2.分数指数幂:规定正数的分数指数幂的意义为$a^{m/n}=n\sqrt[n]{a^m}(a>0,m,n\in N^*,n>1)$,负分数指数幂没有意义。
3.实数指数幂的运算性质:$(a^r)^s=a^{rs}(a>0,r,s\in R)$,$a^r\cdot a^s=a^{r+s}(a>0,r,s\in R)$,$(ab)^r=a^r\cdotb^r(a>0,r\in R)$。
二、指数函数及其性质1.指数函数的概念:函数 $y=ax(a>0,a\neq1)$ 叫做指数函数,其中 $x$ 是自变量,定义域为 $R$。
注意:底数不能是负数、零和 $1$。
2.指数函数的图象和性质:当 $00$,非奇非偶函数,函数图象过定点 $(0,1)$;当 $a>1$ 时,函数图象在 $R$ 上单调递增,定义域为 $R$,值域为 $y>0$,非奇非偶函数,函数图象过定点 $(0,1)$。
利用函数的单调性,结合图象,可以得到一些性质,例如在 $[a,b]$ 上,$f(x)=ax(a>0,a\neq1)$ 的值域是$[f(a),f(b)]$ 或 $[f(b),f(a)]$。
三、对数函数1.对数的概念:如果 $a^x=N(a>0,a\neq1)$,那么数 $x$ 叫做以 $a$ 为底 $N$ 的对数,记作 $x=\log_a N$。
注意底数的限制 $a>0$,且 $a\neq1$。
2.对数的运算性质:如果 $a>0$,且 $a\neq1$,$M>0$,$N>0$,那么:$\log_a MN=\log_a M+\log_a N$,$\log_a\frac{M}{N}=\log_a M-\log_a N$,$\log_a M^r=r\log_aM(a>0,M>0,r\in R)$。
指数对数函数基本知识点
指数对数函数基本知识点指数函数和对数函数是高中数学紧密相关的数学概念,对于理解和运用多种数学问题都是至关重要的。
下面将从定义、性质、图像和应用等几个方面进行详细介绍。
一、指数函数指数函数的定义是f(x)=a^x,其中a是一个正实数且a≠1,x是实数。
指数函数的特点包括:1.a^0=1,a^1=a。
2.指数函数的定义域是整个实数集。
3.当a>1时,指数函数是严格递增的;当0<a<1时,指数函数是严格递减的。
4.指数函数的图像可以分成两种情况:当a>1时,图像在x轴的右侧逐渐向上增长;当0<a<1时,图像在x轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。
二、对数函数对数函数的定义是f(x)=log_a(x),其中a是一个正实数且a≠1,x是正实数。
对数函数的特点包括:1. log_a(1)=0,log_a(a)=12.对数函数的定义域是正实数集。
3.当a>1时,对数函数是严格递增的;当0<a<1时,对数函数是严格递减的。
4.对数函数的图像可以分成两种情况:当a>1时,图像在y轴的右侧逐渐向上增长;当0<a<1时,图像在y轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。
三、指数函数和对数函数的性质1. 反函数性质:指数函数和对数函数互为反函数,即a^log_a(x)=x,log_a(a^x)=x。
2. 对数与指数的互化性质:log_a(x)=y等价于 a^y=x。
3.对于任意的正实数a,b和任意实数x,有如下几个基本性质:-a^x*a^y=a^(x+y)- (a^x)^y = a^(xy)- (ab)^x = a^x * b^x-a^(-x)=1/(a^x)-(a/b)^x=a^x/b^x- log_a(xy) = log_a(x) + log_a(y)- log_a(x^y) = y * log_a(x)- log_a(1/x) = -log_a(x)- log_a(x/y) = log_a(x) - log_a(y)四、指数和对数函数的图像指数函数和对数函数的图像可以通过制作表格来得到,然后连接各个点形成曲线图。
指数函数与对数函数专项训练(解析版)
指数函数与对数函数专项训练一、单选题1.(23-24高一下·云南玉溪·期末)函数()()2lg 35f x x x =-的定义域为()A .()0,∞+B .50,3⎛⎫⎪C .()5,0,3∞∞⎛⎫-⋃+ ⎪D .5,3⎛⎫+∞ ⎪【答案】C【详解】由题意知,2350x x ->,即(35)0x x ->,所以0x <或53x >.故选:C.2.(23-24高一上·云南昭通·期末)函数()327x f x x =+-的零点所在的区间是()A .()0,1B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫⎪D .()2,3【答案】B【详解】∵3x y =和27y x =-均在R 上单调递增,∴()327x f x x =+-在R 上单调递增;又()12f =-,327402f ⎛⎫=-> ⎪⎝⎭,∴()f x 在31,2⎛⎫ ⎪⎝⎭上有唯一的零点,故选:B.3.(23-24高一上·云南昆明·期末)滇池是云南省面积最大的高原淡水湖,一段时间曾由于人类活动的加剧,滇池水质恶化,藻类水华事件频发.在适当的条件下,藻类的生长会进入指数增长阶段.滇池外海北部某年从1月到7月的水华面积占比符合指数增长,其模型为23 1.65x y -=⨯.经研究“以鱼控藻”模式能有效控制藻类水华.如果3月开始向滇池投放一定量的鱼群后,鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,将两函数模型放在同期进行比较,如图所示.下列说法正确的是(参考数据:671.6520.2,1.6533.3≈≈)()A .水华面积占比每月增长率为1.65B .如果不采取有效措施,到8月水华的面积占比就会达到60%左右C .“以鱼控藻”模式并没有对水华面积占比减少起到作用D .7月后滇池藻类水华会因“以鱼控藻”模式得到彻底治理【答案】B【详解】对于A ,由于模型23 1.65x y -=⨯呈指数增长,故A 错误;对于B ,当8x =时,8220.63 1.605326.y -⨯==⨯≈,故B 正确;对于C ,因为鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,所以“以鱼控藻”模式对水华面积占比减少起到作用,故C 错误;对于D ,由两函数模型放在同期进行比较的图象可知,7月后滇池藻类水华并不会因“以鱼控藻”模式得到彻底治理,故D 错误.故选:B.4.(23-24高一上·云南昭通·期末)()()1log 14a f x x =-+(0a >且1a ≠)的图象恒过定点M ,幂函数()g x 过点M ,则12g ⎛⎫⎪⎝⎭为()A .1B .2C .3D .4【答案】D【详解】()()1log 14a f x x =-+,令11x -=,得2x =,()124f =,则()()1log 14a f x x =-+(0a >且1a ≠)恒过定点12,4M ⎛⎫⎪⎝⎭,设()g x x α=,则124α=,即2α=-,即()2g x x -=,∴142g ⎛⎫= ⎪⎝⎭,故选:D.5.(23-24高一下·云南楚雄·期末)已知0.320.3lo g 3,2,lo g 2a b c -===,则()A .c b a <<B .<<b c aC .<<c a bD .a b c<<【答案】A【详解】因为2log y x =在(0,)+∞上单调递增,且234<<,所以222log 2log 3log 4<<,所以21log 32<<,即12a <<,因为2x y =在R 上递增,且0.30-<,所以0.300221-<<=,即01b <<,因为0.3log y x =在(0,)+∞上单调递减,且12<,所以0.30.3log 1log 2>,所以0.3log 20<,即0c <,所以c b a <<.故选:A6.(23-24高一上·云南·期末)若()21()ln 1||f x x x =+-,设()0.3(3),(ln2),2a f b f c f =-==,则a ,b ,c 的大小关系为()A .c a b >>B .b c a >>C .a b c >>D .a c b>>【答案】D【详解】由题意知()(),00,x ∈-∞⋃+∞,由()()()21ln 1f x x f x x⎡⎤-=-+-=⎣⎦-,所以()f x 为偶函数,图象关于y 轴对称,当0x >时,由复合函数的单调性法则知()f x 随x 的增大而增大,即()0,x ∈+∞,()21()ln 1||f x x x =+-单调递增,因为()()33a f f =-=,()0.3(ln2),2b f c f ==,且00.3112222=<<=,0ln2lne 1<<=,所以0.3ln 223<<,所以()()()0.3ln223f f f <<-,即b c a <<,也就是a c b >>.故选:D7.(23-24高一下·云南·期末)设222,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则实数a 的取值范围是()A .[]1,2B .(2,3]C .()2,+∞D .()3,+∞【答案】B【详解】方程2[()](2)()20f x a f x a -++=化为[()2][()]0f x f x a --=,解得()2f x =或()f x a =,函数()f x 在(,0]-∞上单调递增,函数值的集合为(2,3],在(0,1]上单调递减,函数值的集合为[0,)+∞,在[1,)+∞上单调递增,函数值的集合为[0,)+∞,在同一坐标系内作出直线2,y y a ==与函数()y f x =的图象,显然直线2y =与函数()y f x =的图象有两个交点,由关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则直线y a =与函数()y f x =的图象有3个交点,此时23a <≤,所以实数a 的取值范围是(2,3].故选:B8.(23-24高一下·云南昆明·期末)若()12:lo g 11,:39a p a q --<<,则p 是q 的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【详解】对于()22:log 11log 2p a -<=,则012a <-<,解得13a <<;对于1:39a q -<,则12a -<,解得3a <;因为{}|13a a <<是{}|3a a <的真子集,所以p 是q 的充分不必要条件.故选:A.二、多选题9.(23-24高一上·云南迪庆·期末)已知函数()()2ln 2f x x x =-,则下列结论正确的是()A .函数()f x 的单调递增区间是[)1,+∞B .函数()f x 的值域是RC .函数()f x 的图象关于1x =对称D .不等式()ln 3f x <的解集是()1,3-【答案】BC【详解】对于A ,当1x =时,2210x x -=-<,此时()()2ln 2f x x x =-无意义,故A 错误;对于B ,由于()22y g x x x ==-的值域为[)1,-+∞,满足()[)0,1,+∞⊆-+∞,所以函数()f x 的值域是R ,故B 正确;对于C ,由题意()()()22ln 2ln 11f x x x x ⎡⎤=-=--⎣⎦,且定义域为()(),02,-∞+∞ ,它满足()()()21ln 11f x x f x+=-=-,即函数()f x 的图象关于1x =对称,故C 正确;对于D ,由于()f x 的定义域为()(),02,-∞+∞ ,故D 错误.故选:BC.10.(23-24高一上·云南昆明·期末)已知函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且()()()()1234fx fx fx fx ===,则下列结论中正确的是()A .122x x +=-B .1204x x <<C .()41,4x ∈D .342x x +的取值范围是332,4⎡⎫⎪⎢⎣⎭【答案】BC【详解】作出函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩的图像如图.对于选项A,根据二次函数的对称性知,12()224x x +=⨯=--,故A 项错误;对于选项B ,因120x x <<,由上述分析知124x x +=-,则21212120()()()42x x x x x x --<=-⋅-≤=,因12x x ≠,故有1204x x <<,即B 项正确;对于选项C ,如图,因0x ≤时,2211()2(2)2222f x x x x =--=-++≤,0x >时,2()|log |f x x =,依题意须使20|log |2x <<,由2|log |0x >得1x ≠,由2|log |2x <解得:144x <<,故有3411,144x x <<<<,即C项正确;对于选项D ,由图知2324log log x x -=,可得341x x =,故431x x =,则343322x x x x ++=,3114x <<,不妨设21,(,1)4y x x x =+∈,显然函数2y x x =+在(1,14)上单调递减,故23334x x <+<,即342x x +的取值范围是(333,4),故D 项错误.故选:BC.11.(23-24高一上·云南昆明·期末)关于函数()ln f x x x =+,以下结论正确的是()A .方程()0f x =有唯一的实数解c ,且(0,1)c ∈B .对,0,()()()x y f xy f x f y ∀>=+恒成立C .对()1212,0x x x x ∀>≠,都有()()1212f x f x x x ->-D .对12,0x x ∀>,均有()()121222f x f x x x f ++⎛⎫≤⎪【答案】AC【详解】A 选项,由于1y x =在R 上单调递增,2ln y x =在()0,∞+上单调递增,故()ln f x x x =+在定义域()0,∞+上单调递增,又()11ln 30,11033f f ⎛⎫=-<=> ⎪⎝⎭,故由零点存在性定理可得,方程()0f x =有唯一的实数解c ,且(0,1)c ∈,A 正确;B 选项,()ln f xy xy xy =+,()()ln ln ln f x f y x x y y x y xy +=+++=++,显然,0x y ∀>,由于xy 与x y +不一定相等,故()()f x f y +与()f xy 不一定相等,B 错误;C 选项,由A 选项可知,()ln f x x x =+在定义域()0,∞+上单调递增,对()1212,0x x x x ∀>≠,都有()()12120f x f x x x ->-,C 正确;D 选项,12,0x x ∀>,均有121212ln 222x xx x x x f +++⎛⎫=+ ⎪⎝⎭,()()12112212121212ln ln ln ln 22222f x f x x x x x x x x x x x x x ++++++==+=+,由于12122x x x x +≥,当且仅当12x x =时,等号成立,故1212ln ln 2x x x x +≥,即()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,D 错误.故选:AC 三、填空题12.(23-24高一上·云南昆明·期末)()()2,(1)29,1x a x f x x ax a x ⎧>⎪=⎨-++-≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为.【答案】[]2,5【详解】因为在R 递增,则112129a a a a a⎧⎪⎪≥⎨⎪-++-≤⎪⎩>,解得:25a ≤≤,故答案为:[]2,513.(23-24高一下·云南昆明·期末)设函数()ln(1)f x x =+,2()g x x a =-+,若曲线()y f x =与曲线()y g x =有两个交点,则实数a 的取值范围是.【答案】(0,)+∞【详解】当0x ≥时,()ln(1),f x x =+当0x <时()ln(1),f x x =-+函数图象示意图为则2()g x x a =-+与()ln (1)f x x =+有两个零点知a 的取值范围是(0,)+∞.故答案为:(0,).+∞14.(23-24高一下·云南玉溪·期末)苏格兰数学家纳皮尔(J.Napier ,1550-1617)在研究天文学的过程中,经过对运算体系的多年研究后发明的对数,为当时的天文学家处理“大数”的计算大大缩短了时间.即就是任何一个正实数N 可以表示成10(110,)n N a a n =⨯≤<∈Z ,则lg lg (0lg 1)N n a a =+≤<,这样我们可以知道N 的位数为1n +.已知正整数M ,若10M 是10位数,则M 的值为.(参考数据:0.9 1.1107.94,1012.56≈≈)【答案】8或9【详解】依题意可得910101010M ≤<,两边取常用对数可得91010lg10lg lg10M ≤<,即910lg 10M ≤<,所以0.9lg 1M ≤<,即0.91010M ≤<,又M 为正整数,所以8M =或9M =.故答案为:8或9四、解答题15.(23-24高一上·云南昆明·期末)设函数()log (3)(,10a f x x a =-+>且1)a ≠.(1)若(12)3f =,解不等式()0f x >;(2)若()f x 在[4,5]上的最大值与最小值之差为1,求a 的值.【答案】(1)10(,)3+∞(2)2a =或12a =【详解】(1)由(12)3f =可得log (123)13a -+=,解得3a =,即3()log (3)1,(3)f x x x =-+>,则()0f x >,即3log (3)10x -+>,即310,1333x x x >⎧⎪∴>⎨->⎪⎩,故不等式()0f x >的解集为10(,)3+∞;(2)由于()f x 在[4,5]上的最大值与最小值之差为1,故log 11(log 21)1a a +-+=,即log 21,2a a =∴=或12a =,即a 的值为2a =或12a =.16.(23-24高一上·云南昭通·期末)化简求值:(1)()13103420.027π4160.49--++;(2)ln22311lg125lg40.1e log 9log 1632-+++⨯.【答案】(1)8(2)9【详解】(1)()13103420.027π4160.49--++()()()1313423420.3120.7⎡⎤⎡⎤⎡⎤=-++⎣⎦⎣⎦⎣⎦0.3180.78=-++=;(2)ln22311lg125lg4lg 0.1e log 9log 1632-++++⨯3211112lg34lg2lg5lg23222lg2lg3=+-++⨯lg 5lg28=++9=.17.(23-24高一上·云南·期末)已知定义域为R 的函数()11333xx m f x +-⋅=+是奇函数.(1)求m 的值并利用定义证明函数()f x 的单调性;(2)若对于任意t ∈R ,不等式()()22620f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)1m =,证明见解析(2)3k <-【详解】(1)因为()f x 是奇函数,函数的定义域为R ,所以(0)0f =,所以1033m-=+,所以1m =,经检验满足()()f x f x -=-易知()11312133331x x x f x +-⎛⎫==-+ ⎪++⎝⎭设12x x <,则2112122(33)()()3(31)(31)x x x x f x f x --=++因为3x y =在实数集上是增函数,故12()()0f x f x ->.所以()f x 在R 上是单调减函数(2)由(1)知()f x 在(,)-∞+∞上为减函数.又因为()f x 是奇函数,所以()()22620f t t f t k -+-<等价于()()2262f t t f k t-<-,因为()f x 为减函数,由上式可得:2262t t k t ->-.即对一切t R ∈有:2360t t k -->,从而判别式361203k k ∆=+<⇒<-.所以k 的取值范围是3k <-.18.(23-24高一下·云南昆明·期末)已知函数1()xx f x a a ⎛⎫=- ⎪⎝⎭ (0a >且1a ≠).(1)讨论()f x 的单调性(不需证明);(2)若2a =,(ⅰ)解不等式3()2≤f x x;(ⅱ)若21()(22))2(x g f x t x x f +=-+在区间[]1,1-上的最小值为74-,求t 的值.【答案】(1)答案见解析(2)(ⅰ)(](],10,1-∞-⋃;(ⅱ)2t =-或2t =【详解】(1)若1a >,则1()()x xf x a a=-在R 上单调递增;若01a <<,则1()()x xf x a a=-在R 上单调递减.(2)(ⅰ)3()2≤f x x ,即132()022xx x --≤,设13()2()22xx g x x=--,则(1)0g =,()()g x g x -=-,所以()g x 为奇函数,当0x >时,()g x 单调递增,由()(1)g x g ≤,解得01x <≤,根据奇函数的性质,当0x <时,()(1)g x g ≤的解为1x ≤-,综上所述,3()2≤f x x的解集为(](],10,1-∞-⋃.(ⅱ)2122()2(2)2()222(22)x x x x x g x f x tf x t +--=-+=++-,令22x x m --=,因为[]1,1x ∈-,则33,22m ⎡⎤∈-⎢⎥⎣⎦,所以2()()22g x h m m tm ==++,其图象为开口向上,对称轴为m t=-的抛物线,①当32t -≤-,即32t ≥时,min 39177()()3232444h m h t t =-=-+=-=-,解得2t =.②当3322t -<-<,即3322t -<<时,222min 7()()2224h m h t t t t =-=-+=-+=-,解得1152t =,2152t =-矛盾.③当32t -≥,即32t ≤-时,min 39177()()3232444h m h t t ==++=+=-,解得2t =-.综上所述,2t =-或2t =.19.(23-24高一上·云南昆明·期末)函数()e (0)x f x mx m =-<.(1)求(1)f -和(0)f 的值,判断()f x 的单调性并用定义加以证明;(2)设0x 是函数()f x 的一个零点,当1em <-时,()02f x k >,求整数k 的最大值.【答案】(1)1(1)e f m --=+,(0)1f =,()f x 在定义域R 上单调递增,证明见解析,(2)整数k 的最大值为1-【详解】(1)1(1)e f m --=+,(0)1f =,判断()f x 在定义域R 上单调递增,证明如下:在R 上任取1x ,2x ,且12x x <,则1212121212()()e (e )(e e )()x x x x f x f x mx mx m x x -=---=---,因为12x x <,0m <,所以12e e x x <,120x x -<,0m ->,所以12e e 0x x -<,12()0m x x --<,所以1212(e e )()0x x m x x ---<,即12())0(f x f x -<,所以12()()f x f x <,所以()f x 在定义域R 上单调递增.(2)由题意得0()0f x =,即00e 0x mx -=,1em <-,则10e m +<,即0(1)0()f f x -<=,由()f x 是R 上的增函数,所以01x -<,又0(0)10()f f x =>=,所以010x -<<,0200(2)e 2x f x mx =-002e 2e x x =-,令01e (ext =∈,1),则22()2(1)1g t t t t =-=--,所以()g t 在1(e ,1)上单调递减,所以()()11g t g >=-,即0(2)1f x >-,当1em <-时,0(2)f x k >,所以1k ≤-,所以整数k 的最大值为1-.。
2024年高考数学--指数函数、对数函数
对于B,由函数f(x)为奇函数,得f(-x)=-f(x),即
2 x 2x
1
+m=-
2x 2x
1
-m,
1
所以2m=-
2x 2x
1
-
2 x 2x 1
=-
2x 2x 1
-
2x
1 2x
1
=-
2x 2x
1
-
1 2x
1
=-1,即m=-1
2
,所以B正确;
对于C,由f(x)=
2x 2x
1
+m=
2x 1 2x
故a的取值范围为[36,+∞).
x
x2
a >1在x∈(1,+∞)恒成立.
令y=ln m,函数y=ln m在(0,+∞)上单调递增,m=x 1 =1+ 2 在(1,+∞)上单
x 1 x 1
调递减,所以f(x)=ln x 1在(1,+∞)上单调递减.
x 1
因为f(x)+f(-x)=ln x 1+ln x 1=0,所以f(x)=-f(-x),即f(x)是奇函数.
n am
aras=ar+s
(ar)s=ars (ab)r=arbr
2.对数的性质与运算法则
性质
换底 公式
运算 法则
loga1=0;logaa=1 a loga N =N;logaaN=N(a>0且a≠1,N>0)
logbN= loga N (a,b均大于0且不等于1,N>0)
logab
相关结论:logab= 1 ;logab·logbc·logcd=logad
专题 幂、指数、对数函数(七大题型)(解析版)
专题幂、指数、对数函数(七大题型)目录:01幂函数的相关概念及图像02幂函数的性质及应用03指数、对数式的运算04指数、对数函数的图像对比分析05比较函数值或参数值的大小06指数、对数(函数)的实际应用07指数、对数函数的图像与性质综合及应用01幂函数的相关概念及图像1(2024高三·全国·专题练习)若幂函数y=f x 的图象经过点2,2,则f16=()A.2B.2C.4D.12【答案】C【分析】利用已知条件求得幂函数解析式,然后代入求解即可.【解析】设幂函数y=f x =xα,因为f x 的图象经过点2,2,所以2α=2,解得α=1 2,所以f x =x 12,所以f16=1612=4.故选:C2(2024高三·全国·专题练习)结合图中的五个函数图象回答问题:(1)哪几个是偶函数,哪几个是奇函数?(2)写出每个函数的定义域、值域;(3)写出每个函数的单调区间;(4)从图中你发现了什么?【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【分析】根据已知函数图象,数形结合即可求得结果.【解析】(1)数形结合可知,y =x 2的图象关于y 轴对称,故其为偶函数;y =x ,y =x 3,y =1x的图象关于原点对称,故都为奇函数.(2)数形结合可知:y =x 的定义域是0,+∞ ,值域为0,+∞ ;y =x ,y =x 3的定义域都是R ,值域也是R ;y =1x的定义域为-∞,0 ∪0,+∞ ,值域也为-∞,0 ∪0,+∞ ;y =x 2的定义域为R ,值域为0,+∞ .(3)数形结合可知:y =x 的单调增区间是:0,+∞ ,无单调减区间;y =x ,y =x 3的单调增区间是:R ,无单调减区间;y =1x的单调减区间是:-∞,0 和0,+∞ ,无单调增区间;y =x 2的单调减区间是-∞,0 ,单调增区间是0,+∞ .(4)数形结合可知:幂函数均恒过1,1 点;幂函数在第一象限一定有图象,在第四象限一定没有图象.对幂函数y =x α,当α>0,其一定在0,+∞ 是单调增函数;当α<0,在0,+∞ 是单调减函数.3(2022高一上·全国·专题练习)如图所示是函数y =x mn(m 、n ∈N *且互质)的图象,则()A.m ,n 是奇数且mn<1 B.m 是偶数,n 是奇数,且m n<1C.m 是偶数,n 是奇数,且mn>1 D.m ,n 是偶数,且mn>1【答案】B【分析】根据图象得到函数的奇偶性及0,+∞ 上单调递增,结合m 、n ∈N *且互质,从而得到答案.【解析】由图象可看出y =x mn为偶函数,且在0,+∞ 上单调递增,故m n ∈0,1 且m 为偶数,又m 、n ∈N *且互质,故n 是奇数.故选:B02幂函数的性质及应用4(2023高三上·江苏徐州·学业考试)已知幂函数f x =m 2+2m -2 x m 在0,+∞ 上单调递减,则实数m 的值为()A.-3 B.-1C.3D.1【答案】A【分析】根据幂函数的定义,求得m =-3或m =1,结合幂函数的单调性,即可求解.【解析】由函数f x =m 2+2m -2 x m 为幂函数,可得m 2+2m -2=1,即m 2+2m -3=0,解得m =-3或m =1,当m =-3时,函数f x =x -3在0,+∞ 上单调递减,符合题意;当m =1时,函数f x =x 在0,+∞ 上单调递增,不符合题意.故选:A .5(23-24高三上·安徽·阶段练习)已知幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,且函数g x =f x -2a -6 x 在区间1,3 上单调递增,则实数a 的取值范围是()A.-∞,4B.-∞,4C.6,+∞D.-∞,4 ∪6,+∞【答案】B【分析】根据幂函数的定义与奇偶性求出m 的值,可得出函数f x 的解析式,再利用二次函数的单调性可得出关于实数a 的不等式,即可解得实数a 的取值范围.【解析】因为幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,则m 2-5m +5=1,解得m =1或m =4,当m =1时,f x =x -1,该函数是定义域为x x ≠0 的奇函数,不合乎题意;当m =4时,f x =x 2,该函数是定义域为R 的偶函数,合乎题意.所以,f x =x 2,则g x =x 2-2a -6 x ,其对称轴方程为x =a -3,因为g x 在区间1,3 上单调递增,则a -3≤1,解得a ≤4.故选:B .6(23-24高三上·上海静安·阶段练习)已知a ∈-1,2,12,3,13,若f x =x a为奇函数,且在0,+∞ 上单调递增,则实数a 的取值个数为()A.1个 B.2个C.3个D.4个【答案】B【分析】a =-1时,不满足单调性,a =2或a =12时,不满足奇偶性,当a =3或a =13时,满足要求,得到答案.【解析】当a =-1时,f x =x -1在0,+∞ 上单调递减,不合要求,当a =2时,f -x =-x 2=x 2=f x ,故f x =x 2为偶函数,不合要求,当a =12时,f x =x 12的定义域为0,+∞ ,不是奇函数,不合要求,当a =3时,f -x =-x 3=-x 3=-f x ,f x =x 3为奇函数,且f x =x 3在0,+∞ 上单调递增,满足要求,当a =13时,f -x =-x 13=-x 13=-f x ,故f x =x 13为奇函数,且f x =x 13在0,+∞ 上单调递增,满足要求.故选:B7(22-23高三下·上海·阶段练习)已知函数f x =x 13,则关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为.【答案】-13,1 【分析】利用幂函数的性质及函数的奇偶性和单调性即可求解.【解析】由题意可知,f x 的定义域为-∞,+∞ ,所以f -x =-x 13=-x 13=-f x ,所以函数f x 是奇函数,由幂函数的性质知,函数f x =x 13在函数-∞,+∞ 上单调递增,由f t 2-2t +f 2t 2-1 <0,得f t 2-2t <-f 2t 2-1 ,即f t 2-2t <f 1-2t 2 ,所以t 2-2t <1-2t 2,即3t 2-2t -1<0,解得-13<t <1,所以关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为-13,1 .故答案为:-13,1 .8(23-24高三上·河北邢台·期中)已知函数f x =m 2-m -1 x m 2+m -3是幂函数,且在0,+∞ 上单调递减,若a ,b ∈R ,且a <0<b ,a <b ,则f a +f b 的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】B【分析】由幂函数的定义与性质求得函数解析式,确定其是奇函数,然后利用单调性与奇偶性可判断.【解析】由m 2-m -1=1得m =2或m =-1,m =2时,f (x )=x 3在R 上是增函数,不合题意,m =-1时,f (x )=x -3,在(0,+∞)上是减函数,满足题意,所以f (x )=x -3,a <0<b ,a <b ,则b >-a >0,f (-a )>f (b ),f (x )=-x 3是奇函数,因此f (-a )=-f (a ),所以-f (a )>f (b ),即f (a )+f (b )<0,故选:B .9(2023·江苏南京·二模)幂函数f x =x a a ∈R 满足:任意x ∈R 有f -x =f x ,且f -1 <f 2 <2,请写出符合上述条件的一个函数f x =.【答案】x 23(答案不唯一)【分析】取f x =x 23,再验证奇偶性和函数值即可.【解析】取f x =x 23,则定义域为R ,且f -x =-x 23=x 23=f x ,f -1 =1,f 2 =223=34,满足f -1 <f 2 <2.故答案为:x 23.10(2022高三·全国·专题练习)已知函数f (x )=x 2,g (x )=12x-m(1)当x ∈[-1,3]时,求f (x )的值域;(2)若对∀x ∈0,2 ,g (x )≥1成立,求实数m 的取值范围;(3)若对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,求实数m 的取值范围.【答案】(1)[0,9];(2)m ≤-34;(3)m ≥-8.【分析】(1)由二次函数的性质得出值域;(2)将问题转化为求g (x )在0,2 的最小值大于或等于1,再根据指数函数的单调性得出实数m 的取值范围;(3)将问题转化为g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9,从而得出实数m 的取值范围.【解析】(1)当x ∈[-1,3]时,函数f (x )=x 2∈[0,9]∴f (x )的值域0,9(2)对∀x ∈0,2 ,g (x )≥1成立,等价于g (x )在0,2 的最小值大于或等于1.而g (x )在0,2 上单调递减,所以12 2-m ≥1,即m ≤-34(3)对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,等价于g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9由1-m ≤9,∴m ≥-803指数、对数式的运算11(23-24高三上·山东泰安·阶段练习)(1)计算14-124ab -1 30.1-1⋅a 3⋅b -312的值;.(2)log 37+log 73 2-log 949log 73-log 73 2; (3)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e 【答案】(1)85;(2)2;(3)4【分析】根据指数幂运算公式和对数运算公式计算即可.【解析】(1)原式=412⋅4ab -13210⋅a 32b -32=2⋅8a 32b-3210⋅a 32b-32=85;(2)原式=log 37+log 73 2-log 73 2-log 3272×log 37=log 37×log 37+2log 73 -log 37×log 37=log 37×2log 73=2;(3)原式=log 31232+lg5+lg2-log 2232×log 323+2log 23×2-1+ln e12=4+1-3+32+12=4.12(23-24高一上·湖北恩施·期末)(1)计算:lg 12-lg 58+lg12.5-log 89⋅log 278.(2)已知a 12+a -12=3,求a +a -1+2a 2+a -2-2的值.【答案】(1)13;(2)15【分析】(1)根据对数的运算法则和运算性质,即可求解;(2)根据实数指数幂的运算性质,准确运算,即可求解.【解析】(1)由对数的运算公式,可得原式=-lg2-lg5-3lg2 +3lg5-1-23log 32×log 23=13.(2)因为a 12+a -12=3,所以a +a -1+2=9,可得a +a -1=7,所以a 2+a -2+2=49,可得a 2+a -2=47,所以a +a -1+2a 2+a -2-2=7+247-2=15.04指数、对数函数的图像对比分析13(2024·四川·模拟预测)已知函数y =x a ,y =b x ,y =log c x 在同一平面直角坐标系的图象如图所示,则()A.log 12c <b a <sin bB.log 12c <sin b <b aC.sin b <b a <log 12cD.sin b <log 12c <b a【答案】B【分析】根据幂函数,指数与对数函数的性质可得a ,b ,c 的取值范围,进而根据指对数与三角函数的性质判断即可.【解析】因为y =x a 图象过1,1 ,故由图象可得a <0,又y =b x 图象过0,1 ,故由图象可得0<b <1,又y =log c x 图象过1,0 ,故由图象可得c >1.故log 12c <log 121=0,0<sin b <1,b a >b 0=1,故log 12c <sin b <b a .故选:B14(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1a x,y =log a x +12 (a >0,且a ≠1)的图象可能是()A. B.C. D.【答案】D 【解析】略15(2024·陕西·模拟预测)已知函数f x 的部分图象如图所示,则f x 的解析式可能为()A.f x =e x -e -xB.f x =1-2e x+1C.f x =x xD.f x =x ln x 2+2【答案】D【分析】结合指数函数的图象与性质即可判断AB 选项错误,对C 代入x =2判断C 错误,则可得到D 正确.【解析】根据函数f (x )的图象,知f (1)≈1,而对A 选项f 1 =e -e -1>2排除A ;对B 选项f x =1-2e x +1,因为e x +1>1,则2e x +1∈0,2 ,则f x =1-2e x +1∈-1,1 ,但图象中函数值可以大于1,排除B ;根据C 选项的解析式,f (2)=22≈2.8,而根据函数f (x )的图象,知f (2)≈1,排除C . 故选:D .16(23-24高三上·山东潍坊·期中)已知指数函数y =a x ,对数函数y =log b x 的图象如图所示,则下列关系成立的是()A.0<a <b <1B.0<a <1<bC.0<b <1<aD.a <0<1<b【答案】B【分析】根据题意,由指数函数以及对数函数的单调性即可得到a ,b 的范围,从而得到结果.【解析】由图象可得,指数函数y =a x 为减函数,对数函数y =log b x 为增函数,所以0<a <1,b >1,即0<a <1<b .故选:B17(23-24高三上·黑龙江哈尔滨·阶段练习)函数f (x )=x 22x -2-x 的图象大致为()A. B.C. D.【答案】A【分析】利用函数的性质和特值法对不符合题意的选项加以排除,即可得出答案.【解析】因为2x -2-x ≠0,所以x ≠0,定义域为-∞,0 ∪0,+∞ ;因为f (x )=x 22x -2-x ,所以f -x =x 22-x -2x ,故f x =-f -x ,所以f x 为奇函数,排除B ,当x 趋向于正无穷大时,x 2、2x -2-x 均趋向于正无穷大,但随x 变大,2x -2-x 的增速比x 2快,所以f x 趋向于0,排除D ,由f 1 =23,f 12 =24,则f 1 >f 12,排除C .故选:A .05比较函数值或参数值的大小18(2024·全国·模拟预测)已知a =12a,12b=log a b ,a c=log12c ,则实数a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】D【分析】由函数单调性,零点存在性定理及画出函数图象,得到a ,b ,c ∈0,1 ,得到log a b <1=log a a ,求出b>a ,根据单调性得到c =12 a c<12a=a ,从而得到答案.【解析】令f x =12x-x ,其在R 上单调递减,又f 0 =1>0,f 1 =12-1=-12<0,由零点存在性定理得a ∈0,1 ,则y =log a x 在0,+∞ 上单调递减,画出y 1=12x与y =log a x 的函数图象,可以得到b ∈0,1 ,又y 2=a x 在R 上单调递减,画出y 2=a x 与y 3=log 12x 的函数图象,可以看出c∈0,1,因为12b<12 0=1,故log a b<1=log a a,故b>a,因为a,c∈0,1,故a c>a1=a,由a c=log12c得,c=12a c<12 a=a.综上,c<a<b.故选:D.【点睛】指数和对数比较大小的方法有:(1)画出函数图象,数形结合得到大小关系;(2)由函数单调性,可选取适当的“媒介”(通常以“0”或“1”为媒介),分别与要比较的数比较大小,从而间接地得出要比较的数的大小关系;(3)作差(商)比较法是比较两个数值大小的常用方法,即对两值作差(商),看其值与0(1)的关系,从而确定所比两值的大小关系.19(2023·江西赣州·二模)若log3x=log4y=log5z<-1,则()A.3x<4y<5zB.4y<3x<5zC.4y<5z<3xD.5z<4y<3x【答案】D【分析】设log3x=log4y=log5z=m<-1,得到x=3m,y=4m,z=5m,画出图象,数形结合得到答案.【解析】令log3x=log4y=log5z=m<-1,则x=3m,y=4m,z=5m,3x=3m+1,4y=4m+1,5z=5m+1,其中m+1<0,在同一坐标系内画出y=3x,y=4x,y=5x,故5z<4y<3x故选:D20(2024高三下·全国·专题练习)已知函数f x =e x,g x =ln x,正实数a,b,c满足f a =ga ,fb g b =g a ,gc +f g a c=0,则()A.b<a<cB.c<a<bC.a<c<bD.c<b<a【答案】B【分析】由f a =g a 可得0<a <1,结合f b g b =g a 可判断b 的范围,再由g c +f g a c =0可得ln c +a c =0,结合e a =1a 可判断a ,c 大小关系,进而可得答案.【解析】由题得,g x =1x ,由f a =g a ,得e a =1a ,即1a>1,所以0<a <1.由f b g b =g a ,得e b ln b =ln a ,因为ln a <0,e b >0,所以ln b <0,又e b >1,所以ln a =e b ln b <ln b ,所以0<a <b <1.由g c +f g a c =0,得ln c +e ln a c=0,即ln c +a c =0.易知a c >0,所以ln c <0,所以0<c <1,故a <a c .又e a =1a,所以a =-ln a ,所以-ln c =a c >a =-ln a ,所以ln c <ln a ,所以c <a ,所以c <a <b .故选:B .【点睛】思路点睛:比较大小常用方法:(1)同构函数,利用单调性比较;(2)取中间值进行比较;(3)利用基本不等式比较大小;(4)利用作差法比较大小.21(2023·浙江绍兴·二模)已知f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,a =f ln2.04 ,b =f -1.04 ,c =f e 0.04 ,则()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】A【分析】令g x =e x -x -1,利用导数求得g x 在(0,1)单调递增,得到g x >g 0 =0,得到e 0.04>1.04,再由对数函数的性质,得到ln2.04<1.04<e 0.04,再由函数f x 的单调性与奇偶性f ln2.04 <f 1.04 <f e 0.04 ,即可求解.【解析】令g x =e x -x -1,x ∈(0,1),可得g x =e x -1>0,所以g x 在(0,1)单调递增,又由g 0 =0,所以g x >g 0 =0,即g 0.04 >0,可得e 0.04>0.04+1=1.04,又由ln2.04∈(0,1),所以ln2.04<1.04<e 0.04,因为f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,则f x 在(0,+∞)上单调递增,且b =f -1.04 =f (1.04),所以f ln2.04 <f 1.04 <f e 0.04 ,即f ln2.04 <f -1.04 <f e 0.04 ,所以a <b <c .故选:A .06指数、对数(函数)的实际应用22(2024·安徽合肥·二模)常用放射性物质质量衰减一半所用的时间来描述其衰减情况,这个时间被称做半衰期,记为T (单位:天).铅制容器中有甲、乙两种放射性物质,其半衰期分别为T 1,T 2.开始记录时,这两种物质的质量相等,512天后测量发现乙的质量为甲的质量的14,则T 1,T 2满足的关系式为()A.-2+512T1=512T2B.2+512T1=512T2C.-2+log2512T1=log2512T2D.2+log2512T1=log2512T2【答案】B【分析】设开始记录时,甲乙两种物质的质量均为1,可得512天后甲,乙的质量,根据题意列出等式即可得答案.【解析】设开始记录时,甲乙两种物质的质量均为1,则512天后,甲的质量为:1 2512T1,乙的质量为:12 512T2,由题意可得12512T2=14⋅12 512T1=12 2+512T1,所以2+512T1=512T2.故选:B.23(2024·黑龙江哈尔滨·一模)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/mL.如果停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶?( )(结果取整数,参考数据:lg3≈0.48,lg7≈0.85)A.1B.2C.3D.4【答案】D【分析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20,再根据指数函数的性质及对数的运算计算可得.【解析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20即0.7x<1 3 .由于y=0.7x在定义域上单调递减,x>log0.713=lg13lg0.7=lg1-lg3lg7-1=-0.480.85-1=0.480.15=3.2.他至少经过4小时才能驾驶.故选:D.07指数、对数函数的图像与性质综合及应用24(2024·山东聊城·二模)已知函数f x 为R上的偶函数,且当x>0时,f x =log4x-1,则f-223=()A.-23B.-13C.13D.23【答案】A【分析】根据偶函数的定义可得f-22 3=f223 ,结合函数解析式和对数的运算性质即可求解.【解析】因为f(x)为偶函数,所以f(-x)=f(x),则f-22 3=f223 =log4223-1=log22223-1=log2213-1=13-1=-23.故选:A25(2023·江西南昌·三模)设函数f x =a x0<a<1,g x =log b x b>1,若存在实数m满足:①f (m )+g (m )=0;②f (n )-g (n )=0,③|m -n |≤1,则12m -n 的取值范围是()A.-12,-14B.-12,-3-54C.-34,-12D.-3+54,-12【答案】D【分析】由①f (m )+g (m )=0,②f (n )-g (n )=0解出0<m <1,n >1,解出12m -n <-12;结合③转化为线性规划问题解出z >-3+54.【解析】函数f x =a x 0<a <1 ,g x =log b x b >1 ,若存在实数m 满足:①f (m )+g (m )=0;②f (n )-g (n )=0,即a m =-log b m ,且a n =log b n ,则a n -a m =log b mn <0,则0<mn <1,且0<m <1,n >1,所以12m -n <-12,又因为③|m -n |≤1,则0<mn <1m -n ≤1 ,令z =12m -n ,不防设x =m ,y =n ,则转化为线性规划问题,在A 点处z 取最小值.由y =1xy =x +1 解得x =-1+52y =5+12,代入解得z >-3+54.故选:D .26(2022高三·全国·专题练习)已知函数f x =log a ax +9-3a (a >0且a ≠1).(1)若f x 在1,3 上单调递增,求实数a 的取值范围;(2)若f 3 >0且存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,求a 的最小整数值.【答案】(1)1,92 (2)7【分析】(1)设g x =ax +9-3a ,得到g x 在1,3 上是增函数,且g 1 >0,即可求解;(2)由f 3 >0,的得到a >1,把不等式f x 0 >2log a x 0,转化为a >x 0+3,结合题意,即可求解.【解析】(1)解:由函数f x =log a ax +9-3a ,设g x =ax +9-3a ,由a >0且a ≠1,可得函数g x 在1,3 上是增函数,所以a >1,又由函数定义域可得g 1 =9-2a >0,解得a <92,所以实数a 的取值范围是1,92.(2)解:由f 3 =log a 9>0,可得a >1,又由f x 0 >2log a x 0,可得log a ax 0+9-3a >log a x 20,所以ax 0+9-3a >x 20,即a >x 0+3,因为存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,可得a >6,所以实数a 的最小整数值是7.27(23-24高二下·湖南·阶段练习)已知函数f x =x 2+x ,-2≤x ≤14log 12x ,14<x ≤c ,若f (x )的值域是[-2,2],则c 的值为()A.2B.22C.4D.8【答案】C【分析】画出函数图像,由分段函数中定义域的范围分别求出值域的取值范围再结合二次函数和对数运算可得正确结果.【解析】当-2≤x ≤14时,f x =x 2+x =x +12 2-14∈-14,2,因为f x 的值域是-2,2 ,又f x =log 12x 在14,c上单调递减,所以log 12c =-2,∴c =4.故选:C .28(22-23高一上·辽宁本溪·期末)若不等式x -1 2<log a x (a >0,且a ≠1)在x ∈1,2 内恒成立,则实数a 的取值范围为()A.1,2B.1,2C.1,2D.2,2【答案】B【分析】分析出0<a <1时,不成立,当a >1时,画出f x =log a x ,g x =x -1 2的图象,数形结合得到实数a 的取值范围.【解析】若0<a <1,此时x ∈1,2 ,log a x <0,而x -1 2≥0,故x -1 2<log a x 无解;若a >1,此时x ∈1,2 ,log a x >0,而x -1 2≥0,令f x =log a x ,g x =x -1 2,画出两函数图象,如下:故要想x -1 2<log a x 在x ∈1,2 内恒成立,则要log a 2>1,解得:a ∈1,2 .故选:B .29(2022高二下·浙江·学业考试)已知函数f x =3⋅2x +2,对于任意的x 2∈0,1 ,都存在x 1∈0,1 ,使得f x 1 +2f x 2+m =13成立,则实数m 的取值范围为.【答案】log 216,log 213 【分析】双变量问题,转化为取值范围的包含关系,列不等式组求解【解析】∵f x 1 ∈5,8 ∴13-f x 1 2∈52,4,∴f x 2+m =3⋅2x 2+m+2∈3⋅2m +2,3⋅21+m +2 ,由题意得3⋅2m +2≥523⋅2m +1+2≤4⇒2m≥162m +1≤23⇒log 216≤m ≤log 213 故答案为:log 216,log 21330(21-22高三上·湖北·阶段练习)已知函数p (x )=m x -4+1(m >0且m ≠1)经过定点A ,函数-∞,2 且a ≠1)的图象经过点A .(1)求函数y =f (2a -2x )的定义域与值域;(2)若函数g x =f (2x λ)⋅f (x 2)-4在14,4上有两个零点,求λ的取值范围.【答案】(1)定义域为(-∞,2),值域为(-∞,2);(2)[1,+∞)【分析】(1)根据对数函数的性质,求得定点A (4,2),代入函数f x =log a x ,求得a =2,进而求得y =f (2a -2x )=log 2(4-2x ),结合对数函数的性质,求得函数的定义域与值域;(2)由(1)知,化简得到函数g x =2λ(log 2x )2+2log 2x -4,设t =log 2x ,则t ∈[-2,2],转化为h x =2λt 2+2t -4在[-2,2]上有两个零点,结合二次函数的性质,分类讨论,即可求解.【解析】(1)解:令x -4=0,解得x =4,所以p (4)=m 0+1=2,所以函数p (x )过点A (4,2),将点A 的坐标代入函数f x =log a x ,可得log a 4=2,解得a =2,又由函数y =f (2a -2x )=log 2(4-2x ),由4-2x >0,解得x <2,所以函数y =f (2a -2x )的定义域为(-∞,2),又由0<4-2x <4,所以函数y =f (2a -2x )的值域为(-∞,2).(2)解:由(1)知,函数g x =f (2x λ)⋅f (x 2)-4=log 2(2x λ)⋅log 2x 2-4=2λ(log 2x )2+2log 2x -4在14,4上有两个零点,设t =log 2x ,则t ∈[-2,2],因为t 为关于x 的单调递增函数,所以g x 在14,4有两个零点,等价于函数h x =2λt 2+2t -4在[-2,2]上有两个零点,①当λ=0时,由h x =2t -4=0,可得t =2,函数h x 只有一个零点,所以λ=0不合题意;②当λ>0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≥0h 2 =8λ≥0,解得λ≥1;③当λ<0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≤0h 2 =8λ≤0,此时不等式组的解集为空集,综上可得,实数λ的取值范围是[1,+∞).一、单选题1(2024·黑龙江·二模)已知函数y =a 12|x |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则ab =()A.-1 B.-2C.-4D.-9【答案】C【分析】由题意可得a +b =0且b =2,求出a ,即可求解.【解析】因为函数y =f (x )=a 12 x +b 图象过原点,所以a 12+b =0,得a +b =0,又该函数图象无限接近直线y =2,且不与该直线相交,所以b =2,则a =-2,所以ab =-4.故选:C2(2024·上海闵行·二模)已知y =f (x ),x ∈R 为奇函数,当x >0时,f (x )=log 2x -1,则集合{x |f (-x )-f (x )<0}可表示为()A.(2,+∞)B.(-∞,-2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】D【分析】利用函数奇偶性可得不等式f (-x )-f (x )<0等价于f (x )>0,再求出函数解析式,利用对数函数单调性解不等式可得结果.【解析】因为y =f (x )为奇函数,所以f (-x )-f (x )<0等价于-2f (x )<0,即f (x )>0;当x >0时,f (x )=log 2x -1,即f (x )=log 2x -1>0,解得x >2;当x <0时,-x >0,可得f (-x )=-f x =log 2-x -1,所以f x =1-log 2-x ,解不等式f x =1-log 2-x >0,可得-2<x <0,综上可得集合{x |f (-x )-f (x )<0}可表示为(-2,0)∪(2,+∞).故选:D3(2024·北京通州·二模)某池塘里原有一块浮萍,浮萍蔓延后的面积S (单位:平方米)与时间t (单位:月)的关系式为S =a t +1(a >0,且a ≠1),图象如图所示.则下列结论正确的个数为()①浮萍每个月增长的面积都相等;②浮萍蔓延4个月后,面积超过30平方米;③浮萍面积每个月的增长率均为50%;④若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3.A.0B.1C.2D.3【答案】B【分析】由已知可得出S =2t +1,计算出萍蔓延1月至2月份增长的面积和2月至3月份增长的面积,可判断①的正误;计算出浮萍蔓延4个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【解析】由已知可得a 1=2,则S =2t +1.对于①,浮萍蔓延1月至2月份增长的面积为23-22=4(平方米),浮萍蔓延2月至3月份增长的面积为24-23=8(平方米),①错;对于②,浮萍蔓延4个月后的面积为25=32(平方米),②对;对于③,浮萍蔓延第n 至n +1个月的增长率为2n +2-2n +12n +1=1,所以,浮萍蔓延每个月增长率相同,都是100%,③错;对于④,若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则2t 1+1=3,2t 2+1=4,2t 3+1=12=3×4=2t 1+1⋅2t 2+1=2t 1+t 2+2,所以t 3=t 1+t 2+1,④错.故选:B .4(2024·天津红桥·二模)若a =2313,b =log 1225,c =3-14,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.b >a >cD.a <b <c【答案】C【分析】根据给定条件,利用幂函数、对数函数性质,并借助媒介数比较大小.【解析】b =log 1225>log 1212=1,a =23 13=23 4 112=1681 112>381 112=1314=c ,而a =2313<1,所以a ,b ,c 的大小关系为b >a >c .故选:C5(2024·全国·模拟预测)已知函数f (x )=log a x 3-ax 2+x -2a (a >0且a ≠1)在区间(1,+∞)上单调递减,则a 的取值范围是()A.0,23 B.23,1C.(1,2]D.[2,+∞)【答案】A【分析】对数函数的单调性与底数有关,分0<a <1和a >1两种情况讨论,此外还要注意对数函数的定义域,即真数为正;复合函数单调性满足“同增异减”,根据对数函数单调性结合题干中“在区间(1,+∞)上单调递减”得到真数部分函数的单调性,从而求得a 的取值范围.【解析】设函数g x =x 3-ax 2+x -2a ,则g x =3x 2-2ax +1.①若0<a <1,则y =log a x 在定义域上单调递减.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递增,故gx ≥0对任意的x ∈1,+∞ 恒成立.又g 1 =4-2a ≥0,所以对任意的x ∈1,+∞ ,g x ≥0显然成立.又因为g x >0对任意x ∈1,+∞ 恒成立,所以g 1 =2-3a ≥0,故0<a ≤23.②若a >1,则y =log a x 在定义域上单调递增.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递减,故gx ≤0对任意的x ∈1,+∞ 恒成立.因为抛物线y =3x 2-2ax +1的开口向上,所以g x ≤0不可能对任意的x ∈1,+∞ 恒成立.所以a 的取值范围为0,23.故选:A .6(2024·宁夏固原·一模)已知函数f x 的部分图像如图所示,则f x 的解析式可能为()A.f x =e x -e -x 4x -3 B.f x =e x -e -x3-4x C.f x =e x +e -x4x -3D.f x =x x -1【答案】A【分析】利用f x 在1,+∞ 上的值排除B ,利用奇偶性排除排除C ,利用f x 在1,+∞ 上的单调性排除D ,从而得解.【解析】对于B ,当x >1时,f x =e x -e -x 3-4x,易知e x -e -x >0,3-4x <0,则f x <0,不满足图象,故B 错误;对于C ,f x =e x +e -x 4x -3,定义域为-∞,-34 ∪-34,34 ∪34,+∞ ,又f (-x )=e -x +e x 4-x -3=e x +e -x4x -3=f (x ),则f x 的图象关于y 轴对称,故C 错误;对于D ,当x >1时,f x =x x -1=x x -1=1+1x -1,由反比例函数的性质可知,f x 在1,+∞ 上单调递减,故D 错误;检验选项A ,f x =e x -e -x4x -3满足图中性质,故A 正确.故选:A .7(2024·陕西西安·模拟预测)已知函数f x =12x +1,x <01x +2,x ≥0,则不等式f a 2-1 >f 3 的解集为()A.-2,2B.0,+∞C.-∞,0D.-∞,-2 ∪2,+∞【答案】A【分析】判断函数f x 的单调性,再利用单调性解不等式即可.【解析】f x =12x +1,x <01x +2,x ≥0,易知y =12x +1在-∞,0 单调递减,y =1x +2在0,+∞ 单调递减,且f x 在x =0处连续,故f x 在R 上单调递减,由f a 2-1 >f 3 ,则a 2-1<3,解得-2<a <2,故不等式f a 2-1 >f 3 的解集为-2,2 .故选:A8(2024·甘肃兰州·一模)已知y =f x 是定义在R 上的奇函数,且对于任意x 均有f x +1 +f x -1 =0,当0<x ≤1时,f x =2x -1,若f [ln (ea )]>f (ln a )(e 是自然对数的底),则实数a 的取值范围是()A.e -1+2k <a <e 1+2k (k ∈Z )B.e -32+k <a <e 12+2k(k ∈Z )C.e -1+4k <a <e 1+4k (k ∈Z ) D.e-32+4k <a <e 12+4k(k ∈Z )【答案】D【分析】首先分析函数的周期性与对称性,画出函数在-2,2 上的函数图象,结合图象可知在-2,2 内要满足f [ln (ea )]>f (ln a ),只需-32<ln a <12,即可求出a 的范围,再结合周期性即可得解.【解析】因为y =f x 是定义在R 上的奇函数,所以f 0 =0且图象关于原点对称,又f x +1 +f x -1 =0,所以f x +1 =-f x -1 =f 1-x ,所以f x +4 =f 1-x +3 =-f 2+x =-f 1-x +1 =-f -x =f x ,f -1+x =f 3+x =f 1-2+x =f -1-x ,f 2+x =f -2+x =-f 2-x ,所以函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,又当0<x ≤1时,f x =2x -1,所以f x 在区间-2,2 上的图象如下所示:由图可知,在-2,2 内要满足f [ln (ea )]=f (1+ln a )>f (ln a ),则-32<ln a <12,即e -32<a <e 12,再根据函数的周期性可知e -32+4k <a <e12+4k(k ∈Z ).故选:D【点睛】关键点点睛:本题关键是由题意分析出函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,再结合函数在-2,2 上的图象.二、多选题9(2024·河南洛阳·模拟预测)下列正确的是()A.2-0.01>2-0.001B.log 23>log 2π-1C.log 1.85<log 1.75D.log 33.01>e -0.01【答案】BCD【分析】利用指数函数的性质判断A ;由对数函数的性质判断B ,C ;由对数函数的性质可得log 33.01>1,由指数函数的性质可得e -0.01<1,即可判断.【解析】解:对于A ,因为-0.01<-0.001,所以2-0.01<2-0.001,所以A 错误;对于B ,因为log 23>log 2π2=log 2π-1,所以B 正确;对于C ,因为log 1.85>0,log 1.75>0,所以log 1.85=ln5ln1.8<ln5ln1.7=log 1.75,所以C 正确;对于D ,因为log 33.01>log 33=1,e -0.01<e 0=1,所以log 33.01>e -0.01,所以D 正确.故选:BCD .10(2024·全国·模拟预测)已知实数a ,b 满足log 3a +log b 3=log 3b +log a 4,则下列关系式中可能正确的是()A.∃a ,b ∈(0,+∞),使|a -b |>1B.∃a ,b ∈(0,+∞),使ab =1C.∀a ,b ∈(1,+∞),有b <a <b 2D.∀a ,b ∈(0,1),有b <a <b【答案】ABC【分析】由原方程可得log 3b -1log 3b=log 3a -1log 4a ,构适函数,由函数的单调性得出值域,根据函数的值域判断A ;令ab =1,代入原方程转化为判断(ln b )2=ln3×ln122是否有解即可判断B ;条件变形放缩后构造函数,利用函数的单调性得出a ,b 大小,判断CD .【解析】由log 3a +log b 3=log 3b +log a 4得log 3b -1log 3b=log 3a -1log 4a ,令f (x )=log 3x -1log 3x ,则f (x )分别在(0,1)和(1,+∞)上单调递增,令g (x )=log 3x -1log 4x,则g (x )分别在(0,1)和(1,+∞)上单调递增,当x ∈(0,1)时,f x 的值域为R ,当x ∈(2,+∞)时,g (x )的值域为log 32-2,+∞ ,所以存在b ∈(0,1),a ∈(2,+∞),使得f (b )=g (a );同理可得,存在b ∈(2,+∞),a ∈(0,1),使得f (b )=g (a ),因此∃a ,b ∈(0,+∞),使|a -b |>1,故选项A 正确.令ab =1,则方程log 3a +log b 3=log 3b +log a 4可化为log b 3+log b 4=2log 3b ,由换底公式可得(ln b )2=ln3×ln122>0,显然关于b 的方程在(0,+∞)上有解,所以∃a ,b ∈(0,+∞),使ab =1,故选项B 正确.当a ,b ∈(1,+∞)时,因为log 3b -1log 3b =log 3a -1log 4a <log 3a -1log 3a ,所以f (b )<f (a ).又f x 在(1,+∞)上单调递增,所以b <a .因为log 3b -1log 3b=log 3a -1log 4a >log 4a -1log 4a ,令h (x )=x -1x,则h (x )在(0,+∞)上单调递增.因为h log 3b >h log 4a ,所以log 3b >log 4a ,从而log 3b >log 4a =log 2a >log 3a ,所以b >a .综上所述,b <a <b 2,故选项C 正确.当a ,b ∈(0,1)时,因为log 3b -1log 3b =log 3a -1log 4a >log 3a -1log 3a ,所以f (b )>f (a ).又f x 在(0,1)上单调递增,所以b >a .因为log 3b -1log 3b=log 3a -1log 4a <log 4a -1log 4a .令h (x )=x -1x,则h (x )在(0,+∞)上单调递增,因为h log 3b <h log 4a ,所以log 3b <log 4a ,从而log 3b <log 4a =log 2a <log 3a ,所以b <a .综上所述,b 2<a <b ,故选项D 错误.故选:ABC .【点睛】关键点点睛:本题的关键是根据对数式的运算规则和对数函数的单调性求解.11(2024·重庆·三模)已知函数f x =log 62x +3x ,g x =log 36x -2x .下列选项正确的是()A.f 12<g 12 B.∃x 0∈0,1 ,使得f x 0 =g x 0 =x 0C.对任意x ∈1,+∞ ,都有f x <g xD.对任意x ∈0,+∞ ,都有x -f x ≤g x -x【答案】BCD【分析】根据2+3>6,3>6-2即可判断A ;根据2x 0+3x 0=6x 0,令h x =6x -2x -3x ,结合零点的存在性定理即可判断B ;由f x -x =log 613 x +12 x 、g x -x =log 32x-23 x ,结合复合函数的单调性可得f x -x 和g x -x 的单调性,即可判断C ;由选项BC 的分析可得6f x-6x =3x -3g x,分类讨论当x ∈0,x 0 、x ∈x 0,+∞ 时x -f x 与g x -x 的大小,进而判断D .【解析】A :因为2+3 2=5+26>6 2,所以2+3>6,3>6- 2.因为f 12 =log 62+3 >log 66=12,g 12 =log 36-2 <log 33=12,所以f 12 >g 12,故A 错误;B :若f x 0 =g x 0 =x 0,则f x 0 =log 62x 0+3x 0=x 0=log 66x 0,即2x 0+3x 0=6x,g x 0 =log 36x 0-2x 0 =x 0=log 33x 0,可得6x 0-2x 0=3x 0,令h x =6x -2x -3x ,因为h 0 =-1,h 1 =1,所以∃x 0∈0,1 ,使得h x 0 =0,即2x 0+3x 0=6x 0,故B 正确;C :因为f x -x =log 62x +3x -log 66x =log 62x +3x 6x =log 613 x +12 x ,且y =13 x +12 x 在1,+∞ 上单调递减,所以f x -x 也单调递减,可得f x -x <log 612+13<0,因为g x -x =log 36x -2x -log 33x =log 36x -2x 3x =log 32x -23 x .又y =2x -23 x 在1,+∞ 上单调递增,所以g x -x 也单调递增,得g x -x >log 32-23>0,即f x -x <g x -x ,因此,对于任意的x ∈1,+∞ ,都有f x <g x ,故C 正确;D :由B 可知:∃x 0∈0,1 ,使得h x 0 =0,结合C 的结论,可知当x ∈0,x 0 ,f x >x ,g x <x ,即g x <x <f x ,当x ∈x 0,+∞ 时,f x <x ,g x >x ,即f x <x <g x ,因为6f x =2x +3x ,3g x =6x -2x ,得2x =6f x -3x =6x -3g x ,即6f x -6x =3x -3g x ,当x ∈0,x 0 时,有6x 6f x -x -1 =3g x 3x -g x -1 ,因为6x >3g x ,所以6f x -x -1<3x -g x -1,所以0<f x -x <x -g x ,因此可得g x -x ≤x -f x <0,即x -f x ≤g x -x ,当x ∈x 0,+∞ ,有6f x 6x -f x -1 =3x 3g x -x -1 ,因为6f x >3x ,所以6x -f x -1<3g x -x -1,可得0<x -f x <g x -x ,即x -f x ≤g x -x ,因此,对于任意的x ∈0,+∞ ,都有x -f x ≤g x -x ,故D 正确.故选:BCD .【点睛】方法点睛:证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数或基本函数的单调性求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.三、填空题12(2023·河南·模拟预测)已知幂函数f x =m 2-6m +9 x m 满足f 1 =2,则f 2 =.【答案】4【分析】由幂函数的定义结合导数求得m ,进而可得答案.【解析】由幂函数的定义可得m 2-6m +9=1,解得m =2或m =4,当m =2时,f x =x 2,f x =2x ,f 1 =2符合题意;当m =4时,f x =x 4,f x =4x 3,f 1 =4,不符合题意.故f x =x 2,f 2 =4.故答案为:4.13(2024·全国·模拟预测)已知函数f x =x x -1,g x =e x -1-e -x +1+1,则f x 与g x 的图象交点的纵坐标之和为.【答案】2【分析】分析函数的奇偶性,由图象的平移变换求解即可.【解析】对于f x =x x -1=1x -1+1,可以把f x 的图象看作:由f 1x =1x -1的图象向上平移1个单位长度得到,而f 1x 的图象可看作由f 2x =1x 的图象向右平移1个单位长度得到;对于g x =e x -1-e -x +1+1=e x -1-1e x -1+1的图象可看作由g 1x =e x -1-1e x -1的图象向上平移1个单位长度得到,而g 1x 的图象可看作由g 2x =e x -1e x 的图象向右平移1个单位长度得到.易知f 2x =1x 与g 2x =e x -1ex 都为奇函数,公众号:慧博高中数学最新试题则易知f 2x 与g 2x 的图象共有两个关于原点对称的交点,且交点的纵坐标之和为0.因为将函数图象向右平移不改变f 1x 与g 1x 两函数图象交点处函数值的大小,所以f 1x 与g 1x 的图象交点的纵坐标之和为0,又将函数图象向上平移1个单位长度会使得原交点处的函数值都增加1,则f x 与g x 的图象的两个交点的纵坐标与f 1x 与g 1x 的图象两个交点的纵坐标相比都增加1,故f x 与g x 的图象交点的纵坐标之和为2.故答案为:214(2024·全国·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x ,对于定义域内任意的x ,y ,都有f xy =f x +f y ,且f x 在0,+∞ 上单调递减,则不等式f x <log 2x +12的解集为.【答案】x x <-1 或x >1【分析】由f xy =f x +f y ,利用赋值法,得到函数f x 的奇偶性,构造函数F x =f x -log 2x +12,研究其单调性和奇偶性,再由F 1 =0,将不等式f x <log 2x +12转化为F x <F 1 求解.【解析】由f xy =f x +f y ,令x =y =1,得f 1 =f 1 +f 1 ,所以f 1 =0.令x =y =-1,得f -1 =0.令y =-1,得f -x =f x +f -1 =f x ,所以函数f x 为偶函数.构造函数F x =f x -log 2x +12,因为F -x =F x ,所以F x 为偶函数,且在0,+∞ 上为减函数.因为F 1 =f 1 -log 21+12=0,所以不等式f x <log 2x +12等价于F x =f x -log 2x +12<0=F 1 ,所以F x <F 1 ,即x >1,所以x <-1或x >1,故不等式f x <log 2x +12的解集为x |x <-1 或x >1 .故答案为:x |x <-1 或x >1 .。
(完整版)指数函数及对数函数复习(有详细知识点及习题详细讲解)
指数函数与对数函数总结与练习一、指数的性质(一)整数指数幂n 1.整数指数幂概念:a =a ⋅Λ⋅a (n ∈N )a 0=1(a ≠0)1⋅4a 243*n 个aa-n=1a ≠0,n ∈N *)n(a 2.整数指数幂的运算性质:(1)a m ⋅a n =a m +n (m ,n ∈Z )(2)a (3)(ab )=a ⋅b n n n ()mn=a mn(m ,n ∈Z )(n ∈Z )其中a ÷a =a ⋅a m n m -n =a m -n a n ⎛a ⎫-1nn -n , ⎪=(a ⋅b)=a ⋅b =n .b ⎝b ⎭n 3.a 的n 次方根的概念即:若x n 一般地,如果一个数的n 次方等于a n >1,n ∈N ),那么这个数叫做a 的n 次方根,=a ,则x 叫做a 的n 次方根,(n >1,n ∈N )**(说明:①若n 是奇数,则a 的n 次方根记作n a ;若a >0则n a >0,若a <o 则n a <0;②若n 是偶数,且a >0则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作:-n a ;(例如:8的平方根±8=±2216的4次方根±416=±2)③若n 是偶数,且a <0则n a 没意义,即负数没有偶次方根;④Θ0=0n >1,n ∈N nn (*)∴n 0=0;⑤式子a 叫根式,n 叫根指数,a 叫被开方数。
∴(a )nn=a ..4.a 的n 次方根的性质一般地,若n 是奇数,则n a n =a ;若n 是偶数,则n a n =a =⎨5.例题分析:例1.求下列各式的值:(1)3-8⎧a⎩-aa ≥0a <0.(3)(2)(-10)*2(3)4(3-π)(4)4例2.已知a <b <0,n >1,n ∈N ,化简:n (a -b )+n (a +b ).n n (二)分数指数幂1051231.分数指数幂:5a =a =a102(a >0)3a =a =a124(a >0)即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)a 3()kn=akn 对分数指数幂也适用,442255⨯3⨯4⎛2⎫⎛⎫2532例如:若a >0,则 a 3⎪=a 3=a , a 4⎪=a 4=a ,∴a =a 3⎝⎭⎝⎭a =a .545即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。
指数对数计算题50道
指数对数计算题50道指数和对数是数学中重要的概念和运算符号,它们在各个领域都有着广泛的应用。
下面列举了50道与指数和对数计算有关的题目,并提供相应的参考内容。
1. 计算2^3的值。
参考答案:2^3 = 8。
2. 计算10^(-2)的值。
参考答案:10^(-2) = 1/10^2 = 1/100 = 0.01。
3. 计算2^(1/2)的值。
参考答案:2^(1/2) = √2 ≈ 1.414。
4. 计算log(100)的值。
参考答案:log(100) = 2,因为10^2 = 100。
5. 计算log(1/1000)的值。
参考答案:log(1/1000) = log(10^(-3)) = -3,因为10^(-3) =1/1000。
6. 计算log2(8)的值。
参考答案:log2(8) = 3,因为2^3 = 8。
7. 计算log4(16)的值。
参考答案:log4(16) = 2,因为4^2 = 16。
8. 计算ln(e)的值。
参考答案:ln(e) = 1,因为e^1 = e。
9. 计算ln(1)的值。
参考答案:ln(1) = 0,因为e^0 = 1。
10. 计算log5(25)的值。
参考答案:log5(25) = 2,因为5^2 = 25。
11. 计算log(x^2)的值,其中x = 10。
参考答案:log((10^2)) = log(100) = 2。
12. 计算log(2x)的值,其中x = 5。
参考答案:log(2(5)) = log(10) = 1。
13. 计算log3(9) + log3(27)的值。
参考答案:log3(9) + log3(27) = 2 + 3 = 5,因为3^2 = 9,3^3 = 27。
14. 计算log2(4) * log2(16)的值。
参考答案:log2(4) * log2(16) = 2 * 4 = 8,因为2^2 = 4,2^4 = 16。
15. 计算10^(log10(100))的值。
指数对数函数基本知识点
指数对数函数基本知识点指数和对数函数是数学中常见的函数类型,应用广泛于科学、工程和金融等领域。
本文将介绍指数函数和对数函数的基本知识点,包括定义、性质和应用等方面。
一、指数函数(Exponential Function)指数函数是以常数e为底数的函数,它的定义如下:f(x)=a^x其中a是常数,称为底数;x是变量,称为指数;f(x)是函数的值。
1.常数e:e=1+1/1!+1/2!+1/3!+…2.指数函数的性质:(1)当x为整数时,指数函数的取值和底数a的幂运算相同;(2)当x为分数时,指数函数的取值是底数a的分数次幂;(3)当x为0时,指数函数的值为1;(4)当x趋近于负无穷时,指数函数的值趋近于0;(5)当x趋近于正无穷时,指数函数的值趋近于正无穷。
3.应用:指数函数在自然科学和金融领域有广泛的应用。
在自然科学中,指数函数可以描述各种自然过程的增长或衰减。
在金融领域中,指数函数可以用来进行复利计算。
二、对数函数(Logarithmic Function)对数函数是指数函数的逆运算,它的定义如下:f(x) = log_a(x)其中a是底数;x是函数的值;f(x)是变量。
1.对数的定义:对数函数中的底数a必须大于0且不等于1,对数函数的定义可以有以下两种形式:(1) 若a>1,则f(x) = log_a(x) 表示x=a^f(x);(2)若0a&0。
3.对数函数的性质:(1) f(x) = log_a(1) = 0;(2) f(x) = log_a(a) = 1;(3)若x1>x2,则f(x1)>f(x2);(4) log_a(x * y) = log_a(x) + log_a(y);(5) log_a(x / y) = log_a(x) - log_a(y);(6) log_a(x^k) = k * log_a(x);(7) 若x > 1,则log_a(x) > 0;若0 < x < 1,则log_a(x) < 0;(8)当x趋近于正无穷时,对数函数的值趋近于无穷。
指数函数与对数函数例题和知识点总结
指数函数与对数函数例题和知识点总结一、指数函数指数函数的一般形式为$y = a^x$($a > 0$且$a ≠ 1$)。
(一)指数函数的图像和性质当$a > 1$时,指数函数是单调递增的;当$0 < a < 1$时,指数函数是单调递减的。
指数函数的图像恒过点$(0, 1)$。
当$x > 0$时,若$a > 1$,则$a^x > 1$;若$0 < a < 1$,则$0 <a^x < 1$。
当$x < 0$时,若$a > 1$,则$0 < a^x < 1$;若$0 < a < 1$,则$a^x > 1$。
(二)指数运算的基本法则1、$a^m × a^n = a^{m + n}$2、$\frac{a^m}{a^n} = a^{m n}$3、$(a^m)^n = a^{mn}$4、$a^0 = 1$($a ≠ 0$)5、$a^{n} =\frac{1}{a^n}$例题 1若$2^x = 8$,求$x$的值。
解:因为$8 = 2^3$,所以$2^x = 2^3$,则$x = 3$。
例题 2计算:$3^2 × 3^4$解:根据指数运算法则,$3^2 × 3^4 = 3^{2 + 4} = 3^6 = 729$例题 3化简:$\frac{5^8}{5^5}$解:$\frac{5^8}{5^5} = 5^{8 5} = 5^3 = 125$二、对数函数对数函数的一般形式为$y =\log_a x$($a > 0$且$a ≠ 1$)。
(一)对数函数的图像和性质当$a > 1$时,对数函数在$(0, +∞)$上单调递增;当$0 < a <1$时,对数函数在$(0, +∞)$上单调递减。
对数函数的图像恒过点$(1, 0)$。
当$x > 1$时,若$a > 1$,则$\log_a x > 0$;若$0 < a < 1$,则$\log_a x < 0$。
当$0 < x < 1$时,若$a > 1$,则$\log_a x < 0$;若$0 < a <1$,则$\log_a x > 0$。
高考专项:指数函数对数函数的四类题型,基础夯实必备(含详细解析)
专项5 指数函数、对数函数相关的4种题型1.比较大小一般来说,指数、对数比较大小我们采取的思路是:首先,尽量将不同底数的指数、对数或幂函数,通过公式化成同一底数的,底数相同的根据单调性比较大小;其次,对于确实不能化成同一底数的,我们尽量将真数或指数化成相同的,然后我们做出图像,根据指数函数在第一象限内底数越大图像越高的特征、对数函数在第一象限内水平向右底数增大的特征判断大小; 最后,如果全都不相同,我们一般先做出图像,观察图像,判断大小,如果图像仍然不能解决问题,那么我们就应该考虑找中间值进行比较,中间值一般取0,-1,1,比如能否确定所要进行比较的数的正负、与1或-1的大小关系。
通过上述方式一般能解决所有比较大小问题。
1.设0.90.48 1.514,8,()2a b c -===,则( ) .A c a b >>.B b a c >>.C a b c >>.D a c b >>2.三个数0.32、log 20.3、20.3的大小关系为( )A .0.32<20.3<log 20.3B .0.32<log 20.3<20.3C .log 20.3<0.32<20.3D .log 20.3<20.3<0.323. a log a,log a,log 1,a 0530.5三者的大小关系是则<<若( )a log a log a log D.a log a log a log C.a log a log a log B.a log a log a log A.530.50.5530.535350.5>>>>>>>>4.设a >1,且2log (1)log (1),log (2)a a a m a n a p a =+=-=,,则p n m ,,的大小关系为( )(A) n >m >p (B) m >p >n (C) m >n >p (D) p >m >n5.以下四个数中的最大者是( )(A) (ln2)2(B) ln(ln2) (C) ln (D) ln26.设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( ) A .a b c << B .c b a << C .c a b <<D .b a c <<7.设a b c ,,均为正数,且122log a a =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2c c ⎛⎫= ⎪⎝⎭.则( ) A.a b c << B.c b a << C.c a b << D.b a c <<28.下列大小关系正确的是( )A .20.440.43log 0.3<<;B .20.440.4log 0.33<<;C .20.44log 0.30.43<<;D .0.424log 0.330.4<<9.设2log 3P =,3log 2Q =,23log (log 2)R =,则( )A.R Q P << B.P R Q << C.Q R P << D.R P Q <<10. 下列不等式成立的是( )A .2lg (lg )e e <<B .2lg (lg )e e <<C .2(lg )lg e e <<D .2(lg )lg e e <<11.已知324log 0.3log 3.4log 3.615,5,()5a b c ===,则( ) .A a b c >>.B b a c >>.C a c b >>.D c a b >>12.若13(,1),ln ,2ln ,ln x e a x b x c x -∈===,则( ) .A a b c <<.B c a b <<.C b a c <<.D b c a <<13.设2554log 4,(log 3),log 5,a b c ===则( ) .A a c b <<.B b c a <<.C a b c <<.D b a c <<2.恒过定点问题指数函数恒过定点(0,1),是指指数函数的指数位置的表达式为0的时候,函数值恒为1;对数函数恒过(1,0),是指对数函数的真数位置的表达式为1的时候,函数值恒为0;对于指数位置或真数位置表达式中含有参数的,应考虑使用公式分离参数。
指数函数与对数函数专项练习(含答案)
指数函数与对数函数专项练习1 设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是[ ] (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a2 函数y=ax2+ bx 与y= ||log b ax(ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是[ ]3.设525bm ==,且112a b +=,则m =[ ](A (B )10 (C )20 (D )100 4.设a=3log 2,b=In2,c=125-,则[ ]A. a<b<cB. b<c<aC. c<a<b D . c<b<a 5 .已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是[ ] (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 6.函数()()2log 31x f x =+的值域为[ ]A.()0,+∞ B. )0,+∞⎡⎣ C. ()1,+∞ D. )1,+∞⎡⎣7.下列四类函数中,个有性质“对任意的x>0,y>0,函数f(x)满足f (x +y )=f (x )f (y )”的是 [ ](A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数 8. 函数y=log2x 的图象大致是[ ]PS(A) (B) (C) (D)8.设554a log 4b log c log ===25,(3),,则[ ] (A)a<c<b (B) b<c<a (C) a<b<c (D) b<a<c 9.已知函数 1()log (1),f x x =+若()1,f α= α=[ ](A)0(B)1(C)2(D)310.函数y =的值域是[ ](A )[0,+∞) (B) [0,4] (C) [0,4) (D) (0,4) 11.若372log πlog 6log 0.8a b c ===,,,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>12.下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<<13.若01x y <<<,则( )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y<14.已知01a <<,log log a a x =,1log 52a y =,log log a a z =,则( )A .x y z >>B .z y x >>C .y x z >>D .z x y >>15.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a16.已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( ) A .101a b -<<< B .101b a-<<<C .101ba -<<<-D .1101ab --<<<18. 已知函数)1(122>-+=a a a y x x 在区间[-1,1]上的最大值是14,求a 的值.19.已知m x f x +-=132)(是奇函数,求常数m 的值;20.已知函数f(x)=11+-x x a a (a>0且a ≠1).(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)讨论f(x)的单调性.指数函数与对数函数专项练习参考答案1)A【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。
备战2024年高考数学一轮复习13、指数函数与对数函数
指数函数与对数函数知识回顾:1、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a xy a 的图象与性质2、指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a xy a 互为 ,其图象关于直线 对称 典型例题分析:一、指对函数的图象及性质应用例1、已知实数,a b 满足等式11()()23ab=,下列五个关系式(1)0b a <<(2)0a b <<(3)0a b <<(4)0b a <<(5)a b = 其中不可能成立的关系式有A 、4个B 、1个C 、2个D 、3个 例2、对于函数()f x 定义域中任意1212,,()x x x x ≠,有如下结论 (1)1212()()()f x x f x f x += (2)1212()()()f x x f x f x =+ (3)1212()()0f x f x x x ->- (4)1212()()22x x f x x f ++<当()lg f x x =时,上述结论中正确结论的序号是 。
例3、如图,是指数函数(1)x y a =,(2)x y b =,(3)x y c =, (1) (2) (3) (4) (4)x y d =的图象,则,,,a b c d 与1的大小关系是 A 、1a b c d <<<<0 B 、1b a d c <<<< C 、1a b c d <<<< 2 D 、1a b d c <<<< 3例4、若函数log ()(0,1)a y x b a a =+>≠的图象过两点(1,0)-和(0,1),则A 、2,2a b ==B 、2a b ==C 、 2,1a b ==D 、a b ==例5、方程log 2(01)a x x a =-<<的实数解的个数是 A 、0 B 、1 C 、2 D 、3 例6、函数2xy -=的单调递增区间是A 、(-∞,+∞)B 、(-∞, 0)C 、(0, +∞)D 、不存在例7、当a >1时,函数x y a -=与log a y x =的图像是 ( )例8、设01a <<,函数2()log (22)x x a f x a a =--,则使()0f x <的x 取值范围是 A 、(-∞,0) B 、(0, +∞) C 、(-∞,log 3a ) D 、(log 3a , +∞) 例9、函数x y a =在[]0,1上的最大值与最小值的和为3,则a 的值为 A 、12 B 、2 C 、4 D 、14例10、已知不等式2log (21)log (3)0x x x x +<<成立,则实数x 的取值范围是 A 、1(0,)3 B 、1(0,)2 C 、1(,1)3 D 、11(,)32二、比较大小例1、若92log 3a =, 8log b =14c =,则这三个数的大小关系是 A 、a c b << B 、a b c << C 、c a b << D 、c b a <<例2、若60a =︒, 2log sin30b =︒, 3log 45c tg =︒,则,,a b c 的大小关系是( )。
指数函数对数函数专练习题(含答案)
指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.且图象过定点,即当.在在变化对图在第一象限内,从逆时针方向看图象,看图象,对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.且图象过定点,即当时,上是增函数上是减函数变化对图在第一象限内,从顺时针方向看图象,看图象,指数函数习题一、选择题 1.定义运算a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y=211.若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b )得f (x )=1⊗2x=⎩⎪⎨⎪⎧2x(x ≤0),1 (x >0).答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>(3-a )×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =1()2[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =1()2在[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x=ln2[-2·(2x )2+λ·2x ]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1l o g (1),l o g ,l o g 1y aa a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg7)lg lg5lg70x x +++= 的两根是,αβ,则αβ 的值是( )A 、lg5lg 7B 、lg 35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( )A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -=的定义域是( )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。
基本初等函数考点归纳(强烈推荐)
知识归纳:1、 指数函数)1,0(≠>=a a a y x与对数函数)1,0(log ≠>=a a x y a 互为反函数,它们的图象关于直线x y =对称,其图象性质见下表:(1)定义:)1,,,0(1,>∈>==*-n N n m a aaa anm nm n m nm(2)运算性质:),,0,0()(,)(,Q t s b a b a ab a a a a a s s s st t s t s ts∈>>===⋅+3、对数定义及运算性质(1)定义:若)1,0(≠>=a a N a b,则数b 叫做以a 为底N 的对数,记作b N a =log(2)常用对数、自然对数对数)1,0(log ≠>a a N a 当底数10=a 时,叫常用对数,记作N lg ;当底数e a =时,叫自然对数,记作N ln(3)对数恒等式:)0,1,0(log >≠>=N a a N aNa (4)换底公式:)0,1,,0,(log log log >≠>=N b a b a aNN b b a (5)对数运算法则N M MN a a a log log )(log += )1,0,0,0(≠>>>a a N MN M NM b a a log log log -= )1,0,0,0(≠>>>a a N MN n N a n a log log = )1,0,0(≠>>a a NN n N a n a log 1log = )1,0,0(≠>>a a Nb n mb a m a n log log = )1,0,0,0(≠>>≠a a b nab b a log 1log = )1,0,1,0(≠>≠>a a b b考点1指数函数与对数函数的定义域、值域 例1.设2()lg 2x f x x +=-,则2()()2x f f x+的定义域为 A .(4,0)(0,4)- B .(4,1)(1,4)-- C .(2,1)(1,2)-- D .(4,2)(2,4)--考点2指数函数与对数函数的图像 例2.函数xe y -=的图象( ) A .与x e y =的图象关于y 轴对称 B .与xe y =的图象关于坐标原点对称C .与x ey -=的图象关于y 轴对称D .与xey -=的图象关于坐标原点对称例3.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( ) A .向左平移3个单位长度 B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度考点3由指数函数与对数函数的图像确定参数的值或范围例4.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则( ) A .a =2,b=2 B .a = 2 ,b=2 C .a =2,b=1 D .a = 2 ,b= 2例5.若直线y=2a 与函数y=|a x-1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围是考点4指数函数与对数函数的互为反函数关系例6.记函数y=1+3-x的反函数为()y g x =,则g(10)=( )A . 2B . 2-C . 3D . 1-考点5指数方程与对数方程 例7.解方程 11214=-+xx .例8.(2006年上海文科卷第8题) 方程x x 323log 1)10(log +=-的解是 .考点6指数函数与对数函数的单调性例9.设()2log log ,2log ,3log 3232===R Q P ,则( )A.P Q R <<B.Q R P <<C.P R Q <<D.Q P R <<例10.求函数()()24log 23f x x x =+-的单调区间考点7求参数的取值范围例11、若()log 3a y ax =-在[]0,1上是x 的减函数,则a 的取值范围是( ) A 、()0,1 B 、()1,3 C 、()0,3 D 、[)3,+∞点评:由常规的具体函数判断单调性或求已知函数的单调区间,变换为由函数的单调性反过来确定函数中的底数a 的范围,同时要求对对数函数的概念和性质有深刻的理解。
指数函数和对数函数复习(有详细知识点和习题详解)
指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。
另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。
整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。
其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。
例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。
二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。
例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。
例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。
二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。
当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。
规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。
(完整版)幂函数、指数函数、对数函数专练习题(含答案)
精心整理1.函数f(x)= . 1 2x的定义域是A. ( —x, 0]B.[0,+x)C. ( —X, 0)D. (―^,+呵2•函数y . log2 x的定义域是A. (0,1]B.(0,+x)C.(1,+x)D.[1,+x)3. 函数y Jog2 ^2的定义域是A.(3,+x )B.[3,+x )C.(4,+x )D.[4,+x)4. 若集合M {y | y 2x}, N {y | y . x 1},贝"M NA.{y|y 1}B.{y|y 1} C{y|y 0}D.{y|y 0}5. 函数y二-1的图象是x 16. 函数y=1 ——,则下列说法正确的是x 1A.y在(—1,+x)内单调递增B.y在(—1,+x)内单调递减Cy在(1,+x)内单调递增 D.y在(1,+x)内单调递减7. 函数y Jog°.5(3 x)的定义域是A.(2,3)B.[2,3) C[2, )D.( ,3)8. 函数f(x) x 在(0,3]上是xA.增函数B.减函数C在(0,1]上是减函数,[1,3]上是增函数。
.在(0,1]上是增函数,[1,3]上是减函数9. 函数y \ lg (2 x)的定义域是A.(-x, +X)B.(-x, 2)C.(-x, 0]D(-x, 1]— 2 x1,(x 0)10. 设函数f(x) 若f(X o) 1,则X o的取值范围是V x (x 0)11. 函数y |x|2A.是偶函数,在区间(-x ,0)上单调递增B.是偶函数,在区间(-x ,0)上单调递减C是奇函数,在区间(0,+x)上单调递增D.是奇函数,在区间(0,+x)上单调递减精心整理12. 函数y "―1)—的定义域是13. 函数y log i (3x 2)的定义域是A.[1, )B.(3, )C.[|,1]D.(3,1]14. 下列四个图象中,函数f(x) x 1的图象是x15. 设A、B是非空集合,定义A X B={x| x € A U B且x A A B}.已知A={x| y= 2x x2},B={y| y=2x,x>0},则A X B 等于A. :0,1)U (2,u)B. :0,1]U[ 2,+乂)C. :0,1]D. :0,2]16. 设a=20.|,b=0.32,c=log2.|,则Aa> c> bB.a> b> cC.b> c> aD.c> b> a17. 已知点「八3)在幕函数y f(x)的图象上,贝S f(x)的表达式是3 9「J-i 广一”:八, /■/1A. f(x) 3xB. f(x) x3C.f (x) x 2D. f (x)(一厂218. 已知幕函数f(x) x的部分对应值如下表:则不等式f (|x) 1的解集是A. x0 x 42B. x|o x 4C. 弋2 x V2D. x 4 x 419.已知函数f(x) x ax 3a 9的值域为[0,),则f (1)的值为A.3B.4C.5D.6I I \ 、指数函数习题一、选择题1. 定义运算a?b= ?a< b?,b?a>b?)),则函数f(x) =1?2x的图象大致为()2 .函数f (x) = x2- bx+ c 满足f (1 + x) = f (1 —x)且f (0) = 3,则f ( b x)与f (c x)的大小关系是()A. f(b x) <f (c x) 精心整理精心整理B. f(b x) >f(c x)C. f(b x)>f(c x)D. 大小关系随x的不同而不同3. 函数y = |2x- 1|在区间(k —1, k +1)内不单调,则k的取值范围是()A. ( —1,+切B.(―汽1)C. ( —1,1)D. (0,2)4. 设函数f(x) =ln[( x —1)(2 —x)]的定义域是A,函数g(x) = lg( —1)的定义域是B. 若A?B,则正数a的取值范围()A. a>3B. a>3C. a>D. a>5. 已知函数f (x)=若数列{a n}满足a n = f(n)( n€ N*),且{a n}是递增数列,则实数a 的取值范围是()A. [ , 3)B. (, 3)C. (2,3)D. (1,3)6. 已知a>0且a z 1, f (x) = x2—a x,当x € ( —1,1)时,均有f (x)v,则实数a的取值范围是()A. (0 , ] U [2 ,+乂)B. [ , 1) U (1,4]C. [ , 1) U (1,2]D. (0 , ) U [4 ,+ = )二、填空题7. ___________________________________________________________________ 函数y=a x( a>0,且a z 1)在[1,2]上的最大值比最小值大,则a的值是__________________ .8. _____________________________________________________________ 若曲线|y| = 2x+ 1与直线y= b没有公共点,则b的取值范围是 ____________________ .9. (2011 •滨州模拟)定义:区间[X1, X2](X1«2)的长度为X2—心已知函数y = 2|x|的定义域为[a, b],值域为[1,2],则区间[a, b]的长度的最大值与最小值的差为6、1、已知3a 2,那么log 3 8 2log 3 6用a 表示是()A 、 a 2B 、 2、 2叽(皿 5a 2C 3a (1 a)2D 3a a 2Iog a N ,则M的值为() 2N) log a MA 、 3、 丄B 4C 1D 4 或 14已知 x 2 y 21,x 0, yA ,0,且 log a (1 x)m,log a ----------- n,则 log a y 等于()1 xA 、m n B m n C 、1 m 24、 A 、如果方程 lg 2x (Ig5 Ig 7)lg x丄35Ig5gg7 B 、lg35 C 35D 5、 A 、 1一 m n2lg5 clg 7 0的两根是,,贝卩g 的值是()1已知 Iog 7【log 3(log 2 x )] 0,那么 x 2 等于()1B > LC LD 1一3 2 ; 3 2.2 3*3 函数y Ig 2 1的图像关于()x 轴对称B 、y 轴对称C 、原点对称D 直线y x 对称 精心A 、11. (2011 •银川模拟)若函数y = a 2^2a x — 1(a >0且1)在x € [ —1,1]上的最大值 为14,求a 的值.12.已知函数 f (x ) = 3x , f (a + 2) = 18, g (x ) = X ・3ax — 4x 的定义域为[0,1]. (1)求a 的值;⑵ 若函数g (x )在区间[0,1]上是单调递减函数,求实数 入的取值范围.对数与对数函数同步练习、选择题 三、解答题 10.求函数y = 2x 3x4的定义域、值域和单调区间.7、函数y log(2x 1) .3r~2的定义域是()2 1A -,1 U 1, B、,1 U 1,3 2C、2, D !,3 2&函数y log1 (x26x 17)的值域是()2A、R B 8, C , 3 D 3,9、若log m9 log n9 0,那么m,n满足的条件是()A、m n 1B、n m 1C、0 n m 1D 0 m n 110、log a2 1,则a的取值范围是()3A、0, — U 1,B、2,C、—,1 D> 0,—U -2,3 3 3 3 311、下列函数中,在0,2上为增函数的是()A、y log1 (x 1)B、y log2、x2121 2C、y log2—D y log 1 (x 4x 5)x忑12、已知g(x) log a|x+1| (a 0且a 1)在1,0 上有g(x) 0,则f(x)是()A、在,0上是增加的B、在,0上是减少的C、在,1上是增加的D在,0上是减少的二、填空题13、若log a 2 m,log a 3 n,a2m n。
指数函数与对数函数专题(含详细解析)
第 讲指数函数与对数函数时间: 年 月 日 X 老师 学生签名:一、 兴趣导入二、 学前测试log 1. log . 2. (1).; (); (). (2).log log log ; log log ;(0,0). 3. ; log ; a b a x y x y x y xy x x x a a a n a a N x a a N b N a a a a a ab a b MN M N M n M M N a N a x +=⇔=⋅===⋅=+=>>==指数式、对数式:指数、对数的运算性质:常用关系式:log log ;log log ; log log .log 4. ;5. 6. ,(, 111.2a aM m N n b a a a b M N N nN M M M my x R x x αααα====∈指数函数的定义、图象、性质对数函数的定义、图象、性质,指、对函数间的关系。
幂函数定义:是常数)叫幂函数。
定义域是使的意义的的值的集合,与的取值有关。
性质:()图象都过点(,)(0.+00 3 7. 8.ααα><)在(∞)上,当时,是增函数,时,是减函数。
()若为有理数,且定义域关于原点对称,则是奇或偶函数。
指数方程、对数方程:均属超越方程,解法是化成同底数幂(同底的对数),从而幂指数(真数)相等。
或用换元法、或两边取对数。
指数不等式、对数不等式:解法与指数方程、对数方程类似。
三、方法培养☆专题1:指数运算与对数运算[例1] 已知,27log 12a =试用a 表示.16log 6变式练习:1已知,ln .log log 3,12x x x x a +==/求证:.)2(2log 3ee e =2若a >1,b >1且lg(a +b )=lg a +lg b ,则lg(a -1)+lg(b -1)的值(A) 等于lg2 (B)等于1 (C)等于0 (D)不是与a ,b 无关的常数☆专题2:指数函数与对数函数[例2] 求下列函数的定义域:〔1〕);1,0(log log log ≠>=a a x y a a a 〔2〕.1223log )31(91.03+-+-=x x y x[解]〔1〕据题意有log a log a x>0.①a>1时,上式等价于log a x>1,即x>a.②0<a<1时,上式等价于0<log a x<1,即1>x>a . 所以,当a>1时,函数定义域为〔a,+∞〕;而当0<a<1时,函数定义域为〔a,1〕.〔2〕据题意有⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+->+-≤⎪⎪⎩⎪⎪⎨⎧≤+-<≤⎪⎪⎩⎪⎪⎨⎧≥+-≥--.011223,01223,)31()31(.1122309)31(.01223log ,0)31(932311.03x x x x x x x x x x x 即即 解得].3,32(.321.332,213232所以函数定义域为即或⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤<-<>-≥x x x x x例3设函数y=f(x),且lg(lgy)=lg3x+lg 〔3-x 〕.(1) 求函数y=f(x)的表达式与其定义域; (2) 求f(x)的值域.变式练习3设x ∈R ,f(x)为奇函数,且,144)2(2+-⋅=-x x a a x f 函数,1log )(2kxx g += 若x ∈]32,21[时,有)()(1x g x f ≤-恒成立,XX 数a 的取值X 围,例4已知),1(log )(++=x x x f a 其中.1>a (1)求函数f(x)的反函数);(1x f - (2)若实数m 满足,0)1()1(211<-+---m fm f求m 的取值X 围,已知函数).,(123log )(222R n m mx n x x x f ∈+++=(1)若R x N m ∈∈,*且f(x)的最大值为2,最小值为1,求m ,n 的值. (2)若,1-=n 且 f(x)的值域为R ,求m 的取值X 围.四、强化练习1.函数54224+--=x x y 的值域是.2.已知函数]41)1([log 22+-+=x a ax y 的定义域是一切实数,则实数a 的取值X 围是 .3.若132log <a ,则a 的取值X 围是 .4.若,)3(log )3(log )3(log )3(log 5252y y x x ---≥-则y x +与0的关系为 .5.设,1,0=/>a a 函数||log )(2x x x f a -=在[-3,4]上是增函数,则a 的取值X 围是 .五、训练辅导例5已知函数x xf x f 2log )1(1)(•+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题 :指 数 和 对 数第一部分:指数、对数运算一,指数运算1,运算法则(建议学生掌握语言叙述)===÷=⋅r sr s r s r ab a a a a a )()(2,分数指数幂=nm a3,化简⎩⎨⎧=a aa nnZ k k n Z k k n ∈+=∈=,122,例题练习:1、用根式的形式表示下列各式)0(>a(1)51a = (2)34a = (3)35a -= (4)32a -=2、用分数指数幂的形式表示下列各式:(1)34y x = (2))0(2>=m mm(3)= (4)= ; (5)a a a = ;3、求下列各式的值(1)238= ;(2)12100-= ; (3)31()4-= ;(4)3416()81-=(5)122[(]-= (6)(1221⎡⎤⎢⎥⎣⎦= (7)=32644.化简(1)=••1274331aa a (2)=÷•654323a a a (3)=÷-•a a a 9)(34323(4)322aa a •= (5)3163)278(--b a =5.计算(1)43512525÷-(2) (3)210319)41()2(4)21(----+-⋅-()5.0212001.04122432-⎪⎭⎫⎝⎛⋅+⎪⎭⎫ ⎝⎛-- (5)48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π二,对数运算 运算法则:=====NMaM M M M MN a n a n a a N a log 3log )(log )(log ,2,121log , 倒数公式)换底公式)1log (,6log ,5log (,4===b b b a n a a m对数习题练习:一、选择题1、以下四式中正确的是( )A 、log 22=4B 、log 21=1C 、log 216=4D 、log 221=41 2、下列各式值为0的是( )A 、10B 、log 33C 、(2-3)°D 、log 2∣-1∣ 3、251log 2的值是( )A 、-5B 、5C 、51D 、-514、若m =lg5-lg2,则10m 的值是( )A 、25B 、3C 、10D 、15、设N =3log 12+3log 15,则( )A 、N =2B 、N =2C 、N <-2D 、N >2 6、在)5(log 2a b a -=-中,实数a 的范围是( ) A 、 a >5或a <2 B 、 25<<a C 、 23<<a 或35<<a D 、 34<<a7、 若log [log (log )]4320x =,则x -12等于( ) A 、 142 B 、122 C 、 8D 、 48、334log的值是( ) A 、 16 B 、 2 C 、 3 D 、 49、 nn ++1log(n n -+1)等于( ) A 、1 B 、-1 C 、2D 、-2二、填空题10、用对数形式表示下列各式中的x10x =25:____; 2x =12:____;4x =61:____ 11、lg1+lg0.1+lg0.01=_____________12、Log 155=m,则log 153=________________13、14lg 2lg 2+-+∣lg5-1∣=_________ 14.(1).12a a-=, 则 log 12 3=(2).6log 18log )3(log 2626+= . (3)____________50lg 2lg 5lg 2=⋅+; (4)5log 38log 932log 2log 25333-+- =________ (5)25lg 50lg 2lg 20lg 5lg -⋅-⋅=__________15 、若lg2=a ,lg3=b ,则log 512=________ 19、 3a =2,则log 38-2log 36=________16、 若2log 2,log 3,m n a a m n a +===_______ 21、 lg25+lg2lg50+(lg2)2=三、解答题17、求下列各式的值⑴2log 28 ⑵3log 39 ⑶252log 1 ⑷373log 118、求下列各式的值⑴lg10-5 ⑵lg0.01 ⑶log 281⑷log 2718119、求lg 25+lg2·lg25+lg 22的值20、化简计算:log 2251·log 381·log 59121. 化简:()()24525log 5+log 0.2log 2+log 0.5.专题训练:比较大小1,___,)21(,8,45.1348.029.01则三者大小关系为设-===y y y2,(2012天津)已知___,,,2log 2,)21(,258.02.1的大小关系是则c b a c b a ===-3,(2010安徽文)___,52,52,53525352则三者的大小关系是设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=c b a 4,__,,.6.3log ,2.3log ,6.3log 442的大小关系的则已知c b a c b a === 5,已知3log 21log ,5log 21,3log 2log ,10a a a a a z y x a -==+=<<,这三者的大小关系为______6,(2012全国卷)____,,,,2log ,ln 215的大小关系则已知z y x ez y x -===π7,c b a c b a cba22121log )21(,log )21(,log 2,,=== 均为正数,设,则这三者的关系是_____ 8,2log 31,21log 31,3log 21,31log 21的大小关系式是 (A)2log 31<21log 31<3log 21<31log 21 (B)2log 31<3log 21<21log 31<31log 21 (C)3log 21<2log 31<21log 31<31log 21 (D)3log 21<2log 31<31log 21<21log 31 9,已知0)](log [log log )](log [log log )](log [log log 551533132212===z y x 则x,y,z 的大小关系是(A)x <y <z (B)y <z <x (C)z <x <y (D)z <y <x10,(选做题)已知2x =3y =5z 且x,y,z 为正数,则2x,3y,5z 的大小关系为 (A) 2x <3y <5z (B) 3y <2x <5z (C) 5z <3y <2x (D) 5z <2x <3y 1,1,(选做题)log n (n -1)与log n+1n(n >2且n ∈N)的大小关系为 (A)log n (n -1)>log n+1n (B) log n (n -1)<log n+1n (C)log n (n -1)=log n+1n (D) 不能确定12,设2log 3P =,3log 2Q =,23log (log 2)R =,则( )A.R Q P << B.P R Q << C.Q R P << D.R P Q << 13,若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c14,设2lg ,(lg ),a e b e c === ( )A.a b c >>B.a c b >>C.c a b >>D.c b a >>15,设2135,2ln ,2log -===c b a ,则c b a ,,三者的大小关系为___________第二部分,指数函数和对数函数一,指数函数1,定义: 注意:的取值范围a 定义域: 值域: 单调性: 奇偶性:对称性:)1(1x x xx a a a y a y -=⎪⎭⎫⎝⎛==即和过定点:抽象形式:)()()(y f x f y x f ⋅=+ 函数图象的平移: 一个特殊的图象:xa y =2,底数不同时,函数图象的相对位置关系指数函数综合练习:1,函数y =(a 2-3a +3)a x 是指数函数,则有( )A .a =1或a =2B .a =1C .a =2D .a >0且a ≠12,设25a b m ==,且112a b+=,则m =( ) A.10 B.10 C.20 D.1003,(2012四川文)函数(0,1)xy a a a a =->≠的图象可能是( )4,已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2log 3)f +=( )A.124 B.112 C.18 D.385,给出下列结论:①当a <0时,(a 2)32=a 3;②na n =|a |(n >1,n ∈N *,n 为偶数);③函数f (x )=(x -2)12-(3x -7)0的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥2且x ≠73;④若2x =16,3y =127,则x +y =7. 其中正确的是( )A .①②B .②③C .③④D .②④6,函数y =e x +e -xe x -e-x 的图像大致为( )二,对数函数 1,定义: 定义域: 值域 单调性: 奇偶性:对称性:对称关于和____log log 1x x y aa =过定点:抽象形式:)()()(y f x f y x f +=⋅ 2,函数图象的平移变换3,几个重要的函数图象()()()()xy x y x y x y a a a a log 4log 3)(log 2log 1=-=-==4,底数不同时,函数图象的相对位置关系对数函数综合训练:1,当a >1时,函数y=a -x 与y=log a x 的图像是2,函数)45(log 1xx y -=+的定义域是(A)(-1,0) (B)(0,log 45) (C)(-1,log 45) (D) (-1,0)∪(0,log 45) 3,函数)763lg(2++-=x x y 的值域是(A)]31,31[+- (B)[0,1] (C)[0,+∞) (D){0}4,函数f(x)=log 0.3|x 2-6x+5|的单调增区间是(A)(-∞,3] (B)(-∞,1)和(3,5) (C)[3,+∞) (D)(1,3)和[5,+∞)5, 函数f (x )=lg ⎝⎛⎭⎫21-x -1的图像关于( )A .y 轴对称B .直线x =1对称C .点(1,0)对称D .原点对称6,设函数f (x )=log a x (a >0且a ≠1),若f (x 1x 2…x 2011)=8,则f (x 21)+f (x 22)+…+f (x 22011)=( ) A .4 B .8C .16D .2log a 87,函数|1|||ln --=x e y x 的图象大致是 ( )8,设f (x )= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩ 则不等式f (x )>2的解集为 (A)(1,2)⋃(3,+∞) (B)(10,+∞) (C)(1,2)⋃ (10 ,+∞) (D)(1,2)三,幂函数1,幂函数的概念:形如 ax y = 类型的函数是幂函数。