车辆系统动力学讲义
合集下载
车辆系统动力学第二讲
图2-2(b)中各作用力分别向轮对接触点A的切线方 向和法线方向投影,可得: N=Pcos +Qsin T=Psin -Qcos (2-1)
Q——作用于轮缘上的横向力; P——作用于车轮上的垂向力; N——钢轨对车轮的法向反力; T——钢轨对车轮的切向反力; ——车轮轮缘角。
国际铁路联盟UIC规定Q/P≤1.2;德国ICE高速列 车试验标准Q/P≤0.8;日本既有线铁路提速试验 标准也规定Q/P≤0.8,;北美铁路则规定Q/P≤1.0.
第二章 车辆系统动力学指标 及评估标准
主要内容:
第一节 铁道车辆系统动力性能
第二节 车辆运行安全性及评判标准 第三节 车辆运行平稳性及评价标准
重点
介绍目前常用的Sperling评价方法以及 ISO标准。
第一节 铁道车辆系统动力性能
高速铁路动态安全性和运行舒适性的评价标准将直接 影响线路结构设计的安全性。衡量这些性能的主要指 标如下表。
我国制定的脱轨系数标准见下表。表中的第一限 度为合格标准,第二标准为增大了安全裕度的标 准。
2)、考虑作用时间的脱轨系数
在JR标准中,还考虑了轮轨间发生冲击时车轮的脱轨安 全性问题。考虑横向冲击力的作用时间t大于0.05s以上 时,以0.8作为标准值,若作用时间小于0.05s,将 Q/P=0.04/t所得的值作为标准值。
1)、不考虑作用时间的脱轨系数
脱轨系数最初由法国科学家Nadal提出,他是根据 爬轨侧车轮在脱轨临界状态时轮轨接触点上力的平 衡条件,推倒出的表达式。 假设车轮与钢轨接触点位于轮对中心线垂直平面内 (无轮对冲角),图2-2(a)所示的车轮处于脱轨 临界状态时的钢轨受力关系,接触斑处车轮受力如 图2-2(b)。
一、防止蛇行运动的稳定性
车辆系统动力学第三讲
• 4、车辆踏面斜度 轮对径向通过曲线时可以减小运行阻力,减轻磨耗 ,避免脱轨。为达到轮对径向通过曲线目的,同 一车轴上外侧车轮的滚动圆半径必须大于内侧车 轮的滚动圆半径。 同一时间间隔内,外侧轮对走过的距离大于内侧车 轮滚过的距离,因此,车轮踏面必须有斜度,增 大踏面斜度,有利于通过半径较小的曲线。
• 轮对横移量为yw时由于重力产生的横向复原力为
• 由此可见,在轮对一定横移量情况下,锥形踏面 的重力刚度是和轮对横移量无关的量。
• 当轮对在轮轨间隙范围内横移时,磨耗型踏面的 重力刚度值有较大范围变化,该特性有利于轮对 有一定横移量后自动回复到对中位置。
• 2、重力角刚度 • 当轮对横移量为yw而且有摇头角ψ时,作用在左右 车轮上的轨道横向力将对轮对产生一个力矩Mg, 摇头力矩与摇头角之比称为轮对的重力角刚度。作 用在轮对上的摇头力矩为
• 3.对轮重减载率的影响
六、轮对低动力设计方法
• 轮对在钢轨上运行时,由于各种激扰因素的影响,轮轨间 必然发生振动,尤其是车辆运行速度越高,轮轨间振动越 激烈。为了缓和和降低轮轨振动,轮对结构设计应遵循低 动力设计原则。如何满足低动力设计要求呢?目前主要有 以下几种方法。 • 1.减小簧下质量:采用空心车轴,采用小轮径车轮。 • 2.采用合理的车轮踏面 • 3.采用弹性车轮
三、车轮踏面类型与作用 • 1、车轮踏面主要作用
• (1)便于通过曲线; • (2)可自动对中; • (3)踏面磨耗沿宽度方向比较均匀。 • 车轮踏面应具备下列条件:应具有较好的抗蛇行 运动稳定性;应具有良好的防止脱轨的安全性; 轮轨之间的磨耗少,发生磨耗后,不仅磨耗要均 匀,而且外形变化也要小;易于曲线通过;轮轨 之间接触应力要小;旋修车轮时无益的磨耗少, 切削去掉部分的质量要小等。
lecture01_汽车系统动力学基础
1、纵向动力学 2、垂向(行驶)动力学 3、横向(操纵)动力学
研究内容与评价指标
动力性、 燃油经济性 安全性:制动、驱动、 操纵稳定性、被动安全性
舒适性: 平顺性、NVH
机动性: 通过能力
可靠性、耐久性
多学科基础
一般力学 学体系
空气动力学
轮胎力学
车辆动力学的建模方法及基础理论
一、牛顿矢量力学体系:
式(2)
车辆动力学的建模方法及基础理论
二、分析力学体系:
拉格朗日方程
E d E E E v T T D Q i dt q q q q i i i i
( i 1 , 2 , 3 ..... n )
式(3)
式中: ET 、E v 、ED -----系统总动能、总势能、总耗散能; q i -----描述系统的广义坐标(主变量); Q i -----作用于系统的广义力(力或力矩); n -----系统方程阶数 。
Moment Rolling moment Pitching moment Yawing moment
车辆空气动力学的研究内容
1、通过车身外部造型、流体控制和内部流通管道的设计来↓车辆 的空气阻力。 2、尽可能增加向下的气动压力来↑轮胎附着性,同时↓对轮胎侧 偏力的影响。
3、空气动力学试验(比例模型或全尺寸车辆),以及对试验结果的 分析。 4、研究空气动力学与底盘设计及车辆使用之间的关系与影响。
轮胎模型
一、轮胎运动参数
1、纵向滑移率s :表示车轮相对于纯滚动或纯滑动状态的偏 离程度。它是影响轮胎产生纵向力的一个重要因素。
驱动时: 制动时:
r u d s 100 % u u r d s 100 % u
车辆系统动力学第四讲
• 基本假定: • 车轮与钢轨均为刚体,它们不存在影响接触关系的弹性变 形,或者说车轮表面上任意点不能嵌入钢轨内部; • 车轮与钢轨的接触区域为一个点或斑,即车轮踏面与钢轨 之间不存在共面或共线接触情况; • 同一轮对的左轮和左轨、右轮和右轨同时接触,不存在一 侧轮轨脱离现象。
• 3、轮对踏面及轨头外型数值离散和接触参数求 解
• 一、道岔区轮轨接触特点 • 1、踏面与轮缘接触
ቤተ መጻሕፍቲ ባይዱ
• 2、护轨轮背接触 护轨由平直段、两侧缓冲段和两端开口段组 成,是道岔的重要组成部分。 作用: 控制车轮运行方向、引导轮对进入相应的轮 缘槽、防止其在有害空间冲击或爬上心轨尖 端、保证行车安全。
• 如果轮对有向外侧的横移量,那么轮对轮背将与 护轨发生接触,并产生横向冲击作用,迫使轮对 回到对中位置,以使外侧车轮与钢轨间有足够的 轮轨间隙,并以此防止心轨或辙叉过度磨损。
• 通过仿真对比得出,轮对摇头角越大,越 容易发生轮缘与钢轨贴靠现象,甚至出现 两点接触; • 仅从轮轨接触角度来看,适当加宽轨距有 助于减少轮缘贴靠机率,并有利于减小轮 缘磨耗、减轻钢轨侧磨。
第四节 道岔区轮轨接触几何关系
道岔是铁路轨道最薄弱环节之一,是限制列车速度 的最主要线路部位。
本节在介绍道岔区轮/岔接触特点的基础上,给出 了轮对与并列两股钢轨同时接触的判定方法以及 轮缘槽位置车轮轮背与护轨接触的计算方法。 利用数值计算结果,分析了道岔区法伤两点接触 和轮背接触时轮轨力作用与分配特点,以及道岔 系统的振动特性。
0
• 迭代求解轮轨最小距离 虑:
时,需要考
车轮踏面外形、基本轨或翼轨轨头外形、尖轨或心轨轨头 外形 尖轨或心轨轨顶下降量及顶宽 道岔平面内相邻钢轨排列关系 轮对横移量、基本轨垂向和横向位移、尖轨或心轨垂向和 横向位移等。
• 3、轮对踏面及轨头外型数值离散和接触参数求 解
• 一、道岔区轮轨接触特点 • 1、踏面与轮缘接触
ቤተ መጻሕፍቲ ባይዱ
• 2、护轨轮背接触 护轨由平直段、两侧缓冲段和两端开口段组 成,是道岔的重要组成部分。 作用: 控制车轮运行方向、引导轮对进入相应的轮 缘槽、防止其在有害空间冲击或爬上心轨尖 端、保证行车安全。
• 如果轮对有向外侧的横移量,那么轮对轮背将与 护轨发生接触,并产生横向冲击作用,迫使轮对 回到对中位置,以使外侧车轮与钢轨间有足够的 轮轨间隙,并以此防止心轨或辙叉过度磨损。
• 通过仿真对比得出,轮对摇头角越大,越 容易发生轮缘与钢轨贴靠现象,甚至出现 两点接触; • 仅从轮轨接触角度来看,适当加宽轨距有 助于减少轮缘贴靠机率,并有利于减小轮 缘磨耗、减轻钢轨侧磨。
第四节 道岔区轮轨接触几何关系
道岔是铁路轨道最薄弱环节之一,是限制列车速度 的最主要线路部位。
本节在介绍道岔区轮/岔接触特点的基础上,给出 了轮对与并列两股钢轨同时接触的判定方法以及 轮缘槽位置车轮轮背与护轨接触的计算方法。 利用数值计算结果,分析了道岔区法伤两点接触 和轮背接触时轮轨力作用与分配特点,以及道岔 系统的振动特性。
0
• 迭代求解轮轨最小距离 虑:
时,需要考
车轮踏面外形、基本轨或翼轨轨头外形、尖轨或心轨轨头 外形 尖轨或心轨轨顶下降量及顶宽 道岔平面内相邻钢轨排列关系 轮对横移量、基本轨垂向和横向位移、尖轨或心轨垂向和 横向位移等。
车辆系统动力学第一讲课件
14
铁道车辆基本结构:
15
车体:乘客或载物。 转向架:实现车辆走行功能的装置。 车下各种吊挂件。
铁道车辆动力学性能主要由转向架 性能决定。
16
17
转向架一般由轮对和构架/侧架组成,轮对在钢轨 上滚动,实现走行功能,构架在车体与轮对之间, 起承上启下的作用,即将车体的载重和振动向下 转递至轮对并由轮对传递至钢轨,向上传递轮轨 振动。 为了使各种弹簧装置和减振元件能够安全可靠地 运用并发挥功效,构架/侧架还需要为各种弹性元 件和减振元件提供各种安装支吊座。
0.010
251km/h
0.005
0.000
0.000
-0.005
-0.010
-0.005
-0.015
-0.010
0
500
1000
1500
2000
-0.015
0
500
1000
1500
2000
运行距离(m)
运行距离(m)
20
强迫振动
强迫振动是指外界激扰引起的振动,其核 心是关注轨道不平顺、 强风或其他因素引 起的车辆持续振动特性。
28
以上这些干扰引起车辆何种振动?
如何来评价他们对车辆安全性和乘坐舒适 性的影响?
车辆部件经过运转后出现老化现象会给 运行安全性和乘坐舒适性造成什么样的 影响?
车体轻量化后产生的颤振会达到怎样的 程度?
29
4、交会
列车交会时车辆受到的气动力主要有气动横向 力和气动升力。列车高速运行时,处于列车尾 流影响范围内的人员和物品有可能卷入尾流中, 造成人员伤亡或列车受损事故。 过去,中国列车时速较低,列车空气动力学问 题并不突出。列车提速后,列车运行阻力急剧 增加,能耗过大;列车高速交会产生的空气压 力瞬变,导致客车侧墙变形过大,并伴有强烈 的空气爆破声能击碎车窗玻璃。
铁道车辆基本结构:
15
车体:乘客或载物。 转向架:实现车辆走行功能的装置。 车下各种吊挂件。
铁道车辆动力学性能主要由转向架 性能决定。
16
17
转向架一般由轮对和构架/侧架组成,轮对在钢轨 上滚动,实现走行功能,构架在车体与轮对之间, 起承上启下的作用,即将车体的载重和振动向下 转递至轮对并由轮对传递至钢轨,向上传递轮轨 振动。 为了使各种弹簧装置和减振元件能够安全可靠地 运用并发挥功效,构架/侧架还需要为各种弹性元 件和减振元件提供各种安装支吊座。
0.010
251km/h
0.005
0.000
0.000
-0.005
-0.010
-0.005
-0.015
-0.010
0
500
1000
1500
2000
-0.015
0
500
1000
1500
2000
运行距离(m)
运行距离(m)
20
强迫振动
强迫振动是指外界激扰引起的振动,其核 心是关注轨道不平顺、 强风或其他因素引 起的车辆持续振动特性。
28
以上这些干扰引起车辆何种振动?
如何来评价他们对车辆安全性和乘坐舒适 性的影响?
车辆部件经过运转后出现老化现象会给 运行安全性和乘坐舒适性造成什么样的 影响?
车体轻量化后产生的颤振会达到怎样的 程度?
29
4、交会
列车交会时车辆受到的气动力主要有气动横向 力和气动升力。列车高速运行时,处于列车尾 流影响范围内的人员和物品有可能卷入尾流中, 造成人员伤亡或列车受损事故。 过去,中国列车时速较低,列车空气动力学问 题并不突出。列车提速后,列车运行阻力急剧 增加,能耗过大;列车高速交会产生的空气压 力瞬变,导致客车侧墙变形过大,并伴有强烈 的空气爆破声能击碎车窗玻璃。
车辆系统动力学第五讲学习资料
在正常情况下,当车轮沿纵向滚动时,AOF表示其接触表面。开始 接触于A点,脱离于F点,曲线ABF表示极限切向力的分布,而且 ADCF是切向力的实际分布曲线。
对于纵向蠕滑率与切向力之间的关系,Cater所给出的闭合解计算一 个车轮的蠕滑系数的公式如下:
从上式可以看出, 取决于总切向力T,在纯纵向蠕滑的情况下, ,则q=1,对于钢质的轮和轨,上式可以简化为
• 上式仅适用于新轮和新轨接触状态。
三、Kalker滚动接触线性理论
• 理论:认为各项蠕滑率都很小时,滑动区也就很 小,其影响可以忽略。因此,可以假定黏着区覆 盖了轮轨接触的全部面积。
• 质点进入接触区时,先在前导边缘处接触,在此 瞬间,尚未产生切向力,此后质点即沿并平行于 滚动方向穿过接触区,由于无滑动的结果,切向 力即逐步增长,最后,质点在接触区的后端边缘 处离开,与此同时,切向力再降落为零。
• 二、Johnson与Vermeulen理论
• 1958年Johnson将Cater的两维理论延伸到两个滚动球体 的三维工况,这时,包含有纵向蠕滑和横向蠕滑,但没有 自旋蠕滑。
• 1964年, Johnson与Vermeulen又将光滑的半空间理论引 入研究没有自旋蠕滑的纯蠕滑工况。
• 滑动区—黏着区
• 切向力按半椭圆球的规律分别分布在两个 椭圆面积上,其差值为总切向力。
• 滑动区内阴影部分的滑动方向与切向力方 向是不一致的。
• 设A为轮轨接触平面内接触椭圆沿滚动方 向的半轴,b为横向半轴,总的切向力可由 下式计算:
J-V理论只能限制应用于纯纵向和横向蠕滑(即自旋等于零) 的工况。
• 近年来,由于J-V理论的发展,得出了用 于接触斑是椭圆,具有任意a、b值时,计 算纵向、横向蠕滑系数的公式为
对于纵向蠕滑率与切向力之间的关系,Cater所给出的闭合解计算一 个车轮的蠕滑系数的公式如下:
从上式可以看出, 取决于总切向力T,在纯纵向蠕滑的情况下, ,则q=1,对于钢质的轮和轨,上式可以简化为
• 上式仅适用于新轮和新轨接触状态。
三、Kalker滚动接触线性理论
• 理论:认为各项蠕滑率都很小时,滑动区也就很 小,其影响可以忽略。因此,可以假定黏着区覆 盖了轮轨接触的全部面积。
• 质点进入接触区时,先在前导边缘处接触,在此 瞬间,尚未产生切向力,此后质点即沿并平行于 滚动方向穿过接触区,由于无滑动的结果,切向 力即逐步增长,最后,质点在接触区的后端边缘 处离开,与此同时,切向力再降落为零。
• 二、Johnson与Vermeulen理论
• 1958年Johnson将Cater的两维理论延伸到两个滚动球体 的三维工况,这时,包含有纵向蠕滑和横向蠕滑,但没有 自旋蠕滑。
• 1964年, Johnson与Vermeulen又将光滑的半空间理论引 入研究没有自旋蠕滑的纯蠕滑工况。
• 滑动区—黏着区
• 切向力按半椭圆球的规律分别分布在两个 椭圆面积上,其差值为总切向力。
• 滑动区内阴影部分的滑动方向与切向力方 向是不一致的。
• 设A为轮轨接触平面内接触椭圆沿滚动方 向的半轴,b为横向半轴,总的切向力可由 下式计算:
J-V理论只能限制应用于纯纵向和横向蠕滑(即自旋等于零) 的工况。
• 近年来,由于J-V理论的发展,得出了用 于接触斑是椭圆,具有任意a、b值时,计 算纵向、横向蠕滑系数的公式为
车辆系统动力学第一章 (2)
26
一、转向架基本作用及要求
运输:车辆上采用转向架是为增加车辆的载重、 长度与容积,提高列车运行速度,以满足铁路运 输发展的需要;
运动形式转换:保证在正常运行条件下,车体都 能可靠地坐落在转向架上,通过轴承装置使车轮 沿钢轨的滚动转化为车体沿线路运行的平动;
轴重设计
轴重不应过高,以便将轮和轨的磨损降至最低水 平,并可避免疲劳;
轴重不应过低,以便保证交叉风的稳定性,特别 是对于头车来说更应如此;
达到最好均衡轴重分配因素如下: 运行稳定性 车轮磨损 交叉风的稳定性 粘着力 疲劳情况
车体几何学设计
车体横断面应相对于限 界来优化(考虑动态包 络线);
因此,本课程将围绕采取哪些措施来提高或获 得优良的车辆系统动力学性能来讲解。
• 结构形式设计与要求 • 参数设计与要求
第一章 概论
24
课程讲解思路
讲解思路
结构与参数 轨道不平顺 动力学计算
轮轨接触 轴箱定位 中央悬挂
动力学模型
第一章 概论
25
转向架基本结构及功能实现 • 转向架基本作用及要求 • 客车转向架基本结构
车辆动力学基础 任尊松
北京交通大学 机电学院
第一章 概论
1
高速列车/动车组的运行要求
稳定性
舒适性
安全性
可靠性
经济性
高速
第一章 概论
振动的加剧,相对运动的速度提高
2
第一章 概论
第一节 第二节 第三节 第四节
第五节 第六节
研究内容和目的 车辆动力学研究与实践 铁路发展趋势 世界高速铁路
我国铁路高速技术发展
❖ 上世纪90年代,国外技术进入相对成熟期;
❖ 国内在70年代末在该方面的研究才真正开始起步, 并形成对国外先进技术的追赶之势;但终因基础薄 弱、起步晚,虽然经过20多年的致力发展,目前仍 与国外先进技术有一定的差距。
一、转向架基本作用及要求
运输:车辆上采用转向架是为增加车辆的载重、 长度与容积,提高列车运行速度,以满足铁路运 输发展的需要;
运动形式转换:保证在正常运行条件下,车体都 能可靠地坐落在转向架上,通过轴承装置使车轮 沿钢轨的滚动转化为车体沿线路运行的平动;
轴重设计
轴重不应过高,以便将轮和轨的磨损降至最低水 平,并可避免疲劳;
轴重不应过低,以便保证交叉风的稳定性,特别 是对于头车来说更应如此;
达到最好均衡轴重分配因素如下: 运行稳定性 车轮磨损 交叉风的稳定性 粘着力 疲劳情况
车体几何学设计
车体横断面应相对于限 界来优化(考虑动态包 络线);
因此,本课程将围绕采取哪些措施来提高或获 得优良的车辆系统动力学性能来讲解。
• 结构形式设计与要求 • 参数设计与要求
第一章 概论
24
课程讲解思路
讲解思路
结构与参数 轨道不平顺 动力学计算
轮轨接触 轴箱定位 中央悬挂
动力学模型
第一章 概论
25
转向架基本结构及功能实现 • 转向架基本作用及要求 • 客车转向架基本结构
车辆动力学基础 任尊松
北京交通大学 机电学院
第一章 概论
1
高速列车/动车组的运行要求
稳定性
舒适性
安全性
可靠性
经济性
高速
第一章 概论
振动的加剧,相对运动的速度提高
2
第一章 概论
第一节 第二节 第三节 第四节
第五节 第六节
研究内容和目的 车辆动力学研究与实践 铁路发展趋势 世界高速铁路
我国铁路高速技术发展
❖ 上世纪90年代,国外技术进入相对成熟期;
❖ 国内在70年代末在该方面的研究才真正开始起步, 并形成对国外先进技术的追赶之势;但终因基础薄 弱、起步晚,虽然经过20多年的致力发展,目前仍 与国外先进技术有一定的差距。
车辆系统动力学资料课件
车辆系统动力学资料课件
• 车辆系统动力学概述 • 车辆动力学模型建立与仿真 • 车辆系统动力学性能分析与优化 • 车辆系统动力学控制策略与应用 • 总结与展望
01 车辆系统动力学概述
车辆系统动力学的发展历程
20世纪60年代
20世纪70年代
车辆系统动力学开始得到关注和研究,主 要涉及车辆的稳定性、操纵性和乘坐舒适 性等方面。
车辆系统动力学优化实例
实例1
某型汽车的稳定性优化,通过优化悬挂系统和车身结构,显著提高 了车辆在高速行驶和弯道行驶时的稳定性。
实例2
某型卡车的平顺性优化,通过优化驾驶室和货箱的结构,有效降低 了驾驶员在长途运输中的疲劳程度和货物的破损率。
实例3
某型跑车的操控性优化,通过优化车身结构、悬挂系统和制动系统 ,提高了车辆在高速行驶和紧急制动情况下的操控性能。
03
研究成果与应用
研究人员已经将车辆系统动力学控制 策略应用于实际车辆中,并取得了良 好的控制效果。
车辆系统动力学控制算法设计与实现
控制算法设计
算法实现方法
算法实现方法包括基于MATLAB/Simulink的仿真 实现、基于实际车辆的实验实现等。
车辆系统动力学控制算法的设计需要考虑多 种因素,如车辆动力学特性、道路条件、驾 驶员行为等。
随着计算机技术的发展,车辆系统动力学 开始进入仿真模拟阶段,通过计算机模拟 来研究车辆的动力学行为。
20世纪80年代
20世纪90年代至今
车辆系统动力学的研究范围不断扩大,开 始涉及到安全、控制、智能驾驶等领域。
车辆系统动力学得到了广泛应用,不仅在 汽车领域,还在航空、航天、军事等领域 得到应用。
车辆系统动力学的研究对象和研究方法
• 车辆系统动力学概述 • 车辆动力学模型建立与仿真 • 车辆系统动力学性能分析与优化 • 车辆系统动力学控制策略与应用 • 总结与展望
01 车辆系统动力学概述
车辆系统动力学的发展历程
20世纪60年代
20世纪70年代
车辆系统动力学开始得到关注和研究,主 要涉及车辆的稳定性、操纵性和乘坐舒适 性等方面。
车辆系统动力学优化实例
实例1
某型汽车的稳定性优化,通过优化悬挂系统和车身结构,显著提高 了车辆在高速行驶和弯道行驶时的稳定性。
实例2
某型卡车的平顺性优化,通过优化驾驶室和货箱的结构,有效降低 了驾驶员在长途运输中的疲劳程度和货物的破损率。
实例3
某型跑车的操控性优化,通过优化车身结构、悬挂系统和制动系统 ,提高了车辆在高速行驶和紧急制动情况下的操控性能。
03
研究成果与应用
研究人员已经将车辆系统动力学控制 策略应用于实际车辆中,并取得了良 好的控制效果。
车辆系统动力学控制算法设计与实现
控制算法设计
算法实现方法
算法实现方法包括基于MATLAB/Simulink的仿真 实现、基于实际车辆的实验实现等。
车辆系统动力学控制算法的设计需要考虑多 种因素,如车辆动力学特性、道路条件、驾 驶员行为等。
随着计算机技术的发展,车辆系统动力学 开始进入仿真模拟阶段,通过计算机模拟 来研究车辆的动力学行为。
20世纪80年代
20世纪90年代至今
车辆系统动力学的研究范围不断扩大,开 始涉及到安全、控制、智能驾驶等领域。
车辆系统动力学得到了广泛应用,不仅在 汽车领域,还在航空、航天、军事等领域 得到应用。
车辆系统动力学的研究对象和研究方法
车辆系统动力学第五讲
• 蠕滑率的大小决定着蠕滑力的数值,且当有不同 方向、不同数量的蠕滑率存在时,其蠕滑力也是 不同的,即有:
• 蠕滑力与蠕滑率之间的变化关系不全是线性的。 只是在速度较小时,两者才成线性,在线性范围 内,直线的斜率称为蠕滑系数f,
第三节 轮轨蠕滑理论
蠕滑力与蠕滑率之间关系相当复杂,但在实际运用中总是依 据某些理论对其作简化处理。以下主要介绍Carter理论、 Johnson与Vermeulen理论、Kalker滚动接触理论。
• 第四节 非线性蠕滑力的近似计算与修正
在Kalker线性理论中,假定接触区全部为黏着区且切向力呈 对称分布,所以纵向蠕滑力与横向蠕滑率无关,而横向力也 与纵向蠕滑率无关,由此给出了蠕滑力与蠕滑率的线性关系。 实际上, Kalker蠕滑线性理论只适用于小蠕滑情形,对于大 蠕滑情况,蠕滑力呈饱和状态,蠕滑力与蠕滑率成非线性关 系,采用Johnson-Vermeulon理论做一定的修正。
一、Carter理论
• 为了研究车辆横向动力学的需要, Carter于1926年开始 进行带有摩擦的二维滚动接触理论的研究,并给出了对 于纵向蠕滑力与纵向蠕滑率之间关系的一个较为准确的 闭合解。 • 轮轨间接触椭圆形状在很大程度上取决于车轮磨耗程度 和轨头外形。
• 新轮、新轨相接触时,接触椭圆沿纵向的半轴a大于沿 横向的半轴b。
• 蠕滑的物理意义: • 介于纯滑动与纯滚动之间,它既不是纯滚 动,也不是纯滑动。如果外力增大,则滑 动区面积增大,黏着区面积减小,直到黏 着区为零,车轮产生滑动。蠕滑的多少, 以蠕滑率表示。
二、轮对自旋
• 车轮向左右方向移动时,将产生左右方向的滑动, 而且一侧车轮的滚动圆半径增大,另一侧车轮的滚 动圆半径将变小。 • 半径大的车轮试图向前多行走一些距离,但是由于 左右车轮联结在同一根车轴上,只能以平均速度前 进,结果使得半径较大的车轮向着被拉回的方向滑 动,半径较小的车轮向行进方向滑动,同时车轮也 绕垂直轴作回转运动,该回转运动使得接触面上产 生回转滑动现象。
车辆系统动力学
车辆系统动力学
1 车辆系统动力学
车辆系统动力学是一门关于车辆系统的动态行为的学科,研究的
对象是具有轮式载具的制动,转向,坡曲,悬挂和其他因素的车辆系统。
它结合了力学,控制技术,计算机,基础交通理论等多种技术,
以便获得可靠的车辆系统动力学分析。
有时,车辆系统动力学也作为汽车动力学或汽车动力学的代表性
学科而被引用,因为它涉及了汽车的空间方向性行为,特别是涉及汽
车在坡道,悬挂,转弯,刹车等特定情况下表现出来的行为,也更多
地涉及牵引力,阻力和悬挂参数研究方面的工作。
研究人员利用数学模型模拟车辆行驶时外界力对车辆运动产生的
影响。
车辆行驶过程中受有多种力的影响,包括重力作用,悬挂受力,地形受力,波动荷载,操作荷载等,根据不同的外界力的组合分析出
车辆行驶时的偏航角,离地高度或悬挂角等振动量度,以减小其对车
辆稳定性的不利影响。
车辆系统动力学的分析计算可以帮助设计出符合对车辆行驶稳定
性有较高要求的汽车,例如减少偏航或调整悬挂设计,提高车辆行驶
稳定性,从而确保乘员、车辆和财产安全。
车辆系统动力学是一门复杂的学科,并且在实际应用中需要考虑
众多因素,及时调整设计技术,以更好地利用实际条件。
只有对车辆
整体运动性能及全面的分析评估,车辆系统动力学才能发挥作用,帮助设计出能够满足实际要求的车辆系统。
车辆系统动力学第六讲汇编
第二节 客车中央悬挂系统
• 一、中央悬挂装置基本功能和目的 任务 支撑车体,使得车体的质量及载荷比较均
衡地传递给各个轮轴。
衰减因线路不平顺以及车轮缺陷等原因引起 的车辆振动和冲击,使得车体具有良好的 乘坐舒适性。
支撑车体要求儿戏悬挂系统刚度足够硬,能够保 证车体和转向架一起运动。 良好的乘坐舒适性要求中央悬挂足够软,能够很 好地隔离和衰减来自于转向架的高频振动。
• 橡胶在应用一段时间后易于老化,其性能 更难保证。
• 即使新造橡胶堆,其性能离散性也较钢弹 簧大。
• 仍难满足车辆高速和长期运用要求。
• 4、拉板式
• 定位拉板一端与轴箱连接,另一端通过橡胶节点 与构架连接,利用拉板在纵向和横向的不同刚度 约束构架与轴箱之间的相对运动,以实现弹性定 位。
优点
• 能够保持转向架前后轮对的平行度,利用 拉板在纵向和横向的刚度不同,容易实现 轴箱纵向和横向具有不同的定位刚度要求 ,没有磨耗件,定位性能稳定。
• 改进:在轴箱弹簧内部设置较为准确的定位刚度 后,能够有效提高临界速度,但仍然存在摩擦副 ,且组装要求高,运用中摩擦间隙增大后也会使 转向架临界速度显著降低。
• 通过进一步改进,在轴箱钢弹簧内设置圆形橡胶 叠层定位器,并在定位器内套与构架上的导柱固 定,形成无磨耗弹性定位,消除了运用中定位刚 度变化对临界速度的影响。
• 1、摇动台中央钢弹簧悬挂方式
• 最初,采用板弹簧,但摩擦磨损大,噪声大,垂 向挠度也有限,更不具横向弹性,因此考虑利用 吊杆摆动作用实现横向缓冲,并设计了摇动台用 以布置板弹簧,设置吊杆承担横向弹簧作用,并 可获得一定的横向阻尼作用。
• 随着螺旋钢弹簧的使用,垂向获得了较大的挠度, 摇动台结构也得到简化。但是,因为摇动台位于构 架下部,弹簧垂向空间受限,不能进一步降低弹簧 刚度,同时吊杆长度也受限,横向刚度与当量吊杆 长度成反比,因此不能获得较低的横向刚度。
车辆系统动力学第七讲
• 因此,从总体上看,最佳轴箱定位刚度的 范围大致在纵向5~30MN/m,横向 5~15MN/m。 • 对于右图所示,两者 的最佳匹配范围是, 纵向10~15MN/m, 横向6~9MN/m。
• (2)曲线通过
• 从上图反映出来的指标来看,一般 越大,车轮的轮轨横向力越大,脱轨系数、轮对冲 角和磨耗功率也越大,不利于曲线通过。另一方面 , 增大时轮重减载率反而有所降低,对曲线 通过安全有利,但该下降量有限。 从总体上看,增大轴箱纵向和横向定位刚度,不利 于转向架曲线通过。
• 5、轴箱横向悬挂距离
• 6、车轮踏面斜度
第五节 中央悬挂参数与系统动力学性 能关系
一般来说,在所有中央悬挂参数中,除中央弹 簧纵向与横向刚度对车辆系统曲线通过性能有 一定影响外,其他参数对曲线通过几乎没有影 响。
一、中央空气弹簧纵向刚度和横向刚度 1、稳定性 随着纵向和横向刚度的增加,系统临界速度会 有所增大,但增加幅度不明显。即使刚度值增加近 10倍,系统的临界速度增大百分比仅为6%。 空气弹簧纵向和横向刚度又称水平刚度,一般 在0.2MN/m左右。
• 轴箱纵向定位刚度和横向定位刚度对转向架蛇行 运动临界速度起着决定性的影响,并且影响着车 辆曲线通过性能。 a. 临界速度 b. 曲线通过
• (1)临界速度
• 基本原理:当轮对中心偏离轨道中心时,轮对
需要足够大的回复力使其迅速回复到对中位置, 而该回复力和力矩一般由轮轨力和轴箱力提供。 当偏移量基本不变而定位刚度较大时,轮对受到 的回复力也较大,使得轮对偏移后能够很快对中 ,从而维持车辆系统的运行稳定性。
• 三、抗蛇行减振器阻尼
当阻尼值较大时,在其他参数保持良好状态下,系 统可以达到很高的临界速度值;当整车抗蛇行减振 器失效后,系统的临界速度明显下降。 在设置系统结构和选择参数方面,必须保证在没有 抗蛇行减振器条件下,仍有能够满足车辆正常运行 需要的临界速度。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 车辆动力学的工程意义
• 车辆系统动力学来源于车辆的运用实践,服务于运用。 其主要目的是: 1. 从理论角度解释车辆系统的动力学现象; 2. 解决运用中的动力学问题; 3. 提出新的方法和设想; 具体表现在:车辆系统动力学的基础理论研究、 车辆参数优化、动力学性能预测、新型转向架和车辆 的研究等诸多方面。车辆动力学是现代车辆设计、运 用和研究中不可缺少的重要部分,车辆动力学理论又 是其基础。
6) 系统参数的识别
正确和准确的参数是动力学仿真的必要条件。动 力学仿真中很多参数都是先由试验获取,再经过简化 或统计处理得到的。
不准确的参数可能对动力学现象产生误导,从而 得出错误的结论。
车辆动力学的参数主要包括:
(a) 各部件质量、转动惯量和重心等参数;
(b) 各弹簧和减振器的位置、刚度和阻尼值;
3)车辆动力学模型 (a) 垂向和横向模型(下图) 模型简单,横向和垂向模型相似,定性分析。
(b)横向稳定性模型 用于传统的稳定性分析,现在一般都建立横、垂耦合 模型或横、垂、纵向耦合模型用于稳定性分析。比单 独的横向和垂向模型考虑的自由度增加,增加了计算 时间,尤其是参数优化时,稳定性计算所占的时间很 长 。对动车组的稳定性一般分单车稳定性和列车稳定 性。
车辆系统动力学
西南交通大学牵引动力国家重点实验室
2009年12月
• 本课程的主要内容
• 第一章 绪论 • 第二章 车辆系统动力学的理论基础 • 第三章 车辆系统动力学性能 • 第四章 列车系统动力学 • 第五章 车辆系统动力学的工程应用和发展
第1章 绪论
• 主要内容 1. 车辆动力学的发展 2. 车辆动力学的主要研究内容 3. 车辆动力学的研究方法 4. 车辆动力学的工程意义
基础
• 运动稳定性
• 运行平稳性
常规
• 曲线通过性能(运行安全性)
• 轮轨磨耗
• 噪声 • 结构弹性振动
前沿
• 控制等
1.3 车辆动力学的研究方法
• 试验方法 1 线路试验:试验线路试验、正线试验 2 试验台试验:滚动台、振动台、滚动振动台等
• 理论分析方法:线性、非线性等简化或局部模型
• 仿真分析方法 1 传统的计算机数值仿真:主要针对某一方面 2 虚拟现实技术:大系统和复杂模型的仿真 3 半实物仿真:半实物半仿真的混合仿真
较小; • 不考虑空气动力学的影响; • 不考虑结构弹性振动。 • 弹簧和减振器均简化和线性化处理。
2)车辆运动形式的定义(Simpack动画)
• 伸缩 • 横移 • 沉浮 • 侧滚 • 点头 • 摇头
轮对的滚动称为:旋转。车体的横移和侧滚运动一般 耦合为:上心滚摆和下心滚摆;构架的横移一般以横 摆的形式出现。
模型验证的方法主要是仿真结果了试验结果的对比。 模型验证只需比较和所建立模型目的相关的结果或 中间结果。需要注意的是针对所研究的目的需要选择 合适的比较统计量、合适的容许误差和判据。
一般商业软件的建模方法和计算方法都是经过验证的, 而自己编写的程序需要大量的调试。商业软件的模型 验证只需和试验结果比较。
1.1 车辆动力学的发展
• 车辆动力学系统是一个复杂的系统,其发展依靠科学 技术和研究手段的进步。至今仍有大量问题没有解决。
• 60年代以前的传统方法
• 轮轨蠕滑理论的提出和应用
• 计算机技术的大量采用
• 大系统方法和复杂动力学模型
1.2 车辆动力学的主要研究内容
• 车辆动力学模型的建立和求解
• 车辆动力学模型的验证
2.2 铁道车辆模型
1)铁道车辆系统是一个由多个部件组成的复杂系统,每 个部件有6个自由度,再加上各体之间有复杂的非线性 力和几何约束关系,故传统的方法仍是采用多刚体动 力学理论,简化影响较小的因素,根据研究的目的不 同建立各种简化模型。
• 一般不考虑各车间的耦合,只建立单车模型; • 一般不考虑车辆-轨道的耦合,认为轨道是刚性的; • 一般不考虑车辆与接触网的耦合振动,其对车辆影响
(c) 曲线通过模型 用于分析车辆曲线通过时的动力学性能。现在的曲线
通过模型一般也采用横-垂耦合模型。
4) 列车动力学模型 传统的列车动力学模型主要研究列车状态下车辆之间 的动力学作用,例如车钩力分析。现在的列车动力学 也有向大系统、复杂模型发展(尤其是动车组)。传 统模型包括:
(a) 列车纵向动力学模型 (b) 列车横向动力学模型 (c) 列车垂向动力学模型
由于列车动力学研究的车辆数目一般较多,对车 辆都做了大量简化。由于所关注的问题主要是列车系 统的影响,所以一般都能取得较满意的精度,没有必 要建立复杂的模型。
5) 车辆动力学模型的验证 建模和模型验证是仿真中最重要的两个方面。正确
的模型必须具备两个条件: • 模型的结构必须是可靠的 • 模型的各个参数必须的准确的
第2章 车辆系统动力学的理论基础
2.1 振动理论的简单回顾
• 基本分类: • 线性振动、非线性振动、随机振动 • 自由振动、受迫振动、自激振动 • 多刚体系统、多柔体系统
• 动力学一般方程:
M x C x K F x (x ,x ,t)
其中:M为质量矩阵;C为阻尼矩阵;K为刚度矩阵; x为系统状态向量;F为非线性的力和外界作用等。
(c) 车轮踏面和轨面形状和相对位置;
广义的讲,还包括仿真的线路条件、天气情况等。
2.3 车辆动力学性能
常规的车辆动力学性能主要包括:运行平稳性、 运动稳定性和曲线通过动力学性能。这几方面都比较 成熟了,它们包含了我们最关系的安全性和舒适性的 问题。当然,车辆动力学性能还有很多其他的方面, 例如结构弹性振动、噪声、空气动力学等,这些都还 处于研究阶段,不是常规动力学计算的任务。
更一般的可Hale Waihona Puke 写为:xAxBuF(x,t)
yCxDu
其中:u为外界线性输入。
求解方法(常微分方程组、微分代数方程组) • 理论解:符号计算、公式推导 • 数值解:
1 显示方法: 中差预测法、梯形迭代法、龙格-库塔法等。 2 隐式方法:
houbolt法、威尔逊-q法、纽马克法、派克强稳定法等。
现在在以上方法的基础上还发展了大量的积分方 法,用于不同的领域。运用较多的还是龙格-库塔法。 微分代数方程的求解较困难,所以完全基于计算多体 系统动力学的软件求解较慢。