金属原子簇化学

合集下载

金属原子簇化合物

金属原子簇化合物
第六章 金属原子簇化合物
§4-5 钯 铂原子簇 -
指导老师: 学 生:
金属原子簇化合物的定义: 1 、金属原子簇化合物的定义:
1966年F.A.Cotton提出,原子簇是“含有直接而 明显键合的两个或以上的金属原子的化合物”。 美国化学文摘CA的索引中提出, “原子簇化合 物是含有三个或三个以上互相键合或极大部分互相键 合的金属原子的配位化合物”。 1982年我国徐光宪提出,“原子簇为若干有限 原子(三个或三个以上)直接键合组成多面体或缺顶 多面体骨架为特征的分子或原子”。(包括了硼烷及 杂硼烷)
5、钯、铂原子簇 由于钯铂原子簇在仿声系统、新型 材料、均相催化剂等方面具有潜在的应 用前景,因此,近二十年来一直是原子 簇化合物领域的研究热点之一。人们合 成了一系列蔟核结构,如下图,并对其 光学,电化学以及催化性质进行了研究。
钯、铂原子簇核结构
Pd(dppm)3(CO)2+为例介绍其 性质
关于核数超过十的多核钯蔟的研究室 目前的另一个热点。最近,具有纳米尺度 的[Pd30(CO)26(PEt3)10],[Pd54(CO)40(PEt3)14]等 多核钯原子簇已见报道。值得关注的是在 这些研究中发现多核蔟结构表现出类似主客复合物的结构。如[Pd69(CO)3(PEt3)18]蔟 核中具有由33个Pd原子构成的线形分子上。 多核的异钯铂原子簇同样引起人们的研究 兴趣。关于PdTI蔟以及PdNi蔟的合成与结 构的研究已有人涉足。预计今后这方面的 研究会更加活跃。
4、分类: 、分类:
含有金属-金属键的化合物通称为金属原子簇 合物 . 它们可分为 3 类: ⅰ). 多核的金属羰基化合物 Mn2(CO)10, Fe3(CO)12, Fe2(CO)9; ⅱ). 低氧化态的卤化物和氧化物 [Re3Cl12]3-, [Re2Cl8]2-; ⅲ). 无配体金属原子簇, Bi4+(AlCl4), Bi53+ (AlCl4)3, K4Sn94-, NaPb4( 在液氨中).

《金属原子簇化学》课件

《金属原子簇化学》课件

催化领域:金属原子簇作为催化剂,提高化学反应速率和选择性 材料科学:金属原子簇作为新型材料,具有独特的物理和化学性质 生物医学:金属原子簇作为药物载体,提高药物的靶向性和生物利用度 环境科学:金属原子簇作为污染物吸附剂,有效去除水中的有毒有害物质
金属原子簇的合成 方法
原理:通过加热金属盐或金属氧化 物,使其分解产生金属原子簇
金属原子簇的结构由金属原子和配体组成 金属原子簇的结构可以通过X射线晶体学、电子显微镜等方法进行研究 金属原子簇的结构与性质密切相关,如电子性质、催化性能等 金属原子簇的结构可以通过化学合成、物理吸附等方法进行调控
性质:金属原子簇具有独特的物理和化学性质,如磁性、催化活性、光学性质等。
结构:金属原子簇的结构与其性质密切相关,如原子簇的大小、形状、对称性等。
金属原子簇的未来 发展前景与挑战
研究进展:金属原子簇的合成、 结构、性质等方面的研究取得 了重要进展
研究现状:金属原子簇在材料 科学、化学、物理等领域具有 广泛的应用前景
挑战:金属原子簇的合成、结 构解析、性质研究等方面还存
在许多挑战
发展前景:金属原子簇在能源、 环境、生物等领域具有广阔的 应用前景
应用:广泛应 用于催化、材 料科学等领域
研究意义:有 助于理解金属 原子簇的性质 和反应机理, 推动相关领域
的发展
按照金属原子簇的组成元素分类:如金、银、铜、铁等 按照金属原子簇的结构分类:如线性、平面、立体等 按照金属原子簇的性质分类:如稳定性、反应性、催化性等 按照金属原子簇的应用分类:如催化剂、药物、材料等
改善反应条件:金属原子簇可以改善催化反应的条件,降低反应所需的温度和压力, 提高反应的可行性。
降低能耗:金属原子簇可以降低催化反应的能耗,减少反应过程中的能源消耗,提高 反应的经济性。

高中化学竞赛-中级无机化学-金属原子簇

高中化学竞赛-中级无机化学-金属原子簇

1963,Robinsson, Cotton
确定[Re3Cl12]2-中存在
程碑式事件: 1964,Cotton提出 [Re2Cl8]2-中存在 Re Re 键
第三页,编辑于星期二:十五点 五十二分。
金属-金属键定义
金属原子之间所存在的一种直接相互作用
金属原子簇化合物定义
(i) 含两个或两个以上金属原子且金属原子间 至少存在一个金属-金属键的化合物
5Na4Nb6Cl18 +8H2O 浓HCl [Nb6Cl12]Cl2.8H2O +4NaCl
第三十四页,编辑于星期二:十五点 五十二分。
结构
6个金属原子常构成八面体骨架
[Mo6Cl8]4+ :[Mo6( 2–C1)8]4+
八面体每个边的上方有1个Cl
6个Mo2+的24个价电子
Cl
用于形成Mo–Mo骨架键
第五页,编辑于星期二:十五点 五十二分。
1 、 按 成 簇 原 子 类 型 分 : 同 核 簇 Fe3(CO)12 、 异 核 簇
Fe2Ru(CO)12 、 FeRu2(CO)12 。 2、按结构类型分:开式结构多核簇;闭式结构多核簇。
3、按成簇金属原子数分:双原子簇Te2(CO)10 、三原子簇 Fe3(CO)12 、多原子簇[Mo6Cl8]4+。
4、按配体类型分:“羰合物”型原子簇Re2(CO)10 、“低 价卤化物”型原子簇Mo2Cl83- 、 无配体原子簇,如 Bi4AlCl4。
第六页,编辑于星期二:十五点 五十二分。
二、金属-金属键
1. 影响形成M-M键的因素 (1)要有较低的氧化态:
因为M-M键的形成主要靠d轨道重叠,当金属处于高 氧化态时,d轨道收缩,不利于d轨道的互相重叠。因此 M-M键通常出现在金属原子处于低氧化态的化合物中。

金属原子簇化合物

金属原子簇化合物

金属原子簇化合物金属原子簇化合物是由金属原子组成的微小团簇,具有特殊的物理和化学性质。

在这篇文章中,我们将探讨金属原子簇化合物的形成、结构和应用。

一、形成金属原子簇化合物的方法金属原子簇化合物可以通过多种方法合成,其中最常见的是气相聚集方法和溶液相方法。

1. 气相聚集方法气相聚集方法是通过在真空条件下,利用高温或激光等手段将金属原子蒸发并聚集起来形成团簇。

这种方法可以控制金属原子的大小和组成,从而得到不同性质的簇化合物。

2. 溶液相方法溶液相方法是将金属原子溶解在有机溶剂或水溶液中,通过控制溶液的浓度和温度等条件,使金属原子形成团簇。

这种方法可以得到较大数量的金属原子簇,并且可以对其进行表面修饰,改变其性质。

金属原子簇化合物的结构取决于金属原子的种类、数量和排列方式。

常见的结构包括金属球形簇、链状簇和层状簇等。

1. 金属球形簇金属球形簇是由金属原子构成的球形团簇,其中金属原子呈紧密堆积的结构。

这种簇化合物通常具有良好的稳定性和高度的对称性。

2. 链状簇链状簇是由金属原子按一定的顺序排列形成的线性结构。

这种簇化合物具有特殊的电子结构和导电性,常用于纳米电子器件的制备。

3. 层状簇层状簇是由金属原子按层次排列形成的二维结构。

这种簇化合物具有较大的表面积和丰富的表面活性位点,可以用作催化剂、吸附剂等。

三、金属原子簇化合物的应用金属原子簇化合物由于其特殊的物理和化学性质,在多个领域具有广泛的应用。

1. 催化剂金属原子簇化合物作为催化剂具有高效、高选择性的特点,广泛应用于化学反应中。

例如,铂簇可以用作氧还原反应的催化剂,铜簇可以用作CO2还原的催化剂。

2. 电子器件金属原子簇化合物可以用于制备纳米电子器件,如纳米传感器、纳米电子芯片等。

其特殊的电子结构和导电性使其在微电子技术中具有巨大的潜力。

3. 材料科学金属原子簇化合物可以用于制备新型材料,如金属纳米颗粒、金属纳米线等。

这些材料具有特殊的光学、磁学和力学性质,可应用于光催化、磁性材料和生物传感器等领域。

原子簇的概念

原子簇的概念

原子簇的概念
原子簇,也被称为金属簇合物或金属原子簇,是化学中的一个重要概念。

它指的是由两个或更多的金属原子通过共享电子形成的多个金属-金属键合的分子或离子。

这些原子簇通常具有特定的几何形状和电子结构,在化学反应中表现出独特的性质和行为。

原子簇的形成是由于金属原子之间存在强的金属-金属相互作用,这种相互作用使得金属原子之间共享电子,形成多个金属-金属键。

这些键合方式可以是桥键、面内和面外配位等。

原子簇的大小可以从二聚体到包含数十个甚至数百个金属原子的庞大簇合物。

原子簇在化学反应中具有重要的应用。

由于其独特的几何形状和电子结构,原子簇可以作为催化剂、反应中间体或反应底物参与到各种化学反应中。

例如,在烯烃复分解反应中,RuCl2(CO)2(PPh3)2这样的二茂铁二氯化钌催化剂可以通过与烯烃的配位和插入反应,促进烯烃的分解和重组。

此外,原子簇在材料科学领域也有广泛的应用。

由于其独特的结构和性质,原子簇可以作为功能材料、磁性材料、光电子材料等。

例如,Fe3S4是一种具有磁性的原子簇,可以用作磁记录材料;又如,Pt3Ni4是一种具有催化活性的原子簇,可以用于催化氢化反应。

在研究原子簇的过程中,科学家们通过合成、表征和反应等方法来探索其性质和行为。

随着科学技术的发展,原子簇的研究和应用将更加广泛和深入,其在化学、材料科学、能源科学等领域的应用前景也将更加广阔。

总之,原子簇是化学中的重要概念,它涉及到金属原子的键合方式和性质。

原子簇的研究不仅有助于理解化学反应的本质和机制,而且有助于发现新的功能材料和催化剂,推动科学技术的发展。

第4章 金属原子簇化学

第4章 金属原子簇化学

这些谱线随着温度的升高逐渐加宽, 而且简并,体现了配位的羰基动态交换 的特征; 当温度升高到63.2C时,交换过程如 此迅速,以时间标度为10-12秒的NMR谱 已不再能辨认到不同的碳基,这时每个 CO与4个Rh均发生偶合,产生2x 4×1/2 + 1=5重峰,表明所有的碳基具有相同 的微环境。
C3v
Td
Ru4(CO)12的羰基迁移重排及变温13CNMR谱图
四核簇中CO迁移经过C3v-Td重排的过程,其实质就是多面体重排;
二十面体 (Ih)
C3v
立方八面体 (Oh) Td
M4(CO)12簇的配位多面体
Ih
Oh
Ih
补充:等电子和等分子片
等电子关系要点: 1. 同族金属组成相同的物种 Mn(CO)5/Re(CO)5; CpMo(CO)3/CpW(CO)3; Co(CO)3/Ir(CO)3 2. 不同族金属带相应电荷组成相同的物种: Fe(CO)3- / Co(CO)3 3. NO取代CO时要调整电荷: NiNO /Co(CO)2; CpFe(NO)R / CpCo(CO)R 4. 2个负电子或2个H取代CO: Fe5(CO)15 / [Fe5(CO)14]2-; [Re6(CO)19]2- / [Re6(CO)18H2]25. C6H6,C5H5-(6e)取代3个CO: C6H6Cr / Cr(CO)3;
Os
RT
Os H Os
Os H Os C CH2
Os
Os
NCMe
Os
Os
125 deg 125 deg
Os
NCMe
Os
RT
Os H H Os Os HC C H Os
H Os
Os
Os

高等无机化学第四章 金属原子簇

高等无机化学第四章 金属原子簇

金属原子簇化合物分三类:
1.多核金属羰基,亚硝酰配合物
2.低价卤化物和羧酸配合物 3.无配体原子簇 Hg2Cl2可看作最简单的金属原子簇化合物. 1907,法,美分别报道Ta6Cl14· 2O. 7H 上世纪20年代Linder(Ger.)合成了[Mo6Cl8]Cl4. 1935,Brosset(Swed.)报道了K3W3Cl4···. ···
可被其它配体取代,这类簇化合物及其衍生物是数量最大, 发展最快,又是最重要的一类金属簇化合物: Fe: [Fe3(CO)11]-1, Fe3(CO)12, [Fe6(CO)16C]2-··· ·· Co: Co3(CO)9CR (R=H.Cl.Me.Ph等), Co4(CO)12
[Co6(CO15C]12, [Co13(CO24C2H]4-·· ·,
第四章 金属原子簇
目前,金属原子簇化学已成为无机化学前沿领域
之一. 因其电子结构特殊,成键方式新颖,成为结构化
学新课题,也是对化学键理论的新挑战.
金属原子间形成以多面体骨架为特征的金属原子
簇(metal cluster),最基本的共同点是含金属-金属 键,超越了经典Werner型配和物的范畴(仅考虑金属 与配体间化学键).
210o C 12 h
研究结果表明:随温度升高,原子簇增大,极端情况 下可形成金属Os.由于很大的金属羰基簇合物可以看
作是金属表面吸附了CO,因此金属多核羰基化合物反
应性能可能与Os表面吸附了一氧化碳分子有关,这对
多相催化研究提供了一个模型.
此外还有光化学缩合等方法. 3.金属-羰基原子簇反应
此类反应具有其自身的特殊性和复杂性.
25 C,CO, KPa 100 THF
o
[Rh5(CO)15]+CO

金属原子簇化合物

金属原子簇化合物

金属原子簇化合物金属原子簇化合物是由金属原子通过化学反应形成的簇状结构的化合物。

这些簇化合物具有特殊的性质和应用潜力,引起了科学家们的广泛关注和研究。

金属原子簇化合物的形成是通过金属原子之间的相互作用而实现的。

金属原子倾向于通过电子的共享或转移来形成金属键。

在形成簇化合物时,金属原子通过适当的化学反应被组合在一起,形成具有特定结构和组成的簇体。

这些簇体通常由几个到数百个金属原子组成,形成不同的形状和尺寸。

金属原子簇化合物的研究主要集中在以下几个方面:1. 结构和组成:研究金属原子簇化合物的结构和组成是了解其性质和行为的基础。

通过使用X射线衍射、质谱、光谱等技术,科学家们可以确定簇体的原子排列和组成,从而揭示其微观结构。

2. 物理性质:金属原子簇化合物具有与宏观金属不同的物理性质。

由于其尺寸较小,金属原子簇化合物可以显示出量子效应,如量子尺寸效应、表面效应等。

此外,金属原子簇化合物的电子结构和磁性也具有独特的特点。

3. 化学性质:金属原子簇化合物的化学性质也是研究的重点之一。

金属原子簇化合物可以与其他分子或原子发生反应,形成新的化合物。

这些反应可以产生一系列新的化学性质和应用,如催化、氧化还原反应等。

4. 应用潜力:金属原子簇化合物具有广泛的应用潜力。

由于其特殊的结构和性质,金属原子簇化合物可以应用于催化剂、传感器、电子器件等领域。

例如,纳米金属簇化合物可以用作高效催化剂,具有广泛的应用前景。

金属原子簇化合物是一类具有特殊结构和性质的化合物。

通过研究金属原子簇化合物的结构、物理性质、化学性质和应用潜力,科学家们可以更好地理解和利用这些簇化合物的特点。

随着技术的不断进步,金属原子簇化合物的研究将为我们提供更多的新材料和应用。

第七章 金属原子簇化学

第七章  金属原子簇化学

金属原子簇
• 在铁硫蛋白中,铁硫原子簇的主要生理功能是传递电 子,因此,在研究铁硫原子族的性质时,往往对它们 的氧化还原性给予特殊的注意.
• 实验表明,中性的Fe4S4(NO)4可被还原到Fe4S4(NO)4-阴 离子
– [(η5-C5H5)Co][Fe4S4(NO)4]
– [AsPh4][Fe4S4(NO)4]
金属原子簇的类型
• 主要类型
– 金属—羰基原子簇化合物
– 金属—卤素原子簇化合物 – 其它类型
金属—羰基原子簇化合物及其衍生物
• 金属—羰基原子簇化合 物及其衍生物 • 金属—碳基能形成大量 的二元原子簇化合物,
– 一部分碳基还可被共 它配体如烯烃、炔烃 及芳香基等碳氢基团, 以及大量含氮、磷、 砷、氧、硫等非碳配 位原子的基团所取 代.
金属羰基原子簇化合物的合成和反应
• [Pt3(CO)6]n 2- (n=6、2或1)不易直接由PtCl62-的还原得 到,它们可由[Pt3(CO)6]n 2- (n=5、4、3)开始来制备
金属羰基原子簇化合物的合成和反应
• 锇的三核羰基族合物Os3(CO)12,是制备其它锇的二元 羰基簇合物及其衍生物的重要中间产物.
金属原子簇
• 例:Fe4S4(NO)4 • 制备: Hg[Fe(CO)3(NO)]2与 硫在甲苯溶液中迴流得到, Hg[Fe(CO)3(NO)]2则可由 Fe(CO)5、 KNO2和Hg(CN)2 反应而来. • 性能:黑色晶体, 稳定. • 结构:Fe4构成四面体, 硫 原子占据面桥基的位置.从 另一个角度来看,Fe4S4形 成一个畸变立方体的骨架, 其中Fe—Fe平均距离 265.1pm,12个Fe—S键长 的变化范围很小,仅从 220.85pm到222.4pm,平均 221.7pm(图).

第4章 原子簇化学(8学时)

第4章 原子簇化学(8学时)

sytx =2002
H
H
H
BB
HHH
m/2 ≤ s ≤ m n=s+t m=s+x 2y = s – x
例2 推出B5H9的styx ,画出其拓扑图像 n=5 m=4 s = 2,3,4
s
t yx
2 3 02 3 2 11 4120
H
sytx =3211
B
m/2 ≤ s ≤ m n=s+t m=s+x 2y = s – x
HH B
H
H B
H
H
B
H
HB
H H
BH
B5H11 (3203)
arachno BnHn+6
3个BHB 6e 2个BBB 4e 0个BB 0 3个BH2 6e 5个BH 10e 总电子: 26e
styx表示: (3203)
对于较高级硼烷,有一组以上styx时,必须用拓扑学
原则排除某些不存在的结构:
(1)合理的结构应有最高的对称性;
(2)每对相邻的B原子之间至少有一根B-B、 H 或 B
骨架键相连;
4个B-H( 2c-2e )—— σ 键 2个三中心两电子键(3c-2e)——氢桥键
H BB
记作: H
H
H
BB
HHH
B4H10分子结构
119pm

122
H
H HBH H
B
B
H HBH H
H
拓扑图像 ( a )
171pm
143pm
110pm
H
(b)
137pm
H B
硼烷分子中的五种键型:
BH
H B B BB

金属原子簇化学

金属原子簇化学

Aprotic Synthesis and Structural Determination of the Nanosized 6- Hexaanion Nonprotonated 3-Octahedral [Pt6Ni38(CO)48] Stabilized as a Cubic Solvated [NMe4]+ Salt Namal de Silva and Lawrence F. Dahl IC 2006 pp 8814 - 8816
CO CO CO
CO

推测Co4(CO)12的可能结构 9 4 + 2 12 = 60 每个中心Co的平均外层电子数 = 60/4 = 15 每个Co缺3个电子必定形成3个Co-Co键
理想结构为:
OC OC OC Co CO Co CO CO
测定结构为:
OC OC
Co
Co OC
CO CO
CO
p M L
M L
1、羰基化合物的合成与性质
合成
1)直接反应法
Ni+4CO Fe+5CO
Ni(CO)4 Fe(CO)5
1890年 第一个 200℃ 200 atm V(CO)6 Cr(CO)6
2)还原法
VCl3 + Na +CO CrCl3 + RMgX + CO
反应 1) 简单取代
Re2O7 + CO
Comparative Bonding Behavior of Functional Cyclopentadienyl Ligands and Boron-Containing Analogues in Heterometallic Complexes and Clusters P. Croizat, N. Auvray, P. Braunstein, R. Welter IC 2006 pp 5852 - 5866

金属原子簇化学

金属原子簇化学

金属原子簇在其他领
05
域的应用
金属原子簇在电池材料中的应用
总结词
金属原子簇在电池材料中具有广泛的应 用,可以提高电池的能量密度和稳定性 。
VS
详细描述
金属原子簇具有较高的能量密度和稳定性 ,可以作为电池的正极或负极材料,提高 电池的能量密度和循环寿命。例如,铁原 子簇在锂离子电池中具有良好的应用前景 ,可以提高电池的能量密度和稳定性。
金属原子簇在能源领域的应用
金属原子簇具有优异的电学和光学性能,因此在太阳能电池、燃料电池和光电转换等领域 展现出巨大的应用潜力。
未来研究方向与挑战
金属原子簇的精准合成与调控
目前,金属原子簇的合成仍存在一定的盲目性和随机性,如何实现金属原子簇的精准合成与调控是未来的一个重要研 究方向。
金属原子簇在生物医学领域的应用研究
详细描述
金属原子簇能够通过特定的活性位点,控制烃类分子的裂化路径,实现高选择性、高活性的催化效果 。例如,铂、钯等金属原子簇在石油工业中广泛应用于烃类催化裂化反应,能够将重质烃类高效转化 为轻质烃类,提高石油的利用价值。
金属原子簇在醇类催化氧化中的应用
要点一
总结词
要点二
详细描述
金属原子簇在醇类催化氧化中表现出高活性和高选择性, 能够将醇类高效转化为醛、酮等含氧衍生物。
金属原子簇的合成与性质研究
目前,科研人员已经成功合成出多种金属原子簇,并对其结构和性质进行了深入研究。这 些研究不仅有助于理解金属原子簇的形成机理,还为金属原子簇在催化、能源和医学等领 域的应用提供了理论支持。
金属原子簇在材料科学中的应用
金属原子簇在新型材料的设计与合成中发挥了重要作用。例如,金属原子簇可以作为催化 剂用于石油化工和精细化学品合成,也可以作为药物载体用于癌症治疗等。

金属簇合物

金属簇合物
含有直接而明显键合的两个或两个以上金属原子的化合物。
1982年徐光宪提出:
原子簇合物为若干有限原子(三个或三个以上)直接键合组成 多面体或缺顶多面体骨架为特征的分子或离子。
第一个金属簇合物(亦即第一个原子簇合物):
Roussin黑盐:Cs[Fe4S3(NO)7]•H2O 1858年,Roussin合成得到 。 1958年,经X-ray分析确定其结构 。 1970年,经IR光谱和Mö ssbauer谱进一步证实 。
二、影响形成M-M键的因素
1.金属要有低的氧化态,一般为0或接近0。
M-M键的形成需要成键电子,高氧化态,d电子已给出,无法提供d电 子成键;并且M-M键的形成要依靠d轨道的重叠,当金属处于高氧化态 时,d轨道收缩,不利于d轨道的互相重叠;相反,当金属呈现低氧化 态时,其价层轨道得以扩张,有利于金属之间价层轨道的充分重叠, 而在此同时,金属芯体之间的排斥作用又不致过大。
三、M-M键存在的判据
金属原子簇是具有M-M键的化合物,但要判断M-M键的存在却是一个十分复杂 的问题。通常是根据下列几方面的实验事实进行判断的。
1.键长:
若金属原子间的核间距离比金属晶体中的差不多或更小,
可认为形成了M-M键。 如Mo2Cl84-: 注意: 键长与金属氧化态、配体性质(配体种类、是否形成反馈键) 以及分子构型等有关,因此在作上述判断时应注意。 Mo-Mo 214pm,而金属钼中为273pm。
是单键、双键、叁键或四重键? 这一般通过将键长、键能的实验测定与理论分析相结合 的办法来确定。
四、金属原子簇合物的合成
1.缩合反应 3Ru(CO)5 △ Ru3(CO)12 + 3(CO)
2.还原聚合或氧化聚合 还原聚合 3Co4(CO)12 +4M 氧化聚合 3Na[HFe(CO)14]+MnO2+3H2O Fe3(CO)12+3Mn(OH)2+3NaOH THF 2M2[Co6(CO)15] +6CO (M=Li ,Na,K,Rb)

中日双边金属原子簇

中日双边金属原子簇

中日双边金属原子簇是一个复杂的化学领域,涉及到许多不同的金属原子簇化合物。

这些化合物通常由一个或多个金属原子和一个或多个非金属原子组成,它们在化学反应中起着重要的作用。

首先,中日双边金属原子簇的研究具有重要意义。

这些化合物在许多领域都有应用,如药物合成、环境科学、材料科学等。

通过研究这些化合物,我们可以更好地了解它们的结构和性质,从而开发出更加高效和环保的化学合成方法。

其次,中日双边金属原子簇的研究也涉及到许多科学问题。

例如,如何设计更加稳定和高效的金属原子簇化合物?如何控制金属原子簇的合成和结构?这些问题需要科学家们不断探索和实验,才能得到更好的答案。

最后,中日双边金属原子簇的研究需要国际合作。

由于金属原子簇化学的复杂性和多样性,需要不同国家和地区的研究人员共同合作,分享研究成果和经验,促进该领域的共同发展。

总之,中日双边金属原子簇是一个充满挑战和机遇的领域。

通过不断的研究和探索,我们可以更好地了解这些化合物的性质和作用,开发出更加高效和环保的化学合成方法,为人类社会的进步做出更大的贡献。

当然,中日双边金属原子簇的研究也面临着一些挑战和困难。

例如,金属原子簇的合成和结构控制需要高昂的成本和复杂的实验条件,需要更多的资金和人力资源投入。

此外,金属原子簇的性质和应用研究也需要更多的基础研究和应用研究相结合,才能更好地推动该领域的进步和发展。

因此,中日两国应该进一步加强合作和交流,共同推动金属原子簇化学的发展。

双方可以加强科研合作,共享研究成果和经验,促进该领域的共同发展。

同时,双方也可以加强人才培养和交流,为该领域的未来发展提供更多的人才支持。

总之,中日双边金属原子簇的研究是一个充满挑战和机遇的领域,需要双方共同努力,加强合作和交流,共同推动该领域的进步和发展。

只有这样,我们才能更好地了解这些化合物的性质和作用,开发出更加高效和环保的化学合成方法,为人类社会的进步做出更大的贡献。

原子簇化学

原子簇化学

3.
使键级降低
四重键MO:2 4 2 * * *
键级降低
减少成键电子,2 4 增加电子, (占据反键轨道,2 4 2 *2 * *)
16
a. 氧化还原法:
氧化:242 –e4
241 – e- 24
3.5
3
还原: 242 + e- 242*1 + e- 242*1
4
3.5
3
特点:簇核不变
+ 2e- 242*2*2 2
13
问题? ? 对于[Re2Cl8]2-,配位是否饱和? ? 是否有空的价轨道?
pz (非键) H2O占据6pz 形成[Re2Cl8(H2O)2]2-络离子
H2O
Cl
Cl
Re
Cl
Cl
Cl
Cl
Re
Cl
Cl
H2O
1971年,Cotton修正[Re2Cl8(H2O)2]2-结构为dsp3杂化
四方锥形,顶点被OH2占据
关键:dn计算 18
b. 加成法 特点:键级降低,簇核改变 (聚合)
MM
MM
MM
M M M6X84M=Mo, W
MM MM
W4Cl8(PPh3)4
P Cl Cl P Cl W W Cl
Cl W W Cl
P Cl
P
Re3X9
Re Re Re
M6X162+ M=Nb, Ta
单键 19
原子簇化学 (Cluster Chemistry)
17
例: Mo2Cl84- SO42- Mo2(SO4)44-
O2
Mo(II), d4,
242
BO=4
Mo2(SO4)43H3PO4 O
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属原子簇化学
金属原子簇(MetalClustersCompounds)指的是金属原子之间相互成键形成的多核化合物,这个定义比较老旧,不过也接近现在的定义(对于Clusters的定义,Cotton指出:“A group of the same or similar elements gathered oroccurringclosely together)。

有据可查的最早的金属原子簇合物的合成是1858年的
Roussin`ssalt,即K[Fe4S3(NO)7]和K[Fe2S2(NO)4],这一全新的化合物被以其合成者的名字命名,为陆森黑盐和陆森红盐。

这种盐是通过一锅法合成的。

不过当时的研究尚不充分,也比较冷门,长久以来都未能搞清楚其结构。

后来,卢嘉锡和林慰桢指出,黑盐阴离子是由红盐阴离子作为一个蔟单元的生成后二倍缩聚形成的。

转入1935年,Brosset报道了一种钨簇合物,其阴离子为W2Cl9(3-),阳离子为K+,W—W 键长为240pm,略小于W的金属原子半径之和(W单质中W—W键为275pm)。

1938年,合成了Fe2(CO)9,经测定其结构来说铁原子间距小于铁原子半径之和。

后来进入二十世纪六十年代,F·A·Cotton和T·E·Haos 对金属原子簇合物的定义是:“含有直接而明显键合的两个或以上的金属原子的化合物”。

美国化学文摘CA 的索引中提出,原子簇化合物是含有三个或三个以上互相键合或极大部分互相键合的金属原子的配位化合物。

这个阶段,原子簇合物终于开始了重视性的研究。

如图是三种四核过渡金属簇合物的键价和结构
对金属原子簇合物的合成,在这个阶段也取得了较大的进步。

如以很一般的底料,通入常见的保护气如氮气、氢气等,就可以达到一个魔幻化的合成效果。

这个合成馆长也说过。

以Rh4(CO)12为底物在异丙醇中转化为了两种不同保护气氛下的产物。

两个产物的产率都在50%左右。

还有诸如一些含羰基的多核化合物的合成,这些化合物往往是随着核数增加相应增加电子的不定域性,呈现出各种色彩。

羰基簇中的羰基一般来说可以有两种不同的方式与金属相结合:其一是CO分子以碳原子端基方式,其二是CO分子以桥基方式、面桥基方式与两个或更多个金属相联。

奇异的是,在很多金属羰基簇中,羰基的位置和配位形态可以交换转化,不得不说是科学的奇妙。

如下图。

如图,是五核心的金属羰基簇。

(a)的金属核是Ni,(b)的金属核是Fe。

黑色小球代表金属原子,白色代表羰基。

灰色带线条小球代表碳原子。

(a)向大家展示了一种多核镍羰基簇合物阴离子的结构。

(b)则是一种铁羰基簇合物Fe5(CO)15C。

羰基簇的金属核数目不断被后人所累加上去,这种庞大的团簇分子展示出一种磅礴的美感,其结构上的完美协调和对价键轨道的巧妙运用让人无不叹为观止。

下图就是七核心和八核心的羰基簇合物。

如图为七核心羰基铑簇合物阴离子。

对过渡金属原子的配合也是无机化学的一个强大的课题。

上图中(a)是八核心的羰基铑簇合物。

右边的(b)是钴羰基配合物,也是八核心的。

几乎已经让人眼花缭乱了。

羰基簇合物有诸多的用途,如作为有机化学反应里的高活性催化剂,这是许多原子簇都具有的特点,因此以原子簇催化部分有机反应已经是屡见不鲜的事实了。

诸如Ru3(CO)12催化水煤气的反应。

羰基钌的活性至少远高于氧化铁。

[Ru3H(CO)11]-也可以催化烯烃的羰基化反应。

个别情况下,甚至簇合物还可以催化乙炔三聚直接合成苯。

如Ni4(CNCMe3)7 。

相关文档
最新文档