初中数学奥林匹克中的几何问题:第1章梅涅劳斯定理及应用附答案

合集下载

数学奥赛平面几何

数学奥赛平面几何

《竞赛数学解题研究》之平面几何专题一、平面几何中的一些重要定理:1、梅涅劳斯定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则D 、E 、F 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。

2、塞瓦定理:设D 、E 、F 分别是ABC ∆三边(或其延长线)上的三点,则AF 、BE 、CD 三点共线的充要条件是1=⋅⋅EACEFC BF DB AD 。

3、托勒密定理:四边形ABCD 内接于圆的充要条件是CD BC CD AB BD AC ⋅+⋅=⋅4、西摩松定理:设P 是ABC ∆外接圆上任一点,过P 向ABC ∆的三边分别作垂线,设垂足为D 、E 、F ,则D 、E 、F 三点共线。

5、斯德瓦特定理:设P 是ABC ∆的边BC 边上的任一点,则BC PC BP AP BC AB PC AC BP ⋅⋅+⋅=⋅+⋅2226、共角定理:设ABC ∆和C B A '''∆中有一个角相等或互补(不妨设A=A ')则 C A B A ACAB S S C B A ABC ''⋅''⋅='''∆∆7、共边定理:设ABC ∆和C B A '''∆中有一个边相等,则CA B A ACAB S S C B A ABC ''⋅''⋅='''∆∆举例说明:1、设M 、N 分别是正六边形ABCDEF 的对角线AC 、CE 上的点,且AM:AC=CN:CE=k,如果BMN 三点共线,试求k 。

(IMO23,1982)2、在四边形ABCD 中,ABD ∆、BCD ∆、ABC ∆的面积之比为3:4:1,点M 、N 分别 是AC 、CD 上的点,且AM:AC=CN:CD, 并且BMN 三点共线,求证:M 、N 分别是AC 、 CD 的中点。

初中数学 竞赛专题:梅涅劳斯定理专项训练

初中数学 竞赛专题:梅涅劳斯定理专项训练

初中数学 竞赛专题:梅涅劳斯定理专项训练(含答案)1. 设等腰直线三角形ABC 中,90B ∠=︒,D 是三角形内一点,90ADB ∠=︒,连结CD 并延长至E ,使90AEB ∠=︒,G 是AB 中点,直线CG 分别与AE 、AD 交于M 、N ,求证:G 是MN 的中点.解析 如图,延长AE 、AD ,分别交直线BC 于P 、Q ,设PB a =,BQ b =,CQ c =,则由梅氏定理,有1PC QD AECQ DA EP ⋅⋅=,而222222QD AE BQ AB b DA EP AB PB a ⋅=⋅=,故22a b c a c b ++=,即222a b a b c b +-=,或b c = a b b -,或b c ac b+=.又由梅氏定理,1BC NQ AG CQ NA GB ⋅⋅=,此即AN a PB NQ b BQ ==,所以NB AP ∥,于是1MG AG NG BG==.2. 设ABC △的边AB 的中点N ,A B ∠>∠,D 是射线AC 上一点,满足CD BC =,P 是射线DN 上一点,且与A 在边BC 的同侧,满足PBC A ∠=∠,PC 与AB 交于E ,BC与DP 交于T ,求BC EATC EB-.解析 设边长分别为a 、b 、c ,由梅氏定理,1AD CT BNDC TB NA⋅⋅=,由于AD AC BC b a =+=+,BN NA =,CD a =,故 1TB AD b a bTC CD a a +===+, 2BC bTC a=+. A M E Pa Bb QcCD N GQA CDTBN P E接下去处理EAEB.延长BP 与CA 交于Q ,则Q ABC ∠=∠,故22BC a CQ CA b ==,2()a a QD a a b b b =+=+,AD a b =+,又由梅氏定理,1QD AN BPDA NB PQ ⋅⋅=,得2BP DA b a BC a PQ QD a CQ b====,故CP 平分ACB ∠,AE AC bEB BC a==.故答案为2. 3. 在ABC △中,90ABC ∠=︒,F 为AB 的中点,以BC 为直径的圆O 交AC 、CF 于另一点D 、E .分别过点C 、E 作圆O 的切线C l 和E l .证明:C l 、E l 和直线BD 共点. 解析 如图设C l 交直线BD 于点G ,E l 与直线BD 交于点H .由条件,90ABC ∠=︒及圆O 以BC 为直径,可知C l AB ∥,于是CD DGDA BD=. ① 为证C l 、E l 与直线BD 共点,只需证明G 与H 重合.我们下证:GB HBGD HD=. 利用CBG GCD ∠=∠,可知BCG △∽CDG △,故BC CG BGCD DG CG ==,于是22BG BC DG CD =.同理可证2BH EB HD ED ⎛⎫= ⎪⎝⎭ .于是222BEC EDC S BG BH BC EB BI DG HD CD ED S ID ⎛⎫⨯⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪ ⎪ ⎪⨯⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭△△,其中I 为BD 与CE 的交点.对ABD △考虑割线CIF ,运用梅涅劳斯定理,可知1BF AC DIFA CD BI⋅⋅=,结合BF FA =,可知BI AC ID CD =,从而2BG BH AC GD HD CD ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.再由①可知CD DG AC BG =,综合上式,得BH BGHD GD=.命题获证.4. 设等腰直角三角形ABC ,90A ∠=︒,E 是AC 中点,D 在BC 上,AD BE ⊥,求证:AEB ∠=CED ∠.(试用梅氏定理证明)解析 如图,设AD 与BE 交于F ,则224BF AB FE AE ==,由梅氏定理,1CA EF BDAE FB CD⋅⋅=,得2BD ABCD CE==,又45ABC C ∠=︒=∠,故ABD △∽ECD △,故CED BAD AEB ∠=∠=∠.5. 设D 是锐角三角形ABC 的边BC 上的一点,23BD DC =,E 是边AC 上的一点,43AE EC =,AD 与BE 相交于点F ,求AF BFFD FE⋅. 解析 由梅涅劳斯定理1AF DB CE FD BC EA ⋅⋅=,1BF EA CD FE AC DB ⋅⋅=,得23154AF FD ⋅⋅=,43172BF FE ⋅⋅=,故103AF FD =,76BF FE =. 所以359AF BF FD FE ⋅=.6. 证明:锐角三角形一条高线的垂足在另两边及另两条高线的身影在同一直线上.解析 设ABC △的三条高线为AD 、BE 、CF ,D 在AB 、BE 、CF 、CA 上的身影分别为P 、Q 、R 、S ,欲证P 、Q 、R 、S 共线,先证P 、Q 、R 共线.由梅氏逆定理,知该结论为真,即221FR HQ BP AD HD BD AD HDRH QB PF HD BD CD CD BD⋅⋅=⋅⋅=⋅=,最后一步是由于ADC △∽BDH △.ABDCE FAEFBDCAF P DCS E H R Q同理,S 、Q 、R 共线,故P 、Q 、R 、S 四点共线.7. 已知AD 是ABC △的高,D 在BC 内,且3BD =,1CD =,作DE 与AB 垂直,DF 与AC 垂直,E 、F 分别是垂足,连结EF 并延长,交BC 延长线于G ,求CG . 解析 如图,设CG x =,则由梅氏定理41x CF AEx FA EB+⋅⋅=. 又由身影定理,22CF DC FA AD =,22AE AD EB BD =,于是1419x x +⋅=,得12x =. 8. 如图,已知锐角三角形ABC ,AD 是高,D 在AB 、AC 上的垂足分别是N 、M ,NM延长后交BC 延长线于E ,若1AD DE ==,求cot cot CAD BAD ∠-∠.解析 由图知,AB AC >,故BD CD >.11cot cot AD AD CAD BAD CD BD CD BD∠-∠=-=-. 由梅氏定理及身影定理,有1BE CM ANEC AM NB⋅⋅=,22CM CD AM AD =,22AN AD NB BD =,故2211BD BD CD CD +=-,即221111BD BD CD CD +=-, 移项并因式分解,得111110CD BD CD BD ⎛⎫⎛⎫+--= ⎪⎪⎝⎭⎝⎭,于是111CD BD-=,即是所求答案. 9. 证明,ABC △两内角B ∠、C ∠平分线分别交对边于E 、F ,而A ∠的外角平分线交直线BC 于D ,求证:D 、E 、F 共线.解析 如图,既然A ∠的外角平分线BC 直线相交,说明AB AC ≠,不防设AB AC >,则D 在BC 延长线上.AEBDC GFANBDCEMAFBCDE由角平分线性质知1BD CE AF AB BC ACDC EA FB AC AB BC⋅⋅=⋅⋅=, 故由梅氏逆定理知D 、E 、F 共线.10. 已知不等边三角形ABC ,A ∠、B ∠、C ∠的平分线分别交对边于A '、B '、C ',A A '的中垂线与直线BC 交于A '',同理得到B ''、C '',证明:A ''、B ''、C ''共线.解析 如图,不妨设AA '的中垂线PA ''与BC 延长线相交,连结AA '',则A AA AA A ''''''∠=∠,于是CAA A AA A AC AA A BAA B ''''''''''∠=∠-∠=∠-∠=∠,因此ACA ''△∽BAA ''△,于是22ABA ACA S BA AB A C S AC ''''''==''△△. 同理22CB BC B A AB ''='',22AC AC C B CB ''='',于是1BA CB AC A C B A C B ''''''⋅⋅='''''',由梅氏逆定理,知A ''、B ''、C ''共线.11. 已知:D 是ABC △的边BC 上一点,G 是AD 上一点,E 、F 分别在AC 、AB 上,GB与DF 交于M ,DE 与CG 交于N .求证:若EF BC ∥,则MN BC ∥. 解析 如图,由梅氏定理,1AD GM BF AD GN CEDG BM FA DG NC EA ⋅⋅==⋅⋅.于是 GM BF GN CEBM FA NC EA⋅=⋅. 由于EF BC ∥,故BF CE FA EA =,于是GM GNBM NC=,故MN BC ∥. 12. 已知ABC △的面积为1,点D 、E 在BC 上,且BD ∶DE ∶1EC =∶2∶1,点G 在AC 上,且AG ∶3GC =∶5,AD 、AE 分别与BG 交于点F 、H ,求四边形DEHF 的面积.A B A'C A''PA GF EMNBDC解析 这类题目基本且典型,显然有ADE AFH DEHF S S S =-△△四边形,而12ADE S =△,于是下求AFH S △.由梅氏定理,有1CB DF AG BD FA GC ⋅⋅=,代入已知数值得3415DF FA ⋅⋅=,于是515DF FA =,从而1217AF AD =. 又由1CB EH AG BE HA GC ⋅⋅=,即43135EH HA ⋅⋅=,得54EH HA =,从而49AH AE =,于是1241617951AFH ADE S S =⋅=△△,故116351251102DEHF S ⎛⎫=-=⎪⎝⎭四边形. 13. 已知不等边锐角三角形ABC ,CP 、BQ 是高,且位置如图所示,PQ 与中位线MN 交于点E ,点O 、H 分别是ABC △的外心与垂心,求证:AE OH ⊥.解析 一个熟知事实是AO PQ ⊥,AH BC ⊥.延长PQ 交直线BC 于点F ,则有OAH F ∠=∠,延长AE 交BC 于点D ,于是只需证明FED △∽AOH △,即只需证 DF AHEF AO=. 由于2cos AH A AO =,问题归结为2cos DF A EF=,下面计算DF 与EF .由梅氏定理知1FE QA CDEQ AC DF⋅⋅=,于是cos 2cos DF AB A CD AB ENA EF AC EQ AC EQ=⋅=⋅. 因EQN B ∠=∠,由正弦定理有sin sin EN B ACEQ C AB==,故上式为2cos A .证毕. 14. 如图,已知PA 、PB 是圆的两条切线,PQR 为圆的一条割线,交AB 于S ,F 在AF 上,AGHFB D E CA P M EN OHBDCFQQF PA ∥,QF 交AB 于E ,求证:QE EF =.解析 易知P 、Q 、S 、R 为调和点列,于是 PR SRPQ QS=.(见题12.3.13) 由梅氏定理,1RA FE QS FE PR QS EFAF EQ SR EQ PQ SR EQ =⋅⋅=⋅⋅=, 因此 QE EF =.15. 已知AOB 为O e 的直径,弦CD AB ⊥,弦AN 与CO 交于M ,CM OM =,求证:DN平分BC . 解析 如图,无非要证明CDN BDN S S =△△,或证明CN CD NB BD NB BC ⋅=⋅=⋅,或证明CN BCNB CD=. 设CB 与AN 交于K ,AB 与CD 交于J .由梅氏定理,1BA OM CK AO MC KB ⋅⋅=,得2KBCK=,故ANB S =△2ACN S △,即2AC CN AB BN ⋅=⋅,得22CN AB BC BCBN AC CJ CD===,证毕.16. 证明牛顿定理:设ABC △中,D 、E 分别在AB 、AC 上,CD 、BE 交于F ,则DE 、AF 、BC 的中点在一条直线上(牛顿线).PQ ABE SFRC N BMKAO JD解析 设EF 、CE 、CF 的中点分别为X 、Y 、Z ,则易由中位线知P 、X 、Z 共线,Q 、X 、Y 共线,Y 、Z 、R 共线.且 1YR ZP XQ EB CA DF RZ PX QY BF AE CD⋅⋅=⋅⋅= (后者是AB 截ECF △所得).故由梅氏逆定理,知P 、Q 、R 共线.评注 此题亦可由面积证.ADBR CY E X Q PFZ。

初中数学奥林匹克中的几何问题:第1章梅涅劳斯定理及应用附答案

初中数学奥林匹克中的几何问题:第1章梅涅劳斯定理及应用附答案

初中数学奥林匹克中的几何问题:第1章梅涅劳斯定理及应用附答案第一章涅劳斯定理及应用[基础知识]梅涅劳斯定理设a?,b?,c?分别是△abc的三边bc,ca,ab或其延长线上的点,若a?,b?,文学士?cb?交流电?C如果三个点是共线的,那么① 1.a?bb?ac?bab′c′c′b′abca′d图1-1bcda'如图1-1所示,通过a画一条直线?A.交叉口BC的延长线是D,然后是CB?ca?交流电?爸爸因此Baa?华盛顿?文学士?工商管理学士?cb?交流电?文学士?ca?爸爸1.a?cb?交流电?文学士?ca?爸爸?注:该定理的证明还包括以下正弦定理证明和面积证明正弦定理证法设∠bc?a,∠cb?a,∠b?a?b??,在△ba?c?中,有文学士?罪类似地,C?bsin?cb?罪交流电?罪这三种形式的乘法就是证据?ca?罪ab?罪文学士?s△A.Cbcb?s△cb?Cs△ca?Bs△cb?Cs△ca?Bs△Cca?交流电?s△交流电?A.面积证书方法由以下三部分组成:?反恐精英△b?像△B交流电?s△A.ab?s△B交流电??s△A.防抱死制动系统△交流电?A.C学士学位△C文学士?形式的乘法就是证明梅涅劳斯定理的逆定理设a?,b?,c?分别是△abc的三边bc,ca,ab或其延长线上的点,若ba?cb?ac?②1,A.cb?交流电?B然后a?,BC三个点是共线的ba?cb?ac11.证明设直线a?b?交ab于c1,则由梅涅劳斯定理,得到A.cb?Ac1a由问题和答案组成ac1ac?ba?cb?ac??.1,即有c1bc?文学士?cb?交流电?bac1ac那么AC1呢?交流电?,那么C1和C呢?巧合,即a?,BC三个点是共线的吗?ABAB有时把以上两个定理写成:let a?,BC是直线上的点(包括三条边的延长线)△ ABC,然后a?,BC三点共线的充要条件是Ba?cb?交流电1. Acbacb使用上述公式① 和② 是给△ ABC,如图1-1所示(整个图中有四个三角形)。

(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第1-2章)

(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第1-2章)

参考答案第一章 梅涅劳斯定理及应有习题A1.延长CB ,FE 交于H ,ADB △与截线GEH ,有13122AG DH BE DH GD HB EA HB ⋅⋅=⋅⋅=,有43DH HB =,即74CH HD =.对ACD △及截线FGH ,72141AF CH DG AF FC HD GA FC ⋅⋅=⋅⋅=,求得27AF FC =. 2.设CB ,DE 的延长线交于P ,又BP BC =,32FP PB =,对AFB △与截线HEP ,CGE ,有31121AH FP BE AH GF PB EA HF ⋅⋅=⋅⋅=,即23AH HF =;11121AG FC BE AG GF CB EA GF ⋅⋅=⋅⋅=,即21AG GF =.由此求得645AH HG GF =∶∶∶∶.3.对BDP △于截线CEA ,有1231612BC DA PE BC CD AP EA CD ⋅⋅=⋅⋅=,知BD DC =.对CDP △与截线BFA ,有22111CB DA PF PF BD AP FC FC ⋅⋅=⋅⋅=,知14PF FC =.而20CF =,故15CP =. 在PBC △中,由中线长公式2PD =,得BC =,即BD =.又22222269BP PD BD +=+==,即90BPD ∠=︒,27PBD S =△,4108ABC PBD S S ==△△.4.直线OCB 分别与DMF △和AEM △的三边延长线都相交,有1DB MO FC MB FO DC ⋅⋅=,1AB EO MCEB MO AC⋅⋅=,即OF OE DB FC EB AC OM OM MB DC AB MC ⋅⋅⋅=⋅⋅⋅.由EF AD ∥,有DB AB MB EB =,FC MC DC AC =,从而21OF OE OM ⋅=,即22OF OE OM OP ⋅==,有OFP OPE △∽△,故OPF OEP ∠=∠.5.直线截ABC △,有22133CF AD BE BE FA DB EC EC ⋅⋅=⋅⋅=,即94BE EC =,故54BC CE =.直线截DBE △,有25154EF AD BC EF FD AB CE ED ⋅⋅=⋅⋅=,所以21EF FD =∶∶. 6.设AC BC x ==,则AB =,。

【精品】奥林匹克题解几何篇

【精品】奥林匹克题解几何篇

【关键字】精品第三章、几何第一节平面几何证明(上)C1-001 已知线段MN的两个端点在一个等腰三角形的两腰上,MN的中点S作等腰三角形的底边的平行线,交两腰于点K 和L.证明:线段MN在三角形底边上的正投影等于线段KL.【题说】 1956年~1957年波兰数学奥林匹克三试题2.【证】设M、N在直线KL上的射影分别为D、E,由于MS=SN,所以MD=NE.由于AB=AC,KL∥BC,所以∠DKM=∠AKL=∠ALK,又∠MDK=∠NEL=90°,所以△MDK≌△NEL,DK=EL,从而DE=KL,即MN在BC上的正投影等于KL.C1-002 设四边形ABCD内接于圆O,其对边AD与BC的延长线交于圆O外一点E,自E引一直线平行于AC,交BD延长线于点M,自M引MT切圆O于T点,则MT=ME.【题说】 1957年南京市赛初赛5.利用切割线定理和相似三角形.【证】四边形ABCD内接于圆O,故∠1=∠2.由ME∥AC,得∠2=∠4,又∠1=∠3,所以∠3=∠4,又∠EMB=∠DME,所以△EMB∽△DME.从而有即ME2=MB·MD所以MT2=MB·MD=ME2即 MT=MEC1-003 若一直角三角形的外接圆半径为R,其内切圆半径为r,与斜边相切的旁切圆半径为t,若R为r及t的比例中项,证明这直角三角形为等腰直角三角形.【题说】 1957年北京市赛高二题4.【证】设直角△ABC的斜边长为c,两直角边长为a、b.易知R=c/2所以a=b.C1-004 任意四边形ABCD的对角线AC与BD相交于P,而BD与AC的中点是M与N,设Q是P关于直线MN的对称点,过P 作MN的平行线,分别交AB、CD于X、Y,又过Q作MN的平行线,顺次交AB、BD、AC、CD于E、F、G、H.试证:1.EF=GH;【题说】 1963年成都市赛高二二试题4.同本届高三二试题4.【证】 1.P、Q关于MN对称,所以MN平分PQ,又FG∥MN,所以MP=MF,从而BF=PD,BP=FD.同理,有AP=CG,AG=PC.比较(1)、(2)得EF=GH.C1-005 在内角都相等的凸n边形中,设a1,a2,…,an 依次为边的长度,而且满足不等式a1≥a2≥…≥an.证明:必有a1=a2=…=an.【题说】第五届(1963年)国际数学奥林匹克题3.本题由匈牙利提供.【证】当n为奇数时,设n=2k+1(k为正整数),∠A2A1An 的平分线A1B交Ak+1Ak+2于点B(如图).由于已知n边形的各角都相等,所以A1B⊥Ak+1Ak+2,因此折线A1A2…Ak+1与折线A1An…Ak+2在这条角平分线上的射影都等于A1B.另一方面,A1A2≥A1An,并且它们与A1B的交角相等,所以A1A2的射影≥A1An的射影.同理A2A3的射影≥AnAn-1的射影….所以上述各式中等号均应成立,即a1=a2=…=an.当n为偶数时,作A1A2的中垂线L.考虑各边在L上的射影,同样可得a1=a2=…=an.C1-006 在平面上取四点A、B、C、D,已知对任何点P都满足不等式PA+PD≥PB+PC.证明;点B和C在线段AD上,并且AB=CD.【题说】 1966年全俄数学奥林匹克九年级题2.【证】由于点P是任意的.可以取P=D,则应有AD≥BD+DC;若取P=A,则有AD≥AB+AC.将二式相加,得2AD≥AB+AC+BD+CD(1)然而另一方面,总有AD≤AC+CD及AD≤AB+BD.因此又得2AD≤AB+AC+BD+CD(2)由(1)、(2)知2AD=AB+AC+BD+CD从而其他4个不等式中皆取等号,亦即B、C两点一定在线段AD上,而且AB=CD.C1-007 凸多边形内一点O同每两个顶点都组成等腰三角形,证明:该点到多边形的各顶点等距.【题说】第六届(1972年)全苏数学奥林匹克九年级题6.【证】(1)如果凸多边形是△ABC,则结论显然成立.(2)对n(n>3)边形,设A、B、C为多边形的任意三个顶点,则C或在AO、BO的反向延长线组成的夹角内(图a),或C 在该角外,即该角与多边形的边DE相交(图b).在图a中,点O在△ABC内,由(1),AO=BO=CO.在图b中,点O在△BDE和△ADE内,故有AO=DO=EO=BO.C1-008 设有一圆,它与∠O两边相切,切点为A、B.从点A引OB的平行线,交圆于点C,线段OC与圆交于E,直线AE与OB 交于K.证明:OK=KB.【题说】第七届(1973年)全苏数学奥林匹克九年级题2.【证】设圆在点C的切线与∠O两边分别相交于P、Q.因为AP=PC,所以△APC和△OPQ皆为等腰三角形,从而AO=CQ=OB=BQ.又∠OAE=∠OCA=∠COQ,且∠AOB=∠CQB,从而△OAK∽△QOC.所以亦即 OK=KBC1-009 圆的内接四边形两条对角线互相笔直,则从对角线交点到一边中点的线段等于圆心到这一边的对边的距离.【题说】 1978年上海市赛二试题6.【证】如图,已知ABCD为⊙O的内接四边形,AC⊥BD于E,F为AB中点,OG⊥DC,G为垂足.因为 AF=FB=EF∠EAB=∠AEF又∠EAB=90°-∠EBA=90°-∠GCH=∠GHC所以∠AEF=∠GHC , EF∥GO同理可证,EG∥FO.所以EGOF是一个平行四边形,从而FE=OG.C1-010四边形两组对边延长后分别相交,且交点的连线与四边形的一条对角线平行,证明:另一条对角线的延长线平分对边交点连成的线段.【题说】 1978年全国联赛二试题1.【证】设四边形ABCD的对边交点为E、F,并且BD∥EF,AC交BD 于H,交EF于G.由于BD∥EF,所以GF=EGC1-011在平面上已知两相交圆O1和O2,点A为交点之一,有两动点M1和M2,从点A同时出发,分别以常速沿O1和O2同向运动,各绕行一周后恰好同时回到点A.证明:在平面上存在一定点P,P到点M1和M2的距离在每一时刻都相等.【题说】第二十一届(1979年)国际数学奥林匹克题3.本题由原苏联提供.【证】设O1和O2为已知圆的圆心,r1和r2分别为它们的半径.作线段O1O2的垂直平分线l及点A关于l的对称点P,则O1P=r2,O2P=r1(如图).由已知,∠AO1M1=∠AO2M2,由对称性,∠AO1P=∠AO2P.于是,∠M1O1P=∠M2O2P.又因为O1M1=O2P=r1,O2M2=O1P=r2,故△O1M1P≌O2M2P,M1P=M2P.[别证] 可以用复数来作.以O1为原点,O1O2为实轴建立复平面.C1-012二圆彼此外切于D,一直线切一圆于A,交另一圆于B、C两点.证明:A点到直线BD、CD的距离相等.【题说】第十三届(1987年)全俄数学奥林匹克十年级题3.【证】过切点D作二圆的公切线l,交AB于F.设E在CD的延长线上,则∠BDA=∠BDF+∠FDA=∠ACD+∠FAD=∠ADE,即DA平分∠BDE,所以,A到BD、CD的距离相等.C1-013在“筝形”ABCD中,AB=AD,BC=CD.经AC、BD的交点O任作两条直线,分别交AD于 E,交BC于F,交AB于G,交CD于H.GF、EH 分别交BD于I、J.求证:IO=OJ.【题说】 1990年全国冬令营选拔赛题3.本题宜用解析几何来证.本题是蝴蝶定理的一个推广.【证】易证AC⊥BD.如图,以O为原点,BD为x轴,CA为y轴,建立直角坐标系.设各点坐标为A(0,b),B(-a,0),C(0,c),D(a,0),EF 的方程为y=kx,GH的方程为y=lx,则AD的方程是EH的方程是比较常数项与y的系数有J的横坐标x满足及(1′)·l-(2′)·k得利用(3)得同样可得I的横坐标x应满足(将(4)中的k与l互换,a换成-a).由(4)、(5)立即看出I、J的横坐标互为相反数,即IO=OJ.C1-014如图,设△ABC的外接圆O的半径为R,内心为I,∠B=60°,∠A<∠C,∠A的外角平分线交⊙O于E.证明:(1)IO=AE;【题说】 1994年全国联赛二试题3.【证】(1)连AI,延交⊙O于F,则易知EF为⊙O直径.过E作ED∥IO交AF于D,则IO是△FDE的中位线,从而IO=因∠AOC=2∠ABC=120°故A、O、I、C共圆.从而(2)连CF,则∠IFC=∠AFC=∠B=60°∠ICF=∠ICB+∠BCF故IF=IC,又由(1)知IO=AE,从而IO+IA+IC=EA+AI+IF=EA+AF≥EF=2R令α=∠OAI,则(因∠A<∠C)又 AE+AF=2Rsinα+2Rcosα当α∈(0,45°)时,sin(45°+α)为增函数,故AE+AF<2R(sin30°+cos30°)C1-015设△ABC是锐角三角形,在△ABC外分别作等腰Rt△BCD、△ABE、△CAF.在这三个三角形中,∠BDC、∠BAE、∠CFA是直角.又在四边形BCFE外作等腰Rt△EFG,∠EFG是直角.求证:(2)∠GAD=135°.【题说】 1994年上海市赛高三二试题2.【证】以点A为原点建立直角坐标系,与B相应的复数记为Z B,等等.C1-016设M、N为三角形ABC的边BC上的两点,且满足BM=MN=NC.一平行AC的直线分别交AB、AM、AN于D,E和F,求证:EF=3DE.【题说】 1994年澳大利亚数学奥林匹克一试题1.【证】如图,过N、M分别作AC的平行线交AB于H、G点.NH交AM于K点.则BG=GH=HA.HK∶KN=1∶3又由于DF∥HN,于是DE∶EF=HK∶KN=1∶3故EF=3DE.C1-017 ABCD是一个平行四边形,E是AB上的一点,F为CD上一点.AF 交ED于G,EC交FB于H.连接G,H并延长交AD于L,交BC于M,求证:DL=BM【题说】 1994年澳大利亚数学奥林匹克二试题4.【证】如图,过E、F分别作EK∥AD,FQ∥AD,则所以AL·DL=QF·EK.同理,CM·MB=QF·EK.故AL·DL=CM·MB又由于 AL+DL=CM+MB,所以DL=BMC1-018 在梯形ABCD(AB∥DC)中,两腰AD、BC上分别有点P、Q 满足∠APB=∠CPD,∠AQB=∠CQD.证明:点P和Q到梯形对角线交点O的距离相等.【题说】第二十届(1994年)全俄数学奥林匹克九年级(决赛)题7.【证】如图,设B′是B点关于AD的对称点,则P点就是B′C与AD的交点.在△APB和△DPC中,∠APB=∠DPC,∠PAB=180°-∠PDC,由正弦定理知△COP∽△CAB′C1-019从△ABC的顶点A引3条线段,∠A的平分线AM,∠A的外角平分线AN,三角形外接圆的切线AK,点M、N、K依次排列在直线BC上.证明:MK=KN.【题说】 1995年城市数学联赛低年级普通水平题4.【证】由于∠KAM=∠KAB+∠BAM=∠ACB+∠CAM=∠AMK所以,KA=KM.另一方面,∠NAM=90°,且∠ANM=90°-∠AMN=90°-∠KAM=∠NAK故KN=AK=KM.C1-020△ABC具有下面性质:存在一个内部的点P使∠PAB=10°,∠PBA=20°,∠PCA=30°,∠PAC=40°.证明:△ABC是等腰三角形.【题说】第25届(1996年)美国数学奥林匹克题5.[解] 作AC边上的高BD,又作AQ使∠QAD=30°,AQ交BD于Q,连PQ.设直线PQ交AC于C′.因为∠BAD=10°+40°=50°,所以∠ABD=90°-50°=40°,∠PBQ=40°-∠PBA=20°=∠PBA,∠PAQ=∠PAC-∠QAD=10°=∠PAB,从而P是△ABQ的内心,∠PQA=∠PQB=而∠PCA=30°,所以C′与C重合.从而QA=QC,QD平分AC,BA=BC.C1-021半径相等的三个互不相交的圆的圆心O1、O2、O3位于三角形的顶点处.分别从点O1、O2、O3引已知圆的切线,如图所示,已知这些切线相交成凸六边形,而六边形相邻的边分别涂成红色和蓝色.证明:红色线段长度之和等于蓝色线段长度之和.【题说】第二十二届(1996年)全俄数学奥林匹克九年级题2.【证】如图所示,X1、X2、Y1、Y2、Z1、Z2分别为切点.切线围成的六边形为ABCDEF.因⊙O1,⊙O2,⊙O3的半径相等,易得X1O2=O1Y2,Y1O3=O2Z2,Z1O1=O3X2.即X1A+AB+BO2=O1B+BC+CY2Y1C+CD+DO3=O2D+DE+EZ2Z1E+EF+FO1=O3F+FA+AX2以上三式两边相加,并利用X1A=AX2,Y1C=CY2,Z1E=EZ2,及BO2=O1B,DO3=O2D,FO1=O3F,得AB+CD+EF=BC+DE+FAC1-022 在等腰△ABC中(AB=BC),CD是角平分线.过△ABC的外心作直线垂直于CD,交BC于E点,再过E点作CD的平行线交AB于F,证明:BE=FD.【题说】第二十二届(1996年)全俄数学奥林匹克十一年级题6.【证】设O是△ABC的外心,K是直线BO和CD的交点.先设O在B、K之间(图a),∠BOE=90°-∠DKO=∠DCA,所以,点K、O、E、C四点共圆.∠OKE=∠OCE因为OB=OC,所以∠OCE=∠OBE.于是∠BKE=∠OCE=∠KBE所以BE=KE又∠BKE=∠KBE=∠KBA所以KE∥AB.从而KEFD为平行四边形,则DF=KE=BEK在O、B之间(图b)或K、O重合的情况可用类似方法证明.C1-023直角三角形ABC中,C为直角,证明:在△ABC中至少有一点P,使∠PAB=∠PBC=∠PCA.【题说】 1963年合肥市赛高二二试题2.【证】我们证明结论对任意△ABC成立.不妨设∠A、∠B为锐角,过A作AB的垂线,与边AC的中垂线相交于点O B.过B作BC的垂线交AB的中垂线于点O C,分别以O B、O C为心,过A点作圆.设P为这两个圆的另一个公共点,则AP⊥O B O C.连PB、PC.设O为△ABC的外心,则OO C∥AO B,四边形OO B AO C为梯形,对角线O B O C 在梯形内,∠AO B O C<∠AO B O,所以∠PAO B=90°-∠AO B O C>90°-∠AO B O=∠CAO B.同样∠PAO C>∠BAO C,所以射线AP在∠CAB内,P是AP与的交点,与A在BC的同侧,所以P在△ABC内.由于BC与⊙O C相切,所以∠PBC=∠PAB.同理∠PAB=∠PCA.因此,P合乎要求.C1-024在矩形ABCD内,M是AD的中点,N是BC的中点,在线段CD的延长线上取一点P,用Q表示直线PM和AC的交点.证明:∠QNM=∠MNP.【题说】第六届(1972年)全苏数学奥林匹克八年级题1.【证】设R是直线QN和CD的交点,O是矩形ABCD的中心,由OM=ON 得:PC=CR.因此三角形PNR是等腰三角形(NC是该三角形的中线和高,也就是△PQN的外角∠PNR的平分线,又NC⊥MN),问题的结论由此即得.C1-025已知正方形ABCD,点P和Q分别在AB和BC上,且BP=BQ,BH⊥PC于H.证明:∠DHQ是直角.【题说】第八届(1974年)全苏数学奥林匹克十年级题2.【证】延长BH交AD于E,则Rt△ABE≌Rt△BCP,于是AE=BP=BQ,因此,QC=ED,从而得矩形CDEQ.这个矩形的外接圆直径就是其对角线CE与DQ,而∠CHE=90°,所以H点在矩形的外接圆上,即C、D、E、H、Q五点共圆.对着直径DQ的圆周角:∠DHQ=∠DCQ=90°即∠DHQ是直角.C1-026设ABCD是矩形,BC=3AB,证明:如果P、Q是BC边上的点,BP=PQ=QC,那么∠DBC+∠DPC=∠DQC.【题说】第六届(1974年)加拿大数学奥林匹克题2.【证】如图所示,即证β+γ=α或tan(β+γ)=tanα=1△BRD∽△PQD.于是∠RBD=∠DPC=β,从而有β+γ=∠RBC=α.C1-027在任一△ABC的边上,向外作△BPC、△CQA和△ARB,使得2.QR=RP.【题说】第十七届(1975年)国际数学奥林匹克题3.本题由荷兰提供.【证】建立一个复平面,令A和B的坐标分别为-1和1,C的因而,于是RQ⊥RP,RQ=RP.C1-028如图,两圆O1、O2相交于A、B,圆O1的弦BC交圆O2于E,圆O2的弦BD交圆O1于F,证明:1.若∠DBA=∠CBA,则DF=CE;2.若DF=CE,则∠DBA=∠CBA.【题说】 1979年全国联赛二试题6.【证】 1.连AD、AE、AF、AC,则∠DFA=∠ECA.又∠DBA=∠CBA以AD=AE,AC=AF所以△DAF≌△EACDF=CE2.由于∠DFA=∠ACE,∠AEC=∠ADF,DF=CE,所以△DAF≌△EAC,AD=AE.从而∠DBA=∠EBA.C1-029两圆相切(内切或外切)于P点,一条直线切一个圆于A,交另一圆于B、C.证明:直线PA是∠BPC的平分线(如果两圆内切)或∠BPC的补角的平分线(如果两圆外切).【题说】 1980年五国国际数学竞赛题4.本题由比利时提供.【证】设两圆外切(图a),作公切线PT,则∠APB=∠APT+∠TPB=∠BAP+∠BCP=∠BPC的补角-∠APB即AP是∠BPC的补角的平分线.若两圆内切(图b),设公切线与BC相交于T.因为∠CPT、∠APT、∠TAP都是弦切角,故∠BPA=∠APC,因此,PA是∠BPC的平分线.C1-030已知A为平面上两条半径不等的圆O1和O2的一个交点,两外公切线P1P2、Q1Q2分别切两圆于P1、P2、Q1、Q2,M1、M2分别为P1Q1、P2Q2的中点,求证:∠O1AO2=∠M1AM2.【题说】第二十四届(1983年)国际数学奥林匹克题2.本题由原苏联提供.【证】设B是两圆的另一交点,T、M分别是P1P2、O1O2与AB的交点.又P1M1∥TM∥P2M2所以MM1=MM2为AB⊥O1O2所以TM是M1M2的中垂线.在O1O2上,取MO3=MO2,则∠O3AM1=∠O2AM2.因为O1P1∥O2P2,O1M1∥O2M2,P1M1∥P2M2△O1P1M1∽△O2P2M2由此可知,AM1是∠O1AO3的角平分线.所以∠O1AM1=∠O3AM1=∠O2AM2故有∠O1AO2=∠O1AM1+∠M1AO2=∠O2AM2+∠M1AO2=∠M1AM2C1-031 如图,延长线段AB至D,以AD为直径作半圆,圆心为H.G 是半圆上一点,∠ABG为锐角.E在线段BH上,Z在半圆【题说】 1992年澳大利亚数学奥林匹克题5.【证】由EH·ED=EZ2知△HEZ∽△ZED,所以∠EZH=∠EDZ=∠DZH.于是∠AEZ=3∠EZHC1-032 在正方形ABCD的AB、AD边各取点K、N,使得AK·AN=2BK·DN.线段CK、CN各交对角线BD于L、M.试证:∠BLK=∠DNC=∠BAM.【题说】第三届(1993年)澳门数学奥林匹克第二轮题4.【证】令AB=a,BK=b,DN=c,则(a-b)(a-c)=2bc即a2-bc=a(b+c)所以∠BCK+∠DCN=45°∠BLK=∠BCK+45°=90°-∠DCN=∠DNC再由△ABM≌△CBM,得∠BAM=∠BCM=∠BCK+∠LCM=∠BCK+(90°-45°)=∠BLKC1-033如图,⊙O1与⊙O2外切于点P,Q是过P的公切线上任一点,QAB和QDC分别是⊙O1与⊙O2的割线,P在AB、AD和DC上的射影分别为E、F、G.求证:(1)∠BPC=∠EFG;(2)△EFG∽△PBC.【题说】 1994年四川省赛题3.【证】(1)因PQ切⊙O1与⊙O2于P,所以∠QPA=∠PBA (1)因为∠AEP=∠AFP=90°所以A、E、P、F四点共圆.故有∠FEP=∠FAP=∠DAP (2)同理,F、D、G、P四点共圆.且∠BPC=∠BAP+∠PDC=∠EFP+∠PFG=∠EFG(3)(2)因为∠PEQ=∠PGQ=90°所以Q、E、P、G四点共圆,于是∠GEP=∠GQP=∠DQP (4)由(2)、(4)与∠DAP+∠QPA=∠QDA+∠DQP得∠FEG=∠FEP-∠GEP=∠DAP-∠DQP=∠QDA-∠QPA(5)又A、B、C、D四点共圆,有∠QDA=∠QBC.于是由(1)、(5)得∠FEG=∠QBC-∠PBA=∠PBC(6)由(3)、(6)得△EFG∽△PBC.C1-034 D、E、F分别为△ABC的边BC、CA、AB上的点,且∠FDE=∠A,∠DEF=∠B,又设△AFE、△BDF、△CED均为锐角三角形,它们的垂心依次为H1、H2、H3,求证:(1)∠H2DH3=∠FH1E;(2)△H1H2H3≌△DEF.【题说】 1994年江苏省赛题5.【证】如图,(1)∠H2DB=90°-∠B,∠H3DC=90°-∠C,所以∠H2DH3=180°-∠H2DB-∠H3DC=∠B+∠C.而∠EH1F=180°-∠H1EF-∠H1FE=180°-(90°-∠AFE)-(90°-∠AEF)=180°-∠A=∠B+∠C.所以∠H2DH3=∠FH1E(2)由(1)知∠FH1E+∠EDF=180°,所以,H1在△DEF的外接圆上.同理H2、H3也在此圆上,因此D、E、F、H1、H2、H3六点共圆.又由(1)知∠EH1F=∠H2DH3,所以EF=H2H3.同理DF=H1H3,DE=H1H2,故△DEF≌△H1H2H3.C1-035 △ABC为锐角三角形.AD为BC边的高,H为AD内一点.直线BH、CH分别交AC、AB于E、F.证明:∠EDH=∠FDH.【题说】第26届(1994年)加拿大数学奥林匹克题5.又见第3届(1993年)澳门数学奥林匹克题3.[解] 过A作直线l平行于BC.延长DE、EF,分别交l于Q、P.由相似三角形,AP=AQ于是△DPQ的高DA平分PQ,所以△DPQ是等腰三角形,并且∠EDH=∠FDH.C1-036 在直角KLM内取一点P.以O1点为圆心的圆ω1分别切∠KLP 的两边LK和LP于A、D两点;以O2点为圆心半径与圆ω1半径相等的圆ω2分别切∠MLP的两边LP、LM于B、E两点.点O1在线段AB上.设O2D的延长线与KL交于C点.证明:BC是∠ABD的平分线.【题说】第二十届(1994年)全俄数学奥林匹克九年级题6.【证】连结O1D及O2B,则O1D=BO2.因为O1D⊥LP,O2B⊥LP,所以O1D∥BO2,O1BO2D为平行四边形,从而CO2∥AB,∠LDC=∠O1BD.∠LCD=∠LAB=90°(1)因为O2E⊥LM,所以O2ELC是矩形.因此CL=O2E=O2B=DO1(2)由(1)、(2)得Rt△LCD≌Rt△O1DB,所以CD=DB.于是∠ABC=∠BCD=∠CBD,即BC是∠ABD的平分线.C1-037设AK、BL、CM是△ABC的角平分线,K在BC上,令P、Q 分别是BL,CM上的点,使得AP=PK,AQ=QK.证明:【题说】 1995年城市数学联赛低年级较高水平题3.【证】如图,设BL交△ABK的外接圆于点D.则∠DAK=∠DBK=∠DBA=∠DKA所以,DA=DK,从而D与P重合.即有C1-038设△ABC是锐角三角形,且BC>CA,O是它的外心,H是它的垂心,F是高CH的垂足,过F作OF的垂线交边CA于P.证明:∠FHP=∠BAC.【题说】第三十七届(1996年)IMO预选题.【证】延长CF交⊙O于D点,连BD、BH.由于∠BHF=∠CAF=∠D且BF⊥HD,所以F为HD的中点.设FP所在直线交⊙O于M、N两点,交BD于T点.由OF⊥MN知F为MN的中点.由蝴蝶定理即得F为PT的中点.又因F 为HD的中点,故HP∥TD,所以,∠FHP=∠D=∠BAC.C1-039在凸凹边形ABCD的BC边上取E和F(点E比F更靠近点B).已知∠BAE=∠CDF及∠EAF=∠FDE.证明:∠FAC=∠EDB.【题说】第二十二届(1996年)全俄数学奥林匹克十年级题1.【证】因为∠EAF=∠FDE,所以A、E、F、D共圆,∠AEF+∠FDA=180°,又∠BAE=∠CDF,所以∠ADC+∠ABC=∠FDA+∠CDF+∠AEF-∠BAE=180°因此A、B、C、D共圆,∠BAC=∠BDC,由此得∠FAC=∠EDB.C1-040 在平行四边形ABCD中有一点O,使得∠AOB+∠COD=180°.证明:∠OBC=∠ODC.【题说】第二十九届(1997年)加拿大数学奥林匹克题4.[解] 过O作OE BA,连EC、ED,则四边形EOAD、EOBC都是平行四边形,所以CE∥BO,ED∥OA,∠CED+∠COD=∠AOB+∠COD=180°O、C、E、D四点共圆,从而∠ODC=∠OEC=∠OBCC1-041已知一个等腰三角形,外接圆半径为R,内切圆半径为r.证明:外接圆和内切圆的圆心距离d为【题说】第四届(1962年)国际数学奥林匹克题6.本题由原东德提供.【证】本题结论(即欧拉公式)对任意三角形(不限于等腰三角形)均成立.设M为BC的中点,O与I分别为外接圆和内切圆的圆心,外接圆直径MN交BC于D.连IB、BM、AM必过I.又设IE⊥BCIK⊥MNE、K为垂足.=∠IBM所以MI=MB又 IO2=MI2+MO2-2MO·MK而MB2=MD·MN=2R·MD所以d2=2R·MD+R2-2R·MK=R2-2R×DK=R2-2RrC1-042设过三角形的内心和重心的直线平行于一边.求证:其它二边长的和等于这一边长的两倍.【题说】 1963年西安市赛高二题3.【证】设△ABC的三边为a、b、c、M为BC之中点,G、I分别为△ABC的重心和内心,且IG∥BC.因为IG∥BC所以G到BC的距离GE=r(内切圆半径)BC边上的高h=3GE=3r,而ha=r(a+b+c)(=2S△ABC)所以3a=a+b+c即b+c=2aC1-043 1.在凸六边形ABCDEF中,所有角都相等.证明:AB-DE=EF-BC=CD-FA2.反之,若六条边a1,a2,a3,a4,a5,a6满足等式a1-a4=a5-a2=a3-a6.证明:它们可以组成各内角相等的凸六边形.【题说】 1964年全俄数学奥林匹克八年级题5(1)、十年级题3(2).【证】 1.直线AB、CD、EF构成△GHI.由已知六边形各角相等知,每个角都是120°,从而△GHI的每个角都是60°,因此它是正三角形.并且AF、BC、DE分别与边GI、GH、HI平行.AB+AC=AB+BI=AI=GF=GE+EF=DE+EF所以 AB-DE=EF=BC同理 EF-BC=CD-FA2.以a1+a2+a6为边作正三角形GHI,然后在各边取A、B、C、D、E、F,使BI=IC=a2,DG=GE=a4,FH=HA=a6,则BC∥GH,DE∥HI,AF∥GI,所以六边形ABCDEF各角相等,并且AB=a1,BC=BI=a2,AF=AH=a6,DE=DG=a4,CD=(a1+a2+a6)-a2-a4=a3.EF=(a1+a2+a6)-a4-a6=a5.C1-044 已知ABCD为一圆外切梯形,E是对角线AC和BD的交点,r1、r2、r3、r4分别是△ABE、△BCE、△CDE和△DAE的内切圆半径.证明:【题说】 1964年全俄数学奥林匹克十一年级题2.【证】设△ABE、△BCE、△CDE、△DAE的面积和周长分别为S1、S2、S3、S4;l1、l2、l3、l4.由于 AB+C D=AD+BC所以 l1+l3 =l2+l4(2)因为 AB∥CD所以 S2=S4记之为S.则从而相加并利用(2)得即(1)成立.C1-045 设点M是△ABC的AB边上的任一内点,r1、r2、r分别是△AMC、△BMC、△ABC的内切圆半径;q1、q2、q分别是这些三角形在∠ACM、∠BCM、∠ACB内的旁切圆半径.试证:【题说】第十二届(1970年)国际数学奥林匹克题1.本题由波兰提供.【证】设∠CAB=α,∠ABC=β,∠BCA=γ,∠AMC=δ;又设△ABC的内切圆的圆心为R,且与AB切于P(如图).于是从而有由于三角形的角的内、外分角线互相垂直,因而类似地有由(1)和(2)可得类似的结论对于△AMC和△BMC也成立,故有将(4)、(5)相乘,并利用(3)得C1-046 考虑如图a、图b所示的△ABC和△PQR.在△ABC中,∠ADB=∠BDC=∠CDA=∠120°.试证:x=u+v+w.【题说】第三届(1974年)美国数学奥林匹克题5.【证】△BCD绕B逆时针方向旋转60°,至△BEF,如图c.这时易知A、D、F、E在一直线上,且AE=u+v+w.再将△EAC绕E顺时针方向旋转60°,至△EGB.则△AEG为正三角形且易证它与△PQR全等,其中B相当于O点.得证.【别证】(1)△PQR绕R逆时针旋转60°,至△SPR,如图d.这时作正△ROT外接圆,设交RP于D′.易证∠OD′T=∠TD′P=∠PD′O=120°.由△ABC中D点的唯一性及△ABC≌△TOP知PD′=w,OD′=v,TD′=u.又由托勒密定理,知RD′=u+v,故x=u+v+w.(2)过O作△PQR三边平行线,如图e,也可以得结论.C1-047 直径A0A5把圆O分成两个半圆,其中一个半圆分成五段等点M、N.证明:线段A2A3与MN之和等于圆的半径.【题说】第十九届(1985年)全苏数学奥林匹克八年级题6.【证】在圆上分别标出点A1、A2、A3、A4关于直径A0A5的对称点B1、B2、B3、B4,得圆的内接正十边形A0A1…A5B4B3…B1(如图).则A2B1∥A3B2,A2B1∥A1A0,OA2∥B2A1,A0A5∥A1A4∥A2A3.由对称性知A2B1和B2A1的交点K在A0A5上.又设A2B1和A1A4相交于点L.于是KA2A3O、A0A1LK、A1MOK、LNOK都是平行四边形.所以A2A3=KO=A1M=LN,从而MN=A1L=A0K.因此,A2A3+MN=A0O.C1-048 四边形ABCD内接于圆,另一圆的圆心O在边AB上且与其余三边相切.求证:AD+BC=AB.【题说】第二十六届(1985年)国际数学奥林匹克题1.本题由英国提供.【证】在AB上取点M,使MB=BC.连结OD、OC、MD和MC.所以C、D、M、O四点共圆.所以∠AMD=∠ADM,故AM=AD.从而AB=AM+MB=AD+BC【别证】设半圆半径为1,∠OAE=α,则AE=cotα.同理可证 BG+ED=BO故 AD+BC=ABC1-049 已知两圆相交于M和K,引两圆的公切线,切点为A和B.证明:∠AMB+∠AKB=180°.【题说】第十四届(1988年)全俄数学奥林匹克八年级题2.【证】如图,连结MK,则∠AMK=∠KAB∠BMK=∠KBA两式相加得∠AMB=∠KAB+∠KBA因此∠AMB+∠AKB=∠KAB+∠KBA+∠AKB=180°C1-050 在一个三角形中,以h a、h b、h c表示它的三条高,以r表示它的内切圆半径.证明:当且仅当三角形为等边三角形时,h a+h b+h c=9r.【题说】 1988年原联邦德国数学奥林匹克(第一轮)题2.【证】设三角形三边为a、b、c,周长为p,面积为S,则2S=rp=ah a=bh b=ch c当且仅当a=b=c,即三角形为等边三角形时取等号,即h a+h b+h c=9rC1-051 设点D、E、F分别在△ABC的三边BC、CA、AB上,且△AEF、△BFD、△CDE的内切圆有相等的半径r,又以r0和R分别表示△DEF和△ABC 的内切圆半径.求证:r+r0=R【题说】第四届(1989年)全国冬令营赛题4.【证】设p为△ABC的半周长,q为△DEF的半周长.因为S△ABC=S△AEF=S△BFD+S△CDE+S△DEF所以R·p=r·p+(r0+r)·q(1)所以 R(p-q)=Pr(4)由(1)、(4)得Rq=(r0+r)q,即R=r0+r.C1-052 在圆内引弦AB和AC,∠BAC平分线交圆于D点.过D【题说】第十六届(1990年第三阶段)全俄数学奥林匹克九年级题8.【证】作DM⊥AC于M(如图).因为ABDC内接于圆,所以∠MCD=∠B若B与E重合,则∠B=90°=∠ACDRt△ABD≌Rt△ACD,结论显然成立.若B与E不重合,则∠B为锐角或钝角.不妨设∠B为锐角(钝角情形同样讨论),则∠ACD为钝角,M在AC延长线上,而E点在AB线段内.由于AD平分∠BAC,所以DE=DM,AE=AM.从而△BDE≌△CDM,则C1-053 四边形ABCD内接于半径为r的圆,对角线AC、BD相交于E.证明:若AC⊥BD,则EA2+EB2+EC2+ED2=4r2(1)若(1)成立,是否必有AC⊥BD?说明你的理由.【题说】 1991年英国数学奥林匹克题3.【解】若AC⊥BD,则EA2+EB2+EC2+ED2=AB2+CD2.由正弦定理AB2=4r2sin2∠ACBCD2=4r2sin2∠CBD=4r2cos2∠ACB所以EA2+EB2+EC2+ED2=4r2sin2∠ACB+4r2cos2∠ACB=4r2反之,若(1)成立,未必有AC⊥BD.例如AC、BD为任两条直径,则交点E即为圆心.(1)式显然成立.C1-054 设∠A是三角形ABC中最小的内角.点B和C将这个三角形的外接圆分成两段弧.设U是落在不含A的那段弧上且不等于B与C的一个点.线段AB和AC的垂直平分线分别交线段AU于V和W.直线BV和CW相交于T.证明:AU=TB+TC.【题说】第三十八届(1997年)国际数学奥林匹克题2.本题由英国提供.【证】如图所示,因为点V在线段AB的垂直平分线上,所以∠VAB=∠VBA.又因∠A是△ABC的最小内角,且∠VAB=∠UAB<∠CAB故∠VBA=∠VAB<∠CAB≤∠CBA即V在∠ABC内.同理W在∠ACB内.BV与CW的交点T在△ABC内.延长BT交外接圆于S.由于AU与BS关于弦AB的中垂线对称,所以AU=BS.因为∠TCS=∠TCA+∠ACS=∠WAC+∠ABS=∠WAC+∠VAB=∠BAC=∠BSC,所以TS=TC,从而AU=BT+TS=BT+TCC1-055 在圆上取六个点A、B、C、D、E、F,使弦AB与DE平行,弦DC与AF平行.证明:弦BC与弦EF平行.【题说】 1959年~1960年波兰数学奥林匹克三试题5.【证】圆上六点的顺序有种种情况.以图a、图b所示的两种为例,其他情况可仿此证明.在图a中,因AB∥DE,DC∥AF,故有所以BC∥EF所以,BC∥EF.C1-056 在平行四边形ABCD的两边AB、AD上,向外作两个正方形ABMX、ADNY.求证:CA⊥XY.【题说】 1963年武汉市赛高三一试题4.【证】如图,延长CA交XY于E,因∠ABC=180°-∠BAD=180°-(360°-∠BAX-∠XAY-∠YAD)=∠XAY又AY=AD=BC及AX=BA所以△XAY≌△ABC,从而∠XYA=∠ACB=∠CAD所以∠AEY=180°-∠EAY-∠EYA=180°-∠EAY-∠CAD=∠DAY=90°.亦即AC⊥XY.C1-057 作△ABC外接圆,连接AC中点与AB、BC中点的弦,分别交AB 于D,交BC于E.证明:DE∥AC且通过三角形的内心.【题说】 1965年全俄数学奥林匹克八年级题3.△ABC的内心,则AM、BN过O.又设LN与AC交于K,连结OK.LN⊥AM在△AON中,易知∠AON=∠NAO.从而ND平分AO.又AO平分∠A.从而AO平分DK.因此在四边形AKOD中二对角线AO、DK互相垂直平分,故AKOD 是菱形.于是DO∥AK.同理,四边形CEOJ是菱形,从而OE∥CJ,从而D、O、E在一条直线上,即DE∥AC,而且DE过△ABC内心O.C1-058 某个平面四边形,各边之长顺次为a,b,c,d,对角线互相垂直.试证:任何其它四边形,若其各边长顺次为a,b,c,d,则其对角线也互相垂直.【题说】 1975年~1976年波兰数学奥林匹克三试题4.【证】设四边形ABCD、A′B′C′D′的边长顺次为a,b,c,d,AC 与BD相交于O,并且AC⊥BD(如图).显然a2-b2=AO2-OC2=d2-c2设B′在A′C′上的射影为P,D′在A′C′上的射影为Q,则A′P2-PC′2=a2-b2=d2-c2=A′Q2-QC′2即 A′C′×(A′P-PC′)=A′C′×(A′Q-QC′)从而A′P-PC′=A′Q-QC′,又A′P+PC′=A′C′=A′Q+QC′,所以A′P=A′Q,P与Q重合,并且均在B′D′上.于是B′D′⊥A′C′.C1-059 已知平面上的三个正方形ABCD、A1B1C1D1和A2B2C2D2(正方形的顶点是沿逆时针方向标写的).并且顶点A1与A重合,而C2与C重合,试证:线段D1D2与BM(其中M为线段B1B2的中点)互相垂直并且|D1D2|=2|BM|.【题说】第六届(1981年)全俄数学奥林匹克十年级题5.【证】设B为原点,其它各点的复数表示仍用同样的字母,则由于M 是线段B1B2中点,2·M=B1+B2=(B1-A)+(B2-C)+A+C=(D1-A)·(-i)+(D2-C)·i+A+C=(D2-D1)i+A·(1+i)+C·(1-i)=(D2-D1)i+C·i(1+i)+C·(1-i)=(D2-D1)i因此线段D1D2⊥BM,并且|D1D2|=2|BM|.C1-060 如图,在凸四边形ABCD中,AB与CD不平行.圆O1过A、B且与边CD相切于P,圆O2过C、D且与边AB相切于Q,圆O1与圆O2相交于E、F.求证:EF平分线段PQ的充分必要条件是BC∥AD.【题说】第五届(1990年)全国冬令营赛题1.【证】首先证明:如图,分别延长CD与BA,记它们的交点为S.并记SC,SD,SP,SA,SB,SQ为c,d,p,a,b,q,则p2=ab,q2=cd.于是延长PQ分别交圆O1、O2于J、I,则由相交弦定理可知PD·PC=PI·PQ,QA·QB=QJ·PQ弦定理可知KP·KJ=KE·KF=KQ·KI即KP(KQ+QJ)=KQ(KP=PI)于是KP·QJ=KQ·PI综上所述,命题得证.C1-061 △ABC是直角三角形,以直角边AC和BC为边分别向外作两个菱形ACDE和CBFG,其中心分别为P和Q,且∠EAC=∠GCB<90°,如果M和N分别为AB和DG的中点.证明:PQ⊥MN.【题说】 1992年友谊杯国际数学竞赛八年级题2.【证】容易证明,△ACG≌△BCD,所以AG=BD.从而以四边形ADGB各边中点为顶点的四边形P,N,Q,M是菱形,故PQ⊥MN.C1-062 ABCDE是凸五边形,AB=BC,∠BCD=∠EAB=90°.X为此五边形内一点,使得AX⊥BE且CX⊥BD.证明:BX⊥DE.【题说】 1992年澳大利亚数学奥林匹克题3.【证】设AX交BE于Y,CX交BD于Z,BX交DE于F.则AB2=BY·BE=BZ·BD所以D,E,Y,Z四点共圆.又由于B,Y,X,Z四点共圆,所以∠BXZ=∠BYZ=∠ZDF故D,F,X,Z四点共圆,从而∠BFD=∠DZX=90°,即BX⊥DE.C1-063 已知△ABC以O1、O2、O3为旁切圆圆心.证明:△O1O2O3是锐角三角形.【题说】第三届(1993年)澳门数学奥林匹克第一轮题3.【证】易知△O1O2O3包含△ABC,△ABC三内角平分线是△O1O2O3三高,△ABC内心O是△O1O2O3垂心.O在△ABC内,更在△O1O2O3内,故△O1O2O3为锐角三角形.C1-064 在△ABC中,∠A的平分线交AB边中垂线于A′,∠B的平分线交BC边中垂线于B′,∠C的平分线交CA边中垂线于C′.求证:(1)若A′与B′重合,则△ABC为正三角形;【题说】 1993年德国数学奥林匹克(第二轮)题3.【证】(1)若A′与B′重合,则△ABC的内心与外心重合,从而△ABC为正三角形.(2)将△A′AC′绕A旋转,使A与B重合.设这时C′转到∠ABC-∠BAC+∠ACB)=∠B′CC′.所以△B′BK≌△B′CC′,B′K=B′C′.从而△B′A′K≌△B′A′C′,∠【注】设I为内心,AB的垂直平分线交BB′于J,则可以证明△A′C′I∽△A′B′J,从而导出结论,但需要稍多的计算.C1-065 ABC是一个等腰三角形,AB=AC,假如(i)M是BC的中点,O是直线AM上的点,使得OB垂直于AB;(ii)Q是线段BC上不同于B和C的一个任意点;(iii)E在直线AB上,F在直线AC上,使得E,Q,F是不同的和共线的.求证:OQ⊥EF当且仅当QE=QF.【题说】第三十五届(1994年)国际数学奥林匹克题2.本题由亚美尼亚-澳大利亚提供.【证】连线段OE、OF、OC.由对称性,OC⊥AC,∠OBQ=∠OCQ.若OQ ⊥EF,则O、Q、B、E四点共圆,O、Q、C、F四点共圆,故∠OEQ=∠OBQ,∠OFQ=∠OCQ (1)于是∠OEQ=∠OFQ,OE=OF又OQ⊥EF,故QE=QF.反之,若QE=QF,过E作EG∥BC交AC于G,则易知EB=GC=CF.又OB=OC,∠OBE=∠OCF=90°,所以△OBE≌△OCF,OE=OF.从而OQ⊥EF.C1-066 如图,菱形ABCD的内切圆O与各边分别切于E、F、G、CD于P,交DA于Q.求证:MQ∥NP.【题说】 1995年全国联赛二试题3.【证】连结AC,则O为AC中点,再连结MO、NO.则∠MON=180°-(∠OMN+∠MNO)因此△AMO∽△OMN∽△CON。

第1章 梅涅劳斯定理及应用(含答案)

第1章  梅涅劳斯定理及应用(含答案)

第一章涅劳斯定理及应用【基础知识】梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 或其延长线上的点,若A ',B ',C '三点共线,则1BA CB AC A B B A C B'''⋅⋅='''.① C ′B′A'A′B′C ′AC B DCB 图1-1A证明 如图11-,过A 作直线AD C A ''∥交BC 的延长线于D ,则 CB CA B A A D ''='',AC DA C B A B''='',故 1BA CB AC BA CA DA A C B A C B A C A D A B''''''⋅⋅=⋅⋅=''''''. 注 此定理的证明还有如下正弦定理证法及面积证法.正弦定理证法 设BC A α''=∠,CB A β''=∠,B A B γ''=∠,在BA C ''△中,有sin sin BA C B αγ'=',同理,sin sin CB CA γβ'=',sin sin AC AB βα'=',此三式相乘即证. 面积证法 由A C B A C C S BA A C S '''''='△△,CB C CA B CB C CA B C CA B AC A AB B AC A AB AC A S S S S S CB B A S S S S S ''''''''''''''''''''+===='+△△△△△△△△△△,AC A C BA S AC C B S '''''='△△,此三式相乘即证.梅涅劳斯定理的逆定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 或其延长线上的点,若 1BA CB AC A C B A C B'''⋅⋅=''',② 则A ',B ',C '三点共线.证明 设直线A B ''交AB 于1C ,则由梅涅劳斯定理,得到111AC BA CB A C B A C A ''⋅⋅=''. 由题设,有1BA CB AC A C B A C B'''⋅⋅=''',即有11AC AC C B C B '='. 又由合比定理,知1AC AC AB AB'=,故有1AC AC '=,从而1C 与C '重合,即A ',B ',C '三点共线. 有时,也把上述两个定理合写为:设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线(包括三边的延长线)上的点,则A ',B ',C '三点共线的充要条件是 1BA CB AC A C B A C B'''⋅⋅='''. 上述①与②式是针对ABC △而言的,如图11-(整个图中有4个三角形),对于C BA ''△、B CA ''△、AC B ''△也有下述形式的充要条件:1C A BC A B AB CA B C '''⋅⋅=''';1B A CB A C AC BA C B '''⋅⋅=''';1AB C A B CBC A B CA'''⋅⋅='''.③ 第一角元形式的梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线(包括三边的延长线)上的点,则A ',B ',C '共线的充分必要条件是 sin sin sin 1sin sin sin BAA ACC CBB A AC C CB B BA'''⋅⋅='''∠∠∠∠∠∠.④ CA′B'C '图1-2A证明 如图12-,可得1sin 21sin 2ABA AA C AB AA BAA S BA A C S AA AC A AC ''''⋅⋅'=='''⋅⋅△△∠∠ sin sin AB BAA AC A AC'⋅='⋅∠∠.同理,sin sin CB BC CBB B A AB B BA ''⋅=''⋅∠∠,sin sin AC AC ACC C B BC C CB''⋅=''⋅∠∠. 以上三式相乘,运用梅涅劳斯定理及其逆定理,知结论成立.第二角元形式的梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线上的点,点O 不在ABC △三边所在直线上,则A ',B ',C '三点共线的充要条件是 sin sin sin 1sin sin sin BOA COB AOC A OC B OA C OB'''⋅⋅='''∠∠∠∠∠∠.⑤ A′OCBB'C 'A 图1-3证明 如图13-,由BOA A OC S BA S A C'''='△△,有 sin sin BOA OC BA A OC OB A C''=⋅''∠∠. 同理,sin sin COB OA CB B OA OC B A ''=⋅''∠∠,sin sin AOC OB AC C OB OA C B''=⋅''∠∠.于是sin sin sin sin sin sin BOA COB AOC BA CB AC A OC B OA C OB A C B A C B''''''⋅⋅=⋅⋅''''''∠∠∠∠∠∠. 故由梅涅劳斯定理知A ',B ',C '共线1BA CB AC A C B A C B'''⇔⋅⋅='''.从而定理获证.注 (1)对于④、⑤式也有类似③式(整个图中有4个三角形)的结论.(2)于在上述各定理中,若采用有向线段或有向角,则①、②、③、④、⑤式中的右端均为1-,③、④、⑤式中的角也可以按①或②式中的对应线段记忆.特别要注意的是三边所在直线上的点为一点或者三点在边的延长线上. 【典型例题与基本方法】1.恰当地选择三角形及其截线(或作出截线),是应用梅涅劳斯定理的关键例1 如图14-,在四边形ABCD 中,ABD △,BCD △,△ABC 的面积比是3∶4∶1,点M ,N 分别在AC ,CD 上,满足AM ∶AC CN =∶CD ,并且B ,M ,N 共线.求证:M 与N 分别是AC 和CD 的中点. (1983年全国高中联赛题) EDCBM NA图1-4证明 设AM CNr AC CD==(01r <<),AC 交BD 于E . 341ABD BCD ABC S S S =△△△∶∶∶∶,∴17BE BD =,37AE AC =. 37371771AM AE r EM AM AE r AC AC MC AC AM r r AC----====----. 又因B ,M ,N 三点共线,可视BMN 为△CDE 的截线,故由梅涅劳斯定理,得1CN DB EM ND BE MC ⋅⋅=,即77311177r r r r-⋅⋅=--. 化简整理,得 2610r r --=,解得12r =,13r =-(舍去).故M 与N 分别是AC 和CD 的中点. 例2 如图1-5,在四边形ABCD 中,对角线AC 平分BAD ∠,在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G .求证:GAC EAC =∠∠.(1999年全国高中联赛题)G 'B'GFEDCBA图1-5证明 记BAC CAD θ==∠∠,GAC α=∠,EAC β=∠,直线GFD 与△BCE 相截,由梅涅劳斯定理,有 1ABG AEFAED ABFS S BG CD EF GC DE FB S S =⋅⋅=⋅△△△△ sin()sin sin sin sin()sin AB AC AE AC AE AB θαθβαθβθ⋅-⋅⋅=⋅⋅⋅⋅-⋅sin()sin sin sin()θαβαθβ-⋅=⋅-.故 s i n()s i n s i n ()θαβθβα-⋅=-⋅. 即 s i n c o s s i n c o s s i n s i n s i n c o s s i n c o θαβθαβθβαθβα⋅⋅-⋅⋅=⋅⋅-⋅⋅, 亦即 s i n c o s s i n s i n s i n c o s s i n ()0πk θαβθαβαβαβ⋅⋅=⋅⋅⇔-=⇔-=,且k 只可能为0,故G AC ∠ EAC =∠.例3 设E 、F 分别为四边形ABCD 的边BC 、CD 上的点,BF 与DE 交于点P .若B A E F A D =∠∠,则BAP CAD =∠∠.证明 如图1-6,只需证得当AF 关于BAD ∠的等角线交BE 于P 时,B 、P 、F 共线即可.FED CBAP图1-6事实上,B 、P 、F 分别为△CDE 三边所在直线上的三点,且A 不在其三边所在直线上. 又FAD EAB =∠∠,DAP BAC =∠∠,PAE CAF =∠∠, 由第二角元形式的梅涅劳斯定理,有sin sin sin 1sin sin sin EAB CAF DAPBAC FAD PAE⋅⋅=∠∠∠∠∠∠.故B 、P 、F 三点共线.注 当AC 平分BAD ∠时,即为1999年全国高中联赛题.2.梅涅劳斯定理的逆用(逆定理的应用)与迭用,是灵活应用梅氏定理的一种方法例2另证 如图1-5,设B ,G 关于AC 的对称点分别为B ',G ',易知A ,D ,B '三点共线,连FB ',FG ',只须证明A ,E ,G '三点共线.设EFB α'=∠,DFE BFG B FG β''===∠∠∠,AFD GFC G FC γ'===∠∠∠,则*s i n s i n s i n (1s i n ()s i n s i n F D A F G B F E C F B A F G C F E DS S S D A B G C E F D F B F C A B G C E D S S S F B F C Fγββγαβγαγβ'''''''⋅⋅⋅+-⋅⋅=⋅⋅=⋅⋅='''⋅+-⋅⋅△△△△△△. 对△CB D ',应用梅涅劳斯定理的逆定理,知A ,E ,G '三点共线.故GAC EAC =∠∠.注 在图1-5中,*式也可为sin(180)βγ︒--,若B '在AD 的延长上,则*式为sin()βγα++. 例4 如图1-7,1O 与2O 和△ABC 的三边所在的3条直线都相切,E ,F ,G ,H 为切点,直线EG 与FH 交于点P .求证:PA BC ⊥.(1996年全国高中联赛题)P (P')图1-7证法1 过A 作AD BC ⊥于D ,延长DA 交直线HF 于点P '.对△ABD 及截线FHP '应用梅涅劳斯定理,有1AH BF DP HB FD P A'⋅⋅='.由BF BH =,有1AH DP FD P A '⋅='.显然1O ,A ,2O 三点共线,连1O E ,1O G ,2O F ,2O H ,则由12O E AD O F ∥∥,有△1AG O ∽△2AHO ,从而12AO DE AG DF AO AH ==,即AH AG FD ED=. 又CE CG =,则1AH DP DP AG DP AG CEFD P A P A ED P A GC ED'''=⋅=⋅=⋅⋅'''. 对△ADC ,应用梅涅劳斯定理的逆定理,知P ',G ,E 三点共线,即P '为直线EG 与FH 的交点.故点P '与点P 重合,从而PA BC ⊥.证法2 延长PA 交BC 于D ,直线PHF 与△ABD 的三边延长线都相交,直线PGE 与△ADC 的三边延长线都相交,分别应用(迭用)梅涅劳斯定理,有 1AH BF DP HB FD PA ⋅⋅=,1DP AG CEPA GC ED ⋅⋅=. 上述两式相除,则有AH BF AG CEHB FD GC ED⋅=⋅. 而HB BF =,CE GC =,于是AH AG FD ED =,即AG DEAH DF=. 连1O G ,OE ,1O A ,2O A ,2O H ,2O F ,而1O ,A ,2O 共线,则OG GC ⊥,2O H BH ⊥,且△1O AG ∽△2O AH ,从而12O A AG DE O A AH DF==,于是1AD O E ∥.故AD EF ⊥,即PA BC ⊥.【解题思维策略分析】梅涅劳斯定理是三角形几何学中的一颗明珠,它蕴含着深刻的数学美,因而它在求解某些平面几何问题,特别是某些平面几何竞赛题中有着重要的应用. 1.寻求线段倍分的一座桥梁例5 已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线交AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P .证明:△MPQ ∽△ABC .(1991年第3届亚太地区竞赛题)证明 如图1-8,延长BG 交AC 于N ,则N 为AC 的中点.由XY BC ∥,知2AX AG XB GM ==,而12NC CA =.YXGMN PQCB A图1-8对△ABN 及截线XQC ,应用梅涅劳斯定理,有 1212AX BQ NC BQ XB QN CA QN ⋅⋅=⋅⋅=,故BQ QN =. 从而MQ AC ∥,且1124MQ CN AC ==.同理,MP AB ∥,且14MP AB =. 由此可知,PMQ ∠与BAC ∠的两边分别平行且方向相反,从而PMQ BAC =∠∠,且MP MQAB AC=,故MPQ ABC △∽△.例 6 △ABC 是一个等腰三角形,AB AC =,M 是BC 的中点;O 是AM 的延长线上的一点,使得OB AB ⊥;Q 是线段BC 上不同于B 和C 的任意一点,E 在直线AB 上,F 在直线AC 上,使得E ,Q ,F 是不同的和共线的,求证:(Ⅰ)若OQ EF ⊥,则QE QF =; (Ⅱ)若QE QF =,则OQ EF ⊥. (1994年第35届IMO 试题)证明 (1)如图1-9,连OE ,OF ,DC .由OQ EF ⊥,易证O ,E ,B ,Q 四点共圆,O ,C ,F ,Q 四点共圆.则 O E Q O B Q O C Q O ===∠∠∠∠,因此OE OF =.故QE QF =.QCBAEFOM 图1-9(Ⅱ)由AB AC =,EQ QF =,对△AEF 及截线BQC 运用梅涅劳斯定理,有1AB EQ EC FCBE QF CA BE=⋅⋅=,即BE CF =.于是可证Rt Rt OBE OCF △≌△,得OE OF =,故OQ EF ⊥.例7 在凸四边形ABCD 的边AB 和BC 上取点E 和F ,使线段DE 和DF 把对角线AC 三等分,已知14ADE CDF ABCD S S S ==△△,求证:ABCD 是平行四边形.(1990年第16届全俄竞赛题) 证明 如图1-10,设DE ,DF 分别交AC 于P ,Q ,两对角线交于M .要证ABCD 是平行四边形,若证得AM MC =(或PM MQ =),且BM M D =即可.QFE DCB AP M 图1-10由ADE CDF S S =△△,ADP CDQ S S =△△(等底等高),知AEP CFQ S S =△△,而APCQ ,故有EF AC ∥,从而有BE BFEA FC=. 对△BAM 及截线EPD ,△BCM 及截线FQD ,分别应用梅涅劳斯定理,有 1BE APMDEA PM DB ⋅⋅=, ① 1BF CQMD FC QMDB⋅⋅=.②由①,②两式相除得AP CQPM QM=. 而AP CQ =,故PM MQ =,即有AM MC =.此时,又有12ABD CBD ABCD S S S ==△△.又由14ADE ABCD S S =△,知BE EA =,于是①式可写为12111BE AP MD MDEA PM DB DB⋅⋅=⋅⋅=,即有2DB M D =,亦即BM M D =. 故ABCD 为平行四边形.2.导出线段比例式的重要途径例8 在△ABC 中,1AA 为BC 边上的中线,2AA 为BAC ∠的平分线,且交BC 于2A ,K 为1AA 上的点,使2KA AC ∥.证明2AA KC ⊥.(1997年第58届莫斯科竞赛题)证明 如图1-11,延长CK 交AB 于D ,只须证AD AC =.KA 2A 1DCBA图1-11由2AA 平分BAC ∠,有22BA AB AC A C=. ①由2KA AC ∥,有1122A K A A KA A C=. 注意到12BC AC =,对△1ABA 及截线DKC 运用梅涅劳斯定理,得 1121212A K A A AD BC AD DB CA KA DB A C =⋅⋅=⋅⋅.故1222=A A BD DA A C,由合比定理,有 1221211212222A A A C A A A C A A BA BD DA DA A C A C A C ++++===,即为 22BA AB AD A C=. ②由①,②式有AB ABAC AD=,故AC AD =. 例9 给定锐角△ABC ,在BC 边上取点1A ,2A (2A 位于1A 与C 之间),在CA 边上取点1B ,2B (2B 位于1B 与A 之间),在AB 边上取点1C ,2C (2C 位于1C 与B 之间),使得122112AA A AA A BB B ===∠∠∠ 211221BB B CC C CC C ==∠∠∠,直线1AA ,1BB 与1CC 可构成一个三角形,直线2AA ,2BB 与2CC 可构成另一个三角形.证明:这两个三角形的六个顶点共圆. (1995年第36届1MO 预选题) 证明 如图1-12,设题中所述两个三角形分别为△UVW 与△XYZ .C 1C 2B 2B 12A 1UWVXYZ A图1-12由已知条件,有△1AC C ∽△2AB B ,△2BA A ∽△1BC C ,21CB B CA A △∽△,得 12AC ACAB AB=, 21BA AB BC BC =,21CB BCCA AC =,此三式相乘得1222111AC BA CB AB BC CA ⋅⋅=. ①对△1AA B 及截线1CUC ,△2AA C 及截线2BXB ,分别应用梅涅劳斯定理,得 11111A C BC AU UA CB C A ⋅⋅=, ② 22221A X AB CB XA B C BA ⋅⋅=, ③ ①,②,③三式相乘化简,得12AU AXUA XA =.故UX BC ∥. 同理,WX CA ∥.故1212AUX AA A BB B BWX ===∠∠∠∠.从而点X 在△UVW 的外接圆上.同理,可证得Y ,Z 也在△UVW 的外接圆上.证毕.例10 如图1-13,以△ABC 的底边BC 为直径作半圆,分别与边AB ,AC 交于点D 和E ,分别过点D ,E 作BC 的垂线,垂足依次为F ,G ,线段DG 和EF 交于点M .求证:AM BC ⊥.(IMO -37中国国家队选拔赛题)H MG FEDCA图1-13证法1 设直线AM 与BC 交于H ,连BE ,CD ,则知90BEC BDC ==︒∠∠,直线FME 与△AHC 相截,直线GMD 与△ABH 相截,迭用梅涅劳斯定理,有1AM HF CE MH FC EA ⋅⋅=,1AM HG BDMH GB DA⋅⋅=. 两式相除,得 F H C F A E B DH G C E B G A D⋅⋅=⋅⋅.在Rt △DBC 与Rt △EBC 中,有2CD BC FC =⋅,2BE BC BG =⋅,即22CF CD BG BE =.将其代入①式,得 22FH CD AE BDHG BE CE AD⋅⋅=⋅⋅. 又由△ABE ∽△ACD ,有C DA DB EA E=. 将其代入②式,得D B C EBC S FH CD BDDF DMHG BE CE S EG MG⋅====⋅△△,从而,M H DF ∥. 而DF BE ⊥,则MH BC ⊥,故AM BC ⊥.证法 2 作高AH ,连BE ,CD ,则90BDC BEC =⋅=∠∠,于是,s i n D F B DB =⋅=∠cos sin BC B B ⋅⋅∠∠,cos sin EG BC C C =⋅⋅∠∠.∴c o s s i nc o s c o s s i n c o s G M E G C CA B C M D F D B B A C B⋅===⋅⋅∠∠∠∠∠∠. 又cos BH AB B =⋅∠,cos HG AE C =⋅∠,∴ c o s c o s c o s c o s B H A B B A C B H G A E C A D C ⋅⋅==⋅⋅∠∠∠∠,即BH GM AB HG MD AD ⋅=,故1BH GM DAHG MD AB ⋅==. 对△BGD 应用梅涅劳斯定理的逆定理,知H ,M ,A 三点共线.由AH BC ⊥,知 AM BC ⊥.例11 如图1-14,设点I ,H 分别为锐角△ABC 的内心和垂心,点1B ,1C 分别为边AC ,AB 的中点.已知射线1B I 交边AB 于点2B (2B B ≠),射线1C I 交AC 的延长线于点2C ,22B C 与BC 相交于K ,1A 为△BHC 的外心.试证:A ,I ,1A 三点共线的充分必要条件是△2BKB 和△2CKC 的面积相等.(CMO -2003试题)EB 2A 1B 1C 1C 2KFHOI DCBA图1-14分析 首先证A ,I ,1A 三点共线60BAC ⇔=︒∠. 设O 为△ABC 的外心,连BO ,CO ,则2BO C B A C =∠∠.又180BH C B A C =︒-∠∠,因此,60BAC =︒∠ B ⇔,H ,O ,C 四点共圆1A ⇔在△ABC 的外接圆O 上AI ⇔与1AA 重合A ⇔,I ,1A 三点共线.其次,再证2260BKB CKC S S BAC =⇔=︒△△∠.并在三角函数式中,用A 、B 、C 分别表示三内角. 证法1 设△ABC 的外接圆半径为R ,CI 的延长线交AB 于D ,对△ACD 及截线12C IC ,应用梅涅劳斯定理,有12121AC CC DI C D IC C A⋅⋅=. ①注意到 112AC AB ABC D AD AC AC BC ⋅=-=-+ 22sin sin ()sin (sin sin )222()sin sin cos2C B AR AB AC BC C B A RA B AC BC B A-⋅⋅--⋅===-++,则 11s i n s i n 22cos cos 22C B AC D C A BAC -⋅=-⋅. 而s i n c o s s i n 22s i n s i n s i n 22C A B B IC AC ADC C C DI AD ACD ⎛⎫-+ ⎪⎝⎭====∠∠,由①式,有2121sin 2cos2B A CC CD IC C C A DI AC -=⋅=.从而 22222sincos 22cos2A BAC CC AC C AC C A⋅-==. ②又对△ACD 及截线12B IB ,应用梅涅劳斯定理,有21211AB CB DI B D IC B A⋅⋅=. 注意到11CB B A =,有22sin2cos 2C B D DI A B AB IC ==-,2222cos sin 2sin sin2222cos cos22A B C A BAB B D AD A B A B AB AB --⋅-===--,即2coscos cossin 222sin sin 2sin sin 2sin sin 2sin sin 222222A B A B A B AC B AB AD AB AB A B A B A B AC BC B A ---=⋅=⋅⋅=⋅⋅=++⋅⋅⋅cos22cos sin 22B AB C A ⋅⋅.从而 22s i n c o s 22cos2A CAB B AB ⋅=. ③由2222221BKB CKC ABC AB C AB AC S S S S AB AC ⋅=⇔=⇔=⋅△△△△,注意②,③24sin 12A⇔=,且A 为锐角60BAC ⇔=︒∠.证法2 如图1-14,设直线AI 交BC 于F ,直线12B B 交CB 的延长线于E .对ACF △及截线1B IE ,应用梅涅劳斯定理,有111AB CF FIB C EF IA⋅⋅=. ④又由11AB B C =及角平分线性质,即有FI CF BF BCIA CA BA AB AC===+. 令BC a =,AC b =,AB c =,则FI aIA b c=+. 由④式,有CE b c EF a +=,即EF EF aCF CE EF b c a==-+-. 而abCF b c =+,则2()()a b EF b c a b c =+-+.又ac BF b c =+,()a a c BE EF BFbc a -=-=+-(由题设知a c >). 从而 ()()E F a bB E b c a c =+-. 对ABF △及截线2IB E ,应用梅涅劳斯定理,有221BB AI FE IF EB B A⋅⋅=. 将⑤式代入上式,得22BB IF BE a c B A AI EF b -=⋅=,∴ 2222AB B B AB a b cAB AB b++-==. ⑥同理2A C a c bA C c +-=. 由2222221BKB CKC ABC AB C AB AC S S S S AB AC ⋅=⇔=⇔=⋅△△△△,注意⑥,⑦1a b c a c bb c+-+-⇔⋅=⇔22260a b c bc BAC =+-⇔=︒∠.注 例11还有其他证法,可参见笔者另文《关于2003年中国数学奥林匹克第一题》(《中等数学》2003年第6期).例12 如图1-15,凸四边形ABCD 的一组对边BA 与CD 的延长线交于M ,且AD BC ∥,过M 作截线交另一组对边所在直线于H ,L ,交对角线所在直线于H ',L '.求工业化:1111MH ML MH ML +=+''. H 'L'LDCAMOH图1-15证法1 如图1-15,对ML D '△及直线BLC 由梅涅劳斯定理得 1ML L B DCLL BD CM'⋅⋅='. 对DL H '△及直线BAM 由梅涅劳斯定理得 1L M HA DBMH AD BL '⋅⋅='. 对MHD △及直线CH A '由梅涅劳斯定理得1HH MC DAH M CD AH'⋅⋅='. 由①⨯②⨯③得1ML L M HH LL MH H M''⋅⋅='', 所以HH LL MH H M ML L M ''=''⋅⋅,所以H M MH ML ML MH H M ML L M ''--=''⋅⋅,故1111MH ML MH HL+=+''. 证法2 设AD 与BC 的延长线相交于O .△BML 和△CML 均被直线AO 所截,迭用梅涅劳斯定理,有 BA HL OBAM MH LO=⋅,① CD HL OCDM MH LO=⋅,② 由①LC ⋅+②BL ⋅,得 BA CD HL OB LC OC BLLC BL AM DM MH LO⋅+⋅⋅+⋅=⋅.③ 注意到 O B L CO CB LB C ⋅+⋅=⋅(直线上的托勒密定理),则③式变为BA CDLC BL AM DM⋅+⋅= HLDC MH⋅.④ 又由BD 截△LCM 和AC 截△LBM ,迭用梅涅劳斯定理,有LL DCBC BL L M MD'⋅=⋅',LH ABBC LC H M AM'⋅=⋅'. 将此结果代入④式整理,即得欲证结论.注 当AD BC ∥,④式显然成立,故仍有结论成立.此题是二次曲线蝴蝶定理的推论. 3.论证点共直线的重要方法例13 如图1-16,△ABC 的内切圆分别切三边BC ,CA ,AB 于点D ,E ,F ,点X 是△ABC 的一个内点,△XBC 的内切圆也在点D 处与BC 边相切,并与CX ,XB 分别相切于点Y ,Z .证明:EFZY是圆内接四边形. (1995年第36届IMO 预选题) PXYZ FE D CB A图1-16证明 由切线长定理,知CE CD CY ==,Z BF BD B ==,AF AE =,XZ XY =.设BC 的延长线与FE 的延长线交于P ,对△ABC 及截线FEP ,应用梅涅劳斯定理,有1AF BP CE AF BP CEFB PC EA EA PC FB=⋅⋅=⋅⋅XZ BP CY XZ BP CYYX PC ZB ZB PC YX=⋅⋅=⋅⋅. 对△XBC 应用梅涅劳斯定理的逆定理,知Z ,Y ,P 三点共线,故由切割线定理有2PE PF PD ⋅=,2PY PZ PD ⋅=.以而PE PF PY PZ ⋅=⋅,即EFZY 是圆内接四边形.例14 如图1-17,△ABC 中,A ∠内的旁切圆切A ∠的两边于1A 和2A ,直线12A A 与BC 交于3A ;类似地定义1B ,2B ,3B 和1C ,2C ,3C .求证:3A ,3B ,3C 三点共线.A 3图1-17证明 由切线长定理,知12AA AA =,12BB BB =,12CC CC =.对△ABC 与直线123C C C ,123A A A ,123B B B 分别应用梅涅劳斯定理,有332123213111AC AC BC CC BC C B C C C A C B C A =⋅⋅=⋅⋅,233213213111BA BA CA AA CA A C A A A B A C A B =⋅⋅=⋅⋅,332123213111CB CB AB BB AB B A B B B C B A B C=⋅⋅=⋅=. 上述三式相乘,有333111111333222222AC BA CB AC A B B C AC A B B CC B A C B A BC CA AB CA AB BC ⋅⋅=⋅⋅=⋅⋅. 设3O 切AB 于K ,2O 切AC 于L ,则由12BB BB =,可得21221()2BC BK B C KB ==-.同理11211()2B C CL B C LC ==-.又由两内公切线长相等,即21KB LC =,故21BC BC =.同理,21CA AC =,21AB A B =.从而3333331A C B A C BC B A C B A ⋅⋅=,故对△ABC 用梅涅劳斯的逆定理,知3A ,3B ,3C 三点共直线. 例15 如图1-18,设△ABC 的三边BC ,CA ,AB 所在的直线上的点D ,E ,F 共线,并且直线AD ,BE ,CF 关于A ∠,B ∠,C ∠平分线的对称直线AD ',BE ',CF '分别与BC ,CA ,AB 所在直线交于D ',E ',F ',则D ',E ',F '也共线.D 'F'E'F EDC BA图1-18证明 对ABC ∠及截线FED 应用第一角元形式的梅涅劳斯定理,有sin sin sin 1sin sin sin BAD CBE ACFDAC EBA FCB⋅⋅=∠∠∠∠∠∠.由题设知,CAD BAD '=∠∠,D AB DAC '=∠∠,BCF ACF '=∠∠,F CA FCB '=∠∠,ABE CBE '=∠∠,E BC EBA '=∠∠,从而有sin sin sin 1sin sin sin CAD ABE BCF D AB E BC F CA '''⋅⋅='''∠∠∠∠∠∠,即sin sin sin 1sin sin sin BAD CBE ACF D AC E BA F CB'''⋅⋅='''∠∠∠∠∠∠. 故由第一角元形式的梅涅劳斯定理,知D ',E ',F '共线.例16 在筝形ABCD 中,AB AD =,BC CD =.过BD 上的一点P 作一条直线分别交AD 、BC 于E 、F ,再过点P 作一条直线分别交AB 、CD 于G 、H .设GF 与EH 分别与BD 交于I 、J ,求证:PI PJPB PD=. 证明 如图1-19,过B 作AD 的平行线交直线EF 于E ',再过B 作CD 的平行线交直线GH 于H ',则 E BP EDP PBG '==∠∠∠,HBP H D P PBF '==∠∠∠.H 'E'PDCBAHF EG 图1-19进而H BG H BP GBP PBF PBE E BF ''''=-=-=∠∠∠∠∠∠.所以 s i n s i n s i n s i n s i n s i n 1s i n s i n s i n s i n s i n s i n P B H G B I F B E F B P G B P F B EH B G I B F E B P E B F P B F P B G'''⋅⋅=⋅⋅='''∠∠∠∠∠∠∠∠∠∠∠∠.又H '、I 、E '分别为△PGF 三边所在直线上的点,且点B 不在△PGF 三边所在的直线上.由第二角元形式的梅涅劳斯定理的逆定理知H '、I 、E '共线.于是,由PBE PDE '△∽△,PH B PHD '△∽△.有E H EH ''∥.因此,PI PE PB PJ PE PD '==.故PI PJPB PD=. 注 当PB PD =,P 为BD 中点时,即为1989年12月冬令营选拔赛试题.例17 如图1-20,四边形ABCD 内接于圆,其边AB ,DC 的延长线交于点P ,AD 和BC 的延长线交于点Q ,过Q 作该圆的两条切线,切点分别为E ,F .求证:P ,E ,F 三点共线.(1997年CMO 试题)Q图1-20证明 设圆心为O ,连QO 交EF 于L ,连LD ,LA ,OD ,OA ,则由切割线定理和射影定理,有 2QD QA QE QL QO ⋅==⋅,从而D ,L ,O ,A 四点共圆,即有QLD DAO ODA OLA ===∠∠∠∠,亦即OL 为△LAD 的内角ALD ∠的外角平分线. 又EF OQ ⊥,则EL 平分ALD ∠. 设EF 分别交AD ,BC 于M ,N ,于是DM DL DQMA AL AQ==. 同理,CN CQBN BQ=. 于是,DM AM AM DM AD DQ AQ AQ DQ DQ AQ +===++,CN BN BCCQ BQ BQ CQ==+, 所以,211MQ DQ DQ DA AQ DM DM AD AD +=+=+=,2QN BQCN BC=. 直线PBA 与△QCD 的三边延长线相交,由梅涅劳斯定理,有1CP DA QB CP DM QNPD AQ BC PD MQ CN=⋅⋅=⋅⋅. 对△QCD 应用梅涅劳斯定理的逆定理,知P ,M ,N 三点共线.所以P ,E ,F 三点共线. 注 此例的其他证法,可参见第二章例9,第九章例15等.例18 已知△ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,线段BE 、CF 分别与该内切圆交于点P 、Q ,若直线FE 与BC 交于圆外一点R .证明P 、Q 、R 三点共线.(2011年香港奥林匹克题)证明 如图1-21,由切线长定理有AE AF =.对△ABC 及截线EFR 应用梅涅劳斯定理,有1AF BR CEFB RC EA⋅⋅=,RFEDCBAPQ S 图1-21即有B R E AF B F B R C C E A F C E=⋅=. 设BE 与CF 交于点S ,由△EFC ∽△QEC ,△FEB PFB ∽△,△SEQ ∽△SFP ,有CQ CEEQ EF=,FP FEPB FB=,SP FP SQ EQ =. 又对△SBC 及所在边上的点R 、P 、Q ,有SP BR CQ SP CQ BR FP CQ FB FP CQ FB PB RC QS SQ PB RC EQ PB CE PB QE CE⋅⋅=⋅⋅=⋅⋅=⋅⋅ 1FE CE FBFB EF CE=⋅⋅=. 于是,由梅涅劳斯定理的逆定理,知P 、Q 、R 三点共线. 4.注意与其他著名定理配合运用例19 在Rt △ABC 中,已知90A =︒∠,B C >∠∠,D 是△ABC 处接圆的圆心,直线A l 、B l 分别切O 于点A 、B ,BC 与直线A l 、AC 与直线B l 分别交于点S 、D ,AB 与DS 交于点E ,CE 与直线Al 交于点T ,又设P 是直线A l 上的点,且使得A EP l ⊥,Q (不同于点C )是CP 与O 的交点,R 是QT 与O 的交点,令BR 与直线A l 交于点U . 证明:22SU SP SA TU TP TA ⋅=⋅.(2005年韩国奥林匹克题)证明 如图1-22,设BA 的延长线与O (过C 点)的切线交于点E '.由帕斯卡定理知S 、D 、E '三点共线,从而点E '与E 重合.图1-22由切割线窄弹知 2T A T R T Q =⋅,2SA SB SC =⋅.所以,22SA SB SC TA TR TQ⋅=⋅. ①设TQ 与CB 交于点X ,对△XTS 及截线RBU ,截线QCP 分别应用梅涅劳斯定理,有 1XP TU SBRT US BX⋅⋅=,=1XQ TP SC QT PS CX ⋅⋅. ② 注意相交弦定理,有XP XQ XB XC ⋅=⋅.③ 由①、②、③,得22S U S PX P S B X Q S C S B S C S A T U T P R T B XQ TC XT R T QT A⋅=⋅⋅⋅=⋅=. 例20 在梯形ABCD 中,已知BC 、AD 分别为上、下底,F 为腰CD 上一点,AF 与BD 交于点E ,G 为边AB 上一点,满足EG AD ∥,CG 与BD 交于点H ,FH 与AB 交于点I .证明:CI 、FG 、AD 三线共点. (2011年乌克兰奥林匹克题) 证明 如图1-23,设直线AB 与DC 、AF 与DG 分别交于点S 、T .SD图1-23先证S 、H 、T 三点共线.由EG AD BC ∥∥,知△ATP ETG ∽△,△GHE CHB ∽△,△ASD ∽△BSC .有,,AT AD EH GE BC BSTE EG HB CB AD AS ===. 上述三式相乘,有1AT EH BS AD GE CBTE HB SA EG CB AD⋅⋅=⋅⋅=. 对△AES 应用梅涅劳斯定理的逆定理,知T 、H 、S 三点共线.考虑△AFI 和△DGC ,注意到直线IF 与CG ,FA 与GD 、AI 与DC 分别交于点H 、T 、S ,于是由戴沙格定理,知CI 、FG 、AD 三线共点.【模拟实战】习题A1.在△ABC 中,点D 在BC 上,13BD DC =,E ,G 分别在AB ,AD 上,23AE EB =,12AG GD =,EG 交AC 于点F ,求AFFC . 2.在A B C D 中,E ,F 分别是AB ,BC 的中点,AF 与CE 相交于G ,AF 与DE 相交于H ,求AH ∶HG ∶GF .3.P 是△ABC 内一点,引线段APD ,BPE 和CPF ,使D 在BC 上,E 在AC 上,F 在AB 上.已知6AP =,9BP =,6PD =,3PE =,20CF =,求△ABC 的面积.(第7届A IM E 题)4.设凸四边形ABCD 的对角线AC 和交于点M ,过M 作AD 的平行线分别交AB ,CD 于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点,求证:OPF OEP =∠∠.(1996年全国初中联赛题)5.已知D ,F 分别是△ABC 的边AB ,AC 上的点,且23AD DB CF FA ==∶∶∶,连DF 交BC 边的延长线于点E ,求EF FD ∶.6.设D 为等腰Rt △ABC (90C =︒∠)的直角边BC 的中点,E 在AB 上,且21AE EB =∶∶,求证:CE AD ⊥.7.在△ABC 中,点M 和N 顺次三等分AC ,点X 和Y 顺次三等分BC ,AY 与BM ,BN 分别交于点S ,R ,求四边形SRNM 与△ABC 的面积之比.8.E ,F ,G ,H 分别为四边形ABCD 的四条边AB ,BC ,CD ,DA 上的点,若EH ,BD ,FG 三直线共点,则EF ,AC ,HG 三直线共点或平行.9.设X ,Y ,Z 分别是△ABC 的边CB ,CA 和BA 延长线上的点,又XA ,YB 和ZC 分别是△ABC 外接圆的切线.证明:X ,Y ,Z 三点共线. (1989年新加坡竞赛题) 10.求证:三角形两角的平分线与第三角的外角平分线各与对边所在直线的交点共线.11.已知直径为AB 的圆和圆上一点X ,设A t ,B t 和X t 分别是这个圆在A ,B ,X 处的切线.设Z 是直线AX 与B t 的交点,Y 是直线BX 与A t 的交点,证明:YZ ,X t ,AB 三直线共点.(第6届加拿大竞赛题)12.P 是ABCD 中任一点,过P 作AD 的平行线分别交AB ,CD 于E ,F ,又过P 作AB 的平行线,分别交AD ,BC 于G ,H .求证:AH ,CE ,DP 三线共点.13.在△ABC 中,1AA 为中线,2AA 为角平分线,K 为1AA 上的点,使2KA AC ∥.证明:2AA KC ⊥. (第58届莫斯科奥林匹克题) 14.直线l 交直线OX ,OY 分别于A ,B ,点C 与D 是线段AB 两侧的直线l 上两点,且CA DB =.过C 的直线CKL 交OX 于K ,交OY 于L ;过D 的直线交OX 于M ,交OY 于N .连结ML 和KN ,交直线l 分别于E ,F .求证:AE BF =.15.设四边形ABCD 外切于一圆,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的切点,若直线HE 与DB 相交于点M ,则M ,F ,G 三点共线.16.设P 为△ABC 的内点,过点P 的直线l ,m ,n 分别垂直于AP ,BP ,CP ,若l 交BC 于Q ,m 交AC 于R ,n 交AB 于S ,证明:Q ,R ,S 共线. (IMO -28预选题) 17.已知△ABC 的BC 与它的内切圆相切于点F .证明:该圆的圆心O 在BC 与AF 的两个中点M ,N 的连线上.18.已知凸四边形ABCD 内接于O ,对角线AC ,BD 相交于点Q ,过Q 分别作直线AB ,BC ,CD ,DA 的垂线,垂足分别是E ,F ,G ,H .求证:EH ,BD ,FG 三直线共点或互相平行.19.设A B C D 为圆外切四边形,又AB ,BC ,CD ,DA 与该圆的切点为E ,F ,G ,H .求证:AC ,BD ,EG ,FH 共点.习题B1.P 是ABCD 内一点,MN ,EF 分别过P ,MN AD ∥且分别与AB ,CD 交于点M ,N ,EF AB ∥且分别与DA ,BC 交于点E ,F .求证:ME ,FN ,BD 三线共点.2.在△O A B 中,AOB ∠为锐角,从AB 上任一点M 作MP OA ⊥于P ,MQ OB ⊥于Q ,点H 是△OPQ的垂心,求当点M 在线段AB 上移动时,点H 的轨迹. (IMO -7试题) 3.在正△ABC 的边BC ,CA ,AB 上有内分点D ,E ,F 将边分成3∶(3)(6)n n ->,线段AD ,BE ,CF 相交所成的△PQR (BE 交AD 于P ,交FC 于Q )是△ABC 的面积的449时,求n 的值. (1992年日本奥林匹克预选题)4.在△ABC 中,90A =︒∠,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F .若BE ∶2ED AC =∶DC ,则ADB FDC =∠∠.5.已知点E ,1D ,2D 在△ABC (AB AC >)的边BC 上,12BAD CAD =∠∠,11EF AD ∥交AB 于1F ,又与CA 的延长线交于1C ,22EF AD ∥交AB 于2F ,又与CA 的延长线交于2G .求证:212212BF BF BE CE CG CG ⋅=⋅.(《数学通报》问题1353题)6.圆外切四边形ABCD 中,AB ,BC ,CD ,DA 边上的切点分别为P ,Q ,R ,S .AD 与BC 的延长线交于点E ,AB 与DC 延长线相交于点F .求证:(Ⅰ)AC ,BD ,PR ,QS 四线共点;(Ⅱ)AC ,EF ,PQ ,RS 四线共点;(Ⅲ)BD ,EF ,PS ,QR 四线共点(假定BD EF ≠). 7.若凸四边形的对角线AC 与BD 互相垂直,且相交于E ,过E 点分别作边AB ,BC ,CD ,DA 的垂线,垂足依次为P ,Q ,R ,S ,并分别交CD ,DA ,AB ,BC 边于P ',Q ',R ',S ',再顺次连接P Q '',Q R ''.R S '',S P '',则R S P Q AC ''''∥∥;R Q P S BD ''''∥∥.(IMO -22试题的推广)8.面积为1的△ABC 的边AB ,AC 上分别有点D ,E ,线段BE ,CD 相交于点P .点D ,E 分别在AB ,AC 上移动,但满足四边形BCED 的面枳是△PBC 面积的两倍这一条件,求△PDE 面积的最大值. (1992年日本奥林匹克题) 9.ABCD 是边长为2的正方形,E 为AB 的中点,F 是BC 的中点,AF 和DE 相交于I ,BD 和AF 相交于H .求四边形BEIH 的面积.10.P 是凸四边形ABCD 所在平面上一点,APB ∠,BPC ∠,CPD ∠,DPA ∠的平分线分别交AB ,BC ,CD ,DA 于点K ,L ,M ,N .(Ⅰ)寻找一点P ,使KLMN 是平行四边形;(Ⅱ)求所有这样的P 点的轨迹. (1995年世界城市际联赛题) 11.△ABC 中,AB AC >,AD 为内角平分线,点E 在△ABC 的内部,且EC AD ⊥,ED AC ∥,求证:射线AE 平分BC 边. (《数学教学》问题536题) 12.设△123AA A 为非等腰三角形,内心为I ,i C (1i =,2,3)为过I 与1i i A A +和2i i A A +相切的小圆(增加的下标作模3同余),iB (1i =,2,3)为圆1iC +和2i C +的另一交点,证明:△11A B I ,△22A B I ,△33A B I 的外心共线. (IMO -38预选题)第一章 梅涅劳斯定理及应用答案习题A1.延长CB ,FE 交于H ,ADB △与截线GEH ,有13122AG DH BE DH GD HB EA HB ⋅⋅=⋅⋅=,有43DH HB =,即74CH HD =.对ACD △及截线FGH ,72141AF CH DG AF FC HD GA FC ⋅⋅=⋅⋅=,求得27AF FC =. 2.设CB ,DE 的延长线交于P ,又B P B C =,32FP PB =,对AFB △与截线HEP ,CGE ,有31121AH FP BE AH GF PB EA HF ⋅⋅=⋅⋅=,即23AH HF =;11121AG FC BE AG GF CB EA GF ⋅⋅=⋅⋅=,即21AG GF =.由此求得645AH HG GF =∶∶∶∶.3.对BDP △于截线CEA ,有1231612BC DA PE BC CD AP EA CD ⋅⋅=⋅⋅=,知BD DC =.对CDP △与截线BFA ,有22111CB DA PF PF BD AP FC FC ⋅⋅=⋅⋅=,知14PF FC =.而20CF =,故15CP =. 在PBC △中,由中线长公式2PD =,得BC =,即BD =.又22222269)BP PD BD +=+=,即90BPD ∠=︒,27PBD S =△,4108ABC PBD S S ==△△. 4.直线OCB 分别与DMF △和AEM △的三边延长线都相交,有1DB MO FC MB FO DC ⋅⋅=,1AB EO MCEB MO AC⋅⋅=,即OF OE DB FC EB AC OM OM MB DC AB MC ⋅⋅⋅=⋅⋅⋅.由EF AD ∥,有DB AB MB EB =,FC MC DC AC =,从而21OF OE OM ⋅=,即22OF OE OM OP ⋅==,有OFP OPE △∽△,故OPF OEP ∠=∠.5.直线截ABC △,有22133CF AD BE BE FA DB EC EC ⋅⋅=⋅⋅=,即94BE EC =,故54BC CE =.直线截DBE △,有25154EF AD BC EF FD AB CE ED ⋅⋅=⋅⋅=,所以21EF FD =∶∶. 6.设AC BC x ==,则AB ,。

初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)

初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)

初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)第 1 页板块一梅涅劳斯定理及其逆定理梅涅劳斯定理:如果一条直线与ABC △的三边AB 、BC 、CA 或其延长线交于F 、D 、E 点,那么1AF BD CE FB DC EA=.这条直线叫ABC △的梅氏线,ABC △叫梅氏三角形.证法一:如左图,过C 作CG ∥DF证法二:如中图,过A 作AG BD ∥交DF 的延长线于G三式相乘即得:1AF BD CE AG BD DCFB DC EA BD DC AG=??=.证法三:如右图,分别过A B C 、、作DE 的垂线,分别交于123H H H 、、.则有123AH BH CH ∥∥,所以3122311CH AH BH AF BD CE FB DC EA BH CH AH ??=??=.梅涅劳斯定理的逆定理:若F 、D 、E 分别是ABC △的三边AB 、BC 、CA 或其延长线的三点,如果1AF BD CE FB DC EA=,则F 、D 、E 三点共线.【例1】如图,在ABC △中,AD 为中线,过点C 任作一直线交AB 于点F ,交AD 于点E ,求证::2:AE ED AF FB =.【解析】∵直线FEC 是ABD △的梅氏线,∴1AE DC BF ED BC FA ??=.而12DC BC =,∴112AE BF ED FA ??=,即2AE AF ED BF=.习题1. 在△ABC 中,D 是BC 的中点,经过点D 的直线交AB于点E ,交CA 的延长线于点F .求证:FA EAFC EB=.【解析】直线截ABC △三边于D 、E 、F 三点,应用梅氏定理,知1CD BE AFDB EA FC=,又因为BD BC =,所以1BE AF EA FC ?=,即FA EAFC EB=.习题2. 如图,在△ABC 中,90ACB ∠=?,AC BC =.AM 为BC 边上的中线,CD AM ⊥于点D ,CD 的延长线交AB 于点E .求AEEB.【解析】由题设,在Rt AMC △中,CD AM ⊥,2AC CM =,由射影定理224AD AD AM AC DM DM AM CM===?.对ABM △和截线EDC ,由梅涅劳斯定理,1AE BC MD EB CM DA ??=,即21114AE EB ??=.所以2AE EB=.知识导航夯实基础梅涅劳斯定理与塞瓦定理【例2】如图,在ABC △中,D 为AC 中点,BE EF FC ==,求证:::5:3:2BM MN ND =.【解析】∵直线AE 是BCD △的梅氏线,∵直线AF 是BCD △的梅氏线,习题3. 如图,在ABC △中,D 为BC 的中点,::4:3:1AE EF FD =.求::AG GH AB .【解析】∵HFC 是ABD △的梅氏线,∵D 为BC 的中点,::4:3:1AE EF FD =,∵GEC 是ABD △的梅氏线,【例3】过ABC △的重心G 的直线分别交AB 、AC 于点E 、F ,交CB 的延长线于点D .求证:1BE CFEA FA+=.【解析】作直线AG 交BC 于M ,同理,2CF DCFA DM=,而2BD DC BD BD BM +=++2()2BD BM DM =+=【例4】如图,点D 、E 分别在ABC △的边AC 、AB 上, AE EB =,23AD DC =,BD 与CE 交于点F ,40ABC S =△.求AEFD S .【解析】对ECA △和截线BFD ,由梅氏定理得:1EF CD AB FC DA BE ??=,即32121EF FC ??=,所以13EF FC =.所以1148BFE BEC ABC S S S ==△△△,进而211140115840AEFD ABD BEF ABC S S S S ??=-=-==△△△.习题4. 如图,在ABC △中,三个三角形面积分别为5,8,10.四边形AEFD 的面积为x ,求x的值.【解析】对ECA △和截线BFD ,由梅氏定理得:1CD AB EF DA BE FC ??=,即1823115152x x +??=+,解得22x =.【备选】如图,ABC △被通过它的三个顶点与一个内点O 的三条直线分为6个小三角形,其中三个小三角形的面积如图所示,求ABC △的面积.【解析】对ABD △和截线COF ,由梅氏定理得:1AF BC DO FB CD OA ??=,即41132BC CD ??=,所以32BC CD =,所以3BCBD=.所以33105315ABC ABD S S ==?=△△.【例5】如图,在ABC △中,A ∠的外角平分线与边BC 的延长线交于点P ,B ∠的平分线与边CA 交于点Q ,C ∠的平分线与边AB 交于点R ,求证:P 、Q 、R 三点共线.【解析】 AP 是BAC ∠的外角平分线,则BQ 是ABC ∠的平分线,则 CR 是ACB ∠的平分线,则??①②③得非常挑战探索提升第 3 页因R 在AB 上,Q 在CA 上,P 在BC 的延长线上,则根据梅涅劳斯定理的逆定理得:P 、Q 、R 三点共线.习题5. 证明:不等边三角形的三个角的外角平分线与对边的交点是共线的三个点.【解析】如图,CD BE AF 、、分别为三角形ABC 的三个外角平分线,分别交AB AC BC 、、于D E F 、、.过C 作BE 的平行线,则BCP CBE EBD CPB ∠=∠=∠=∠,所以BPC △是等腰三角形.则PB CB =.则有:CE PB CBEA BA BA ==.同理AD AC DB CB =;BF BA FC AC=.所以1CE AD BF CB AC BA EA DB FC BA CB AC ??=??=.所以D E F 、、共线.板块二塞瓦定理及其逆定理塞瓦定理:如果ABC △的三个顶点与一点P 的连线AP 、BP 、CP 交对边或其延长线于点D 、E 、F ,如图,那么1BD CE AFDC EA FB=.通常称点P 为ABC △的塞瓦点.证明:∵直线FPC 、EPB 分别是ABD △、ACD △的梅氏线,两式相乘即可得:1BD CE AFDC EA FB=.塞瓦定理的逆定理:如果点D 、E 、F 分别在ABC △的边BC 、CA 、AB 上或其延长线上,并且1BD CE AF DC EA FB=,那么AD 、BE 、CF 相交于一点(或平行).证明:⑴ 若AD 与BE 相交于一点P 时,如图,作直线CP 交AB 于'F .由塞瓦定理得:'1BD CE AF DC EA F B=',又已知1BD CE AF DC EA FB ??=,∴AF AF FB F B'=',∴'F 与F 重合∴'CF 与CF 重合∴AD 、BE 、CF 相交于一点.⑵ 若AD 与BE 所在直线不相交,则AD ∥BE ,如图.∴BD EA DC AC=,又已知1BD CE AF DC EA FB ??=,∴1EA CE AF AC EA FB ??=,即CE FB AC AF=.说明:三线平行的情况在实际题目中很少见.【例6】(1)设AX BY CZ ,,是ABC △的三条中线,求证:AX BY CZ ,,三线共点.探索提升知识导航(2)若AX BY CZ ,,为ABC △的三条内角平分线.求证:AX BY CZ ,,三线共点.【解析】(1)由条件知,BX XC YC YA ZA ZB ===,,.∴1BX CY AZXC YA ZB=,根据塞瓦定理的逆定理可得三条中线AX BY CZ ,,共点.这个点称为这个三角形的重心.(2)由三角形内角平分线定理得:BX AB CY BC AZ ACXC AC YA BA ZB BC===,,.三式分别相乘,得:1BX CY AZ AB BC ACXC YA ZB AC AB BC=??=.根据塞瓦定理的逆定理可得三角形三内角平分线AX BY CZ ,,共点,这个点称为这个三角形的内心.习题6. 若AX BY CZ ,,分别为锐角ABC △的三条高线,求证:AX BY CZ ,,三线共点.【解析】由ABX CBZ △∽△得:BX AB BZ BC =;由BYA CZA △∽△得:AZ ACAY AB =;由AXC BYC △∽△可得:YC BC CX AC =.所以1BX AZ YC AB AC BCBZ AY CX BC AB AC=??=.根据塞瓦定理的逆定理可得三条高线AX BY CZ ,,共点.对直角三角形、钝角三角形,同样也可以证得三条高线共点.我们把一个三角形三条高线所在直线的交点叫做这个三角形的垂心.【例7】如图,M 为ABC △内的一点,BM 与AC 交于点E ,CM 与AB 交于点F ,若AM 通过BC 的中点D ,求证:EF BC ∥.【解析】对ABC △和点M 应用塞瓦定理可得:1AF BD CEFB DC EA=.又因为BD DC =,所以1AF CE FB EA ?=.进而AF AEFB EC=,所以EF BC ∥.习题7. 如果梯形ABCD 的两腰AD 、BC 的延长线交于M ,两条对角线交于N .求证:直线MN必平分梯形的两底.∵1MD AQ BC DA QB CM=(由塞瓦定理得)板块三梅涅劳斯定理、塞瓦定理综合【备选】如图,E 、F 分别为ABC △的AC 、AB 边上的点,且3AE EC =,3BF FA =,BE 、CF 交于点P ,AP 的延长线交BC 于点D .求:AP PD 的值.【解析】∵P 为ABC △的塞瓦点.∵EPB 为ACD △的梅氏线,【备选】如图,四边形ABCD 的对边AB 和DC ,DA 和CB 分别相交于点L K ,,对角线AC 与BD 交于点M .直线KL 与BD 、AC 分别交于点F G 、.求证:KF KGLF LG=.【解析】对DKL △与点B 应用塞瓦定理得:1DA KF LCAK FL CD=.对DKL △和截线ACG 应用梅涅劳斯定理可得:1DA KG LCAK GL CD=.非常挑战进而可得KF KGLF LG.第 5 页。

梅涅劳斯定理的应用练习1

梅涅劳斯定理的应用练习1
梅涅劳斯定理练习
1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证: 。
2.过△ABC的重心G的直线分别交AB、AC于E、F,交CB延长线 于D。求证: 。
3.在△ABC中,点D在BC上, ,分别在AB,AD上, , ,EG交AC于点F,求 。
4.在□ABCD中,E,F分别是AB,BC的中点,AF与CE相交于G,AF与DE交于H,求AH:HG:GF
(3)梅氏定理及其逆定理不仅可以用来证明点共线问题,而且是解决许多比例线段问题的有力工具。用梅氏定理求某个比值的关键,在于恰当地选取梅氏三角形和梅氏线。
梅涅劳斯定理的逆定理:如果有三点F、D、E分别在△ABC的三边AB、BC、CA或其延长线上,且满足 ,那么F、D、E三点共线。
利用梅涅劳斯定理的逆定理可判定三点共线。
5.设D为等腰Rt△ABC(∠C=90°)的直角边BC的中点,E在AB上,且AE:EB=2:1,
求证:CE⊥AD
6.在△ABC中,点M和N顺次三等分AC,点X和Y顺次三等分BC,BM,BN分别交于点S,R,求四边形SRNM与△ABC的面积之比。
平面几何问题:
1.梅涅劳斯定理
一直线分别截△ABC的边BC、CA、AB(或其延长线)于D、E、F,则 。
背景简介:梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。
证明:
说明:
(1)结论的图形应考虑直线与三角形三边交点的位置情况,因而本题图形应该有两个。
(2)结论的结构是三角形三边上的6条线段的比,首尾相连,组成一个比值为1的等式。

梅涅劳斯定理及其应用

梅涅劳斯定理及其应用

B′在 A D 的延长线上 ,则 ( 3 ) 式为 sin (β+γ+α) .
例 3 如图 5 , ⊙O1 与 ⊙O2
和 △AB C 的三边所在的 3 条直线
都相切 , E 、F、G、H 为切点 , 直线
EG 与 FH 交于点 P. 求证 : PA ⊥
B C. (1996 年全国高中联赛题)
证明 :过 A 作 A D ⊥B C , 垂足
点 P 重合 ,从而 PA ⊥B C.
例 4 如图 6 , 以 △A B C 的底
边 BC 为直径作半圆, 分别与边
A B 、A C 交于点 D 和 E , 分别过点
D 、E 作 B C 的 垂 线 , 垂 足 依 次 为
F、G ,线段 D G 和 EF 交于点 M .
求证 : A M ⊥B C. ( IMO37 中 国 国
又 EF ⊥OQ ,则 EL 平分 ∠A L D. 设 EF 分别交 A D 、B C 于 M 、N . 于是
DM MA
=
DL AL
=
DQ AQ
.
同理
,
CN BN
=
CQ BQ
.
于是
,
DM DQ
=
AM AQ
=
AM AQ
+ +
DM DQ
=
AD DQ + A Q
,
CN CQ
=
BN BQ
=
B
Q
BC + CQ
截线 ,故由梅氏定理 ,得
CN ·DB ·EM ND B E MC
=
1
,
即 1
r -
·7 r1
·7 7
r -

第一章梅涅劳斯定理及应有答

第一章梅涅劳斯定理及应有答

第一章梅涅劳斯定理及应有习题A1.延长CB,FE交于H,ADB△与截线GEH,有13122AG DH BE DHGD HB EA HB⋅⋅=⋅⋅=,有43DHHB=,即74CHHD=.对ACD△及截线FGH,72141AF CH DG AFFC HD GA FC⋅⋅=⋅⋅=,求得27AFFC=.2.设CB,DE的延长线交于P,又BP BC=,32FPPB=,对AFB△与截线HEP,CGE,有31121AH FP BE AHGF PB EA HF⋅⋅=⋅⋅=,即23AHHF=;11121AG FC BE AGGF CB EA GF⋅⋅=⋅⋅=,即21AGGF=.由此求得645AH HG GF=∶∶∶∶.3.对BDP△于截线CEA,有1231612BC DA PE BCCD AP EA CD⋅⋅=⋅⋅=,知BD DC=.对CDP△与截线BFA,有22111CB DA PF PFBD AP FC FC⋅⋅=⋅⋅=,知14PFFC=.而20CF=,故15CP=.在PBC△中,由中线长公式2PD=,得27BC=,即BD=.又222222697)B P P D B D+=+=,即90BPD∠=︒,27PBDS=△,4108ABC PBDS S==△△.4.直线OCB分别与DMF△和AEM△的三边延长线都相交,有1DB MO FCMB FO DC⋅⋅=,1AB EO MCEB MO AC⋅⋅=,即O F O E D B F C E B A CO M O M M B D C A B M C⋅⋅⋅=⋅⋅⋅.由E F A D∥,有D B A BM B E B=,FC MCDC AC=,从而21O F O EOM⋅=,即22OF OE OM OP⋅==,有O F P O P E△∽△,故O P F O E P∠=∠.5.直线截ABC△,有22133CF AD BE BEFA DB EC EC⋅⋅=⋅⋅=,即94BEEC=,故54BCCE=.直线截DBE△,有25154EF AD BC EFFD AB CE ED⋅⋅=⋅⋅=,所以21EF FD=∶∶.6.设AC BC x==,则AB=,。

梅涅劳斯定理应用3答案

梅涅劳斯定理应用3答案
F Z E L B M N X A Y C
5. << 牛 顿 定 理 >>: 设 四 边 形 ABCD 两 双 对 边 相 交于 E、F ,如图 2-5,证明 AC 、BD 、EF 的中点共线。 证明:设 X、Y、Z 分别是 AC 、BD 、EF 的中点, 在△ABE 中,取 BE 、EA 及 AB 的中点 L、M、N , 易知:直线 MN ∥ EB 且通过 X
1
2014 年东安一中高一直升班奥赛培训
陈雄武
例 1. <<笛沙格定理>>:在 ABC 和 AB C 中,若 AA, BB, CC 相交于一点 O ,直线 AB 与直线 AB 交于点 P,直线 BC 与直线 BC 交于点 R,直线 AC 与直线 AC 交于点 Q, 求证: P, R, Q 三点共线。
O
C A P Q A'
B R B'
C'
例 2:如图,在四边形 ABCD 中△ABD,△BCD,△ABC 的面积比是 3:4:1,点 M,N 分 别在 AC,CD 上,满足 AM:AC=CN:CD,并且B,M,N共线,求证 M 与N分别是A C和CD的中点。 证明 设 AC、BD 交于点 E.由 AM∶AC=CN∶CD,故 AM∶MC=CN∶ND,令 CN∶ ND=r(r>0), 则 AM∶MC=r. 由 SABD=3SABC,SBCD=4SABC,即 SABD∶SBCD =3∶4. 从而 AE∶EC∶AC=3∶4∶7. SACD∶SABC=6∶1,故 DE∶EB=6∶1,∴DB∶BE=7∶1. r 3 AM∶AC=r∶(r+1),即 AM= AC,AE= AC, r+1 7 4r-3 r 3 1 ∴EM=( - )AC= AC.MC= AC, r+1 7 7(r+1) r+1 4r-3 CN DB EM ∴EM∶MC= .由 Menelaus 定理,知 · · =1,代入得 7 ND BE MC 4r-3 r· 7· =1,即 4r2-3r-1=0,这个方程有惟一的正根 r=1.故 CN∶ND=1,就 7 是 N 为 CN 中点,M 为 AC 中点.

数学初中竞赛 :《梅涅劳斯定理和塞瓦定理》训练(含答案)

数学初中竞赛 :《梅涅劳斯定理和塞瓦定理》训练(含答案)

训练与解析:1.如图,在△ABC中,AB>AC,内切圆⊙I与边BC切于点D,AD与⊙I的另一个交点为E,⊙I的切线EP与BC的延长线交于点P,CF∥PE且与AD交于点F,直线BF与⊙I交于点M、N,M在线段BF上,线段PM与⊙I交于另一点Q.证明:∠ENP=∠ENQ.证明:如图,设⊙I与AC、AB分别切于点S、T,连接ST、AI、IT,设ST与AI交于点G.则IE⊥PE,ID⊥PD,故I、E、P、D四点共圆,∵AS2=AE•AD=AG•AI,∵∠EAG=∠DAI,∴△AEG∽△AID,∴∠AGE=∠AID,∴E,G,D,I四点共圆,∴I、G、E、P、D五点共圆,∴∠IGP=∠IEP=90°,即IG⊥PG,∴P、S、T三点共线,对直线PST截△ABC,由梅涅劳斯定理知,∵AS=AT,CS=CD,BT=BD,∴,设BN的延长线与PE交于点H,对直线BFH截△PDE,由梅涅劳斯定理知,∵CF∥BE,∴,∴,∴PH=HE,∴PH2=HE2=HM•HN,∴,∴△PHN∽△MHP,∴∠HPN=∠HMP=∠NEQ,∵∠PEN=∠EQN,∴∠ENP=∠ENQ.2.如图,△ABC的垂心为H,AD⊥BC于D,点E在△ABC的外接圆上,且满足,直线ED交外接圆于点M.求证:∠AMH=90°.证明:作高BP,CQ.连结MB、MC、MP、MQ、PQ.===•①=•=•②由①②得:=,又∵∠MBA=∠MCA,∴△MBQ∽△MCP,∴点M、A、P、Q四点共圆,即点M、A、P、Q、H五点共圆,又AH为直径,∴∠AMH=90°.3.如图,在四边形ABCD中,对角线AC平分∠BAD.在CD上取一点E,BE与AC相交于F,延长DF交BC于G.求证:∠GAC=∠EAC.证明:如图,连接BD交AC于H,过点C作AB的平行线交AG的延长线于I,过点C作AD的平行线交AE的延长线于J.对△BCD用塞瓦定理,可得①因为AH是∠BAD的角平分线,由角平分线定理知.代入①式得②因为CI∥AB,CJ∥AD,则,.代入②式得.从而CI=CJ.又由于∠ACI=180°﹣∠BAC=180°﹣∠DAC=∠ACJ,所以△ACI≌△ACJ,故∠IAC=∠JAC,即∠GAC=∠EAC.4.如图,四边形ABFD中,C、E分别为BF、DF上一点,且∠BAC=∠DAE,BE、CD交于点G,连接AG,求证:∠FAC=∠GAE.证明:根据三角形的面积公式知,==,==,==.又根据梅涅劳斯定理知,=1.所以××=1.整理即可得到:=.又因为∠BAC=∠DAE,所以∠FAC=∠GAE.5.梅涅劳斯定理是古希腊数学家梅涅劳斯首先证明的.它指出,如果一条直线与△ABC的三条边AB、BC、CA(或其延长线)分别交于F、D、E,则有=1.解答以下两个问题:(1)如图1所示,AB=AC=6,D为BC中点,点E在AC上,CE=2,点F在AB的延长线上,求FB的长.(2)如图2所示,等腰直角三角形ABC中,∠ACB=90°,D是BC中点,E在AB上,AE =2EB,连接AD、CE,求证:AD⊥CE.解:(1)∵AC=6,CE=2,∴AE=AC﹣CE=4,∵点D是BC的中点,∴BD=CD,∵AB=6,∴AF=AB+FB,根据梅涅劳斯定理得,=1,∴,∴FB=6;(2)如图,过点B作BF⊥BC交CE的延长线于F,∴∠CBF=90°,∵∠ACB=90°,∴∠ACB+∠CBF=180°,∴BF∥AC,∴∠ACE=∠F,∠CAE=∠FBE,∴△ACE∽△BFE,∴=2,∴AC=2BF,∵点D是BC的中点,∴BC=2CD,在等腰直角三角形ABC中,∠ACB=90°,∴AC=BC,∴BF=CD,在△ACD和△CBF中,,∴△ACD≌△CBF,∴∠CAD=∠BCF,∴∠ACE+∠CAD=∠ACE+∠BCE=∠ACB=90°,∴∠AGC=90°,∴AD⊥CE.6.在梯形ABCD中,AB∥CD,AC、BD交于点E,AD、BC的延长线交于点H,过点E作FG∥AB交AD于点F,交BC于点G,求证:AG、BF、EH三线共点.证明:∵FG∥AB,∴,,∴•=1,同理:=1,∵点E为△HAB的赛瓦点,∴=1,∴=1,∴=1,∴AG、BF、EH三线共点.7.如图,在△ABC中,AQ平分∠BAC,QD⊥BC交BC于点D,在BC上取一点E,使得∠BAD =∠CAE,在AE上存在一点K,使得∠KBC=2∠BQD,求证:QK平分∠BKC.证明:如图,作∠CBK的角平分线交QK于I,延长AD,AE交BQ,CQ于M,N,连接CM交AB的延长线于X,连接BN交AC的延长线于Y,BN,CM交于F,AQ交BC于G,设∠BAM=∠CAN=α,∠MAQ=∠NAQ=β,∵AQ平分∠BAC,∴①,∵∠KBC=∠2∠BQD=2∠CBI,∵QD⊥BC,∴∠DBQ+∠BQD=90°=∠DBQ+∠CBI,∴BI⊥BQ,由同角的内、外角平分线互相垂直,得:BQ平分∠XBC,∴,∵②,③,由①②③得,=1,由塞瓦定理的逆定理得,BN,CM,AQ交于一点F,点F对于△ABC,由塞瓦定理(延长线)得,=1,∴,∴C Y=④,∵,∴⑤∵,∴⑥由⑤⑥得,,∴⑦,由④⑦得,,∴,由角平分线的逆定理得,CQ平分∠BCY,∴Q是△KBC的旁心,∴QK平分∠BKC.8.如图,已知△ABC中,M是BC的中点,AD平分∠A,B在AD上的射影为E,EB交AM于N,求证:DN∥AB.证明:延长BE、AC交于点F,连接ME,如图:∵AE平分∠BAC,AE⊥BE,∴BE=EF,∵BM=CM,∴EM∥AF,∴,∴,对于△BDE和截线AMN,由梅涅劳斯定理可得,∴,∴,∴DN∥AB.证毕.9.如图,在梯形ABCD的对角线AC的延长线上任取一点P,过点P与梯形两条底边的中点的连线分别交腰AB、CD于点M、N,求证:MN∥AD∥BC.证明:对于△ABC和截线MKP,由梅涅劳斯定理可得:,∵BK=CK,∴;对于△ACD和截线PNL,由梅涅劳斯定理可得:,∵AL=LD,∴,∴,∴MN∥AD∥BC.10.如图,Rt△ABC中,∠C=90°,D点和E点在AC,AB边上,且DE∥BC.P为线段DE 上一点,使得∠CPB=90°,CP的延长线交AB于点M,延长AP交BC于点Q,过Q作PB 的平行线交PC于点H,交AC于点S,T为BC延长线上一点,且满足=+,连接TS.求证:TS⊥DQ.证明:如图,连接DT、ET,∵DE∥BC,∴,,∴,∵QS∥PB,∴,∴,∵=+,∴,∴,由梅涅劳斯定理的逆定理可知E、H、T三点共线,∴,∴CT=DP,∵CT∥DP,∴TCPD是平行四边形,∴DT∥CP,∵QS∥PB,CP⊥PB,∴QS⊥DT,∵DC⊥TQ,∴S是△TDQ的垂心,∴TS⊥DQ.证完.11.如图,设P为▱ABCD内任意一点,过P作EF∥AB,GH∥BC,EF交A,BC于点E,F,GH 交AB,DC于点G,H,且AC,GF,EH不平行.求证:A C,GF,EH相交于一点.证明:设AC、EH相交于点K,对于△CAD与截线EHK,由梅涅劳斯定理可得:,∵ABCD是平行四边形,且EF∥AB,GH∥BC,∴,,∴,由梅涅劳斯定理的逆定理可知G、F、K三点共线,∴AC,GF,EH相交于一点.12.如图所示,已知D,E分别是△ABC的边BC,AB上的点,AD,CE交F,BF,DE交于G,过G作BC的平行线MN,交AB,CE,AC于M,H,N,求证:GH=NH.解:过点E作ES∥BC,交AC于点S,∴,∵NM∥BC,∴,对于△ABF及截线EGD,由梅捏劳斯定理可得:,∴,由梅捏劳斯定理可知:S、H、D共线,∴,∴GH=HN.13.在△ABC中,D,E分别为AB,AC上一点,DE交AF于H,HG⊥BC,连接DG,GE.(1)证明:GH为△DGE的一条平分线;(2)过H的一条直线交DF,AE分别于M,N,证明:GH为△MNG的一条角平分线.证明:(1)延长ED与CB的延长线交于K,对于直线CBK截得△ADE,由梅涅劳斯定理得:••=1①,对于点F与△ADE,由塞瓦定理得:••=1②,①=②得:=,∴线段DE被点H、K调和,∵∠KGH=90°,由调和点列结论1得,GH平分∠DGE,即GH为△DGE的一条平分线;(2)延长NM交BC于S,连接AM并延长,交BC于T,对于直线STC截得△AMN,由梅涅劳斯定理得:••=1①,对于点F与△AME,由塞瓦定理得:••=1②,①=②得,=,∴线段MN被点H、S调和,∵∠KGH=90°,由调和点列结论1得,GH平分∠MGN,即GH为△MNG的一条角平分线.14.定理3 (梅涅劳斯(M enelaus)定理):一条不经过△ABC任一顶点的直线和三角形三边BC,CA,AB(或它们的延长线)分别交于P,Q,R.证明:.证明:如图,由三角形面积的性质,有①,②,③.由①×②×③,得.15.由矩形ABCD的外接圆上任意一点M向它的两对边引垂线MQ和MP,向另两边延长线引垂线MR,MT.证明:PR与QT垂直,且它们的交点在矩形的一条对角线上.解:连接BD交PR于N,连接QN、DM、DB、AM、BN、MN、TN、MC,显然M、P、Q共线,R、M、T共线,在矩形APMR中,∠1=∠2=∠3,∴R、D、N、M四点共圆,∴R、D、N、Q、M五点共圆,∴∠RNQ=90°,∠6=∠7,在矩形QCTM中,∠5=∠4=∠2,∴∠5+∠6=∠2+∠7=90°,∴∠NQT=∠5+∠DQM+∠6=180°,∴N、Q、T共线,∴TQ⊥PR且它们的交点在矩形的一条对角线上.。

梅涅劳斯定理的应用练习

梅涅劳斯定理的应用练习

平面几何问题:1.梅涅劳斯定理一直线分别截△ABC 的边BC 、CA 、AB (或其延长线)于D 、E 、F ,则1FBAFEA CE DC BD =⋅⋅。

背景简介:梅涅劳斯(Menelaus )定理是由古希腊数学家梅涅劳斯首先证明的。

证明: 说明:(1)结论的图形应考虑直线与三角形三边交点的位置情况,因而本题图形应该有两个。

(2)结论的结构是三角形三边上的6条线段的比,首尾相连,组成一个比值为1的等式。

(3)梅氏定理及其逆定理不仅可以用来证明点共线问题,而且是解决许多比例线段问题的有力工具。

用梅氏定理求某个比值的关键,在于恰当地选取梅氏三角形和梅氏线。

梅涅劳斯定理的逆定理:如果有三点F 、D 、E 分别在△ABC 的三边AB 、BC 、CA 或其延长线上,且满足1EACEDC BD FB AF =⋅⋅,那么F 、D 、E 三点共线。

利用梅涅劳斯定理的逆定理可判定三点共线。

梅涅劳斯定理练习1.设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。

求证:FBAF2ED AE =。

2.过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 延长线于D 。

求证:1FACFEA BE =+。

3.在△ABC 中,点D 在BC 上,31DC BD =,分别在AB ,AD 上,32EB AE =,21GD AG =,EG 交AC 于点F ,求FCAF。

4.在□ABCD 中,E ,F 分别是AB ,BC 的中点,AF 与CE 相交于G ,AF 与DE 交于H ,求AH:HG:GF 5.设D 为等腰Rt △ABC (∠C=90°)的直角边BC 的中点,E 在AB 上,且AE :EB=2:1,求证:CE ⊥AD 6.在△ABC 中,点M 和N 顺次三等分AC ,点X 和Y 顺次三等分BC ,AY 与BM ,BN 分别交于点S ,R ,求四边形SRNM 与△ABC 的面积之比。

梅涅劳斯定理在中学数学中的应用

梅涅劳斯定理在中学数学中的应用

梅涅劳斯定理在中学数学中的应用
梅涅劳斯定理是极限概念的重要定理,它可用于证明两个实数序列的相等性。

这一定理可以用于中学数学中的多个教学环节,例如:
(1) 求展开式中各项系数的确定:梅涅劳斯定理可用于证明一个多项式的展开式中各项系数的确定,可以直接用作解题的参考依据。

(2) 讨论极限的存在性和值:梅涅劳斯定理可以用于证明某一实数序列是否存在极限,以及极限的值。

(3) 求解微分和积分:梅涅劳斯定理可以作为求解某一积分或微分问题的重要参考依据。

(4) 用来证明几何形状的不变性:梅涅劳斯定理可以用来证明几何形状如圆、椭圆等的不变性,也可以证明某一变化的有限性。

(5) 在证明多项式的不变性中得以应用:梅涅劳斯定理可以用来证明多项式的不变性,并可以用来推导多项式的一般式。

梅涅劳斯定理及应用

梅涅劳斯定理及应用

梅涅劳斯定理梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。

它指出:如果一条直线与△ ABC勺三边AB BG CA或其延长线交于F、DE 点,那么(AF/FB) X (BD/DC)X (CE/EA)=1。

或:设X、Y、Z分别在△ ABC的BC CA AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。

展开定理的证明证明:当直线交厶ABC的AB BC CA的反向延长线于点D E F时,(AD/DB)*(BE/EC )*(CF/FA)=1逆定理证明:证明:X、Y、Z分别在△ ABC的BC CA AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1证明一过点A作AG// BC交DF的延长线于G,贝U AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG三式相乘得:(AF/FB) X (BD/DC)X (CE/EA)=(AG/BD)X (BD/DC)X (DC/AG)=1证明二过点C 作CP// DF交AB于P,贝U BD/DC=FB/PF CE/EA=PF/AF 所以有AF/FB X BD/DC< CE/EA=AF/F X FB/PF X PF/AF=1证明三连结BF0(AD DB •( BE EC •( CF:FA)=(S A ADF S A BDF •( S A BEF S A CEF •( S A BCF S A BAF =(S A ADF S A BDF •( S A BDF S A CDF •( S A CDF S A ADF =1证明四过三顶点作直线DEF的垂线,AA', BB', CC'有AD DB=AA:BB'另外两个类似,三式相乘得1得证。

如百科名片中图。

充分性证明:A ABC中, BC CA AB上的分点分别为D, E, F。

初中数学相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型及参考答案

初中数学相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型及参考答案

相似模型之梅涅劳斯(定理)模型与塞瓦(定理)模型梅内劳斯(Menelaus,公元98年左右),是希腊数学家兼天文学家,梅涅劳斯定理是平面几何中的一个重要定理。

梅涅劳斯(定理)模型:如图1,如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么AF FB ⋅BDDC⋅CEEA=1.这条直线叫△ABC的梅氏线,△ABC叫梅氏三角形.梅涅劳斯定理的逆定理:如图1,若F、D、E分别是△ABC的三边AB、BC、CA或其延长线的三点,如果AF FB⋅BD DC ⋅CEEA=1,则F、D、E三点共线.图1图2塞瓦(G·Gevo1647-1734)是意大利数学家兼水利工程师.他在1678年发表了一个著名的定理,后世以他的名字来命名,叫做塞瓦定理。

塞瓦(定理)模型:塞瓦定理是指在△ABC内任取一点G,延长AG、BG、CG分别交对边于D、E、F,如图2,则AFFB⋅BDDC⋅CEEA=1。

注意:①梅涅劳斯(定理)与塞瓦(定理)区别是塞瓦定理的特征是三线共点,而梅涅劳斯定理的特征是三点共线;②我们用梅涅劳斯(定理)与塞瓦(定理)解决的大部分问题,也添加辅助线后用平行线分线段成比例和相似来解决。

1(2023.浙江九年级期中)如图,在△ABC中,AD为中线,过点C任作一直线交AB于点F,交AD于点E,求证:AE:ED=2AF:FB.2(2023.重庆九年级月考)如图,在△ABC中,∠ACB=90°,AC=BC.AM为BC边上的中线,CD⊥AM于点D,CD的延长线交AB于点E.求AEEB.3(2023.湖北九年级期中)如图,点D 、E 分别在△ABC 的边AC 、AB 上,AE =EB ,AD DC=23,BD 与CE 交于点F ,S △ABC =40.求S AEFD .4(2023.江苏九年级月考)已知AD 是△ABC 的高,点D 在线段BC 上,且BD =3,CD =1,作DE ⊥AB 于点E ,DF ⊥AC 于点F ,连接EF 并延长,交BC 的延长线于点G ,求CG .5(2023.广东九年级专项训练)如图,在△ABC 中,∠A 的外角平分线与边BC 的延长线交于点P ,∠B 的平分线与边CA 交于点Q ,∠C 的平分线与边AB 交于点R ,求证:P 、Q 、R 三点共线.6(2023上·广东深圳·九年级校联考期中)梅涅劳斯(Menelaus )是古希腊数学家,他首先证明了梅涅劳斯定理,定理的内容是:如图1,如果一条直线与△ABC 的三边AB ,BC ,CA 或它们的延长线交于F 、D 、E 三点,那么一定有AF FB ⋅BD DC ⋅CEEA=1.下面是利用相似三角形的有关知识证明该定理的部分过程:证明:如图2,过点A 作AG ∥BC ,交DF 的延长线于点G ,则有AF FB =AG BD ,CE EA =CDAG,∴△AGF ∽△BDF ,△AGE ∽△CDE ,∴AF FB ⋅BD DC ⋅CE EA =AG BD ⋅BD DC ⋅CDAG=1.请用上述定理的证明方法解决以下问题:(1)如图3,△ABC 三边CB ,AB ,AC 的延长线分别交直线l 于X ,Y ,Z 三点,证明:BX XC ⋅CZ ZA ⋅AYYB=1.请用上述定理的证明方法或结论解决以下问题:(2)如图4,等边△ABC 的边长为3,点D 为BC 的中点,点F 在AB 上,且BF =2AF ,CF 与AD 交于点E ,试求AE 的长.(3)如图5,△ABC 的面积为4,F 为AB 中点,延长BC 至D ,使CD =BC ,连接FD 交AC 于E ,求四边形BCEF 的面积.7(2023.山东九年级月考)如图:P ,Q ,R 分别是△ABC 的BC ,CA ,AB 边上的点.若AP ,BQ ,CR 相交于一点M ,求证:BP PC ⋅CQ QA ⋅ARRB=1.8(2023.浙江九年级期中)如图,在锐角△ABC 中,AD 是BC 边上的高线,H 是线段AD 内任一点,BH 和CH 的延长线分别交AC 、AB 于E 、F ,求证:∠EDH =∠FDH 。

数学初中竞赛 :《梅涅劳斯定理和塞瓦定理》训练(含答案)

数学初中竞赛 :《梅涅劳斯定理和塞瓦定理》训练(含答案)

训练与解析:1.如图,在△ABC中,AB>AC,内切圆⊙I与边BC切于点D,AD与⊙I的另一个交点为E,⊙I的切线EP与BC的延长线交于点P,CF∥PE且与AD交于点F,直线BF与⊙I交于点M、N,M在线段BF上,线段PM与⊙I交于另一点Q.证明:∠ENP=∠ENQ.证明:如图,设⊙I与AC、AB分别切于点S、T,连接ST、AI、IT,设ST与AI交于点G.则IE⊥PE,ID⊥PD,故I、E、P、D四点共圆,∵AS2=AE•AD=AG•AI,∵∠EAG=∠DAI,∴△AEG∽△AID,∴∠AGE=∠AID,∴E,G,D,I四点共圆,∴I、G、E、P、D五点共圆,∴∠IGP=∠IEP=90°,即IG⊥PG,∴P、S、T三点共线,对直线PST截△ABC,由梅涅劳斯定理知,∵AS=AT,CS=CD,BT=BD,∴,设BN的延长线与PE交于点H,对直线BFH截△PDE,由梅涅劳斯定理知,∵CF∥BE,∴,∴,∴PH=HE,∴PH2=HE2=HM•HN,∴,∴△PHN∽△MHP,∴∠HPN=∠HMP=∠NEQ,∵∠PEN=∠EQN,∴∠ENP=∠ENQ.2.如图,△ABC的垂心为H,AD⊥BC于D,点E在△ABC的外接圆上,且满足,直线ED交外接圆于点M.求证:∠AMH=90°.证明:作高BP,CQ.连结MB、MC、MP、MQ、PQ.===•①=•=•②由①②得:=,又∵∠MBA=∠MCA,∴△MBQ∽△MCP,∴点M、A、P、Q四点共圆,即点M、A、P、Q、H五点共圆,又AH为直径,∴∠AMH=90°.3.如图,在四边形ABCD中,对角线AC平分∠BAD.在CD上取一点E,BE与AC相交于F,延长DF交BC于G.求证:∠GAC=∠EAC.证明:如图,连接BD交AC于H,过点C作AB的平行线交AG的延长线于I,过点C作AD的平行线交AE的延长线于J.对△BCD用塞瓦定理,可得①因为AH是∠BAD的角平分线,由角平分线定理知.代入①式得②因为CI∥AB,CJ∥AD,则,.代入②式得.从而CI=CJ.又由于∠ACI=180°﹣∠BAC=180°﹣∠DAC=∠ACJ,所以△ACI≌△ACJ,故∠IAC=∠JAC,即∠GAC=∠EAC.4.如图,四边形ABFD中,C、E分别为BF、DF上一点,且∠BAC=∠DAE,BE、CD交于点G,连接AG,求证:∠FAC=∠GAE.证明:根据三角形的面积公式知,==,==,==.又根据梅涅劳斯定理知,=1.所以××=1.整理即可得到:=.又因为∠BAC=∠DAE,所以∠FAC=∠GAE.5.梅涅劳斯定理是古希腊数学家梅涅劳斯首先证明的.它指出,如果一条直线与△ABC的三条边AB、BC、CA(或其延长线)分别交于F、D、E,则有=1.解答以下两个问题:(1)如图1所示,AB=AC=6,D为BC中点,点E在AC上,CE=2,点F在AB的延长线上,求FB的长.(2)如图2所示,等腰直角三角形ABC中,∠ACB=90°,D是BC中点,E在AB上,AE =2EB,连接AD、CE,求证:AD⊥CE.解:(1)∵AC=6,CE=2,∴AE=AC﹣CE=4,∵点D是BC的中点,∴BD=CD,∵AB=6,∴AF=AB+FB,根据梅涅劳斯定理得,=1,∴,∴FB=6;(2)如图,过点B作BF⊥BC交CE的延长线于F,∴∠CBF=90°,∵∠ACB=90°,∴∠ACB+∠CBF=180°,∴BF∥AC,∴∠ACE=∠F,∠CAE=∠FBE,∴△ACE∽△BFE,∴=2,∴AC=2BF,∵点D是BC的中点,∴BC=2CD,在等腰直角三角形ABC中,∠ACB=90°,∴AC=BC,∴BF=CD,在△ACD和△CBF中,,∴△ACD≌△CBF,∴∠CAD=∠BCF,∴∠ACE+∠CAD=∠ACE+∠BCE=∠ACB=90°,∴∠AGC=90°,∴AD⊥CE.6.在梯形ABCD中,AB∥CD,AC、BD交于点E,AD、BC的延长线交于点H,过点E作FG∥AB交AD于点F,交BC于点G,求证:AG、BF、EH三线共点.证明:∵FG∥AB,∴,,∴•=1,同理:=1,∵点E为△HAB的赛瓦点,∴=1,∴=1,∴=1,∴AG、BF、EH三线共点.7.如图,在△ABC中,AQ平分∠BAC,QD⊥BC交BC于点D,在BC上取一点E,使得∠BAD =∠CAE,在AE上存在一点K,使得∠KBC=2∠BQD,求证:QK平分∠BKC.证明:如图,作∠CBK的角平分线交QK于I,延长AD,AE交BQ,CQ于M,N,连接CM交AB的延长线于X,连接BN交AC的延长线于Y,BN,CM交于F,AQ交BC于G,设∠BAM=∠CAN=α,∠MAQ=∠NAQ=β,∵AQ平分∠BAC,∴①,∵∠KBC=∠2∠BQD=2∠CBI,∵QD⊥BC,∴∠DBQ+∠BQD=90°=∠DBQ+∠CBI,∴BI⊥BQ,由同角的内、外角平分线互相垂直,得:BQ平分∠XBC,∴,∵②,③,由①②③得,=1,由塞瓦定理的逆定理得,BN,CM,AQ交于一点F,点F对于△ABC,由塞瓦定理(延长线)得,=1,∴,∴C Y=④,∵,∴⑤∵,∴⑥由⑤⑥得,,∴⑦,由④⑦得,,∴,由角平分线的逆定理得,CQ平分∠BCY,∴Q是△KBC的旁心,∴QK平分∠BKC.8.如图,已知△ABC中,M是BC的中点,AD平分∠A,B在AD上的射影为E,EB交AM于N,求证:DN∥AB.证明:延长BE、AC交于点F,连接ME,如图:∵AE平分∠BAC,AE⊥BE,∴BE=EF,∵BM=CM,∴EM∥AF,∴,∴,对于△BDE和截线AMN,由梅涅劳斯定理可得,∴,∴,∴DN∥AB.证毕.9.如图,在梯形ABCD的对角线AC的延长线上任取一点P,过点P与梯形两条底边的中点的连线分别交腰AB、CD于点M、N,求证:MN∥AD∥BC.证明:对于△ABC和截线MKP,由梅涅劳斯定理可得:,∵BK=CK,∴;对于△ACD和截线PNL,由梅涅劳斯定理可得:,∵AL=LD,∴,∴,∴MN∥AD∥BC.10.如图,Rt△ABC中,∠C=90°,D点和E点在AC,AB边上,且DE∥BC.P为线段DE 上一点,使得∠CPB=90°,CP的延长线交AB于点M,延长AP交BC于点Q,过Q作PB 的平行线交PC于点H,交AC于点S,T为BC延长线上一点,且满足=+,连接TS.求证:TS⊥DQ.证明:如图,连接DT、ET,∵DE∥BC,∴,,∴,∵QS∥PB,∴,∴,∵=+,∴,∴,由梅涅劳斯定理的逆定理可知E、H、T三点共线,∴,∴CT=DP,∵CT∥DP,∴TCPD是平行四边形,∴DT∥CP,∵QS∥PB,CP⊥PB,∴QS⊥DT,∵DC⊥TQ,∴S是△TDQ的垂心,∴TS⊥DQ.证完.11.如图,设P为▱ABCD内任意一点,过P作EF∥AB,GH∥BC,EF交A,BC于点E,F,GH 交AB,DC于点G,H,且AC,GF,EH不平行.求证:A C,GF,EH相交于一点.证明:设AC、EH相交于点K,对于△CAD与截线EHK,由梅涅劳斯定理可得:,∵ABCD是平行四边形,且EF∥AB,GH∥BC,∴,,∴,由梅涅劳斯定理的逆定理可知G、F、K三点共线,∴AC,GF,EH相交于一点.12.如图所示,已知D,E分别是△ABC的边BC,AB上的点,AD,CE交F,BF,DE交于G,过G作BC的平行线MN,交AB,CE,AC于M,H,N,求证:GH=NH.解:过点E作ES∥BC,交AC于点S,∴,∵NM∥BC,∴,对于△ABF及截线EGD,由梅捏劳斯定理可得:,∴,由梅捏劳斯定理可知:S、H、D共线,∴,∴GH=HN.13.在△ABC中,D,E分别为AB,AC上一点,DE交AF于H,HG⊥BC,连接DG,GE.(1)证明:GH为△DGE的一条平分线;(2)过H的一条直线交DF,AE分别于M,N,证明:GH为△MNG的一条角平分线.证明:(1)延长ED与CB的延长线交于K,对于直线CBK截得△ADE,由梅涅劳斯定理得:••=1①,对于点F与△ADE,由塞瓦定理得:••=1②,①=②得:=,∴线段DE被点H、K调和,∵∠KGH=90°,由调和点列结论1得,GH平分∠DGE,即GH为△DGE的一条平分线;(2)延长NM交BC于S,连接AM并延长,交BC于T,对于直线STC截得△AMN,由梅涅劳斯定理得:••=1①,对于点F与△AME,由塞瓦定理得:••=1②,①=②得,=,∴线段MN被点H、S调和,∵∠KGH=90°,由调和点列结论1得,GH平分∠MGN,即GH为△MNG的一条角平分线.14.定理3 (梅涅劳斯(M enelaus)定理):一条不经过△ABC任一顶点的直线和三角形三边BC,CA,AB(或它们的延长线)分别交于P,Q,R.证明:.证明:如图,由三角形面积的性质,有①,②,③.由①×②×③,得.15.由矩形ABCD的外接圆上任意一点M向它的两对边引垂线MQ和MP,向另两边延长线引垂线MR,MT.证明:PR与QT垂直,且它们的交点在矩形的一条对角线上.解:连接BD交PR于N,连接QN、DM、DB、AM、BN、MN、TN、MC,显然M、P、Q共线,R、M、T共线,在矩形APMR中,∠1=∠2=∠3,∴R、D、N、M四点共圆,∴R、D、N、Q、M五点共圆,∴∠RNQ=90°,∠6=∠7,在矩形QCTM中,∠5=∠4=∠2,∴∠5+∠6=∠2+∠7=90°,∴∠NQT=∠5+∠DQM+∠6=180°,∴N、Q、T共线,∴TQ⊥PR且它们的交点在矩形的一条对角线上.。

初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)

初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)

初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)板块一 梅涅劳斯定理及其逆定理梅涅劳斯定理:如果一条直线与ABC △的三边AB 、BC 、CA 或其延长线交于F 、D 、E 点,那么1AF BD CE FB DC EA⋅⋅=.这条直线叫ABC △的梅氏线,ABC △叫梅氏三角形.GF EDCBAGFE DCBAH3H 2H 1F E DCBA证法一:如左图,过C 作CG ∥DF∵DB FB DC FG =,EC FG AE AF= ∴1AF BD CE AF FB FG FB DC EA FB FG AF⋅⋅=⋅⋅=. 证法二:如中图,过A 作AG BD ∥交DF 的延长线于G∴AF AG FB BD =,BD BD DC DC =,CE DC EA AG= 三式相乘即得:1AF BD CE AG BD DCFB DC EA BD DC AG⋅⋅=⋅⋅=.证法三:如右图,分别过A B C 、、作DE 的垂线,分别交于123H H H 、、. 则有123AH BH CH ∥∥,所以3122311CH AH BH AF BD CE FB DC EA BH CH AH ⋅⋅=⋅⋅=.梅涅劳斯定理的逆定理:若F 、D 、E 分别是ABC △的三边AB 、BC 、CA 或其延长线的三点,如果1AF BD CE FB DC EA⋅⋅=,则F 、D 、E 三点共线.知识导航梅涅劳斯定理与塞瓦定理【例1】 如图,在ABC △中,AD 为中线,过点C 任作一直线交AB 于点F ,交AD 于点E ,求证::2:AE ED AF FB =.EC D B FA【解析】 ∵直线FEC 是ABD △的梅氏线,∴1AE DC BF ED BC FA ⋅⋅=. 而12DC BC =,∴112AE BF ED FA ⋅⋅=,即2AE AF ED BF=.习题1. 在△ABC 中,D 是BC 的中点,经过点D 的直线交AB 于点E ,交CA 的延长线于点F .求证:FA EAFC EB=. EFBDCA【解析】 直线截ABC △三边于D 、E 、F 三点,应用梅氏定理,知1CD BE AFDB EA FC⋅⋅=,又因为BD BC =,所以1BE AF EA FC ⋅=,即FA EAFC EB=.习题2. 如图,在△ABC 中, 90ACB ∠=︒,AC BC =.AM 为BC 边上的中线,CD AM ⊥于点D ,CD 的延长线交AB 于点E .求AEEB. DEBMCA夯实基础初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)【解析】 由题设,在Rt AMC △中,CD AM ⊥,2AC CM =,由射影定理224AD AD AM AC DM DM AM CM ⋅===⋅.对ABM △和截线EDC ,由梅涅劳斯定理,1AE BC MD EB CM DA ⋅⋅=,即21114AE EB ⋅⋅=.所以2AE EB=.【例2】 如图,在ABC △中,D 为AC 中点,BE EF FC ==,求证:::5:3:2BM MN ND =.NMDCF EBA【解析】 ∵直线AE 是BCD △的梅氏线,∴1BM DA CE MD AC EB ⋅⋅=. ∴12121BM MD ⋅⋅=,∴11BM MD = ∵直线AF 是BCD △的梅氏线, ∴1BN DA CF ND AC FB ⋅⋅=, ∴11122BN ND ⋅⋅=,41BN ND =. ∴::5:3:2BM MN ND =.习题3. 如图,在ABC △中,D 为BC 的中点,::4:3:1AE EF FD =.求::AG GH AB .CEF DBH GA【解析】 ∵HFC 是ABD △的梅氏线,探索提升∴1AH BC DFHB DC FA⋅⋅=. ∵D 为BC 的中点,::4:3:1AE EF FD =, ∴21BC DC =,17DF FA =. ∴21117AH HB ⋅⋅=,∴72AH HB =. ∵GEC 是ABD △的梅氏线, ∴1AG BC DE GB DC EA ⋅⋅=, ∴21111AG GB ⋅⋅=,∴12AG GB =. ∴::3:4:2AG GH HB =. ∴::3:4:9AG GH AB =.【例3】 过ABC △的重心G 的直线分别交AB 、AC 于点E 、F ,交CB 的延长线于点D .求证:1BE CFEA FA+=.M DGFECB A【解析】 作直线AG 交BC 于M ,∵:1:2MG GA =,BM MC =. ∴AE BD MG EB DM GA ⋅⋅112AE BD EB DM =⋅⋅=. ∴2EB BD AE DM=. 同理,2CF DCFA DM=, 而2BD DC BD BD BM +=++2()2BD BM DM =+= ∴21222BE CF BD DC DM EA FA DM DM DM+=+==.【例4】 如图,点D 、E 分别在ABC △的边AC 、AB 上, AE EB =,23AD DC =,BD 与CE 交于点F ,40ABC S =△.求AEFD S .初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)FDECBA【解析】 对ECA △和截线BFD ,由梅氏定理得:1EF CD AB FC DA BE ⋅⋅=,即32121EF FC ⋅⋅=, 所以13EF FC =.所以1148BFE BEC ABC S S S ==△△△, 进而211140115840AEFD ABD BEF ABC S S S S ⎛⎫=-=-=⋅= ⎪⎝⎭△△△.习题4. 如图,在ABC △中,三个三角形面积分别为5,8,10.四边形AEFD 的面积为x ,求x的值.x 1085F DE CBA【解析】 对ECA △和截线BFD ,由梅氏定理得:1CD AB EF DA BE FC ⋅⋅=,即1823115152x x +⋅⋅=+,解得22x =.【备选】如图,ABC △被通过它的三个顶点与一个内点O 的三条直线分为6个小三角形,其中三个小三角形的面积如图所示,求ABC △的面积.354030O F ECDBA【解析】 对ABD △和截线COF ,由梅氏定理得:1AF BC DO FB CD OA ⋅⋅=,即41132BC CD ⋅⋅=,所以32BC CD =,所以3BCBD=.所以33105315ABC ABD S S ==⨯=△△.【例5】 如图, 在ABC △中,A ∠的外角平分线与边BC 的延长线交于点P ,B ∠的平分线与非常挑战边CA 交于点Q ,C ∠的平分线与边AB 交于点R ,求证:P 、Q 、R 三点共线.P C B QRA【解析】 AP 是BAC ∠的外角平分线,则BP ABPC CA=① BQ 是ABC ∠的平分线,则 CQ BCQA AB=② CR 是ACB ∠的平分线,则 AR CARB BC=③ ⨯⨯①②③得1BP CQ AR AB BC CAPC QA RB CA AB BC⋅⋅=⋅⋅= 因R 在AB 上,Q 在CA 上,P 在BC 的延长线上,则根据梅涅劳斯定理的逆定理得:P 、Q 、R 三点共线.习题5. 证明:不等边三角形的三个角的外角平分线与对边的交点是共线的三个点.F EDCBAP F E D CBA【解析】 如图,CD BE AF 、、分别为三角形ABC 的三个外角平分线,分别交AB AC BC 、、于D E F 、、.过C 作BE 的平行线,则BCP CBE EBD CPB ∠=∠=∠=∠, 所以BPC △是等腰三角形.则PB CB =.则有:CE PB CBEA BA BA==.初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)同理AD AC DB CB =;BF BAFC AC=. 所以1CE AD BF CB AC BA EA DB FC BA CB AC ⋅⋅=⋅⋅=.所以D E F 、、共线.板块二 塞瓦定理及其逆定理塞瓦定理:如果ABC △的三个顶点与一点P 的连线AP 、BP 、CP 交对边或其延长线于点D 、E 、F ,如图,那么1BD CE AFDC EA FB⋅⋅=.通常称点P 为ABC △的塞瓦点. PFED CB A证明: ∵直线FPC 、EPB 分别是ABD △、ACD △的梅氏线,∴1BC DP AF CD PA FB ⋅⋅=,1DB CE AP BC EA PD⋅⋅=. 两式相乘即可得:1BD CE AFDC EA FB⋅⋅=.塞瓦定理的逆定理:如果点D 、E 、F 分别在ABC △的边BC 、CA 、AB 上或其延长线上,并且1BD CE AF DC EA FB⋅⋅=,那么AD 、BE 、CF 相交于一点(或平行). F PF'ED C BAFED CB A证明: ⑴ 若AD 与BE 相交于一点P 时,如图,作直线CP 交AB 于'F .由塞瓦定理得:'1BD CE AF DC EA F B⋅⋅=',知识导航又已知1BD CE AF DC EA FB ⋅⋅=,∴AF AF FB F B '=', ∴AB AB FB F B =',∴FB F B '=. ∴'F 与F 重合 ∴'CF 与CF 重合∴AD 、BE 、CF 相交于一点.⑵ 若AD 与BE 所在直线不相交,则AD ∥BE ,如图. ∴BD EA DC AC=,又已知1BD CE AF DC EA FB ⋅⋅=, ∴1EA CE AF AC EA FB ⋅⋅=,即CE FB AC AF =. ∴//BE FC ,∴AD BE FC ∥∥.说明:三线平行的情况在实际题目中很少见.【例6】 (1)设AX BY CZ ,,是ABC △的三条中线,求证:AX BY CZ ,,三线共点.ZYXCBA(2)若AX BY CZ ,,为ABC △的三条内角平分线.求证:AX BY CZ ,,三线共点.ZYXCBA【解析】 (1)由条件知,BX XC YC YA ZA ZB ===,,.∴1BX CY AZXC YA ZB⋅⋅=, 根据塞瓦定理的逆定理可得三条中线AX BY CZ ,,共点. 这个点称为这个三角形的重心.(2)由三角形内角平分线定理得:BX AB CY BC AZ ACXC AC YA BA ZB BC===,,. 三式分别相乘,得:1BX CY AZ AB BC ACXC YA ZB AC AB BC⋅⋅=⋅⋅=.根据塞瓦定理的逆定理可得三角形三内角平分线AX BY CZ ,,共点, 这个点称为这个三角形的内心.习题6. 若AX BY CZ ,,分别为锐角ABC △的三条高线,求证:AX BY CZ ,,三线共点.探索提升初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)ZYX CBA【解析】 由ABX CBZ △∽△得:BX AB BZ BC =;由BYA CZA △∽△得:AZ ACAY AB =; 由AXC BYC △∽△可得:YC BC CX AC =.所以1BX AZ YC AB AC BCBZ AY CX BC AB AC⋅⋅=⋅⋅=.根据塞瓦定理的逆定理可得三条高线AX BY CZ ,,共点.对直角三角形、钝角三角形,同样也可以证得三条高线共点.我们把一个三角形三条高线所在直线的交点叫做这个三角形的垂心.【例7】 如图, M 为ABC △内的一点,BM 与AC 交于点E ,CM 与AB 交于点F ,若AM 通过BC 的中点D ,求证:EF BC ∥.FDEMBA【解析】 对ABC △和点M 应用塞瓦定理可得:1AF BD CEFB DC EA⋅⋅=.又因为BD DC =,所以1AF CE FB EA ⋅=.进而AF AEFB EC=,所以EF BC ∥.习题7. 如果梯形ABCD 的两腰AD 、BC 的延长线交于M ,两条对角线交于N .求证:直线MN必平分梯形的两底.BQ A NCP DM【解析】 ∵AB CD ∥∴MD CM DA BC = ∴1MD BC DA CM⋅= ∵1MD AQ BC DA QB CM⋅⋅=(由塞瓦定理得)∴1AQQB=,∴AQ QB = ∵DP PC AQ QB =,∴DP PC =.板块三 梅涅劳斯定理、塞瓦定理综合【备选】如图,E 、F 分别为ABC △的AC 、AB 边上的点,且3AE EC =,3BF FA =,BE 、CF 交于点P ,AP 的延长线交BC 于点D .求:AP PD 的值.ABCD EFP【解析】 ∵P 为ABC △的塞瓦点.∴11133AF BD CE BD FB DC EA DC ⋅⋅=⋅⋅= ∴91BD DC =,∴910BD BC =. ∵EPB 为ACD △的梅氏线, ∴911103AP DB CE AP PD BC EA PD ⋅⋅=⋅⋅= ∴103AP PD =【备选】如图,四边形ABCD 的对边AB 和DC ,DA 和CB 分别相交于点L K ,,对角线AC 与BD 交于点M .直线KL 与BD 、AC 分别交于点F G 、.求证:KF KGLF LG=. 非常挑战初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)11 / 11 F L K M DC BA【解析】 对DKL △与点B 应用塞瓦定理得:1DA KF LC AK FL CD⋅⋅=. 对DKL △和截线ACG 应用梅涅劳斯定理可得:1DA KG LC AK GL CD⋅⋅=. 进而可得KF KG LF LG=.。

初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)

初中数学竞赛专题.梅涅劳斯定理与塞瓦定理.(有答案)

第 1 页板块一 梅涅劳斯定理及其逆定理梅涅劳斯定理:如果一条直线与ABC △的三边AB 、BC 、CA 或其延长线交于F 、D 、E 点,那么1AF BD CE FB DC EA⋅⋅=.这条直线叫ABC △的梅氏线,ABC △叫梅氏三角形.证法一:如左图,过C 作CG ∥DF证法二:如中图,过A 作AG BD ∥交DF 的延长线于G三式相乘即得:1AF BD CE AG BD DCFB DC EA BD DC AG⋅⋅=⋅⋅=.证法三:如右图,分别过A B C 、、作DE 的垂线,分别交于123H H H 、、. 则有123AH BH CH ∥∥,所以3122311CH AH BH AF BD CE FB DC EA BH CH AH ⋅⋅=⋅⋅=.梅涅劳斯定理的逆定理:若F 、D 、E 分别是ABC △的三边AB 、BC 、CA 或其延长线的三点,如果1AF BD CE FB DC EA⋅⋅=,则F 、D 、E 三点共线.【例1】 如图,在ABC △中,AD 为中线,过点C 任作一直线交AB 于点F ,交AD 于点E ,求证::2:AE ED AF FB =.【解析】 ∵直线FEC 是ABD △的梅氏线,∴1AE DC BF ED BC FA ⋅⋅=. 而12DC BC =,∴112AE BF ED FA ⋅⋅=,即2AE AF ED BF=. 习题1. 在△ABC 中,D 是BC 的中点,经过点D 的直线交AB 于点E ,交CA 的延长线于点F .求证:FA EAFC EB=. 【解析】 直线截ABC △三边于D 、E 、F 三点,应用梅氏定理,知1CD BE AFDB EA FC⋅⋅=,又因为BD BC =,所以1BE AF EA FC ⋅=,即FA EAFC EB=. 习题2. 如图,在△ABC 中, 90ACB ∠=︒,AC BC =.AM 为BC 边上的中线,CD AM ⊥于点D ,CD 的延长线交AB 于点E .求AEEB. 【解析】 由题设,在Rt AMC △中,CD AM ⊥,2AC CM =,由射影定理224AD AD AM AC DM DM AM CM⋅===⋅. 对ABM △和截线EDC ,由梅涅劳斯定理,1AE BC MD EB CM DA ⋅⋅=,即21114AE EB ⋅⋅=.所以2AE EB=.知识导航夯实基础梅涅劳斯定理与塞瓦定理【例2】 如图,在ABC △中,D 为AC 中点,BE EF FC ==,求证:::5:3:2BM MN ND =. 【解析】 ∵直线AE 是BCD △的梅氏线,∵直线AF 是BCD △的梅氏线,习题3. 如图,在ABC △中,D 为BC 的中点,::4:3:1AE EF FD =.求::AG GH AB . 【解析】 ∵HFC 是ABD △的梅氏线,∵D 为BC 的中点,::4:3:1AE EF FD =, ∵GEC 是ABD △的梅氏线,【例3】 过ABC △的重心G 的直线分别交AB 、AC 于点E 、F ,交CB 的延长线于点D .求证:1BE CFEA FA+=. 【解析】 作直线AG 交BC 于M ,同理,2CF DCFA DM=, 而2BD DC BD BD BM +=++2()2BD BM DM =+=【例4】 如图,点D 、E 分别在ABC △的边AC 、AB 上, AE EB =,23AD DC =,BD 与CE 交于点F ,40ABC S =△.求AEFD S .【解析】 对ECA △和截线BFD ,由梅氏定理得:1EF CD AB FC DA BE ⋅⋅=,即32121EF FC ⋅⋅=,所以13EF FC =.所以1148BFE BEC ABC S S S ==△△△,进而211140115840AEFD ABD BEF ABC S S S S ⎛⎫=-=-=⋅= ⎪⎝⎭△△△. 习题4. 如图,在ABC △中,三个三角形面积分别为5,8,10.四边形AEFD 的面积为x ,求x的值.【解析】 对ECA △和截线BFD ,由梅氏定理得:1CD AB EF DA BE FC ⋅⋅=,即1823115152x x +⋅⋅=+,解得22x =.【备选】如图,ABC △被通过它的三个顶点与一个内点O 的三条直线分为6个小三角形,其中三个小三角形的面积如图所示,求ABC △的面积.【解析】 对ABD △和截线COF ,由梅氏定理得:1AF BC DO FB CD OA ⋅⋅=,即41132BC CD ⋅⋅=,所以32BC CD =,所以3BCBD=.所以33105315ABC ABD S S ==⨯=△△.【例5】 如图, 在ABC △中,A ∠的外角平分线与边BC 的延长线交于点P ,B ∠的平分线与边CA 交于点Q ,C ∠的平分线与边AB 交于点R ,求证:P 、Q 、R 三点共线.【解析】 AP 是BAC ∠的外角平分线,则BQ 是ABC ∠的平分线,则 CR 是ACB ∠的平分线,则 ⨯⨯①②③得非常挑战探索提升第 3 页因R 在AB 上,Q 在CA 上,P 在BC 的延长线上,则根据梅涅劳斯定理的逆定理得:P 、Q 、R 三点共线.习题5. 证明:不等边三角形的三个角的外角平分线与对边的交点是共线的三个点. 【解析】 如图,CD BE AF 、、分别为三角形ABC 的三个外角平分线,分别交AB AC BC 、、于D E F 、、.过C 作BE 的平行线,则BCP CBE EBD CPB ∠=∠=∠=∠, 所以BPC △是等腰三角形.则PB CB =.则有:CE PB CBEA BA BA ==. 同理AD AC DB CB =;BF BA FC AC=. 所以1CE AD BF CB AC BA EA DB FC BA CB AC ⋅⋅=⋅⋅=.所以D E F 、、共线.板块二 塞瓦定理及其逆定理塞瓦定理:如果ABC △的三个顶点与一点P 的连线AP 、BP 、CP 交对边或其延长线于点D 、E 、F ,如图,那么1BD CE AFDC EA FB⋅⋅=.通常称点P 为ABC △的塞瓦点. 证明: ∵直线FPC 、EPB 分别是ABD △、ACD △的梅氏线,两式相乘即可得:1BD CE AFDC EA FB⋅⋅=.塞瓦定理的逆定理:如果点D 、E 、F 分别在ABC △的边BC 、CA 、AB 上或其延长线上,并且1BD CE AF DC EA FB⋅⋅=,那么AD 、BE 、CF 相交于一点(或平行). 证明: ⑴ 若AD 与BE 相交于一点P 时,如图,作直线CP 交AB 于'F .由塞瓦定理得:'1BD CE AF DC EA F B⋅⋅=',又已知1BD CE AF DC EA FB ⋅⋅=,∴AF AF FB F B'=', ∴'F 与F 重合 ∴'CF 与CF 重合∴AD 、BE 、CF 相交于一点.⑵ 若AD 与BE 所在直线不相交,则AD ∥BE ,如图. ∴BD EA DC AC=,又已知1BD CE AF DC EA FB ⋅⋅=, ∴1EA CE AF AC EA FB ⋅⋅=,即CE FB AC AF=. 说明:三线平行的情况在实际题目中很少见.【例6】 (1)设AX BY CZ ,,是ABC △的三条中线,求证:AX BY CZ ,,三线共点.探索提升知识导航(2)若AX BY CZ ,,为ABC △的三条内角平分线.求证:AX BY CZ ,,三线共点.【解析】 (1)由条件知,BX XC YC YA ZA ZB ===,,.∴1BX CY AZXC YA ZB⋅⋅=,根据塞瓦定理的逆定理可得三条中线AX BY CZ ,,共点. 这个点称为这个三角形的重心.(2)由三角形内角平分线定理得:BX AB CY BC AZ ACXC AC YA BA ZB BC===,,. 三式分别相乘,得:1BX CY AZ AB BC ACXC YA ZB AC AB BC⋅⋅=⋅⋅=.根据塞瓦定理的逆定理可得三角形三内角平分线AX BY CZ ,,共点, 这个点称为这个三角形的内心.习题6. 若AX BY CZ ,,分别为锐角ABC △的三条高线,求证:AX BY CZ ,,三线共点.【解析】 由ABX CBZ △∽△得:BX AB BZ BC =;由BYA CZA △∽△得:AZ ACAY AB =; 由AXC BYC △∽△可得:YC BC CX AC =.所以1BX AZ YC AB AC BCBZ AY CX BC AB AC⋅⋅=⋅⋅=.根据塞瓦定理的逆定理可得三条高线AX BY CZ ,,共点.对直角三角形、钝角三角形,同样也可以证得三条高线共点.我们把一个三角形三条高线所在直线的交点叫做这个三角形的垂心.【例7】 如图, M 为ABC △内的一点,BM 与AC 交于点E ,CM 与AB 交于点F ,若AM 通过BC 的中点D ,求证:EF BC ∥.【解析】 对ABC △和点M 应用塞瓦定理可得:1AF BD CEFB DC EA⋅⋅=.又因为BD DC =,所以1AF CE FB EA ⋅=.进而AF AEFB EC=,所以EF BC ∥. 习题7. 如果梯形ABCD 的两腰AD 、BC 的延长线交于M ,两条对角线交于N .求证:直线MN必平分梯形的两底. ∵1MD AQ BC DA QB CM⋅⋅=(由塞瓦定理得) 板块三 梅涅劳斯定理、塞瓦定理综合【备选】如图,E 、F 分别为ABC △的AC 、AB 边上的点,且3AE EC =,3BF FA =,BE 、CF 交于点P ,AP 的延长线交BC 于点D .求:AP PD 的值.【解析】 ∵P 为ABC △的塞瓦点.∵EPB 为ACD △的梅氏线,【备选】如图,四边形ABCD 的对边AB 和DC ,DA 和CB 分别相交于点L K ,,对角线AC 与BD 交于点M .直线KL 与BD 、AC 分别交于点F G 、.求证:KF KGLF LG=. 【解析】 对DKL △与点B 应用塞瓦定理得:1DA KF LCAK FL CD⋅⋅=.对DKL △和截线ACG 应用梅涅劳斯定理可得:1DA KG LCAK GL CD⋅⋅=.非常挑战进而可得KF KGLF LG.第 5 页。

梅涅劳斯定理的应用练习

梅涅劳斯定理的应用练习

平面几何问题: 1.梅涅劳斯定理一直线分别截△ABC 的边BC 、CA 、AB (或其延长线)于D 、E 、F ,则1FBAFEA CE DC BD =⋅⋅。

背景简介:梅涅劳斯(Menelaus )定理是由古希腊数学家梅涅劳斯首先证明的。

证明: 说明:(1)结论的图形应考虑直线与三角形三边交点的位置情况,因而本题图形应该有两个。

(2)结论的结构是三角形三边上的6条线段的比,首尾相连,组成一个比值为1的等式。

(3)梅氏定理及其逆定理不仅可以用来证明点共线问题,而且是解决许多比例线段问题的有力工具。

用梅氏定理求某个比值的关键,在于恰当地选取梅氏三角形和梅氏线。

梅涅劳斯定理的逆定理:如果有三点F 、D 、E 分别在△ABC 的三边AB 、BC 、CA 或其延长线上,且满足1EACE DC BD FB AF =⋅⋅,那么F 、D 、E 三点共线。

利用梅涅劳斯定理的逆定理可判定三点共线。

梅涅劳斯定理练习1.设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。

求证:FBAF2ED AE =。

2.过△ABC 的重心G 的直线分别交AB 、AC于E 、F ,交CB 延长线于D 。

求证:1FACFEA BE =+。

3.在△ABC 中,点D 在BC 上,31DC BD =,分别在AB ,AD 上,32EB AE =,21GD AG =,EG 交AC 于点F ,求FCAF。

4.在□ABCD 中,E ,F 分别是AB ,BC 的中点,AF 与CE 相交于G ,AF 与DE 交于H ,求AH:HG:GF5.设D 为等腰Rt △ABC (∠C=90°)的直角边BC 的中点,E 在AB 上,且AE :EB=2:1, 求证:CE ⊥AD6.在△ABC 中,点M 和N 顺次三等分AC ,点X 和Y 顺次三等分BC ,AY 与BM ,BN 分别交于点S ,R ,求四边形SRNM 与△ABC的面积之比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章涅劳斯定理及应用【基础知识】梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 或其延长线上的点,若A ',B ',C '三点共线,则1BA CB AC A B B A C B'''⋅⋅='''.① C ′B′A'A′B′C ′ADC B DCB 图1-1A证明 如图11-,过A 作直线AD C A ''∥交BC 的延长线于D ,则 CB CA B A A D ''='',AC DA C B A B''='',故 1BA CB AC BA CA DA A C B A C B A C A D A B''''''⋅⋅=⋅⋅=''''''. 注 此定理的证明还有如下正弦定理证法及面积证法.正弦定理证法 设BC A α''=∠,CB A β''=∠,B A B γ''=∠,在BA C ''△中,有sin sin BA C B αγ'=',同理,sin sin CB CA γβ'=',sin sin AC AB βα'=',此三式相乘即证. 面积证法 由A C B A C C S BA A C S '''''='△△,CB C CA B CB C CA B C CA B AC A AB B AC A AB AC A S S S S S CB B A S S S S S ''''''''''''''''''''+===='+△△△△△△△△△△,AC A C BA S AC C B S '''''='△△,此三式相乘即证.梅涅劳斯定理的逆定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 或其延长线上的点,若 1BA CB AC A C B A C B'''⋅⋅=''',② 则A ',B ',C '三点共线.证明 设直线A B ''交AB 于1C ,则由梅涅劳斯定理,得到111AC BA CB A C B A C A''⋅⋅=''.由题设,有1BA CB AC A C B A C B'''⋅⋅=''',即有11AC AC C B C B '='. 又由合比定理,知1AC AC AB AB'=,故有1AC AC '=,从而1C 与C '重合,即A ',B ',C '三点共线. 有时,也把上述两个定理合写为:设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线(包括三边的延长线)上的点,则A ',B ',C '三点共线的充要条件是 1BA CB AC A C B A C B'''⋅⋅='''. 上述①与②式是针对ABC △而言的,如图11-(整个图中有4个三角形),对于C BA ''△、B CA ''△、AC B ''△也有下述形式的充要条件:1C A BC A B AB CA B C '''⋅⋅=''';1B A CB A C AC BA C B '''⋅⋅=''';1AB C A B CBC A B CA'''⋅⋅='''.③ 第一角元形式的梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线(包括三边的延长线)上的点,则A ',B ',C '共线的充分必要条件是 sin sin sin 1sin sin sin BAA ACC CBB A AC C CB B BA'''⋅⋅='''∠∠∠∠∠∠.④ CA′B'C '图1-2A证明 如图12-,可得 1sin 21sin 2ABA AA CAB AA BAA S BA A C S AA AC A AC ''''⋅⋅'=='''⋅⋅△△∠∠ sin sin AB BAA AC A AC'⋅='⋅∠∠.同理,sin sin CB BC CBB B A AB B BA ''⋅=''⋅∠∠,sin sin AC AC ACC C B BC C CB ''⋅=''⋅∠∠. 以上三式相乘,运用梅涅劳斯定理及其逆定理,知结论成立.第二角元形式的梅涅劳斯定理 设A ',B ',C '分别是ABC △的三边BC ,CA ,AB 所在直线上的点,点O 不在ABC △三边所在直线上,则A ',B ',C '三点共线的充要条件是 sin sin sin 1sin sin sin BOA COB AOC A OC B OA C OB'''⋅⋅='''∠∠∠∠∠∠.⑤ A′OCBB'C 'A 图1-3证明 如图13-,由BOA A OC S BA S A C'''='△△,有 sin sin BOA OC BA A OC OB A C''=⋅''∠∠. 同理,sin sin COB OA CB B OA OC B A ''=⋅''∠∠,sin sin AOC OB AC C OB OA C B''=⋅''∠∠.于是sin sin sin sin sin sin BOA COB AOC BA CB AC A OC B OA C OB A C B A C B''''''⋅⋅=⋅⋅''''''∠∠∠∠∠∠. 故由梅涅劳斯定理知A ',B ',C '共线1BA CB AC A C B A C B'''⇔⋅⋅='''.从而定理获证.注 (1)对于④、⑤式也有类似③式(整个图中有4个三角形)的结论.(2)于在上述各定理中,若采用有向线段或有向角,则①、②、③、④、⑤式中的右端均为1-,③、④、⑤式中的角也可以按①或②式中的对应线段记忆.特别要注意的是三边所在直线上的点为一点或者三点在边的延长线上. 【典型例题与基本方法】1.恰当地选择三角形及其截线(或作出截线),是应用梅涅劳斯定理的关键例1 如图14-,在四边形ABCD 中,ABD △,BCD △,△ABC 的面积比是3∶4∶1,点M ,N 分别在AC ,CD 上,满足AM ∶AC CN =∶CD ,并且B ,M ,N 共线.求证:M 与N 分别是AC 和CD 的中点. (1983年全国高中联赛题) EDCBM NA图1-4证明 设AM CNr AC CD==(01r <<),AC 交BD 于E .341ABD BCD ABC S S S =△△△∶∶∶∶, ∴17BE BD =,37AE AC =. 37371771AM AE r EM AM AE r AC AC AM MC AC AM r r AC----====----. 又因B ,M ,N 三点共线,可视BMN 为△CDE 的截线,故由梅涅劳斯定理,得1CN DB EM ND BE MC ⋅⋅=,即77311177r r r r-⋅⋅=--. 化简整理,得 2610r r --=,解得12r =,13r =-(舍去).故M 与N 分别是AC 和CD 的中点. 例2 如图1-5,在四边形ABCD 中,对角线AC 平分BAD ∠,在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G .求证:GAC EAC =∠∠.(1999年全国高中联赛题)G 'B'GFEDCBA图1-5证明 记BAC CAD θ==∠∠,GAC α=∠,EAC β=∠,直线GFD 与△BCE 相截,由梅涅劳斯定理,有 1ABG AEFAED ABFS S BG CD EF GC DE FB S S =⋅⋅=⋅△△△△ sin()sin sin sin sin()sin AB AC AE AC AE AB θαθβαθβθ⋅-⋅⋅=⋅⋅⋅⋅-⋅ sin()sin sin sin()θαβαθβ-⋅=⋅-.故 sin()sin sin()sin θαβθβα-⋅=-⋅.即 sin cos sin cos sin sin sin cos sin cos sin sin θαβθαβθβαθβα⋅⋅-⋅⋅=⋅⋅-⋅⋅, 亦即 sin cos sin sin sin cos sin()0πk θαβθαβαβαβ⋅⋅=⋅⋅⇔-=⇔-=,且k 只可能为0,故GAC ∠EAC =∠.例3 设E 、F 分别为四边形ABCD 的边BC 、CD 上的点,BF 与DE 交于点P .若BAE FAD =∠∠,则BAP CAD =∠∠.证明 如图1-6,只需证得当AF 关于BAD ∠的等角线交BE 于P 时,B 、P 、F 共线即可.FED CBAP图1-6事实上,B 、P 、F 分别为△CDE 三边所在直线上的三点,且A 不在其三边所在直线上. 又FAD EAB =∠∠,DAP BAC =∠∠,PAE CAF =∠∠, 由第二角元形式的梅涅劳斯定理,有sin sin sin 1sin sin sin EAB CAF DAPBAC FAD PAE⋅⋅=∠∠∠∠∠∠.故B 、P 、F 三点共线.注 当AC 平分BAD ∠时,即为1999年全国高中联赛题.2.梅涅劳斯定理的逆用(逆定理的应用)与迭用,是灵活应用梅氏定理的一种方法例2另证 如图1-5,设B ,G 关于AC 的对称点分别为B ',G ',易知A ,D ,B '三点共线,连FB ',FG ',只须证明A ,E ,G '三点共线.设EFB α'=∠,DFE BFG B FG β''===∠∠∠,AFD GFC G FC γ'===∠∠∠,则*sin sin sin()1sin()sin sin FDA FG B FEC FB A FG C FED S S S DA B G CE FD FB FC AB G C ED S S S FB FC FD γββγαβγαγβ'''''''⋅⋅⋅+-⋅⋅=⋅⋅=⋅⋅='''⋅+-⋅⋅△△△△△△. 对△CB D ',应用梅涅劳斯定理的逆定理,知A ,E ,G '三点共线.故GAC EAC =∠∠. 注 在图1-5中,*式也可为sin(180)βγ︒--,若B '在AD 的延长上,则*式为sin()βγα++. 例4 如图1-7,1O 与2O 和△ABC 的三边所在的3条直线都相切,E ,F ,G ,H 为切点,直线EG 与FH 交于点P .求证:PA BC ⊥.(1996年全国高中联赛题)P (P')图1-7证法1 过A 作AD BC ⊥于D ,延长DA 交直线HF 于点P '.对△ABD 及截线FHP '应用梅涅劳斯定理,有1AH BF DP HB FD P A'⋅⋅='.由BF BH =,有1AH DP FD P A '⋅='.显然1O ,A ,2O 三点共线,连1O E ,1O G ,2O F ,2O H ,则由12O E AD O F ∥∥,有△1AGO ∽△2AHO ,从而12AO DE AG DF AO AH ==,即AH AGFD ED=. 又CE CG =,则1AH DP DP AG DP AG CEFD P A P A ED P A GC ED'''=⋅=⋅=⋅⋅'''. 对△ADC ,应用梅涅劳斯定理的逆定理,知P ',G ,E 三点共线,即P '为直线EG 与FH 的交点.故点P '与点P 重合,从而PA BC ⊥.证法2 延长PA 交BC 于D ,直线PHF 与△ABD 的三边延长线都相交,直线PGE 与△ADC 的三边延长线都相交,分别应用(迭用)梅涅劳斯定理,有 1AH BF DP HB FD PA ⋅⋅=,1DP AG CEPA GC ED ⋅⋅=. 上述两式相除,则有AH BF AG CEHB FD GC ED⋅=⋅. 而HB BF =,CE GC =,于是AH AG FD ED =,即AG DEAH DF=. 连1O G ,OE ,1O A ,2O A ,2O H ,2O F ,而1O ,A ,2O 共线,则OG GC ⊥,2O H BH ⊥,且△1O AG ∽△2O AH ,从而12O A AG DEO A AH DF==,于是1AD O E ∥.故AD EF ⊥,即PA BC ⊥.【解题思维策略分析】梅涅劳斯定理是三角形几何学中的一颗明珠,它蕴含着深刻的数学美,因而它在求解某些平面几何问题,特别是某些平面几何竞赛题中有着重要的应用. 1.寻求线段倍分的一座桥梁例5 已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线交AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P .证明:△MPQ ∽△ABC .(1991年第3届亚太地区竞赛题)证明 如图1-8,延长BG 交AC 于N ,则N 为AC 的中点.由XY BC ∥,知2AX AG XB GM ==,而12NC CA =.YXGMN PQCB A图1-8对△ABN 及截线XQC ,应用梅涅劳斯定理,有1212AX BQ NC BQ XB QN CA QN ⋅⋅=⋅⋅=,故BQ QN =. 从而MQ AC ∥,且1124MQ CN AC ==.同理,MP AB ∥,且14MP AB =. 由此可知,PMQ ∠与BAC ∠的两边分别平行且方向相反,从而PMQ BAC =∠∠,且MP MQAB AC=,故MPQ ABC △∽△.例 6 △ABC 是一个等腰三角形,AB AC =,M 是BC 的中点;O 是AM 的延长线上的一点,使得OB AB ⊥;Q 是线段BC 上不同于B 和C 的任意一点,E 在直线AB 上,F 在直线AC 上,使得E ,Q ,F 是不同的和共线的,求证:(Ⅰ)若OQ EF ⊥,则QE QF =; (Ⅱ)若QE QF =,则OQ EF ⊥. (1994年第35届IMO 试题)证明 (1)如图1-9,连OE ,OF ,DC .由OQ EF ⊥,易证O ,E ,B ,Q 四点共圆,O ,C ,F ,Q 四点共圆.则 OEQ OBQ OCQ OFQ ===∠∠∠∠,因此OE OF =.故QE QF =.QCBAEFOM 图1-9(Ⅱ)由AB AC =,EQ QF =,对△AEF 及截线BQC 运用梅涅劳斯定理,有1AB EQ EC FCBE QF CA BE=⋅⋅=,即BE CF =.于是可证Rt Rt OBE OCF △≌△,得OE OF =,故OQ EF ⊥.例7 在凸四边形ABCD 的边AB 和BC 上取点E 和F ,使线段DE 和DF 把对角线AC 三等分,已知14ADE CDF ABCD S S S ==△△,求证:ABCD 是平行四边形.(1990年第16届全俄竞赛题) 证明 如图1-10,设DE ,DF 分别交AC 于P ,Q ,两对角线交于M .要证ABCD 是平行四边形,若证得AM MC =(或PM MQ =),且BM MD =即可.QFE DCB AP M 图1-10由ADE CDF S S =△△,ADP CDQ S S =△△(等底等高),知AEP CFQ S S =△△,而APCQ ,故有EF AC ∥,从而有BE BFEA FC=. 对△BAM 及截线EPD ,△BCM 及截线FQD ,分别应用梅涅劳斯定理,有 1BE AP MDEA PM DB ⋅⋅=, ① 1BF CQ MDFC QM DB ⋅⋅=.②由①,②两式相除得AP CQPM QM=. 而AP CQ =,故PM MQ =,即有AM MC =.此时,又有12ABD CBD ABCD S S S ==△△.又由14ADE ABCD S S =△,知BE EA =,于是①式可写为12111BE AP MD MDEA PM DB DB⋅⋅=⋅⋅=,即有2DB MD =,亦即BM MD =. 故ABCD 为平行四边形.2.导出线段比例式的重要途径例8 在△ABC 中,1AA 为BC 边上的中线,2AA 为BAC ∠的平分线,且交BC 于2A ,K 为1AA 上的点,使2KA AC ∥.证明2AA KC ⊥.(1997年第58届莫斯科竞赛题)证明 如图1-11,延长CK 交AB 于D ,只须证AD AC =.KA 2A 1DCBA图1-11由2AA 平分BAC ∠,有22BA AB AC A C=. ①由2KA AC ∥,有1122A K A A KA A C=. 注意到12BC AC =,对△1ABA 及截线DKC 运用梅涅劳斯定理,得 1121212A K A A AD BC AD DB CA KA DB A C =⋅⋅=⋅⋅.故1222=A A BD DA A C,由合比定理,有 1221211212222A A A C A A AC A A BA BD DA DA A C A C A C ++++===,即为 22BA AB AD A C=. ②由①,②式有AB ABAC AD=,故AC AD =. 例9 给定锐角△ABC ,在BC 边上取点1A ,2A (2A 位于1A 与C 之间),在CA 边上取点1B ,2B (2B 位于1B 与A 之间),在AB 边上取点1C ,2C (2C 位于1C 与B 之间),使得122112AA A AA A BB B ===∠∠∠ 211221BB B CC C CC C ==∠∠∠,直线1AA ,1BB 与1CC 可构成一个三角形,直线2AA ,2BB 与2CC 可构成另一个三角形.证明:这两个三角形的六个顶点共圆. (1995年第36届1MO 预选题) 证明 如图1-12,设题中所述两个三角形分别为△UVW 与△XYZ .C 1C 2B 2B 1A 2A 1UWVXYZ CBA图1-12由已知条件,有△1AC C ∽△2AB B ,△2BA A ∽△1BC C ,21CB B CA A △∽△,得 12AC ACAB AB=, 21BA AB BC BC =,21CB BCCA AC=,此三式相乘得1222111AC BA CB AB BC CA ⋅⋅=. ①对△1AA B 及截线1CUC ,△2AA C 及截线2BXB ,分别应用梅涅劳斯定理,得 11111AC BC AU UA CB C A ⋅⋅=, ② 22221A X AB CB XA B C BA ⋅⋅=, ③ ①,②,③三式相乘化简,得12AU AXUA XA =.故UX BC ∥. 同理,WX CA ∥.故1212AUX AA A BB B BWX ===∠∠∠∠.从而点X 在△UVW 的外接圆上.同理,可证得Y ,Z 也在△UVW 的外接圆上.证毕.例10 如图1-13,以△ABC 的底边BC 为直径作半圆,分别与边AB ,AC 交于点D 和E ,分别过点D ,E 作BC 的垂线,垂足依次为F ,G ,线段DG 和EF 交于点M .求证:AM BC ⊥.(IMO -37中国国家队选拔赛题)H MG FEDCA图1-13证法1 设直线AM 与BC 交于H ,连BE ,CD ,则知90BEC BDC ==︒∠∠,直线FME 与△AHC 相截,直线GMD 与△ABH 相截,迭用梅涅劳斯定理,有1AM HF CE MH FC EA ⋅⋅=,1AM HG BDMH GB DA⋅⋅=. 两式相除,得 FH CF AE BDHG CE BG AD⋅⋅=⋅⋅.在Rt △DBC 与Rt △EBC 中,有2CD BC FC =⋅,2BE BC BG =⋅,即22CF CD BG BE =.将其代入①式,得 22FH CD AE BDHG BE CE AD⋅⋅=⋅⋅. 又由△ABE ∽△ACD ,有CD ADBE AE=. 将其代入②式,得 DBC EBC S FH CD BD DF DMHG BE CE S EG MG ⋅====⋅△△,从而,MH DF ∥. 而DF BE ⊥,则MH BC ⊥,故AM BC ⊥.证法 2 作高AH ,连BE ,CD ,则90BDC BEC =⋅=∠∠,于是,sin DF BD B =⋅=∠ cos sin BC B B ⋅⋅∠∠,cos sin EG BC C C =⋅⋅∠∠. ∴ cos sin cos cos sin cos GM EG C C AB CMD FD B B AC B ⋅===⋅⋅∠∠∠∠∠∠. 又cos BH AB B =⋅∠,cos HG AE C =⋅∠, ∴cos cos cos cos BH AB B AC B HG AE C AD C ⋅⋅==⋅⋅∠∠∠∠,即BH GM AB HG MD AD ⋅=,故1BH GM DAHG MD AB⋅==.对△BGD 应用梅涅劳斯定理的逆定理,知H ,M ,A 三点共线.由AH BC ⊥,知 AM BC ⊥.例11 如图1-14,设点I ,H 分别为锐角△ABC 的内心和垂心,点1B ,1C 分别为边AC ,AB 的中点.已知射线1B I 交边AB 于点2B (2B B ≠),射线1C I 交AC 的延长线于点2C ,22B C 与BC 相交于K ,1A 为△BHC 的外心.试证:A ,I ,1A 三点共线的充分必要条件是△2BKB 和△2CKC 的面积相等.(CMO -2003试题)EB 2A 1B 1C 1C 2KFHOI DCBA图1-14分析 首先证A ,I ,1A 三点共线60BAC ⇔=︒∠.设O 为△ABC 的外心,连BO ,CO ,则2BOC BAC =∠∠.又180BHC BAC =︒-∠∠,因此,60BAC =︒∠ B ⇔,H ,O ,C 四点共圆 1A ⇔在△ABC 的外接圆O 上AI ⇔与1AA 重合A ⇔,I ,1A 三点共线.其次,再证2260BKB CKC S S BAC =⇔=︒△△∠.并在三角函数式中,用A 、B 、C 分别表示三内角. 证法 1 设△ABC 的外接圆半径为R ,CI 的延长线交AB 于D ,对△ACD 及截线12C IC ,应用梅涅劳斯定理,有12121AC CC DI C D IC C A⋅⋅=. ①注意到 112AC AB ABC D AD AC AC BC ⋅=-=-+ 22sin sin ()sin (sin sin )222()sin sin cos2C B AR AB AC BC C B A RA B AC BC B A-⋅⋅--⋅===-++,则 11sinsin22cos cos 22C B AC D C A BAC -⋅=-⋅. 而sin cos sin 22sin sin sin 22C A B B IC AC ADC C C DI AD ACD ⎛⎫-+ ⎪⎝⎭====∠∠,由①式,有2121sin2cos2B A CC CD IC C C A DI AC -=⋅=.从而 22222sincos 22cos2A BAC CC AC C AC C A⋅-==. ②又对△ACD 及截线12B IB ,应用梅涅劳斯定理,有21211AB CB DI B D IC B A⋅⋅=. 注意到11CB B A =,有22sin2cos 2C B D DI A B AB IC ==-,2222cos sin 2sin sin2222cos cos22A B C A BAB B D AD A B A B AB AB --⋅-===--,即2coscos cossin 222sin sin 2sin sin 2sin sin 2sin sin 222222A B A B A BAC B AB AD AB AB A B A B A B AC BC B A ---=⋅=⋅⋅=⋅⋅=++⋅⋅⋅cos22cos sin22B ABC A⋅⋅.从而22sincos 22cos2A C ABB AB ⋅=. ③由2222221BKB CKC ABC AB C AB AC S S S S AB AC ⋅=⇔=⇔=⋅△△△△,注意②,③24sin 12A⇔=,且A 为锐角60BAC ⇔=︒∠.证法2 如图1-14,设直线AI 交BC 于F ,直线12B B 交CB 的延长线于E .对ACF △及截线1B IE ,应用梅涅劳斯定理,有111AB CF FIB C EF IA⋅⋅=. ④又由11AB B C =及角平分线性质,即有FI CF BF BCIA CA BA AB AC===+. 令BC a =,AC b =,AB c =,则FI aIA b c=+. 由④式,有CE b c EF a +=,即EF EF aCF CE EF b c a==-+-. 而abCF b c =+,则2()()a b EF b c a b c =+-+.又ac BF b c =+,()a a c BE EF BFbc a -=-=+-(由题设知a c >). 从而 ()()EF abBE b c a c =+-. 对ABF △及截线2IB E ,应用梅涅劳斯定理,有221BB AI FE IF EB B A⋅⋅=. 将⑤式代入上式,得22BB IF BE a c B A AI EF b -=⋅=,∴ 2222AB B B AB a b cAB AB b++-==. ⑥同理2AC a c b AC c+-=. 由2222221BKB CKC ABC AB C AB AC S S S S AB AC ⋅=⇔=⇔=⋅△△△△,注意⑥,⑦1a b c a c bb c+-+-⇔⋅=⇔22260a b c bc BAC =+-⇔=︒∠.注 例11还有其他证法,可参见笔者另文《关于2003年中国数学奥林匹克第一题》(《中等数学》2003年第6期).例12 如图1-15,凸四边形ABCD 的一组对边BA 与CD 的延长线交于M ,且AD BC ∥,过M 作截线交另一组对边所在直线于H ,L ,交对角线所在直线于H ',L '.求工业化:1111MH ML MH ML +=+''. H 'L'LDCAMOH图1-15证法1 如图1-15,对ML D '△及直线BLC 由梅涅劳斯定理得 1ML L B DCLL BD CM'⋅⋅='. 对DL H '△及直线BAM 由梅涅劳斯定理得 1L M HA DBMH AD BL '⋅⋅='. 对MHD △及直线CH A '由梅涅劳斯定理得1HH MC DAH M CD AH'⋅⋅='. 由①⨯②⨯③得1ML L M HH LL MH H M''⋅⋅='', 所以HH LL MH H M ML L M ''=''⋅⋅, 所以H M MH ML ML MH H M ML L M ''--=''⋅⋅, 故1111MH ML MH HL+=+''. 证法2 设AD 与BC 的延长线相交于O .△BML 和△CML 均被直线AO 所截,迭用梅涅劳斯定理,有 BA HL OBAM MH LO=⋅,① CD HL OCDM MH LO=⋅,② 由①LC ⋅+②BL ⋅,得 BA CD HL OB LC OC BLLC BL AM DM MH LO⋅+⋅⋅+⋅=⋅.③ 注意到 OB LC OC BL BC LO ⋅+⋅=⋅(直线上的托勒密定理),则③式变为BA CDLC BL AM DM⋅+⋅= HLDC MH⋅.④ 又由BD 截△LCM 和AC 截△LBM ,迭用梅涅劳斯定理,有LL DCBC BL L M MD'⋅=⋅',LH ABBC LC H M AM'⋅=⋅'. 将此结果代入④式整理,即得欲证结论.注 当AD BC ∥,④式显然成立,故仍有结论成立.此题是二次曲线蝴蝶定理的推论. 3.论证点共直线的重要方法例13 如图1-16,△ABC 的内切圆分别切三边BC ,CA ,AB 于点D ,E ,F ,点X 是△ABC 的一个内点,△XBC 的内切圆也在点D 处与BC 边相切,并与CX ,XB 分别相切于点Y ,Z .证明:EFZY 是圆内接四边形. (1995年第36届IMO 预选题) PXYZ FE D CB A图1-16证明 由切线长定理,知CE CD CY ==,Z BF BD B ==,AF AE =,XZ XY =.设BC 的延长线与FE 的延长线交于P ,对△ABC 及截线FEP ,应用梅涅劳斯定理,有1AF BP CE AF BP CEFB PC EA EA PC FB=⋅⋅=⋅⋅XZ BP CY XZ BP CYYX PC ZB ZB PC YX=⋅⋅=⋅⋅. 对△XBC 应用梅涅劳斯定理的逆定理,知Z ,Y ,P 三点共线,故由切割线定理有2PE PF PD ⋅=,2PY PZ PD ⋅=.以而PE PF PY PZ ⋅=⋅,即EFZY 是圆内接四边形.例14 如图1-17,△ABC 中,A ∠内的旁切圆切A ∠的两边于1A 和2A ,直线12A A 与BC 交于3A ;类似地定义1B ,2B ,3B 和1C ,2C ,3C .求证:3A ,3B ,3C 三点共线.A 3图1-17证明 由切线长定理,知12AA AA =,12BB BB =,12CC CC =.对△ABC 与直线123C C C ,123A A A ,123B B B 分别应用梅涅劳斯定理,有332123213111AC AC BC CC BC C B C C C A C B C A =⋅⋅=⋅⋅,233213213111BA BA CA AA CA A C A A A B A C A B=⋅⋅=⋅⋅,332123213111CB CB AB BB AB B A B B B C B A B C=⋅⋅=⋅=. 上述三式相乘,有333111111333222222AC BA CB AC A B B C AC A B B CC B A C B A BC CA AB CA AB BC ⋅⋅=⋅⋅=⋅⋅. 设3O 切AB 于K ,2O 切AC 于L ,则由12BB BB =,可得21221()2BC BK B C KB ==-.同理11211()2B C CL B C LC ==-.又由两内公切线长相等,即21KB LC =,故21BC B C =.同理,21CA AC =,21AB A B =.从而3333331AC BA CB C B A C B A⋅⋅=,故对△ABC 用梅涅劳斯的逆定理,知3A ,3B ,3C 三点共直线. 例15 如图1-18,设△ABC 的三边BC ,CA ,AB 所在的直线上的点D ,E ,F 共线,并且直线AD ,BE ,CF 关于A ∠,B ∠,C ∠平分线的对称直线AD ',BE ',CF '分别与BC ,CA ,AB 所在直线交于D ',E ',F ',则D ',E ',F '也共线.D 'F'E'F EDC BA图1-18证明 对ABC ∠及截线FED 应用第一角元形式的梅涅劳斯定理,有sin sin sin 1sin sin sin BAD CBE ACFDAC EBA FCB ⋅⋅=∠∠∠∠∠∠.由题设知,CAD BAD '=∠∠,D AB DAC '=∠∠,BCF ACF '=∠∠,F CA FCB '=∠∠,ABE CBE '=∠∠,E BC EBA '=∠∠,从而有sin sin sin 1sin sin sin CAD ABE BCF D AB E BC F CA '''⋅⋅='''∠∠∠∠∠∠,即sin sin sin 1sin sin sin BAD CBE ACF D AC E BA F CB'''⋅⋅='''∠∠∠∠∠∠. 故由第一角元形式的梅涅劳斯定理,知D ',E ',F '共线.例16 在筝形ABCD 中,AB AD =,BC CD =.过BD 上的一点P 作一条直线分别交AD 、BC 于E 、F ,再过点P 作一条直线分别交AB 、CD 于G 、H .设GF 与EH 分别与BD 交于I 、J ,求证:PI PJPB PD=. 证明 如图1-19,过B 作AD 的平行线交直线EF 于E ',再过B 作CD 的平行线交直线GH 于H ',则E BP EDP PBG '==∠∠∠,HBPHDP PBF '==∠∠∠. H 'E'PDCBAHF EG 图1-19进而H BG H BP GBP PBF PBE E BF ''''=-=-=∠∠∠∠∠∠.所以 sin sin sin sin sin sin 1sin sin sin sin sin sin PBH GBI FBE FBP GBP FBE H BG IBF E BP E BF PBF PBG'''⋅⋅=⋅⋅='''∠∠∠∠∠∠∠∠∠∠∠∠.又H '、I 、E '分别为△PGF 三边所在直线上的点,且点B 不在△PGF 三边所在的直线上.由第二角元形式的梅涅劳斯定理的逆定理知H '、I 、E '共线.于是,由PBE PDE '△∽△,PH B PHD '△∽△.有E H EH ''∥.因此,PI PE PB PJ PE PD '==.故PI PJPB PD=. 注 当PB PD =,P 为BD 中点时,即为1989年12月冬令营选拔赛试题.例17 如图1-20,四边形ABCD 内接于圆,其边AB ,DC 的延长线交于点P ,AD 和BC 的延长线交于点Q ,过Q 作该圆的两条切线,切点分别为E ,F .求证:P ,E ,F 三点共线.(1997年CMO 试题)Q图1-20证明 设圆心为O ,连QO 交EF 于L ,连LD ,LA ,OD ,OA ,则由切割线定理和射影定理,有 2QD QA QE QL QO ⋅==⋅,从而D ,L ,O ,A 四点共圆,即有QLD DAO ODA OLA ===∠∠∠∠,亦即OL 为△LAD 的内角ALD ∠的外角平分线. 又EF OQ ⊥,则EL 平分ALD ∠. 设EF 分别交AD ,BC 于M ,N ,于是DM DL DQMA AL AQ==. 同理,CN CQBN BQ=. 于是,DM AM AM DM AD DQ AQ AQ DQ DQ AQ +===++,CN BN BCCQ BQ BQ CQ==+, 所以,211MQ DQ DQ DA AQ DM DM AD AD +=+=+=,2QN BQCN BC=. 直线PBA 与△QCD 的三边延长线相交,由梅涅劳斯定理,有1CP DA QB CP DM QNPD AQ BC PD MQ CN=⋅⋅=⋅⋅. 对△QCD 应用梅涅劳斯定理的逆定理,知P ,M ,N 三点共线.所以P ,E ,F 三点共线.注 此例的其他证法,可参见第二章例9,第九章例15等.例18 已知△ABC 的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,线段BE 、CF 分别与该内切圆交于点P 、Q ,若直线FE 与BC 交于圆外一点R .证明P 、Q 、R 三点共线.(2011年香港奥林匹克题)证明 如图1-21,由切线长定理有AE AF =.对△ABC 及截线EFR 应用梅涅劳斯定理,有1AF BR CEFB RC EA⋅⋅=,RFEDCBAPQ S 图1-21即有BR EA FB FBRC CE AF CE=⋅=. 设BE 与CF 交于点S ,由△EFC ∽△QEC ,△FEB PFB ∽△,△SEQ ∽△SFP ,有CQ CEEQ EF=,FP FE PB FB=,SP FP SQ EQ =. 又对△SBC 及所在边上的点R 、P 、Q ,有SP BR CQ SP CQ BR FP CQ FB FP CQ FBPB RC QS SQ PB RC EQ PB CE PB QE CE⋅⋅=⋅⋅=⋅⋅=⋅⋅1FE CE FBFB EF CE=⋅⋅=. 于是,由梅涅劳斯定理的逆定理,知P 、Q 、R 三点共线. 4.注意与其他著名定理配合运用例19 在Rt △ABC 中,已知90A =︒∠,B C >∠∠,D 是△ABC 处接圆的圆心,直线A l 、B l 分别切O 于点A 、B ,BC 与直线A l 、AC 与直线B l 分别交于点S 、D ,AB 与DS 交于点E ,CE 与直线Al 交于点T ,又设P 是直线A l 上的点,且使得A EP l ⊥,Q (不同于点C )是CP 与O 的交点,R 是QT 与O 的交点,令BR 与直线A l 交于点U . 证明:22SU SP SA TU TP TA ⋅=⋅.(2005年韩国奥林匹克题)证明 如图1-22,设BA 的延长线与O (过C 点)的切线交于点E '.由帕斯卡定理知S 、D 、E '三点共线,从而点E '与E 重合.图1-22由切割线窄弹知 2TA TR TQ =⋅,2SA SB SC =⋅.所以,22SA SB SCTA TR TQ⋅=⋅. ①设TQ 与CB 交于点X ,对△XTS 及截线RBU ,截线QCP 分别应用梅涅劳斯定理,有1XP TU SBRT US BX⋅⋅=,=1XQ TP SC QT PS CX ⋅⋅. ② 注意相交弦定理,有XP XQ XB XC ⋅=⋅.③由①、②、③,得 22SU SP XP SB XQ SC SB SC SA TU TP RT BX QT CX TR TQ TA ⋅=⋅⋅⋅=⋅=. 例20 在梯形ABCD 中,已知BC 、AD 分别为上、下底,F 为腰CD 上一点,AF 与BD 交于点E ,G 为边AB 上一点,满足EG AD ∥,CG 与BD 交于点H ,FH 与AB 交于点I .证明:CI 、FG 、AD 三线共点. (2011年乌克兰奥林匹克题) 证明 如图1-23,设直线AB 与DC 、AF 与DG 分别交于点S 、T .SD图1-23先证S 、H 、T 三点共线.由EG AD BC ∥∥,知△ATP ETG ∽△,△GHE CHB ∽△,△ASD ∽△BSC .有,,AT AD EH GE BC BSTE EG HB CB AD AS ===. 上述三式相乘,有 1AT EH BS AD GE CBTE HB SA EG CB AD⋅⋅=⋅⋅=. 对△AES 应用梅涅劳斯定理的逆定理,知T 、H 、S 三点共线.考虑△AFI 和△DGC ,注意到直线IF 与CG ,FA 与GD 、AI 与DC 分别交于点H 、T 、S ,于是由戴沙格定理,知CI 、FG 、AD 三线共点.【模拟实战】习题A1.在△ABC 中,点D 在BC 上,13BD DC =,E ,G 分别在AB ,AD 上,23AE EB =,12AG GD =,EG 交AC 于点F ,求AFFC. 2.在ABCD 中,E ,F 分别是AB ,BC 的中点,AF 与CE 相交于G ,AF 与DE 相交于H ,求AH ∶HG ∶GF .3.P 是△ABC 内一点,引线段APD ,BPE 和CPF ,使D 在BC 上,E 在AC 上,F 在AB 上.已知6AP =,9BP =,6PD =,3PE =,20CF =,求△ABC 的面积.(第7届AIME 题) 4.设凸四边形ABCD 的对角线AC 和交于点M ,过M 作AD 的平行线分别交AB ,CD 于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点,求证:OPF OEP =∠∠.(1996年全国初中联赛题)5.已知D ,F 分别是△ABC 的边AB ,AC 上的点,且23AD DB CF FA ==∶∶∶,连DF 交BC 边的延长线于点E ,求EF FD ∶.6.设D 为等腰Rt △ABC (90C =︒∠)的直角边BC 的中点,E 在AB 上,且21AE EB =∶∶,求证:CE AD ⊥.7.在△ABC 中,点M 和N 顺次三等分AC ,点X 和Y 顺次三等分BC ,AY 与BM ,BN 分别交于点S ,R ,求四边形SRNM 与△ABC 的面积之比.8.E ,F ,G ,H 分别为四边形ABCD 的四条边AB ,BC ,CD ,DA 上的点,若EH ,BD ,FG 三直线共点,则EF ,AC ,HG 三直线共点或平行.9.设X ,Y ,Z 分别是△ABC 的边CB ,CA 和BA 延长线上的点,又XA ,YB 和ZC 分别是△ABC 外接圆的切线.证明:X ,Y ,Z 三点共线. (1989年新加坡竞赛题) 10.求证:三角形两角的平分线与第三角的外角平分线各与对边所在直线的交点共线.11.已知直径为AB 的圆和圆上一点X ,设A t ,B t 和X t 分别是这个圆在A ,B ,X 处的切线.设Z 是直线AX 与B t 的交点,Y 是直线BX 与A t 的交点,证明:YZ ,X t ,AB 三直线共点.(第6届加拿大竞赛题)12.P 是ABCD 中任一点,过P 作AD 的平行线分别交AB ,CD 于E ,F ,又过P 作AB 的平行线,分别交AD ,BC 于G ,H .求证:AH ,CE ,DP 三线共点.13.在△ABC 中,1AA 为中线,2AA 为角平分线,K 为1AA 上的点,使2KA AC ∥.证明:2AA KC ⊥. (第58届莫斯科奥林匹克题) 14.直线l 交直线OX ,OY 分别于A ,B ,点C 与D 是线段AB 两侧的直线l 上两点,且CA DB =.过C 的直线CKL 交OX 于K ,交OY 于L ;过D 的直线交OX 于M ,交OY 于N .连结ML 和KN ,交直线l 分别于E ,F .求证:AE BF =.15.设四边形ABCD 外切于一圆,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的切点,若直线HE 与DB 相交于点M ,则M ,F ,G 三点共线.16.设P 为△ABC 的内点,过点P 的直线l ,m ,n 分别垂直于AP ,BP ,CP ,若l 交BC 于Q ,m 交AC 于R ,n 交AB 于S ,证明:Q ,R ,S 共线. (IMO -28预选题) 17.已知△ABC 的BC 与它的内切圆相切于点F .证明:该圆的圆心O 在BC 与AF 的两个中点M ,N 的连线上.18.已知凸四边形ABCD 内接于O ,对角线AC ,BD 相交于点Q ,过Q 分别作直线AB ,BC ,CD ,DA 的垂线,垂足分别是E ,F ,G ,H .求证:EH ,BD ,FG 三直线共点或互相平行.19.设ABCD 为圆外切四边形,又AB ,BC ,CD ,DA 与该圆的切点为E ,F ,G ,H .求证:AC ,BD ,EG ,FH 共点.习题B1.P 是ABCD 内一点,MN ,EF 分别过P ,MN AD ∥且分别与AB ,CD 交于点M ,N ,EF AB ∥且分别与DA ,BC 交于点E ,F .求证:ME ,FN ,BD 三线共点. 2.在△OAB 中,AOB ∠为锐角,从AB 上任一点M 作MP OA ⊥于P ,MQ OB ⊥于Q ,点H 是△OPQ 的垂心,求当点M 在线段AB 上移动时,点H 的轨迹. (IMO -7试题) 3.在正△ABC 的边BC ,CA ,AB 上有内分点D ,E ,F 将边分成3∶(3)(6)n n ->,线段AD ,BE ,CF 相交所成的△PQR (BE 交AD 于P ,交FC 于Q )是△ABC 的面积的449时,求n 的值. (1992年日本奥林匹克预选题)4.在△ABC 中,90A =︒∠,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F .若BE ∶2ED AC =∶DC ,则ADB FDC =∠∠.5.已知点E ,1D ,2D 在△ABC (AB AC >)的边BC 上,12BAD CAD =∠∠,11EF AD ∥交AB 于1F ,又与CA 的延长线交于1C ,22EF AD ∥交AB 于2F ,又与CA 的延长线交于2G .求证:212212BF BF BE CE CG CG ⋅=⋅.(《数学通报》问题1353题)6.圆外切四边形ABCD 中,AB ,BC ,CD ,DA 边上的切点分别为P ,Q ,R ,S .AD 与BC 的延长线交于点E ,AB 与DC 延长线相交于点F .求证:(Ⅰ)AC ,BD ,PR ,QS 四线共点;(Ⅱ)AC ,EF ,PQ ,RS 四线共点;(Ⅲ)BD ,EF ,PS ,QR 四线共点(假定BD EF ≠). 7.若凸四边形的对角线AC 与BD 互相垂直,且相交于E ,过E 点分别作边AB ,BC ,CD ,DA 的垂线,垂足依次为P ,Q ,R ,S ,并分别交CD ,DA ,AB ,BC 边于P ',Q ',R ',S ',再顺次连接P Q '',Q R ''.R S '',S P '',则R S P Q AC ''''∥∥;R Q P S BD ''''∥∥.(IMO -22试题的推广)8.面积为1的△ABC 的边AB ,AC 上分别有点D ,E ,线段BE ,CD 相交于点P .点D ,E 分别在AB ,AC 上移动,但满足四边形BCED 的面枳是△PBC 面积的两倍这一条件,求△PDE 面积的最大值. (1992年日本奥林匹克题) 9.ABCD 是边长为2的正方形,E 为AB 的中点,F 是BC 的中点,AF 和DE 相交于I ,BD 和AF 相交于H .求四边形BEIH 的面积.10.P 是凸四边形ABCD 所在平面上一点,APB ∠,BPC ∠,CPD ∠,DPA ∠的平分线分别交AB ,BC ,CD ,DA 于点K ,L ,M ,N .(Ⅰ)寻找一点P ,使KLMN 是平行四边形;(Ⅱ)求所有这样的P 点的轨迹. (1995年世界城市际联赛题) 11.△ABC 中,AB AC >,AD 为内角平分线,点E 在△ABC 的内部,且EC AD ⊥,ED AC ∥,求证:射线AE 平分BC 边. (《数学教学》问题536题) 12.设△123A A A 为非等腰三角形,内心为I ,i C (1i =,2,3)为过I 与1i i A A +和2i i A A +相切的小圆(增加的下标作模3同余),i B (1i =,2,3)为圆1i C +和2i C +的另一交点,证明:△11A B I ,△22A B I ,△33A B I 的外心共线.(IMO -38预选题)第一章 梅涅劳斯定理及应有习题A1.延长CB ,FE 交于H ,ADB △与截线GEH ,有13122AG DH BE DH GD HB EA HB ⋅⋅=⋅⋅=,有43DH HB =,即74CH HD =.对ACD △及截线FGH ,72141AF CH DG AF FC HD GA FC ⋅⋅=⋅⋅=,求得27AF FC =. 2.设CB ,DE 的延长线交于P ,又BP BC =,32FP PB =,对AFB △与截线HEP ,CGE ,有31121AH FP BE AH GF PB EA HF ⋅⋅=⋅⋅=,即23AH HF =;11121AG FC BE AG GF CB EA GF ⋅⋅=⋅⋅=,即21AG GF =.由此求得645AH HG GF =∶∶∶∶.3.对BDP △于截线CEA ,有1231612BC DA PE BC CD AP EA CD ⋅⋅=⋅⋅=,知BD DC =.对CDP △与截线BFA ,有22111CB DA PF PF BD AP FC FC ⋅⋅=⋅⋅=,知14PF FC =.而20CF =,故15CP =. 在PBC △中,由中线长公式2PD =,得2BC =,即BD =.又22222269BP PD BD +=+==,即90BPD ∠=︒,27PBD S =△,4108ABC PBD S S ==△△.4.直线OCB 分别与DMF △和AEM △的三边延长线都相交,有1DB MO FC MB FO DC ⋅⋅=,1AB EO MCEB MO AC⋅⋅=,即OF OE DB FC EB AC OM OM MB DC AB MC ⋅⋅⋅=⋅⋅⋅.由EF AD ∥,有DB AB MB EB =,FC MC DC AC =,从而21OF OE OM ⋅=,即22OF OE OM OP ⋅==,有OFP OPE △∽△,故OPF OEP ∠=∠.5.直线截ABC △,有22133CF AD BE BE FA DB EC EC ⋅⋅=⋅⋅=,即94BE EC =,故54BC CE =.直线截DBE △,有25154EF AD BC EF FD AB CE ED ⋅⋅=⋅⋅=,所以21EF FD =∶∶. 6.设AC BC x ==,则AB =,。

相关文档
最新文档