高中物理电磁场知识点
电磁场公式总结

电磁场公式总结
整理了高考物理公式大全,所有公式均按知识点分类整理,有助于帮助大家集中掌握
高中物理公式考点。
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位t),1t=1n/a m
2.安培力f=bil;(备注:l⊥b) {b:磁感应强度(t),f:安培力(f),i:电流强度(a),l:导线长度(m)}
3.洛仑兹力f=qvb(注v⊥b);质谱仪〔见第二册p〕 {f:洛仑兹力(n),q:带电粒子电
量(c),v:带电粒子速度(m/s)}
4.在重力忽略不计(不考量重力)的情况下,带电粒子步入磁场的运动情况(掌控两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动v=v0
(2)带电粒子沿横向磁场方向步入磁场:搞匀速圆周运动,规律如下a)f向=f洛
=mv2/r=mω2r=mr(2π/t)2=qvb;r=mv/qb;t=2πm/qb;(b)运动周期与圆周运动的半径和线
速度毫无关系,
洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、
圆心角(=二倍弦切角)。
备注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的`
正负;
(2)磁感线的特点及其常用磁场的磁感线原产必须掌控〔见到图及第二册p〕高中自
学方法;(3)其它有关内容:地磁场/磁电式电表原理〔见到第二册p〕/转盘加速器〔见到
第二册p〕/磁性材料。
高中物理知识点总结:磁场 电磁感应

磁场1.磁场:磁场是存在于磁体、电流周围的一种物质(1)磁场的基本特点:磁场对处于其中的磁体、电流有力的作用.(2)磁场方向的三种判断方法:a.小磁针N极受力的方向。
b.小磁针静止时N极的指向。
c.磁感线的切线方向.2.磁感线(1)在磁场中人为地画出一系列曲线,磁感线上某一点的切线方向也表示该点的磁场方向。
曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交,不相切。
(3)几种典型磁场的磁感线的分布: 右手螺旋定则判定通电直导线、环形电流、通电螺线管周围的磁场分布①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L 的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A·m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。
(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。
(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。
4.磁场力:F=BILsinθ(θ为B与I的夹角),只要求B∥I,B⊥I两种情况;注意:只有电流和磁场之间有一定夹角时,磁场力才不为0。
高中物理电磁场基础知识学习笔记

高中物理电磁场基础知识学习笔记电磁场是高中物理中的一个重要概念,理解和掌握电磁场的基础知识对于学生的物理学习至关重要。
本文将通过分析性论述的方式,结合具体操作方法和实例,深入探讨高中物理电磁场基础知识的学习笔记。
一、电磁场的概念与特性在学习电磁场的基础知识时,首先需要了解电磁场的概念和特性。
电磁场是由电荷和电流所产生的物理现象,它包括静电场和磁场两个方面。
静电场是由静止电荷所产生的场,而磁场则是由运动电荷所产生的场。
电磁场具有电场线和磁力线两种方式来表示。
学生可以通过实验来直观地了解电磁场的概念和特性。
例如,可以通过将一个带正电的塑料棒靠近一个小金属球,观察小金属球受到的吸引力,从而感受到电场的作用;又如,可以通过将一个带电流的螺线管靠近一个小磁针,观察小磁针的偏转情况,从而感受到磁场的作用。
二、电场的性质和计算了解电场的性质和计算方法对于学生掌握电磁场的基础知识至关重要。
电场具有电势、电场强度和电场线三个重要性质。
1. 电势:电势是用来描述电场中每个位置的电位能的大小。
学生可以通过计算电荷在电场中的电势差来理解电势的概念。
例如,可以计算一个带正电的点电荷在两个位置之间的电势差,从而了解电势的计算方法。
2. 电场强度:电场强度是描述电场中电荷受力大小和方向的物理量。
学生可以通过计算电荷在电场中受到的力大小和方向来理解电场强度的概念。
例如,可以计算一个带正电的点电荷在某一位置上的电场强度,从而了解电场强度的计算方法。
3. 电场线:电场线是用来表示电场的方向和强度的曲线,它的方向与电场强度方向相一致。
学生可以通过绘制电场线图来了解电场的分布情况和特点。
例如,可以绘制一个带正电的点电荷所产生的电场线图,从而了解电场线的绘制方法。
三、磁场的特性和计算在掌握了电场的基础知识后,学生还需要学习磁场的特性和计算方法。
磁场具有磁感应强度、磁通量和安培力三个重要性质。
1. 磁感应强度:磁感应强度是描述磁场中磁力大小和方向的物理量。
高中物理电磁场公式总结

高中物理电磁场公式总结电磁场是物理学中重要的研究对象之一,它描述了空间中电荷和电流产生的电场和磁场之间的相互作用。
在高中物理学习中,我们需要掌握一些关键的电磁场公式,这些公式可以帮助我们理解电磁现象并进行相关计算。
下面将总结一些高中物理电磁场常用的公式。
电场相关公式1.电场强度公式:$$\\vec{E} = \\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\hat{r}$$2.其中,$\\vec{E}$为电场强度,$\\epsilon_0$为真空介电常数,q为电荷量,r为距离,$\\hat{r}$为单位矢量。
3.电场中电势能公式:U=qV4.其中,U为电荷在电场中的电势能,q为电荷量,V为电场中的电势。
5.电场中电势公式:$$V = \\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r}$$6.其中,V为电场中的电势。
磁场相关公式1.磁感应强度公式:$$\\vec{B} = \\mu_0 \\mu_r \\vec{H}$$2.其中,$\\vec{B}$为磁感应强度,$\\mu_0$为真空磁导率,$\\mu_r$为相对磁导率,$\\vec{H}$为磁场强度。
3.洛伦兹力公式:$$\\vec{F} = q(\\vec{v} \\times \\vec{B})$$4.其中,$\\vec{F}$为洛伦兹力,q为电荷量,$\\vec{v}$为电荷运动速度,$\\vec{B}$为磁感应强度。
5.安培环路定理:$$\\oint \\vec{H} \\cdot d\\vec{l} = I_{enc}$$6.其中,$\\vec{H}$为磁场强度,I enc为通过曲线围成的面积的电流。
以上是高中物理电磁场公式的部分总结,通过学习和掌握这些公式,我们可以更好地理解电磁现象,进行相关的计算和分析。
在实际应用中,也可以根据具体情况结合这些公式进行问题求解,进一步深化对电磁场的理解和应用。
高中物理知识点电磁场问题

高中物理知识点电磁场问题在高中物理中,电磁场是一个重要的知识点。
电磁场是由电荷在空间中产生的作用力而形成的一种理论模型。
它描述了带电粒子周围的电场和磁场的相互作用,是电磁学的基础。
本文将从电磁场的基本概念、磁场的特性、电流产生的磁场、电磁感应和电磁波等方面进行讲解。
一、电磁场的基本概念电磁场是指空间中存在的电场和磁场。
电场是由电荷体系周围存在的一种力场,可以描述电荷体系对周围电荷的作用力。
磁场则是由运动电荷所产生,它的特点是具有方向性和旋转性。
在电磁场中,电荷体系通过它所引发的电场和磁场相互作用。
二、磁场的特性磁场是运动电荷所产生的场,是由电流所产生的磁荷形成的。
磁场具有方向性和旋转性。
磁感线是表示磁场的线,磁场的强度可以通过磁感线密度表示。
在磁场中,磁场的力是与磁场的磁通量密度和电流成正比的,与导线长度成反比的。
三、电流产生的磁场当电流通过通电线圈时,会形成一个磁场,这就是电流产生的磁场。
电流产生的磁场的强度与电流的大小、导线的长度和线圈的匝数有关,可以通过安培定律来描述。
磁场的方向与电流的方向相垂直,在通电线圈中形成环状的磁感线。
四、电磁感应电磁感应是指时间变化的磁场能够诱发通过导体中的电流。
电磁感应是电磁场的一个重要应用,它是产生电动势的基础。
最著名的电磁感应效应是法拉第电磁感应定律,它描述了磁场的变化导致的感应电动势大小与磁场的变化率成正比。
五、电磁波电磁场的重要表现形式是电磁波。
电磁波是指电场与磁场的振荡所产生的波动,是光学、通信和雷达等现代科学技术的基础。
电磁波的特点是可以传播,它的速度是真空中的光速。
综上所述,电磁场是一个重要的物理概念,涉及到电场、磁场、电流产生的磁场、电磁感应和电磁波等方面。
理解电磁场理论是在物理学中学习和研究电磁学、电学等其他知识的基础。
(完整版)高中物理电磁学知识点

二、电磁学(一)电场 1、库仑力:221r q q kF = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。
定义式: qFE =单位: N / C 点电荷电场场强 rQ k E = 匀强电场场强 dU E =3、电势,电势能:qEA 电=ϕ,A q E ϕ=电 顺着电场线方向,电势越来越低。
4、电势差U ,又称电压 qWU =U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 221mv qU =7、粒子通过偏转电场的偏转量:2022022212121V L md qU V L m qE at y === 粒子通过偏转电场的偏转角 20mdv qULv v tg xy ==θ 8、电容器的电容:c Q U=电容器的带电量: Q=cU 平行板电容器的电容: kdS c πε4= 电压不变 电量不变(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,)2、电阻定律:电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。
单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3电压分配2121R R U U =,U R R R U 2111+=功率分配 2121R R P P =,P R R R P 2111+=4、并联电路总电阻: 3211111R R R R++= (并联的总电阻比任何一个分电阻小)两个电阻并联 2121R R R R R +=并联电路电流分配 1221I R I R =,I 1=I R R R 212+ 并联电路功率分配 1221R R P P =,P R R R P 2121+=5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR(2)闭合电路欧姆定律:I =rR E+ Ir U E += E r 路端电压:U = E -I r= IR输出功率:= IE -I r =(R = r 输出功率最大) R电源热功率:电源效率:=EU= R R+r 6、电功和电功率: 电功:W=IUt焦耳定律(电热)Q=电功率 P=IU纯电阻电路:W=IUt=P=IU非纯电阻电路:W=IUt >P=IU >Sl R ρ=(三)磁场1、磁场的强弱用磁感应强度B 来表示: IlFB =(条件:B ⊥L )单位:T 2、电流周围的磁场的磁感应强度的方向由安培(右手)定则决定。
高中电磁场公式汇总

高中电磁场公式汇总在高中物理中,电磁场是一个重要的概念。
它描述了电荷的运动和相互作用的方式,并且在日常生活中有很多应用。
下面是一些常见的电磁场公式:1.充电粒子的电场强度:E = k * Q / r^2其中,E是电场强度(单位是伏特/米),k是电力常数(9.0 * 10^9 N * m^2 /C^2),Q是充电粒子的电荷(单位是库仑),r是充电粒子到观察点的距离(单位是米)。
2.静电场能量密度:u = 1/2 * ε * E^2其中,u是能量密度(单位是焦耳/平方米),ε是真空介电常数(8.85 * 10^-12F/m),E是电场强度(单位是伏特/米)。
3.电动势:ΔV = E * d其中,ΔV是电动势(单位是伏特),E是电场强度(单位是伏特/米),d是电荷在电场中的位移(单位是米)。
4.电动势能:U = Q * ΔV其中,U是电动势能(单位是焦耳),Q是电荷(单位是库仑),ΔV是电动势(单位是伏特)。
5.电动势功率:P = U / t其中,P是电动势功率(单位是瓦),U是电动势能(单位是焦耳),t是时间(单位是秒)。
6.电容电压:V = Q / C其中,V是电容电压(单位是伏特),Q是电容器内的电荷(单位是库仑),C是电容(单位是库仑/伏特)。
7.电容电流:I = C * dV/dt其中,I是电流(单位是安培),C是电容(单位是库仑/伏特),dV/dt是电容电压的时间导数(单位是伏特/秒)。
8.电感电压:V = L * di/dt其中,V是电感电压(单位是伏特),L是电感(单位是亨利),di/dt是电感电流的时间导数(单位是安培/秒)。
9.电感电流:I = 1/L * ∫V dt其中,I是电流(单位是安培),L是电感(单位是亨利),V是电感电压(单位是伏特),∫V dt是电感电压的时间积分(单位是伏特*秒)。
10.磁场强度:B = μ * I / (2πr)其中,B是磁场强度(单位是牛顿/伏特),μ是真空磁导率(4π * 10^-7 牛顿/伏特),I是电流(单位是安培),r是观察点到电流的距离(单位是米)。
高中物理电磁学知识点总结

高中物理电磁学知识点总结高中物理电磁学知识点总结一、重要概念和规律(一)重要概念1.两种电荷、电量(q)自然界只存在两种电荷。
用丝绸摩擦过的玻璃棒上带的电荷叫做正电荷,用毛皮摩擦过的硬橡胶棒上带的电荷叫做负电荷。
注意:两种物质摩擦后所带的电荷种类是相对的。
电荷的多少叫电量。
在SI 制中,电量的单位是C(库)。
2.元电荷、点电荷、检验电荷元电荷是指一个电子所带的电量e=1.610-19C。
点电荷是指不考虑形状和大小的带电体。
检验电荷是指电量很小的点电荷,当它放入电场后不会影响该电场的性质。
3.电场、电场强度(E)、电场力(F)电场是物质的一种特殊形态,它存在于电荷的周围空间,电荷间的相互作用通过电场发生。
电场的基本特性是它对放入其中的电荷有电场力的作用。
电场强度是反映电场的力的性质的物理量。
描述电场强度有几种方法。
其一,用公式法定量描述;定义式为E=F/q,适用于任何电场。
真空中的点电荷的场强为E=kq/r2。
匀强电场的场强为E=U/d。
要注意理解:①场强是电场的一种特性,与检验电荷存在与否无关。
②E 是矢量。
它的方向即电场的方向,规定场强的方向是正电荷在该点受力的方向。
③注意区别三个公式的物理意义和适用范围。
④几个电场叠加计算合场强时,要按平行四边形法则求其矢量和。
其二,用电场线形象描述:电场线的密(疏)程度表示场强的强(弱)。
电场线上某点的切线方向表示该点的场强方向。
匀强电场中的电场线是方向相同、距离相等的互相平行的直线。
要注意:a.电场线是使电场形象化而假想的线.b.电场线起始于正电行而终止于负电荷。
c.电场中任何两条电场线都不相交。
电场力是电荷间通过电场相互作用的力。
正(负)电荷受力方向与E的方向相同(反)。
4.电势能(B)、电势(U)、电势差(UAB)电势能是电荷在电场中具有的势能。
要注意理解:①物理意义;电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功。
②电势能是相对的,通常取电荷在无限远处的电势能为零,这样,电势能就有正负。
带电粒子在电磁场中的运动-高中物理专题(含解析)

带电粒子在电磁场中的运动-高中物理专题(含解析)引言本文将讨论带电粒子在电磁场中的运动,涉及到相关的物理概念和解析。
我们将从基本的概念开始,逐步深入探讨。
电磁场的基本概念电磁场是由电荷和电流所产生的。
对于静电场而言,电磁场的作用是通过电荷之间的相互作用传递力;而对于电流产生的磁场来说,电磁场的作用是通过磁力线的变化传递力。
在电磁场中,带电粒子受到电磁力的作用而运动。
带电粒子在电磁场中的运动方程带电粒子在电磁场中的运动方程可以由洛伦兹力得出。
洛伦兹力是指带电粒子在电磁场中所受的力,其方向垂直于粒子速度和磁场方向的平面。
洛伦兹力的大小与带电粒子的电荷量、速度以及磁场的强度有关。
带电粒子在电磁场中的运动方程可以表示为:F = q(E + v × B)其中,F是带电粒子所受的力,q是带电粒子的电荷量,E是电场强度,v是带电粒子的速度,B是磁场强度。
带电粒子在电磁场中的运动类型带电粒子在电磁场中的运动类型有很多种。
根据粒子速度和磁场方向的关系,可以将其分为以下几种情况:1. 带电粒子在电磁场中做匀速直线运动。
2. 带电粒子在电磁场中做匀速圆周运动。
3. 带电粒子在电磁场中做螺旋运动。
实例解析下面我们通过一个实例来解析带电粒子在电磁场中的运动。
假设我们有一个带正电荷的粒子,处于一个均匀磁场和一个均匀电场中。
该粒子以速度v在电场和磁场的交叉方向上运动。
根据洛伦兹力公式,该粒子在电磁场中所受的合力为:F = q(E + v × B)其中q为粒子的电荷量,E为电场强度,B为磁场强度。
根据合力的方向,我们可以确定粒子在电磁场中的运动类型。
具体的运动轨迹可通过求解运动方程得到。
结论带电粒子在电磁场中的运动是由洛伦兹力所驱动的。
根据粒子速度和磁场方向的关系,带电粒子可以做匀速直线运动、匀速圆周运动或螺旋运动。
通过解析带电粒子在电磁场中的运动,我们可以更好地理解电磁场对粒子的影响,为相关领域的研究和应用提供基础知识。
高中物理麦克斯韦电磁场理论知识点

高中物理麦克斯韦电磁场理论知识点麦克斯韦电磁场理论是电磁学中的一个关键理论,涉及到电场和磁场之间的相互作用和传播。
在高中物理中,学生需要学习和掌握一些关键的知识点,以增强对这一理论的理解和掌握。
1. 麦克斯韦方程组麦克斯韦电磁场理论的核心是麦克斯韦方程组,这是一组基本的方程,描述了电场和磁场的本质。
这个方程组是由四个方程组成的,分别是高斯定理,安培定理,法拉第电磁感应定律和法拉第电磁感应定律的修正式。
这些方程可以通过微分形式或积分形式来表示,在求解电磁场问题时非常有用。
2. 电磁波麦克斯韦电磁场理论认为,电场和磁场是互相作用和传播的,这导致了电磁波的产生。
电磁波是一种纵波和横波都存在的波动,可以在真空中传播,并且速度为光速。
电磁波在物理和工程领域有着广泛的应用,包括通信、雷达、卫星导航和医学成像等。
3. 电磁场的能量电磁场不仅可以传递信息和能量,而且本身也会存在一些能量。
在麦克斯韦电磁场理论中,电磁场能量的密度可以通过电场和磁场的强度来计算。
这种能量密度是一个关键的物理量,可以用来研究电磁波的能量传输特性和电磁场的相互作用。
4. 电磁场中的粒子运动电磁场是一种广泛存在于自然界和技术应用中的现象,对不同类型的粒子运动都会产生影响。
在麦克斯韦电磁场理论中,通过研究电磁场中电荷粒子的运动,可以了解电荷的受力情况、电子的轨道和磁场旋转等重要信息。
这些知识对理解电子运动和磁场控制技术有着重要的意义。
5. 电磁场中的介质在电磁波传输过程中,会存在一些介质的影响,包括介电常数和磁导率等。
这些物质特性对电磁场的传播速度和方向都有着重要的影响。
在麦克斯韦电磁场理论中,学生需要了解介质对电磁场的影响,以帮助他们更好地理解电磁波的传输特性。
6. 电磁场的量子特性在量子力学中,电子被认为是以粒子和波动的双重性质存在的。
电磁场同样也存在量子特性,可作为光子体现。
在麦克斯韦电磁场理论中,学生需要了解电磁场的量子特性和其在物理学和工程方面的应用,以更好地理解电磁学的本质。
高中物理电磁学知识点归纳

高中物理电磁学知识点归纳电磁学作为高中物理课程的重要内容之一,涉及到许多基础知识和理论。
在学习电磁学的过程中,了解并掌握相关知识点对于理解更深层次的原理和应用至关重要。
下面将对高中物理电磁学的一些重要知识点进行归纳总结。
1. 电荷与电场电荷是电磁学的基本概念之一,分为正电荷和负电荷。
同种电荷相互排斥,异种电荷相互吸引。
在空间中,带电体会产生电场,电场是描述电荷间作用力的物理量。
电场强度的定义为单位正电荷所受到的力。
电场中的力满足叠加原理,即多个电荷叠加形成的电场等于单个电荷产生的电场的矢量和。
2. 高中物理电磁学知识点归纳:电流与磁场电流是电荷在导体中的移动形成的,电流产生磁场。
磁场可以通过环路积分来描述,即安培环路定理。
磁感应强度B描述磁场强度,单位为特斯拉。
电流在磁场中受到洛伦兹力的作用,洛伦兹力的大小由qvBsinθ决定。
穿过导体环路的磁通量变化会引起感应电动势,根据法拉第电磁感应定律可以计算感应电动势的大小。
3. 磁场的产生和改变磁场可以由通电导线产生,安培环路定理可以用来计算产生的磁场强度。
磁场的改变会引起感应电流产生,根据楞次定律可以判断感应电流的方向。
磁场中的磁通量不随时间变化的区域内感应电动势为零。
磁场线是无源的,环路周围不存在单磁北极或南极。
4. 电磁感应与自感通过改变磁通量可以产生感应电动势,对于变压器和发电机的工作原理至关重要。
自感是指导线中的电流改变时所产生的自感应电动势。
自感的存在会导致电路中电流变化受到抑制,体现为电感的感性作用。
电感的单位为亨利,可以通过NΦ/I来计算。
5. 麦克斯韦方程组电磁学的理论基础是麦克斯韦方程组,包括高斯定理、高斯环路定理、法拉第电磁感应定律和安培环路定理。
通过麦克斯韦方程组可以描述电磁场的变化规律,揭示电磁波的传播特性。
电磁波是由电场和磁场正交振动形成的,是自由空间中的一种横波。
总的来说,高中物理电磁学作为物理学中的重要分支,涉及到许多基础概念和理论。
电磁场知识点总结

电磁场知识点总结电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。
下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。
电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。
理解:*均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场*均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场*电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。
(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:*电磁波的传播不需要介质,在真空中也可以传播*电磁波是横波*电磁波在真空中的传播速度为光速*电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B均随时间周期性变化振荡周期:T=2πsqrt[LC]4、电磁波的发射*条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间*调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。
调制分两类:调幅与调频#调幅:使高频电磁波的振幅随低频信号的改变而改变#调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收*电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。
*调谐:改变LC振荡电路中的可变电容,是接收电路产生电谐振的过程*解调:从接收到的高频振荡电流中分离出所携带的信号的过程,是调制的逆过程,解调又叫做检波(收音机是如何接收广播的?收音机的天线接收所有电磁波,经调谐选择需要的电磁波(选台),经过解调取出携带的信号,放大后再还原为声音)5、电磁波的应用电视、手机、雷达、互联网6、电磁波普无线电波:通信红外线:加热物体(热效应)、红外遥感、夜视仪可见光:照明、摄影紫外线:感光、杀菌消毒、荧光防伪X射线:医用透视、检查、探测r射线:工业探伤、放疗。
高中物理-电磁场和电磁波知识点精讲

高中物理-电磁场和电磁波知识点精讲考纲要求1、电磁场,电磁波,电磁波的周期、频率、波长和波速Ⅰ2、无线电波的发射和接收Ⅰ3、电视、雷达Ⅰ知识网络:单元切块:按照考纲的要求,本章内容均为Ⅰ级要求,在复习过程中,不再细分为几个单元。
本章重点是了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论。
教学目标:1.了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论.2.了解电磁场和电磁波概念,记住真空中电磁波的传播速度.3.了解我国广播电视事业的发展.教学重点:了解交变电场和交变磁场的相互联系,定性理解麦克斯韦的电磁场理论教学难点:定性理解麦克斯韦的电磁场理论教学方法:讲练结合,计算机辅助教学教学过程:一、电磁振荡1.振荡电路:大小和方向都随时间做周期性变儿的电流叫做振荡电流,能够产生振荡电流的电路叫振荡电路,LC 回路是一种简单的振荡电路。
2.LC 回路的电磁振荡过程:可以用图象来形象分析电容器充、放电过程中各物理量的变化规律,如图所示3.LC 回路的振荡周期和频率LC T π2=LC f π21=注意:(1)LC 回路的T 、f 只与电路本身性质L 、C 有关(2)电磁振荡的周期很小,频率很高,这是振荡电流与普通交变电流的区别。
分析电磁振荡要掌握以下三个要点(突出能量守恒的观点):⑴理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。
⑵回路中电流越大时,L 中的磁场能越大(磁通量越大)。
⑶极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。
LC 回路中的电流图象和电荷图象总是互为余函数(见右图)。
【例1】 某时刻LC 回路中电容器中的电场方向和线圈中的磁场方向如右图所示。
则这时电容器正在_____(充电还是放电),电 C Liq t t o o放电 充电 放电 充流大小正在______(增大还是减小)。
解:用安培定则可知回路中的电流方向为逆时针方向,而上极板是正极板,所以这时电容器正在充电;因为充电过程电场能增大,所以磁场能减小,电流在减小。
高中物理麦克斯韦电磁场理论知识点

高中物理麦克斯韦电磁场理论知识点高中物理麦克斯韦电磁场理论学问点麦克斯韦电磁场理论学问点的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场.麦克斯韦进一步将电场和磁场的全部规律综合起来,建立了完整的电磁场理论体系.这个电磁场理论体系的核心就是麦克斯韦方程组,麦克斯韦方程组是由四个微分方程构成,:(1)描述了电场的性质.在一般状况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献,(2)描述了磁场的性质.磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献.(3)描述了变化的磁场激发电场的规律。
(4)描述了变化的电场激发磁场的规律,麦克斯韦方程都是用微积分表述的,详细推导的话要用到微积分,高中没学很难理解,我给你把涉及到的方程写出来,并做个解释,你要是还不明白的话也不用焦急,等上了高校学了微积分就都能看懂了: 1、安培环路定理,就是磁场强度沿任意回路的环量等于环路所包围电流的代数和.2、法拉第电磁感应定律,即电磁场相互转化,电场强度的弦度等于磁感应强度对时间的负偏导.3、磁通连续性定理,即磁力线永久是闭合的,磁场没有标量的源,麦克斯韦表述是:对磁感应强度求散度为零.4、高斯定理,穿过任意闭合面的电位移通量,等于该闭合面内部的总电荷量.麦克斯韦:电位移的散度等于电荷密度,高中物理电磁波学问点1. 振荡电流和振荡电路大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简洁的振荡电路。
2. 电磁振荡及周期、频率(1)电磁振荡的产生(2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能与磁场能的相互转化。
(3)振荡过程:电容器放电时,电容器所带电量和电场能均削减,直到零,电路中电流和磁场均增大,直到最大值。
高中物理电磁学知识点梳理

高中物理知识点梳理电磁学部分:1、基本概念:电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速2、基本规律:电量平分原理(电荷守恒)库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)电场力做功的特点及与电势能变化的关系电容的定义式及平行板电容器的决定式部分电路欧姆定律(适用条件)电阻定律串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)焦耳定律、电功(电功率)三个表达式的适用范围闭合电路欧姆定律基本电路的动态分析(串反并同)电场线(磁感线)的特点等量同种(异种)电荷连线及中垂线上的场强与电势的分布特点常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率)电动机的三个功率(输入功率、损耗功率、输出功率)电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)安培定则、左手定则、楞次定律(三条表述)、右手定则电磁感应想象的判定条件感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线通电自感现象与断电自感现象正弦交流电的产生原理电阻、感抗、容抗对交变电流的作用变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题) 3、常见仪器:示波器、示波管、电流计、电流表(磁电式电流表的工作原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。
高中物理11章知识点归纳总结

高中物理11章知识点归纳总结### 高中物理第十一章知识点归纳总结第十一章:电磁场和电磁波1. 电磁场的基本概念- 电场:电荷周围存在的一种特殊物质,能够对电荷施加力。
- 磁场:磁体或运动电荷周围存在的一种特殊物质,对磁体或运动电荷产生力的作用。
- 场强:描述场的强弱和方向的物理量,电场强度和磁感应强度是描述电磁场的基本物理量。
2. 电场和磁场的产生- 静电场:由静止电荷产生的电场。
- 感应电场:由变化的磁场产生的电场。
- 恒定磁场:由永久磁体或电流产生的磁场。
3. 电磁感应- 法拉第电磁感应定律:描述变化磁场产生感应电动势的规律。
- 楞次定律:描述感应电流方向的规律,即感应电流的磁场总是阻碍原磁场的变化。
4. 麦克斯韦方程组- 高斯定律:描述电场和电荷的关系。
- 高斯磁定律:描述磁场和电流的关系。
- 法拉第电磁感应定律:描述变化的磁场产生电场的规律。
- 安培定律:描述电流和磁场的关系,包括位移电流。
5. 电磁波- 电磁波的产生:由变化的电场和磁场相互激发产生。
- 电磁波的性质:包括波长、频率、速度等。
- 电磁波谱:包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。
6. 电磁波的传播- 波的传播:电磁波在介质中传播时,电场和磁场交替变化,形成波形。
- 波的反射、折射和干涉:电磁波在不同介质界面上发生的反射、折射和干涉现象。
7. 电磁波的应用- 通信:无线电波用于无线通信。
- 医疗:X射线用于医学成像。
- 能源传输:太阳能电池板将太阳光转化为电能。
8. 电磁波的防护- 电磁污染:电磁波可能对人体健康和电子设备产生影响。
- 防护措施:包括屏蔽、吸收和距离等方法。
9. 电磁场的能量和动量- 能量守恒:电磁场的能量在传播过程中守恒。
- 动量守恒:电磁波具有动量,可以对物体产生推动作用。
通过以上知识点的归纳总结,我们可以看到电磁场和电磁波在物理学中的重要性,它们不仅在理论研究中占有重要地位,而且在实际应用中也发挥着巨大作用。
高中物理麦克斯韦电磁场理论知识点

高中物理麦克斯韦电磁场理论知识点高中物理麦克斯韦电磁场理论知识点:1. 基本概念:麦克斯韦电磁场理论是电磁学的基本理论,指出电场和磁场是相互关联的,两者统一成为电磁场。
2. 麦克斯韦方程组:麦克斯韦电磁场理论由四个方程组成,分别是:高斯定律、安培定律、法拉第电磁感应定律和法拉第电磁感应定律的修正方程。
这些方程描述了电场和磁场的产生、相互作用和传播规律。
3. 高斯定律:该定律表明电场线的起源于电荷,电场线从正电荷流向负电荷,并且与电荷的数量成正比。
该定律常用于计算电场强度与电荷之间的关系。
4. 安培定律:这个定律描述了电流和磁场的相互作用,它表明通过一段闭合电路的磁场的总和等于该闭合电路内的电流的代数和乘以一个常数。
安培定律常用于计算磁场强度与电流之间的关系。
5. 法拉第电磁感应定律:这个定律描述了变化的磁场可以激发感应电流,它指出感应电流的大小与变化的磁场强度和变化速率成正比。
6. 法拉第电磁感应定律的修正方程:由于电场的变化也可以引起磁感应电场,为了修正法拉第电磁感应定律,麦克斯韦引入了一个新的方程,即法拉第电磁感应定律的修正方程。
7. 麦克斯韦方程组的统一本质:麦克斯韦电磁场理论的关键是认识到电场和磁场之间的密切关联,通过统一的方程组来描述它们的行为。
这种统一的本质在电磁波的传播中特别明显,因为电磁波是电场和磁场的相互作用产生的能量传播。
8. 应用:麦克斯韦电磁场理论被广泛应用于电磁学、无线电通信、光学、电磁辐射和电磁场控制等领域。
它为我们设计和应用电磁设备提供了基础理论支持。
麦克斯韦电磁场理论是电磁学领域最重要的理论之一,对我们理解电磁现象和应用电磁技术起着关键的作用。
下面将进一步探讨麦克斯韦电磁场理论的相关内容。
9. 电磁波:麦克斯韦电磁场理论的另一个重要方面是电磁波的存在和传播。
根据麦克斯韦方程组,当电场和磁场发生变化时,它们会相互作用并产生电磁波。
电磁波是无线电、微波、可见光等形式的能量传播,它们具有波长、频率和速度等特性。
物理高中知识点总结选修二

物理高中知识点总结选修二第一章电磁场的基本概念电磁场是指电荷和电流所产生的力场,包括静电场和磁场。
电荷和电流是电磁场的源,它们的存在和运动产生了电场和磁场。
在电磁场中,电场和磁场相互作用,形成了电磁现象。
在电磁场中,电荷和电流受到电场力和磁场力的作用,发生运动。
电荷是物质中的基本粒子,带电粒子产生的物质称作电子,未带电的物质称作中子,而电子与质子所带的电量大小相等,而符号相反,所以质子带正电。
电荷受力为Coulomb力。
单位电量为库仑量。
磁场由磁极造成,包括北极和南极,并且又孤立的磁单极,因此产生磁场的磁力线是环绕磁体的,磁极间的相互作用遵循磁力的叠加原理,磁力的大小遵守库仑定律,则单位磁通量为韦伯。
电磁场存在于空间中,可以通过电荷和电流的产生,可以通过环路定理与Gauss定理应用到电磁中,即可知道磁场的产生,电场的环路可知变化的磁通量,以及电场的闭合曲面则可知外加电荷数目。
第二章电磁感应现象与电磁感应定律电磁感应定律是反映电磁感应现象的定律。
当一磁束的率于闭合导体回路中变化时,产生感应电动势,即法拉第电磁感应定律。
法拉第电磁感应定律可以推导出电磁感应定律。
电磁感应定律的实验研究和理论分析共同揭示了磁场和电场之间的相互转化关系,以及能量的转化问题。
当闭合回路在磁场中有运动时,由于磁通量的变化,就会在回路中产生感应电动势。
电磁感应定律包括法拉第电磁感应定律和楞兹定律。
电磁感应定律的应用有很多,可以用于发电机的工作原理,是电磁学重要的应用之一。
第三章电磁感应现象的应用电磁感应现象的应用有很多,如变压器、感应电炉、感应电动机、电磁波等。
其中变压器是一种基于电磁感应现象而工作的重要设备。
变压器通过变换线圈的匝数和电流强度,实现了电压的升降,广泛应用于电力传输系统中。
感应电炉则是利用感应电动势的原理实现加热材料,广泛应用于冶金、机械制造、化工等各个行业。
感应电动机则是一种利用电磁感应现象工作的电动机,是现代工业中不可或缺的设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理电磁场和电磁波知识点总结
1.麦克斯韦的电磁场理论
(1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场.
(2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场.
(3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场.
2.电磁波
(1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s.
下面为大家介绍的是20XX年高考物理知识点总结电磁感应,希望对大家会有所帮助。
1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.
(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.
2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义
式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb
求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.
3. 楞次定律
(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.
(2)对楞次定律的理解
①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.
②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.
(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:
①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).
4.法拉第电磁感应定律
电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt
当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形
①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .
②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .
5.自感现象
(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.
6.日光灯工作原理
(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.
(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.
7.电磁感应中的电路问题
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路.
(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.
8.电磁感应现象中的力学问题
(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.
③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.
(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.
9.电磁感应中能量转化问题
导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.
(2)画出等效电路,求出回路中电阻消耗电功率表达式.
(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.
10.电磁感应中图像问题
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.
另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.。