10.3 液-液萃取过程的计算
化工原理 液液萃取
11.1 概述
液-液萃取(抽提):在液体混合物中加入一种 与其不溶或部分互溶的液体溶剂,经过充分混合, 分相,利用混合液中各组分在溶剂中溶解度的差 异而实现分离的一种单元操作。又称溶剂萃取。
目的: 分离液-液混合物。 操作依据: 利用混合物中各组分在某一溶剂中 的溶解度之间的差异。
两相接触方式
微 分 接 触
级 式 接 触
11.2 液-液相平衡关系
11.2.1 三角形坐标及杠杆定律
11.2.1.1 三角形坐标 三元混合液的表示方法:
三角形坐标
等边三角形 直角三角形(等腰直角三角形和不等腰直角三角形)
① 表示方法 习惯表示法: ▲ 各顶点表示纯组分; ▲ 每条边上的点为两组分混合物; ▲ 三角形内的各点代表不同组成的三元混合物。
液液萃取的应用
1、在石油化工中的应用 随着石油化工的发展,液液萃取已广泛应用于分离各种
有机物质。轻油裂解和铂重整产生的芳烃混合物的分离是重 要的一例。该混合物中各组分的沸点非常接近,用一般的分 离方法很不经济。工业上采用Udex、Shell、Formex等萃取 流程,分别用环丁砜、四甘醇、N-甲基吡咯烷酮为溶剂,从 裂解汽油的重整油中萃取芳烃。对于难分离的乙苯体系,组 分之间的相对挥发度接近于1,用精馏方法不仅回流比大, 塔板还高达300多块,操作费用极大。可采用萃取操作以HFBF3作萃取剂,从C8馏分中分离二甲苯及其同分异构体。
A
mE RM mR ME
点P组成按上述长度为
A:30% B:50% S:20%
A
80
20
UF
60 Q Z 40
40 E 20
S%
第九章液液萃取
第九章:液-液萃取第一节 概述利用原料液中各组分在适当溶剂中溶解度的差异而实现混合液中组分分离的过程称为液-液萃取,又称溶剂萃取。
液-液萃取, 它是30年代用于工业生产的新的液体混合物分离技术。
随着萃取应用领域的扩展,回流萃取,双溶剂萃取,反应萃取,超临界萃取及液膜分离技术相继问世, 使得萃取成为分离液体混合物很有生命力的操作单元之一。
一.萃取操作原理萃取是向液体混合物中加入某种适当溶剂,利用组分溶解度的差异使溶质A 由原溶液转移到萃取剂的过程。
在萃取过程中, 所用的溶剂称为萃取剂。
混合液中欲分离的组分称为溶质。
混合液中的溶剂称稀释剂,萃取剂应对溶质具有较大的溶解能力,与稀释剂应不互溶或部分互溶。
右图是萃取操作的基本流程图。
将一定的溶剂加到被分离的混合物中, 采取措施(如搅拌)使原 料液和萃取剂充分混合混合,因溶质在两相间不呈平衡,溶质在萃取相中的平衡浓度高于实际浓度, 溶质乃从混合液相萃取集中扩散,使溶质与混合中的其它组分分离,所以萃取是液、液相间的传质过程。
通常 ,萃取过程在高温下进行,萃取的结果是萃剂 提取了溶质成为萃取相,分离出溶质的混合液成为萃余相。
萃取相时混合物,需要用精馏或取等方法进行分离,得到溶质产品和溶剂,萃取剂供循环使用。
萃取相通常含有少量萃取剂,也需应用适当的分离方法回收其中的萃取剂,然后排放。
用萃取法分离液体混合物时,混合液中的溶质既可以是挥发性物质,也可以是非挥发性物质,(如无机盐类)。
当用于分离挥发性混合物时,与精馏比较,整个萃取过程比较复杂,譬如萃取相中萃取剂的回收往往还要应用精馏操作。
但萃取过程本身具有常温操作,无相变以及选择适当溶剂可以获得较高分离系数等优点,在很多的情况下,仍显示出技术经济上的优势。
一般来说,在以下几种情况下采取萃取过程较为有利:⑴ 溶液中各组分的沸点非常接近,或者说组分之间的相对挥发度接近于一。
⑵ 混合液中的组成能形成恒沸物酸, 用一般的精馏不能得到所需的纯度。
萃取过程的计算
萃取过程的计算
2. 解析法
对于原溶剂B与萃取剂S不互溶的物系,若在操作范围内,以质
量比表示的分配系数K 为常数,则平衡关系可表示为
Y=KX
(8-16
式中 Y——萃取相E中溶质A的质量比分数;
X——萃余相R中溶质A的质量比分数;
K——相组成以质量比分数表示时的分配系数。
即分配曲线为通过原点的直线。在此情况下,当错流萃取的各
萃取过程的计算
图8-14 三级错流萃取三角形坐标图解
萃取过程的计算
(3)以R1为原料液,加入纯的萃取剂S,依杠杆规则找出 两者混合点M2,按与(2)类似的方法可以得到E2和R2,此即第二 个理论级分离的结果。
(4)以此类推,直至某级萃余相中溶质的组成等于或小于规 定的组成xR为止,重复作出的联结线数目即为所需的理论级数。
(1)由已知的相平衡数据在等腰直角三角形坐标图中绘出溶解度曲线 和辅助线,如图8-11所示。
(2)在三角形坐标的AB边上根据原料液的组成确定点F,根据萃取剂 的组成确定点S(若为纯溶剂,则为顶点S),联结点F、S,则原料液与 萃取剂的混合物系点M必落在FS连线上。
萃取过程的计算
(3)由已知的萃余相组成xR,在图上确定点R,再由点R利用辅助曲 线求出点E,作R与E的联结线,显然RE线与FS线的交点即为混合液的组 成点M。
(8-12)
联立求解式(8-6)和式(8-12) 得
萃取过程的计算
同理,可得萃取液和萃余液的量E′、R′,即 上述诸式中各股物流的组成可由三角形相图直接读出。
萃取过程的计算
二、 多级错流萃取的计算
单级萃取所得的萃余相中往往还含有较多的溶质,为进一步降低萃 余相中溶质的含量,可采用多级错流萃取。其流程如图8-13所示。
萃取过程的计算
在 FE1 及 RnS0 两线间,过 点作任意操作线与 溶解度曲线相交于 Rm-1 与 Em ,得操作线上一点 (xm-1、ym),重复上述步骤可得操作线。
GLL
多级逆流萃取:萃取剂与稀释剂不互溶
B,XF X1
X2
X3
Xn-1
B,Xn
B XF
S Y1 1
1
2
Y3
S,Y1
Y2
3
n
Y4 Yn S,YS
R2 E3
R3
Rn-1 En
Rn Mn
萃取剂 S, yS
E
1
M3
E4
最终萃取相
物料衡算
每一级的 i = 1 F + E2 = R1 + E1 或 F - E1 = R1 - E2 “净流量” i = 2 F + E3 = R2 + E1 或 F - E1 = R2 - E3 i = n F + S = Rn + E1 或 F - E1 = Rn - S F - E1 = R1 - E2 = R2 - E3 = ...= Rn-1 - En = Rn - S = Δ
HF S max F HS 0
E H S0 S
在极限情况下,混合液只有一个 相,起不到分离作用。 萃取操作S应满足下列条件
Smin S0 Smax
GLL
例10-1:以水为溶剂萃取丙酮—醋酸乙酯中的丙酮,三元物系在30℃ 下的相平衡数据如表10-1所示。试求: ① 在直角三角形相图中,作出溶解度曲线和六条联结线; ② 各对相平衡数据相应的分配系数和选择性系数; ③ 当酯相中丙酮为30%时的相平衡数据; ④ 当原料液中丙酮含量为30%,水与原料液的质量相等,每kg原料 液进行单级萃取后的结果。
第十章液-液萃取
0.2 0.0 1.0
由图读得:y = 0.48
0.4
0.8
E FR xF x 30 15 5 R FE y xF 48 30 6
F
0.6
E
0.6 0.4
6 11 F E R E E E 5 5
单级间歇萃取,为使萃余液的溶质组成 x 降到15%,每千克 原料需加水多少?能得到多少萃取液,其组成多大?若使萃 余液的溶质组成 x 降到5%,结果如何? 解:(1)在BA边上找出点F、R; (2)联结R与S与溶解度曲线交于点R ; (3)过点R作联结线RE ,并与FS交点M。
由杆杠规则:
(2)特点 ◇ 原料液与溶剂一次性接触。 ◇ 萃取相与萃余相达到平衡。 2. 三角形相图在萃取中的应用 (1)已知料液量 F和组成 xF 、 萃取剂量S一定时, 可确定总组成点M。
F M R E
A
RE F S
S MF F MS
B
S
(2)确定萃取相E和萃余相R的量及组成
◇E和R应成平衡,量的关系服从杠杆定律;
0.6 0.4
0.2
0.8
0.6
0.4
水相:24%A 13%B 63%S
1.0 0.0 0.8
0.
0.2
0.4
0.6
0.8
kA
y A 3.2 0.667 x A 4.8
三、三角相图在单级萃取中的应用
1. 单级萃取
(1)流程
S
F, xF
E ,x E
混合器
M
澄清槽
R, x
单级萃取流程示意图
液液萃取(溶剂萃取).
11 液液萃取(溶剂萃取)Liquid-liquid extraction(Solventextraction)11.1 概述一、液液萃取过程:1、液液萃取原理:根据液体混合物中各组分在某溶剂中溶解度的差异,而对液体混合物实施分离的方法,也是重要的单元操作之一。
溶质 A + 萃取剂 S——————〉S+A (B) 萃取相 Extract分层稀释剂 B B + A (S…少量) 萃余相 Raffinate(残液)一般伴随搅拌过程 => 形成两相系统,并造成溶质在两相间的不平衡则萃取的本质:液液两相间的传质过程,即萃取过程是溶质在两个液相之间重新分配的过程,即通过相际传质来达到分离和提纯。
溶剂 extractant(solvent)S 的基本条件:a、S 不能与被分离混合物完全互溶,只能部分互溶;b、溶剂具有选择性,即溶剂对A、B两组分具有不同溶解能力。
即(萃取相内)(萃余相内)最理想情况: B 与 S 完全不互溶 => 如同吸收过程: B 为惰性组分相同:数学描述和计算实际情况:三组分分别出现于两液相内,情况变复杂2 、工业萃取过程:萃取不能完全分离液体混合物,往往须精馏或反萃取对萃取相和萃余相进行分离,而溶剂可循环使用。
实质:将一个难于分离的混合物转变为两个易于分离的混合物举例:稀醋酸水溶液的分离:萃取剂:醋酸乙酯3 、萃取过程的经济性:取决于后继的两个分离过程是否较原液体混合物的直接分离更容易实现( 1 )萃取过程的优势:(与精馏的关系)a、可分离相对挥发度小或形成恒沸物的液体混合物;b、无相变:液体混合物的浓度很低时,精馏过于耗能(须将大量 B 汽化);c、常温操作:当液体混合物中含有热敏性物质时,萃取可避免受热;d、两相流体:与吸附离子交换相比,操作方便。
( 2 )萃取剂的选择——萃取过程的经济性a、分子中至少有一个功能基,可以与被萃取物质结合成萃合物;b、分子中必须有相当长的烃链或芳香环,可使萃取剂和萃合物容易溶解于有机相,一般认为萃取剂的分子量在350-500之间较为合适。
萃取实验报告
实验名称:萃取实验一、实验目的①了解转盘萃取塔的结构和特点;②掌握液—液萃取塔的操作;③掌握传质单元高度的测定方法,并分析外加能量对液液萃取塔传质单元高度和通量的影响。
二、实验器材萃取实验装置三、实验原理萃取是利用原料液中各组分在两个液相中的溶解度不同而使原料液混合物得以分离。
将一定量萃取剂加入原料液中,然后加以搅拌使原料液与萃取剂充分混合,溶质通过相界面由原料液向萃取剂中扩散,所以萃取操作与精馏、吸收等过程一样,也属于两相间的传质过程。
与精馏,吸收过程类似,由于过程的复杂性,萃取过程也被分解为理论级和级效率;或传质单元数和传质单元高度,对于转盘塔,振动塔这类微分接触的萃取塔,一般采用传质单元数和传质单元高度来处理。
传质单元数表示过程分离难易的程度。
对于稀溶液,传质单元数可近似用下式表示:nor?式中 nor------萃余相为基准的总传质单元数;x------萃余相中的溶质的浓度,以摩尔分率表示;x*------与相应萃取浓度成平衡的萃余相中溶质的浓度,以摩尔分率表示。
x1、x2------分别表示两相进塔和出塔的萃余相浓度传质单元高度表示设备传质性能的好坏,可由下式表示:hor?hnorlhor?x1dxx?x*x2 kxa?式中 hor------以萃余相为基准的传质单元高度,m; h------ 萃取塔的有效接触高度,m; kxa------萃余相为基准的总传质系数,kg/(m3?h?△x); l------萃余相的质量流量,kg/h;------塔的截面积,m2;已知塔高度h和传质单元数nor可由上式取得hor的数值。
hor反映萃取设备传质性能的好坏,hor越大,设备效率越低。
影响萃取设备传质性能hor的因素很多,主要有设备结构因素,两相物质性因素,操作因素以及外加能量的形式和大小。
图-1 转盘萃取塔流程1、萃取塔2、轻相料液罐3、轻相采出罐4、水相贮罐5、轻相泵6、水泵1、流程说明:本实验以水为萃取剂,从煤油中萃取苯甲酸。
液-液萃取
易聚结,有利于分层;反之,液体易分散而产生乳化现象,使两液相难分离。
但如果界面张力过大时,液体则不易聚结分散,难以式两液相充分混合,降低 萃取效果。因此,在萃取操作中应选择适中的界面张力。
问题: 什么是相界面张力?
沿着不相溶的两相(液-固、液-液、液-气) 间界面垂直作用在单位长度液体表面上的表面收 缩力(相界面张力)。
①转筒式离心萃取器 如图所示,转筒式离心萃取器结
构简单,造价相对较低,传质效率高,
易控制,运行可靠。
②卢威式离心萃取器
卢威(Luwesta)式离心萃取器是一种立式
逐级接触式离心萃取设备。
重液
轻液
重液
轻液
如图所示,Luwesta 式离心萃取器的主体
是固定在机壳体上,并随之作高速旋转的环形 盘,壳体中央有固定的垂直空心轴,轴上也装 有圆形盘,盘上开有若干个喷出孔。
3、萃取剂的化学性质: (1)良好的稳定性 (2)不易分解、聚合 (3)有足够的热稳定性和抗氧化稳定性 (4)对设备的腐蚀性小
工业生产中常用的萃取剂分类: 1.有机酸或它们的盐,如脂肪族的一元羧酸、磺酸、 苯酚 2.有机碱的盐,如伯胺盐,仲铵盐、叔铵盐 3.中性溶剂:如水、醇类、酯、醛、酮等。
三、萃取设备
重液
轻液
筛板
降液管
重液呈连续相由塔顶入口进入,横向流过筛板,
并在筛板上与分散相液滴接触、传质,再由降液管流 至下一层筛板;如此重复进行,最后由塔底排出。
轻液
筛板塔构造比较简单,造价低,可有效地减少轴向返混,能 处理腐蚀性料液,因而运用较为广泛。
重液
④转盘萃取塔(RDC塔) 转盘萃取塔的基本构造如图所示。在塔体内壁 的面上按一定间距,安装有若干个环形挡板(固定 环),固定环将塔内分成若干个小空间。两个固定 环之间安装一转盘,转盘固定在中心轴上,转轴由 塔顶电机启动。 萃取操作时,转盘随中心轴高速旋转,液体产
化工原理:10-1 液-液萃取概述
超临界萃取 凝胶萃取 反向胶团萃取
按萃取组分数目分类
萃取
单组分萃取√
多组分萃取
二、萃取操作的应用
萃取操作应用场合
❖ 相对挥发度 1物系的分离
❖ 溶质浓度很低 ,且为难挥发组分物系的分离 ❖ 热敏性物系的分离(从发酵液中对青霉素及咖
啡因的提取)
第十章 液-液萃取和液-固浸取
萃取操作示意图
第十章 液-液萃取和液-固浸取
10.1 液-液萃取概述 10.1.1 萃取的原理与流程 10.1.2 萃取的分类与应用
一、萃取过程的分类
按有无化学反应分类
萃取
物理萃取
化学萃取√
按萃取级数分类
萃取
单级萃取
多级萃取√
多级逆流萃取 多级并流萃取
一、萃取过程的分类
按萃取技术分类
单溶剂萃取√
传质接触面积↓→分离效果↓,此时需要较多的外加能 量用于分散相的建立。
若 LL过小,液体易分散甚至产生乳化现象,难
以分层。
3. L,S S 的L,S↓→利于两相的混合与分层、流
动与传质。若S 的粘度太大,可以用其它溶剂调节。 萃取剂要有良好的化学稳定性,不分解不聚合,
要有足够的热稳定性和抗氧化稳定性,对设备的腐蚀 性要小;应具有较低的凝固点;毒性小、不易燃、来 源充足、价格低廉等。
若S为易挥发组分,则其气化热要小。若S萃取 能力大,则循环量小,E相中S的回收费用低;或S在 B中的溶解度小,也可减小R相中S的回收费用。
若 1,可以考虑用反萃取和结晶的方法分离。
四、萃取剂的其它物性
1. LL↑→液-液分层速度↑→设备生产能力↑ 2. 界面张力 LL LL↑,分散相中的细小液滴易于 聚结,有利于分层;但 LL↑↑,则液体不易分散,
液-液萃取操作实验
实验八 液-液萃取操作实验一、实验目的1.了解液-液萃取设备的结构和特点。
2.熟悉液 液萃取塔的操作。
二、实验原理萃取是分离液体混合物的一种常用操作。
其工作原理是在待分离的混合液中加入与之不互溶(或部分互溶)的萃取剂,形成共存的两个液相,并利用原溶剂与萃取剂对原混合液中各组分的溶解度的差别,使原溶液中的组分得到分离。
1.液-液传质的特点液-液萃取与吸收、精馏同属于相际传质操作过程,它们之间有很多相似之处。
但由于在液-液萃取系统中,两相的密度差和界面张力均较小,因而会影响传质过程中两相的充分混合。
为了强化两相的传质,在液 液萃取时需借助外力将一相强制分散于另一相中(如利用塔盘旋转的转盘塔、利用外加脉冲的脉冲塔等)。
然而两相一旦充分混合,要使它们充分分离也较为困难,因此,通常在萃取塔的顶部和底部都设有扩大的相分离段。
萃取过程中,两相混合与分离的好坏,将直接影响萃取设备的效率。
影响混合和分离的因素有很多,分离效果除了与液体的物性有关外,还与设备结构、外加能量和两相流体的流量等因素有关,以致于很难用数学方程直接求得,所以表示传质好坏的级效率或传质系数的值多用实验直接测定。
研究萃取塔性能和萃取效率时,应注意观察操作现象,实验时应注意了解以下几点:(1)液滴的分散与聚结现象。
(2)塔顶、塔底分离段的分离效果。
(3)萃取塔的液泛现象。
(4)外加能量大小(改变振幅、频率)对操作的影响。
2.液-液萃取塔的计算本实验以水为萃取剂,从煤油中萃取苯甲酸。
水相为萃取相(用字母E 表示,又称连续相、重相)。
煤油相为萃余相(用字母R 表示,又称分散相、轻相)。
在轻相入口处,苯甲酸在煤油中的浓度应保持在0.0015~0.0020(kg 苯甲酸/kg 煤油)之间。
轻相从塔底进入,作为分散相向上流动,经塔顶分离段分离后由塔顶流出;重相由塔顶进入,作为连续相向下流动至塔底经π形管流出。
轻、重两相在塔内呈逆向流动。
在萃取过程中,一部分苯甲酸从萃余相转移至萃取相。
《化工原理》第九章 萃取.
第一节 液-液萃取的基本原理
图9-2 溶解度曲线与联接线
第一节 液-液萃取的基本原理
图9-3 三元物系的辅助曲线
图9-4 杠杆规则的应用
第一节 液-液萃取的基本原理
4.杠杆规则
如图9-4所示,分层区内任一点所代表的混合液可以 分为两个液层,即互成平衡的相E和相R。若将相E与相R混 合,则总组成M即为点,M点称为和点,而E点与R点称为差 点。混合液M与两液层E与R之间的数量关系可用杠杆规则 说明。
第一节 液-液萃取的基本原理
1.三组分系统组成的表示法
液-液萃取过程也是以相际的平衡为极限。三组分系 统的相平衡关系常用三角形坐标图来表示。混合液的组成 以在等腰直角三角形坐标图上表示最方便,因此萃取计算 中常采用等腰直角三角形坐标图。
在图9-1中,三角形的三个顶点分别表示纯组分。习 惯上以顶点A表示溶质,顶点B表示原溶剂,顶点S表示萃 取剂。三角形任何一个边上的任一点代表一个二元混合物, 如AB边上的H点代表由A和B两组分组成的混合液,其中A的 质量分数为0.7,B为0.3。三角形内任一点代表一个三元 混合物,如图M中的点,过M点分别作三个边的平行线ED、 HG与KF,其中A的质量分数以线段MF表示, B的以线段MK表 示,S的以线段ME表示。由图可读得:WA =0.4,WE=0.3, WS=0.3。可见三个组分的质量分数之和等于1。
可见,萃取操作包括下列步骤:(1)原料液(A+B) 与萃取剂的混合接触;(2)萃取相E与萃余相R的分离; (3)从两相中分别回收萃取剂而得到产品E’、R’。
第一节 液-液萃取的基本原理
二、萃取在工业生产中的应用
1.溶液中各组分的相对挥发度很接近或能形成恒沸 物,采用一般精馏方法进行分离需要很多的理论板数和很 大的回流比,操作费用高,设备过于庞大或根本不能分离。
液液萃取实验数据处理教程(原创)
液-液萃取实验数据处理教程PS:本教程特别针对用桨叶旋转萃取塔完成的液-液萃取实验,若实验相关内容有出入的话各位看官自行脑补修改~!首先,总结一下得到的原始数据:测定的轻相(煤油)入口/原料样品、轻相出口/塔顶轻相样品、重相(水)入口/塔底重相样品消耗NaOH的体积,各相取样体积以及其他相关设备参数和试剂参数,后面会逐渐提到。
下面上图:实验原理:液-液两相在萃取塔中进行连续逆流接触,取高度为dH的微元体,对溶质组分做物料衡算后得:dH=d(SY)K Y a(Y e−Y)S T式中:a——单位设备体积的两相接触表面积,即比表面积,m2/m3;S——塔内任意横截面上萃取剂的质量流量,kg/s;K Y ——以(Y e −Y)为推动力的总传质系数,kg/(m 2·s) S T ——塔的横截面积,m 2;Y ——塔内任意横截面上萃取相中溶质组分A 的质量比,kgA/kgB ;Y e ——与塔内任意横截面上萃余相呈平衡的萃取相中溶质的质量比,kgA/kgB 。
对特定条件下的连续逆流萃取操作过程,S K Y aS T基本不变,作常数处理,将上式积分并整理后得:H =H OE N OE式中:H OE ——萃取相的总传质高度,m ;N OE ——萃取相的总传质单元数。
H OE =SK Y aS TN OE=∫dYe Y 1Y 2在Y-X 坐标系中做平衡曲线及操作线,在塔顶及塔底的浓度范围内任取一系列Y 值,可由操作线找出一系列的X 值,再用平衡曲线找出一系列的Y e 值,进而计算出对应的1(Y e −Y)值。
在直角坐标系上,以Y 为横坐标,1(Y e −Y)为纵坐标,绘制曲线,图解积分求传质单元数N OE ,H 为设备参数,进而得到H OE 。
体积总传质系数为:K Y a =S OE T~~~~~~~~~~~~~~~~~~~我是华丽丽的分割线~~~~~~~~~~~~~~~~~~~ 下面就根据实验原理将计算过程及要点展示如下:计算步骤1.根据滴定体积算出苯甲酸在各出入口的浓度(质量浓度)2.做出操作线,取一系列Y值得到一系列X值为纵坐标,绘制曲线3.根据平衡曲线算出Y e,进而以Y为横坐标,1(Y e−Y)4.在上述曲线中图解积分,最后得到相关计算量一、算出苯甲酸在各出入口的浓度(质量浓度)密度等数据大家要按照自己做实验时的温度来取,具体计算过程就略啦~主要就是注意区别溶剂以及计算单位(kgA/kgB)~下面上图:进水就是不含苯甲酸的水~二、操作线按照上述的X、Y对应的值即可得到两组(X,Y)的点,这两个点连线得到的就是操作线,如下图所示:在上述操作线的Y范围内取一系列值,然后算出对应的X值,以小编的数据来说就是取0~0.000212区间中的一系列值~。
化工原理之液-液萃取
❖二、 萃取与精馏比较:
❖相同:都是分离液态混合物的
❖
单元操作
❖不同:精馏是利用组分挥发度
❖
的差异完成混合物分离,
❖
萃取是利用溶解度差异
❖
没完成混合物分离,
❖
只是将难分的转为易分的。 18
❖三、 萃取操作应用的场合: ❖1、稀溶液且溶质为难挥发组分: ❖ 此时用精馏耗能量大(∵大量溶剂
从塔顶蒸出),用萃取则降低能耗 (尽管萃取后还要分离)。 ❖如:稀醋酸水溶液加醋酸乙酯 ❖ 制无水醋酸。
萃余液
以R’表示 用精馏等 方法从萃 余相中脱 除萃取剂 后的液体
15
❖用溶剂从液体混合物中提取其中某 ❖种组分的操作称为液/液萃取。 ❖萃取是利用溶液中各组分在所选用 ❖的溶剂中溶解度的差异,使溶质进 ❖行液液传质,以达到分离均相液体 ❖混合物的操作。 ❖萃取操作全过程可包括:
16
❖1.原料液与萃取剂充分混合接触, ❖ 完成溶质传质过程; ❖2.萃取相和萃余相的分离过程; ❖3.从萃取相和萃余相中回收萃取剂 ❖ 的过程。通常用蒸馏方法回收。
4
❖固-液萃取:也叫浸取
❖如用水浸取甜菜中的糖类;用酒精 浸取黄豆中的豆油以提高油产量等 5
❖生活中洗衣服
6
❖ 只给一盆水怎样能使衣服洗的 ❖更干净?
7
8
单级萃取 多级萃取
9
❖ 第一节、概述
❖一、定义: ❖液—液萃取是分离液体混合物的 ❖重要单元操作之一,又称溶剂萃取。 ❖该方法是利用原料液中组分在适当 ❖溶剂中溶解度的差异而实现分离的 ❖单元操作。
❖三角形的三个顶点分别代表纯组 分A、B、S(100%);
❖三角形的三条边分别代表一个二 元物系,每边等分100份;
液-液萃取法
思考题1 衡量分离效果的因素主要是哪些?2 试述影响萃取效果的主要因素?3 选择萃取溶剂时还应考虑哪些方面?4 请详述产生乳化的原因及消除乳化的具体措施?5 系统分析法中萃取操作中的三部位法和四部位法常用的溶剂各是何物?一液-液萃取法1 液-液萃取原理液-液萃取法即两相溶剂提取,是利用混合物中各组分在两种互不相溶的溶剂中分配系数的不间而达到分离目的的方法。
简单的萃取过程是将萃取剂加入到样品溶液中,使其充分混合,因某组分在萃取剂中的平衡浓度高于其在原样品溶液中的浓度,于是这些组分从样品溶液中向萃取剂中扩散,使这些组分与样品溶液中的其他组分分离。
组分A在两相间的平衡关系可以用平衡常数K来表示:K=CA/C'A。
式中CA: 组分A在苯取剂中的浓度;C'A:组分A在原样品溶液中的浓度。
这就是分配定律。
对于液一液萃取,K通常称为分配系数,可将其近似地看做组分在萃取剂和原样品溶液中的溶解度之比。
物质在萃取剂和原溶液中的溶解度差别越大,K值越大,萃取分离效果越好。
当K≥100时,所用萃取剂的体积与原溶液体积大致相等时,一次简单萃取可将99%以上的该物质萃取至萃取剂中,但这种情况往往很少。
K值取决于温度、溶剂和被萃取物的性质,而与组分的最初浓度、组分与溶剂的质量无关。
萃取过程的分离效果主要表现为被分离物质的萃取率和分离纯度。
萃取率为萃取液中被萃取的物质与原溶液中该物质的溶质的量之比。
萃取率越高,表示萃取过程的分离效果越好。
1.1 影响萃取效果的因素影响分离效果的主要因素包括:萃取剂、被萃取的物质在萃取剂与原样品溶液两相之间的平衡关系(主要表现为被萃取物质在萃取剂与原样品溶液两相中的溶解度差别)、在萃取过程中两相之间的接触情况。
被萃取物质在一定的条件下,主要决定于萃取剂的选择和萃取次数。
1.1.1萃取溶剂的选择萃取剂对萃取效果的影响很大,萃取溶剂选择的主要依据是被萃取的物质的性质,相似相溶原理是萃取剂选择的基本规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y1
1 2
J
3
YS
4
斜率
D Xn X n计算 ≤ X n规定 n=4
B/S XF
多级逆流萃取直角坐标图图解计算
10.3.3 多级逆流萃取的计算
二、多级逆流萃取的计算
(2) 解析法 设平衡关系为 Y 类似于逆流吸收
= KX
(B) V S (S ) ( Xn )Y2 X2(YS )
* 1 1 Y1 −Y 2 1 NT = ln[( 1 − ) + ] * ln A A Y2 − Y2 A
B 由操作线方程 Y1 − YS = − ( X1 − XF ) S
10.3.2 多级错流萃取的计算
二、多级错流萃取的计算
S XF + YS Am = KS B B X1 = 萃取 1 + Am 因子 S S ( XF + YS ) YS B 第二级: 第二级: X2 = + B (1 + Am )2 1 + Am
F MS = S MF
F R M
E
单级萃取图解
10.3.1 单极萃取的计算
二、B 与 S不互溶物系 不互溶物系
若 B与 S 完全不互溶 萃取相中不含 B,S 的量不变 萃余相中不含 S ,B 的量不变 用质量比 计算方便
XF —原料液中组分A的质量比,kgA / kgB YE —萃取相中组分A的质量比,kgA / kgS XR —萃余相中组分A的质量比,kgA / kgB YS —萃取剂中组分A的质量比,kgA / kgS
10.3.2 多级错流萃取的计算
二、多级错流萃取的计算
1. B与 S部分互溶物系 与 部分互溶物系 已知: 原料量 F 原料组成 xF 各级萃取剂用量 Si 规定: 最终萃余相组成 xn 计算:萃取级数 n 萃取级数 三角形相图 图解法
F
xF
R1
M1 M2 R2 R3 M3
E1 E2 E3
多级错流萃 取三角形相 图图解计算
B 整理得: 整理得: Y1 − YS = − ( X1 − XF ) S
10.3.2 多级错流萃取的计算
二、多级错流萃取的计算
第 n 级作溶质 A的质量衡算 的质量衡算
B Yn − YS = − ( Xn − Xn−1 ) S
操作线 方程
B 斜率= − S
⇒
直角坐标图 图解法
( 过点 Xn−1 ,YS )
萃取设备的基本要求 两相充分的接触并伴有较高程度的湍动 有利于液体的分散与流动 有利于两相液体的分层
二、超临界流体及其基本性质
1.超临界流体 如果某种气体处于临界温度之上,则无论压力 增至多高,该气体也不能被液化,称此状态的气体 为超临界流体。 二氧化碳 超临界流体 乙烯 乙烷 丙烷
√
2. 超临界流体的基本性质 密度 接近于液体。 超临界流体 的基本性质 粘度 接近于气体。 自扩散系数 介于气体和液体之间,比液体大100 倍左右。
斜率 –B/S
YS
XR
单级萃取图解计算
XF
E = S + SYE = S (1 + YE )
R = B + BX R = B(1 + X R )
10.3.2 多级错流萃取的计算
一、多级错流萃取的流程
多级错流萃取操作的特 点 原料液从第 1 级加入 每一级均加入新鲜萃取剂 前一级的萃余相为后一级的原料液 每级为新萃取剂,传质推动力大, 每级为新萃取剂,传质推动力大,溶剂用量大 一般为间歇操作,生产能力小 一般为间歇操作,
1
S Y1
B X1
S Y2
B Xi−1
S Yi i
B Xi
S Yi+1
BXF + SYi +1 = BXi + SY1
10.3.3 多级逆流萃取的计算
二、多级逆流萃取的计算
整理得
B B Yi +1 = Xi + (Y1 − XF ) S S B 斜率 S 操作线方程
过点
( X F ,Y1)
( X n ,YS )
10.3.1 单极萃取的计算
二、B 与 S不互溶物系 不互溶物系
对溶质 A质量衡算 质量衡算
B
XF
BXF + SYS = SYE + BXR
B YE-YS = - ( XR-XF ) S B 斜率 − 操作线 S 方程 过点 ( XF ,YS )
直角坐标图图解法
S YS
E R
S YE
B XR
YE
S1
S2
Sn
F xF
1
R1 x1
2
R2 x2
Rn−1 xn−1
n
Rn xn
E1 y1
E2 y2
多级错流萃取流程示意图
En yn
多级错流萃取的总溶剂用量为各级溶剂用量 之和,当各级溶剂用量相等时, 之和 , 当各级溶剂用量相等时 , 达到一定的分离 程度所需的总溶剂用量最少。 程度所需的总溶剂用量最少。
n=4
E1
x n计算 ≤ x n规定
xF
F
R1 R2
M
E2 E3 E4
∆
R3
Rn
xn 多级逆流萃取三角形相图图解计算 F + S = E1 + Rn = M
F − E1 = R1 − E2 = R2 − E3 = • • • = Rn − S = ∆
E1
F
M
△ 在 左 侧
Rn
溶剂比的影响 S / F 较小
10.3.3 多级逆流萃取的计算
F xF
R1 x1
R2 x 2
Rn−1 xn−1
En yn
Rn xn n
S yS
1
E1 y1
E2 y 2
2
E3 y 3
多级逆流萃取流程示意图
10.3.3 多级逆流萃取的计算
二、多级逆流萃取的计算
1. B与 S部分互溶物系 与 部分互溶物系 已知: 已知:原料量 F,原料组成 xF , 萃取剂用量 S,萃取剂组成 ys , 规定: 规定:最终萃余相组成 xn 计算: 计算: 萃取级数 n 三角形相图图解法
x n计算 ≤ x n规定
n=3
S1 S2 S3
10.3.2 多级错流萃取的计算
二、多级错流萃取的计算
2. B与 S不互溶物系 与 不互溶物系 (1) 直角坐标图解法 设 S = S1 = S2 = • • • = Sn 第 1 级作溶质 A的质量衡算 的质量衡算
BXF + SYS = BX1 + SY1
S S S ( XF + YS ) YS YS B B 第 n 级 : Xn = + +⋅⋅⋅ + B (1 + Am )n (1 + Am )n−1 (1 + Am )
…
10.3.2 多级错流萃取的计算
二、多级错流萃取的计算
整理得
XF - (YS/K) 1 n= ln[ ] ln(1 + Am ) Xn - (YS/K)
10.3 液-液萃取过程的计算 液萃取过程的计算
10.3.1 单极萃取的计算 10.3.2 多级错流萃取的计算 10.3.3 多级逆流萃取的计算
10.3.1 单极萃取的计算
一、B 与 S 部分互溶物系
1. 规定萃余相组成 已知: 已知:原料量 F ,原料组成 xF, 溶剂组成 yS 规定: 规定:萃余相组成 xR 计算: 计算:萃取剂量 S 萃取相量 E 、组成 yE 萃余相量 R 萃取液量E′、组成 y′ E 萃余液量 R′、组成 x′ R
10.3.3 多级逆流萃取的计算
二、多级逆流萃取的计算
物料衡算关系
F − E1 = Rn − S F ห้องสมุดไป่ตู้ E1 = R1 − E2
R1 − E2 =R2 −E3 Rn−1 − En =Rn −S
F − E1 = R1 − E2 = R2 − E3 = • • • = Rn − S = ∆
净流量差 操作点
E′
y′ E
xF
F
yE
R′ R
x′ R xR
E M
纯溶剂
单级萃取图解
10.3.1 单极萃取的计算
一、B 与 S 部分互溶物系
M = F + S = R+ E
M F S = F× M S
RM E = M× RE
R= M−E
R′F E′ = F × R′ = F − E′ R′E′
Smin = F × FG GS
F
E1
M
Rn
溶剂比的影响 S / F 较大
△ 在 右 侧
F
E1 M
△ 在无穷远处
Rn
溶剂比的影响 S / F 为某数值
10.3.3 多级逆流萃取的计算
二、多级逆流萃取的计算
2. B与 S不互溶物系的计算 与 不互溶物系的计算 (1) 直角坐标图图解法 在第 1 级至第 i 级之间进行质量衡算
B XF
Y1 Y2 Y3 YS X3 N X2 M X1 L XF n=3
斜率 –B/S
X n计算 ≤ X n规定
多级错流萃取直角坐标图图解计算
10.3.2 多级错流萃取的计算
二、多级错流萃取的计算
(2) 解析法 设平衡关系为
Y = KX
Y1 = KX1
第一级的相平衡关系为
S XF + YS B 联立得: 联立得: X1 = KS 1+ B
S
~ S/F ~n
根据工程经验
S = (1.1 ~ 2.0)Smin
适宜溶剂用量
Y1′ Y1
Y1∗