误差理论与数据处理版课后习题答案完整版

合集下载

《误差理论与数据处理》答案

《误差理论与数据处理》答案

《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么简述误差理论的主要内容。

答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2(大1-3-多少(2)1-1-61-7故二等标准活塞压力计测量值的误差=测得值-实际值,即:100.2-100.5=-0.3( Pa)1-8在测量某一长度时,读数值为2.31m,其最大绝对误差为20mμ,试求其最大相对误差。

1-9、解:由21224()h hgTπ+=,得对21224()h hgTπ+=进行全微分,令12h h h=+,并令gV,h V,T V代替dg,dh,dT得从而2g h Tg h T=-V V V 的最大相对误差为: =0.000050.000521.04230 2.0480--⨯=5.3625410%-⨯由21224()h h g T π+=,得T =由max max max 2g h T g h T =-V V V ,有max max min min max max{[([()]}22h g g hT T T ABS ABS h g h g=--V V V V V 1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为150m 远射手的相对误差为:1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

其测量误差为m μ12±,试比较三种测量方法精度的高低。

相对误差123I I I <<第三种方法的测量精度最高第二章 误差的基本性质与处理2-1.试述标准差 、平均误差和或然误差的几何意义。

《误差理论与数据处理》部分课后作业参考答案精品文档18页

《误差理论与数据处理》部分课后作业参考答案精品文档18页

《误差理论与数据处理》部分课后作业参考答案1-18根据数据运算规则,分别计算下式结果: (1)3151.0+65.8+7.326+0.4162+152.28=? (2)28.13X0.037X1.473=? 【解】(1) 原式≈3151.0+65.8+7.33+0.42+152.28=3376.83 ≈3376.8(2) 原式≈28.1X0.037X1.47 =1.528359 ≈1.52-12某时某地由气压表得到的读数(单位为Pa )为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101726.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。

【解】(1) 加权算术平均值: ∑∑==-+=m i imi ii px xp x x 1100)(=100000+1×2523.85+3×2391.30+5×2257.97+7×2124.65+8×1991.33+∙∙∙=102028.3425Pa(2) 标准差:∑∑==-=mi imi x i x p m vp i112)1(σ=√1×(102523.85−102028.3425)+3×(102391.30−102028.3425)+∙∙∙(1+3+5+7+8+6+4+2)∗(8−1)=86.95Pa2-17对某量进行10次测量,测得数据为14.7,1.0,15.2,14.8,15.5,14.6,14.9,14.8,15.1,15.0,试判断该测量列中是否存在系统误差。

【解】对数据进行列表分析,如下:作出残差与次数的关系图:(1) 线性系统误差:根据关系图利用残余误差观察法可知,不存在线性系统误差。

根据不同公式计算标准差比较法可得:按贝塞尔公式:2633.01121=-=∑=n vni iσ按别捷尔斯公式:2642.0)1(253.112=-=∑=n n vni iσ|u |=|σ2σ1−1|=|0.26420.2633−1|=0.0032<2√n −1=23故不存在线性系统误差。

《误差理论与数据处理》习题2及解答

《误差理论与数据处理》习题2及解答

x
=
1 5
8 i =1
xi
= 168.488 (mA)
2
n
∑ ②计算标准差:用贝塞尔公式计算:σ =
νi2
i =1
=
0.02708 = 0.0823 ( mA )
n −1
5 −1
n
∑νi
[若用别捷尔斯法计算:σ = 1.253× i=1
= 1.253× 0.332 = 0.0930 ]
n(n −1)
26.2022
7
20.2023
8
26.2025
9
26.2026
10
26.2022
0.0005 0.0008 0.0008 0.0005 0.0006 0.0002 0.0003 0.0005 0.0006 0.0002
∑ x = x0 + ∆x0 = 26.2025
∆x0
=
1 10
10
∆xi
i =1
1
∑ 或依算术平均值计算公式,n=8,直接求得:
x
=
1 8
8 i =1
xi
=
236.43 (g)
n
∑ ②计算标准差:用贝塞尔公式计算:σ =
νi2
i =1
=
0.0251 = 0.0599 ( g )
n −1
8 −1
2-3. 用别捷尔斯法、极差法和最大误差法计算习题 2-2 的标准差,并比较之。
【解】(1) 用别捷尔斯法计算
0 1×10-8 9×10-8 4×10-8
0 1×10-8 9×10-8
10
∑ν
2 i
=
42 ×10−8
i =1
5

误差理论与数据处理答案完整版

误差理论与数据处理答案完整版

误差理论与数据处理答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。

答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。

+多少表明大了多少,-多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o 00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =,测件的真实长度L0=L -△L =50-=(mm )1-7.用二等标准活塞压力计测量某压力得 ,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

《误差理论与数据处理》答案

《误差理论与数据处理》答案

《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容.答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了"还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值.+多少表明大了多少,-多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49。

999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100。

《误差理论与数据处理》答案

《误差理论与数据处理》答案

《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。

答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。

+多少表明大了多少,-多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

误差理论与数据处理--课后答案

误差理论与数据处理--课后答案

...《误差理论与数据处理》练习题参-考-答-案第一章绪论1-5 测得某三角块的三个角度之和为180o00’02”, 试求测量的绝对误差和相对误差解:绝对误差等于:o180 00 02o 180 2相对误差等于:2o180 180 260 60=26480000.30864 1 0.000031%1-8在测量某一长度时,读数值为 2.31m,其最大绝对误差为20 m,试求其最大相对误差。

相对误差max 绝对误差测得值max100%-620102.31100%8.66 - 410 %1-10 检定 2.5 级(即引用误差为 2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格?解:依题意,该电压表的示值误差为2V由此求出该电表的引用相对误差为2/100=2%因为2%<2.5%所以,该电表合格。

1-12用两种方法分别测量L1=50mm,L2=80mm。

测得值各为50.004mm,80.6mm。

试评定两种方法测量精度的高低。

相对误差50.4 50L1:50mm I 100% 0.008%15080 .006 80L2:80mm I 100% 0.0075%280I1 I 所以L2=80mm 方法测量精度高。

21-13 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?1解:多级火箭的相对误差为:0.10.00001 0. 001%10000射手的相对误差为:1cm 0.01m0.2 0.002% 50m 50m多级火箭的射击精度高。

第二章误差的基本性质与处理2-6 测量某电路电流共 5 次,测得数据( 单位为mA)为168.41 ,168.54 ,168.59 ,168.40 ,2.32。

试求算术平均值及其标准差、或然误差和平均误差。

解:5IiI i 1 m A8.67( )55(Ii I )i 180.75 15(Ii I )2 2i 150.508 0.053 5 1 35(Ii I )4 4i 10.8 0.065 5 1 52—7 在立式测长仪上测量某校对量具,重复测量 5 次,测得数据( 单位为mm)为20.0015,20.16 ,20.0018 ,20.0015 ,20.0011 。

误差理论与数据处理课后习题及答案

误差理论与数据处理课后习题及答案

第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

其测量误差为m μ12±,试比较三种测量方法精度的高低。

相对误差0.01%110111±=±=mm mI μ0.0082%11092±=±=mm mI μ%008.0150123±=±=mmm I μ123I I I <<第三种方法的测量精度最高2-7在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

20.001520.001620.001820.001520.00115x ++++=20.0015()mm =0.00025σ==正态分布 p=99%时,t 2.58=lim t δσ=±21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o2.58=± 0.0003()mm =±测量结果:lim (20.00150.0003)x X x mm δ=+=±2-12某时某地由气压表得到的读数(单位为Pa )为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。

《误差理论与数据处理》部分课后作业参考答案

《误差理论与数据处理》部分课后作业参考答案

《误差理论与数据处理》部分课后作业参考答案1-18根据数据运算规则,分别计算下式结果:(1)3151.0+65.8+7.326+0.4162+152.28=?(2)28.13X0.037X1.473=?【解】(1)原式≈3151.0+65.8+7.33+0.42+152.28=3376.83≈3376.8(2) 原式≈28.1X0.037X1.47=1.528359≈1.52-12某时某地由气压表得到的读数(单位为Pa)为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101726.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。

【解】(1)加权算术平均值:∑∑==-+=miimiiipxxpxx11)(=100000+1×2523.85+3×2391.30+5×2257.97+7×2124.65+8×1991.33+∙∙∙1+3+5+7+8+6+4+2=102028.3425Pa(2)标准差:∑∑==-=miimixixpmvpi112)1(σ=√1×(102523.85−102028.3425)+3×(102391.30−102028.3425)+∙∙∙(1+3+5+7+8+6+4+2)∗(8−1)=86.95Pa2-17对某量进行10次测量,测得数据为14.7,1.0,15.2,14.8,15.5,14.6,14.9,14.8,15.1,15.0,试判断该测量列中是否存在系统误差。

【解】对数据进行列表分析,如下:作出残差与次数的关系图:(1) 线性系统误差:根据关系图利用残余误差观察法可知,不存在线性系统误差。

根据不同公式计算标准差比较法可得:按贝塞尔公式:2633.01121=-=∑=n vni iσ按别捷尔斯公式:2642.0)1(253.112=-=∑=n n vni iσ|u |=|σ2σ1−1|=|0.26420.2633−1|=0.0032<2√n −1=23故不存在线性系统误差。

《误差理论与数据处理》部分课后作业参考答案

《误差理论与数据处理》部分课后作业参考答案

《误差理论与数据处理》部分课后作业参考答案1- 18根据数据运算规则,分别计算卞式结果:(1) 3151.0+65.8+7326+0.4162+152.28=? (2) 28.13X0.037X1.473=?【解】(1)原式 «3151.0+65.8+733+0.42+152.28=3376.83Q3376.8(2)原式 ^28.1X0.037X1.47=1.528359壮52- 12某时某地由气压表得到的读数(单位为Pa)为102523.85> 10239130, 102257.97, 102124.65, 10199133, 101858.01, 101726.69, 10159136,其权各为 九 3. 5. 7, 8. 6, 4. 2,试求 加权算术平均值及其标准差。

【解】⑴加权算术平均值:P-=100000 + 1 X 2523.85 + 3 X 2391.30 + 5 X 2257.97 + 7 x 2124.65 + 8x 1991.33 + …1+3 + 5 + 7 + 8 + 6+ 4 + 2=102028.3425Pa (2) 标准差:m工 P/x’-Xo)m工PPx1 x (102523.85 - 102028.3425) + 3 x (102391.30 - 102028.3425 ) +•••J (1 + 3 + 5 + 7 + 8 + 6+ 4 + 2)拿(8-1)=86.95Pa2-17对某量进行10 次测量,测得数据为24.7, 1.0, 15.2, 14.8, 15.5, 14.6, 14.9, 14.8, 15.1, 15.0,试判断该测呈列中是否存在系统误差。

【解】对数据进行列表分析,如下:(1)线性系统误差:根据关系图利用残余误差观察法町知,不存在线性系统误差。

根据不同公式计算标准差比较法可得:按贝塞尔公式:5 = 11— -------- = 0.26331 11-1按别捷尔斯公式: 6 = 1.253广1 = = 0.2642 " “(n -l)故不存在线性系统误差。

误差理论与数据处理课后作业参考答案

误差理论与数据处理课后作业参考答案

郑重声明:此文档非本人原创,仅供考试复习学习参考,不可作为其他非法不道德抄袭等用途,在此感谢原创作者hwj合肥工业大学 第六版《误差理论与数据处理》作业参考答案第一章1-7:其误差为: 100.2-100.5=-0.3Pa 1-14:因为测量过程中涉及到测量的量程不一样,所以用相对误差来表示三种测量方法精度的高低。

1.01.011000011L 11±=±=δ%2. 0082.01100009L 11±≈±=δ%3.008.015000012L 21±=±=δ%,经比较可知第三种测量方法的相对误差较小,故精度最高,其次为第二种方法,第一种方法的精度最低。

1.18:(1) 3376.8 (2)1.5第二章2-10:2-11:① 根据3σ法则,测量结果为:26.2025σ3±=26.2025±0.0015mmi di vi vi^2 1 26.2025 0 0 2 26.2028 0.0003 9E-08 3 26.2028 0.0003 9E-08 4 26.2025 0 0 5 26.2026 1E-04 1E-08 6 26.2022 -0.0003 9E-08 7 26.2023 -0.0002 4E-08 8 26.2025 0 0 9 26.2026 1E-04 1E-08 1026.2022 -0.00039E-08 d26.20254.2E-07② 10次测量的结果已知,d =26.2025,所以其测量结果依然为:26.2025σ3±=26.2025±0.0015mm③ 根据贝塞尔公式:211nii vn σ===-∑,00022.0≈σmm.根据3σ法则,测量结果为: d σ3±=26.2025±0.00022*3mm ≈26.2025±0.0007mm2-19 设第一组数据为x ,第二组数据为y ,则可以计算: ∑==10/x x 26.001V ∑==10/y y 25.971V=-=∑2i 2x )x x (101σ0.00155 ≈-=∑2i 2y )y y (101σ0.00215 由t 检验法,有≈++-+-=)00215.0*1000155.0*10)(1010()21010(*10*10)971.25001.26(t 1.48由自由度ν=10+10-2=18及取05.0=α,查t 分布表得10.2t =α因为 αt 48.1t <==2.10,所以没有根据怀疑这两组数据间有系统误差。

《误差理论与数据处理》答案

《误差理论与数据处理》答案

《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。

答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等. 1—2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了"还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值.+多少表明大了多少,—多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00'02",试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0。

001=49.999(mm )1—7.用二等标准活塞压力计测量某压力得 100。

《误差理论与数据处理》答案

《误差理论与数据处理》答案

《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。

答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等。

1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。

1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。

+多少表明大了多少,-多少表示小了多少。

(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

误差理论与数据处理课后习题部分答案

误差理论与数据处理课后习题部分答案
5
I =
i =1
Ii
5
5
= 168.49(mA)
( Ii I ) =
i =1
5 1
1
= 0.08
5
2 3
( Ii I )
i =1
5 1
5
=
2 0.08 = 0.05 3
4 5
( Ii
i =1
I) =
5 1
4 0.08 = 0.06 5
2—5 在立式测长仪上测量某校对量具, 重复测量 5 次, 测得数据(单位为 mm)为 20. 0015, 20.0016,20.0018,20.0015,20.0011。若测量值服从正态分布,试以 99%的置信概率确 定测量结果。 解: n 求算术平均值
《误差理论与数据处理》练习题
部分参考答案
第一章 绪论
1-1 测得某三角块的三个角度之和为 180 00’02”,试求测量的绝对误差和相对误差 解: 绝对误差等于:180o 00 02 180o = 2 相对误差等于:
o
2 2 2 = = = 0.00000308641 0.000031% o 180 180 60 60 648000
lim
x = ±t L=x+
x
= ±4.60 1.14 10
lim
4
= 5.24 10 4 mm
4
写出最后测量结果
x = (20.0015 ± 5.24 10
)mm
2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限 误差为±0.0015mm,而置信概率 P 为 0.95 时,应测量多少次? 解:根据极限误差的意义,有
3—3 长方体的边长分别为α1,α2, α3 测量时:①标准差均为σ;②标准差各为σ1、σ2、 σ3 。试求体积的标准差。

误差理论与数据处理(费业泰)最全课后答案

误差理论与数据处理(费业泰)最全课后答案

误差理论习题答案1-4 在测量某一长度时,读数值为2.31m ,其最大绝对误差为 20um ,试求其最大相对误差。

解:最大相对误差≈(最大绝对误差)/测得值,所以642010 100%=8.6610%2.31--⨯≈⨯⨯最大相对误差1-5 使用凯特摆时,由公式21224h h g T π+=()给定。

今测出长度12()h h + 为(1.042300.00005)m ±, 振动时间 T 为(2.04800.0005)s ±,试求g 及最大相对误差。

如果12()h h +测出为(1.042200.0005)m ±,为了使g 的误差能小于20.001/m s ,T 的测量必须精确到多少?解:由21224()h h g T π+=得224 1.042309.81053/2.0480g m s π⨯== 对 21224()h h g T π+=进行全微分,令 12h h h =+ 并令g h T ∆∆∆,,代替d d d g h T ,,得222348h h Tg T T ππ∆∆∆=-从而2g h Tg h T∆∆∆=-的最大相对误差为: 4max max max 0.000050.000522 5.362510%1.04230 2.0480g h T g h T -∆∆∆-=-=-⨯=⨯由21224()h h g T π+=,得T =,所以 2.04790T == 1-7 为什么在使用微安表时,总希望指针在全量程的2/3范围内使用?解:设微安表的量程为0~n X ,测量时指针的指示值为X ,微安表的精度等级为S ,最大误差≤%n X S ,相对误差≤%n X S X,一般n X X ≤ ,故当X 越接近n X 相对误差就越小,故在使用微安表时,希望指针在全量程的2/3范围内使用。

1-9 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.1km,优秀选手能在距离50m 远处准确射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:火箭射击的相对误差: 30.1100%10%10000-⨯= 选手射击的相对误差: 20.02100%410%50-⨯=⨯ 所以,相比较可见火箭的射击精度高。

《误差理论与数据处理》答案

《误差理论与数据处理》答案

《误差理论与数据处理》第一章 绪论1—1.研究误差的意义是什么?简述误差理论的主要内容.答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

误差理论的主要内容:误差定义、误差来源及误差分类等. 1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。

系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。

1—3.试述误差的绝对值和绝对误差有何异同,并举例说明。

答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了",只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。

+多少表明大了多少,-多少表示小了多少. (2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1—6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0。

001mm ,测件的真实长度L0=L -△L =50-0。

001=49.999(mm )1—7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100。

误差理论与数据处理费业泰-课后答案全

误差理论与数据处理费业泰-课后答案全

《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得,该压力用更准确的办法测得为,问二等标准活塞压力计测量值的误差为多少【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。

故二等标准活塞压力计测量值的绝对误差=测得值-实际值=-=-( Pa )。

相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。

今测出长度(h 1+h 2)为(±)m ,振动时间T 为(±)s 。

试求g 及其最大相对误差。

如果(h 1+h 2)测出为(±)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少【解】测得(h 1+h 2)的平均值为(m ),T 的平均值为(s )。

由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(±)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定级(即引用误差为%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格【解】 引用误差=示值误差/测量范围上限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《误差理论与数据处理》(第六版)完整版第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。

%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。

测得值各为50.004mm ,80.006mm 。

试评定两种方法测量精度的高低。

相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。

21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:射手的相对误差为:多级火箭的射击精度高。

1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。

其测量误差为m μ12±,试比较三种测量方法精度的高低。

相对误差0.01%110111±=±=mm mI μ0.0082%11092±=±=mm mI μ%008.0150123±=±=mmmI μ123I I I <<第三种方法的测量精度最高第二章 误差的基本性质与处理2-6测量某电路电流共5次,测得数据(单位为mA )为168.41,168.54,168.59,168.40,168.50。

试求算术平均值及其标准差、或然误差和平均误差。

168.41168.54168.59168.40168.505x ++++=168.488()mA =)(082.015512mA vi i=-=∑=σ0.037()x mA σ=== 或然误差:0.67450.67450.0370.025()x R mA σ==⨯= 平均误差:0.79790.79790.0370.030()x T mA σ==⨯=2-7在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为20.0015,20.0016,20.0018,20.0015,20.0011。

若测量值服从正态分布,试以99%的置信概率确定测量结果。

20.001520.001620.001820.001520.00115x ++++=20.0015()mm =0.00025σ==正态分布 p=99%时,t 2.58= lim x x t δσ=±2.58=± 0.0003()mm =±测量结果:lim (20.00150.0003)x X x mm δ=+=±2-9用某仪器测量工件尺寸,在排除系统误差的条件下,其标准差mm 004.0=σ,若要求测量结果的置信限为mm 005.0±,当置信概率为99%时,试求必要的测量次数。

正态分布 p=99%时,t 2.58=lim x tδ=±2.580.0042.0640.0054.265n n ⨯====取2-9 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm ,若要求测量的允许极限误差为±0.0015mm ,而置信概率P 为0.95时,应测量多少次? 解:根据极限误差的意义,有0015.0≤±=±ntt x σσ根据题目给定得已知条件,有5.1001.00015.0=≤nt查教材附录表3有若n =5,v =4,α=0.05,有t =2.78,24.1236.278.2578.2===nt 若n =4,v =3,α=0.05,有t =3.18,59.1218.3418.3===nt 即要达题意要求,必须至少测量5次。

2-12某时某地由气压表得到的读数(单位为Pa )为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。

)(34.1020288181Pa pxp x i ii ii ==∑∑==)(95.86)18(81812Pa p v p i ii xii x ≈-=∑∑==σ2-13测量某角度共两次,测得值为6331241'''= α,''24'13242=α,其标准差分别为8.13,1.321''=''=σσ,试求加权算术平均值及其标准差。

961:190441:1:222121==σσp p''35'132496119044''4961''1619044''20'1324=+⨯+⨯+=x''0.39611904419044''1.321≈+⨯==∑=i iixx pp iσσ2-14 甲、乙两测量者用正弦尺对一锥体的锥角α各重复测量5次,测得值如下:;5127,0227,5327,037,0227:''''''''''''''' 甲α;5427,0527,0227,5227,5227:''''''''''''''' 乙α试求其测量结果。

甲:20"60"35"20"15"72'72'30"5x ++++=+=甲σ甲18.4"= x 8.23"σσ===甲 乙:25"25"20"50"45"72'72'33"5x ++++=+=乙σ==乙13.5"=x 6.04"σ===乙 2222x x1111:::3648:67738.23 6.04p p σσ===乙乙甲甲 364830"677333"72'36486773p x p x x p p +⨯+⨯==+++甲乙乙甲乙甲72'32"=78.467733648364832.8''=+⨯''=+=乙甲甲甲p p p x x σσ''15''32'273±=±= x x X σ2-16重力加速度的20次测量具有平均值为2/811.9s m 、标准差为2/014.0s m 。

另外30次测量具有平均值为2/802.9s m ,标准差为2/022.0s m 。

假设这两组测量属于同一正态总体。

试求此50次测量的平均值和标准差。

147:24230022.01:20014.011:1:2222212221=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==xx p p σσ)/(9.8081472429.8021479.8112242s m x ≈+⨯+⨯=)(2m/s 0.002514724224220014.0≈+⨯=x σ2-19对某量进行10次测量,测得数据为14.7,15.0,15.2,14.8,15.5,14.6,14.9,14.8,15.1,15.0,试判断该测量列中是否存在系统误差。

96.14=x按贝塞尔公式 2633.01=σ按别捷尔斯法0.2642)110(10253.1101i 2≈-⨯=∑=ivσ由u +=112σσ 得 0034.0112=-=σσu 67.012=-<n u 所以测量列中无系差存在。

2-18对一线圈电感测量10次,前4次是和一个标准线圈比较得到的,后6次是和另一个标准线圈比较得到的,测得结果如下(单位为mH ): 50.82,50.83,50.87,50.89;50.78,50.78,50.75,50.85,50.82,50.81。

试判断前4次与后6次测量中是否存在系统误差。

使用秩和检验法:排序:T=5.5+7+9+10=31.5 查表 14=-T 30=+T +>T T 所以两组间存在系差2-21 对某量进行两组测量,测得数据如下:解:x y i 203)2)1((211=++=n n n a ;474)12)1((2121=++=n n n n σ求出:1.0-=-=σaT t现取概率295.0)(=t φ,即475.0)(=t φ,查教材附表1有96.1=αt 。

由于αt t ≤,因此,可以认为两组数据间没有系统误差。

第三章 误差的合成与分配3-1相对测量时需用54.255mm 的量块组做标准件,量块组由四块量块研合而成,它们的基本尺寸为mm l 401=,mm l 122=,mm l 25.13=,mm l 005.14=。

经测量,它们的尺寸偏差及其测量极限误差分别为m l μ7.01-=∆,m l μ5.02+=∆,m l μ3.03-=∆,,20.0,25.0,35.0,1.03lim 2lim 1lim 4m l m l m l m l μδμδμδμ±=±=±=+=∆m l μδ20.04lim ±=。

试求量块组按基本尺寸使用时的修正值及给相对测量带来的测量误差。

修正值=)(4321l l l l ∆+∆+∆+∆- =)1.03.05.07.0(+-+-- =0.4)(m μ 测量误差: l δ=4321lim 2lim 2lim 2lim 2l l l l δδδδ+++±=2222)20.0()20.0()25.0()35.0(+++± =)(51.0m μ±3-2 为求长方体体积V ,直接测量其各边长为mm a 6.161=,mm 44.5b =,mm c 2.11=,已知测量的系统误差为mm a 2.1=∆,mm b 8.0-=∆,mm c 5.0=∆,测量的极限误差为mm a 8.0±=δ,mm b 5.0±=δ,mm c 5.0±=δ, 试求立方体的体积及其体积的极限误差。

相关文档
最新文档