6.1平方根第二课时课件(新人教版七数下)

合集下载

6.1 平方根 课件 2023-2024学年人教版数学七年级下册

6.1 平方根  课件 2023-2024学年人教版数学七年级下册
∴1.4 < < 1.5.
②∵1.412 = 1.9881,1.422 = 2.0164,
而 1.9881 < 2 < 2.0164,
∴1.41 <
< 1.42.
③∵1.4142 = 1.999396,1.4152 = 2.002225,
而 1.999396 < 2 < 2.002225,
∴1.414 <
解:∵|a+7|≥0, − − ≥0,
∴a+7=0,且2a-3b-4=0,
解得a=-7,b=-6.
∴ − = =13.
练习
1.下列说法正确的是 ( A )
A.25是625的算术平方根
B.±4是16的算术平方根
C.-6是(-6)2的算术平方根
D.0.01是0.1的算术平方根
1
1
4
2
0.36
0.6
表一:已知一个正数,求这个正数的平方.
表二:已知一个正数的平方,求这个正数.
表一和表二
中的两种运
算有什么关
系?
探究新知
填表:
正方形的面积/dm2
1
9
16
36
正方形的边长/dm
1
3
4
6
实际上是已知一个正数的平方,
求这个正数的问题.




知识归纳
算术平方根的概念
(1) 一般地,如果一个正数x的平方等于a,即x2=a,那么
关系?你从中得出什么结论?
知识归纳
平方根的概念、开平方
(1)一般地,如果一个数的平方等于 a,那么这个数叫做
a 的平方根或二次方根.
●这就是说 x2 = a,那么 x 叫做 a 的平方根.

人教版初中数学七年级下册6.1.3《平方根》课件(共15张PPT)_2

人教版初中数学七年级下册6.1.3《平方根》课件(共15张PPT)_2
0的平方根是( 0 );
负数有平方根吗?
负数( 没有 )平方根.
探究二、平方根的表示方法
ɑ(ɑ≥0)的平方根表示为:
a
aa0
根号 被开方数
读作正、负根号ɑ
则:16的平方根可以写作: 16=±4
3 表示:__3_的__平__方__根_____
请你区别:( ɑ ≥0 )
α, α
aa0
, α分别表示什么意义?
(1)100 (2) 9
16
(3)0.25
解 (1)10210,0100的平方根是10 ;
(2)
3
2
9
,
4 16
9 16
的平方根是
3 4
;
(3)0.520.25, 0.25的平方根是 0.5.
归纳平方根的性质
aa0
正数的平方根有什么特点?
正数的平方根有( 两 )个,它们互为相反数;
0的平方根是多少?
x2
aa0
a
输出入x
输出入a
平方根的定义:
aa0
一般地,如果一个数的平方等于a,那么这 个数叫做a的平方根或二次方根.这就是说,
如果 x2 a,那么x 叫做a的平方根
探究一、平方根与开平方
x2
a
aa0
x2
a
输入x
输出a 输出x
输入a
平方
互为逆 运算
开平方
例题解析
aa0
例4 求下列各数的平方根
aa0
6.1 平方根
(第二课时)
学习目标
aa0
1、掌握平方根的概念与性质. 2、会通过开平方运算求一个非负数的平方根. 3、理解平方与开平方互为逆运算.

平方根(2)课件 2022-2023学年人教版数学七年级下册

平方根(2)课件 2022-2023学年人教版数学七年级下册

C. 6<x<7;
D. 7<x<8.
3、设 n 为正整数,且 n 23 n 1 ,则 n = 4 .
例题讲解
课本 第43页 例3
例1 小丽想用一块面积为400 cm²为的长方形纸片,沿着边
的方向剪出一块面积为300 cm²的长方形纸片,使它的长宽 之比为3:2.她不知能否裁得出来,正在发愁.小明见了说:
根据边长与面积的关系得 3x•2x=300 6x2=300 x2=50
形纸片的长应该大于21 cm. 因为 400 =20. 所以正方形纸 片的边长只有20 cm. 这样, 长方形纸片的长将大于正方形 纸片的边长.
x= 50 .
答:不能同意小明的说法. 小
所以长方形纸片的长为 3 50
丽不能用这块正方形纸片裁出
2
例题讲解 大多数计算器都有 键,用它可以求出一个正有理数的 算术平方根(或其近似值). 例2 用计算器求下列各式 的值. (1) 3136;
(2) 2 (精确到0.001).
用计算器计算算术平方根 下面我们来看引言中提出的问题: 宇宙飞船离开地球进入轨道正常运行的速度要大于第 一宇宙速度v1而小于第二宇宙速度 v2.
“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸
片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要 求的纸片吗?
400 cm² 够长吗? 够宽吗?
300 cm²
例题讲解
课本 第43页 例3
解:设长方形纸片的长为3x cm, 因为50>49,所以 50>7.
宽为2x cm.
由上可知3 50 >21,即长方
算术平方根的规律 (2)利用计算器计算 3 1.732 ,并利用(1)中
发现的规律说出 0.03, 300 , 30000 的近似值,你能根据 3 的值说出 30 是多少吗?

七年级数学下册第六章实数:平方根第2课时平方根课件ppt新版新人教版

七年级数学下册第六章实数:平方根第2课时平方根课件ppt新版新人教版

4.(2019·台州)若一个数的平方等于5,则这个数等于_____5___. 5.若-2 是m的一个平方根,则m+7的平方根是__±__3____.
知识点二 平方根与算术平方根的关系
8.若正方形的边长为a,面积为S,则(B )
A.S的平方根是a
B.a是S的算术平方根
C.a=± S
D.S= a
9.若一个数的算术平方根是5,则这个数的平方根为( D )
A.25
B.±25
C.-5
D.±5
10.若一个数的算术平方根是6,则比它大2的数的平方根是_____3_8__.
11.已知25x2-144=0,且x是正数,求5x+13的平方根.
解:由25x2-144=0,得x=± 12 .
5
∵x是正数,∴x= 12 ,∴5x+13=5× 12 +13=25,
5
解:∵2a-1的平方根为± 3 ,∴2a-1=3,解得a=2. ∵3a-2b+1的平方根为±3,∴3×2-2b+1=9,解得b=-1, ∴4a-b=4×2-(-1)=9,∴4a-b的平方根为±3.
17.若x2=9,y2=16,且x>y,求x-y的平方根. 解:依题意,得x=3,y=-4或x=-3,y=-4, ∴x-y=7或1,∴x-y的平方根为± 7 或±1.
18.已知a,b,c满足b= (a 3)2 +4,c的平方根等于它本身,求 a b c 的值. 解:由题意,得-(a-3)2≥0,∴a=3,∴ b (a 3)2 4 4. ∵c的平方根等于它本身,∴c=0,∴ a b c 3 4 0 5.
19.(1)一个非负数的平方根是2a-1和a-5,这个非负数是多少? 解:(1)根据题意,得(2a-1)+(a-5)=0,解得a=2, ∴这个非负数是(2a-1)2=(2×2-1)2=9.

七级数学下册六实数平方根一新版新人教版PPT课件

七级数学下册六实数平方根一新版新人教版PPT课件

.-6
D.-8
课后巩固
23.计算下列各题:
(1)(1 0.09 1 0.25) 100
;(1)23
5
(2) 196 6( 5 4 20
27
(3) 2 1 (2)2 1 9 25
;4
25
(3)7
课后巩固
24.学校小会议室面积为27 m2,小明数了一下地面 所铺的地砖,正好是300块一样大小的正方
(2)∵ 6 =
5


的算
课堂导学
1. 3
对点训练一 表示3的__算__术__平__方__根_________;
2.5的算术平方根可写成_____5_____;
3.(1)4的算术平方根是____2______;
3
(2)2的算术平方根是2__________;
(3)0的算术平方根是0__________.
核心目标
了解算术平方根的概念,会用根号表示正数的算术 平方根,并了解算术平方根的非负性.
课前预习
1.如果一个正数x的平方等于a,即x2=a,那么这个 正数x叫做a算的术__平__方__根________,记作a______.
2.25的算术平方根是____5____,49的算术平方根是 7________.
课堂导学
知识点:算术的平方根
【例题】求下列各数的算术平方根: (1)0.11215; (2)
25
【解析】尝试哪一个数的平方等于已知数,然后依据
算术平方根的概念进行计算.
【答案】解:(1)∵0.52=0.25,
方根是0.5 ,=
∴0.25的算术平
1 11
36
62 ()
36
25 25 5 25

人教版七年级数学下册教学课件-6.1平方根62-

人教版七年级数学下册教学课件-6.1平方根62-

(2)∵ 92 81,
∴81的算术平方根是9,即 81 9;
(3) ∵32 32,
∴ 3 2 的算术平方根是3,即 32 3;
(4)1 11 = 36


6
2
36

25
∴ 36
25
5
的算术平方根是
25
6 ,即
1 11 6。
25
5
25 5
第十二页,编辑于星期一:一点 四分。
当堂练习
3.求下列各式的值:
05,即

(3)

(2) ;
1 1

(2) 9 3
25 5
32=
52=
∴0.
解:(2)因为


, (3)
1、判断下列说法是否正确:
规定:0的算术平方根是0!
22 2 ;
(4) 2 1 3
42
我家买了张新桌子,需要铺一块面积
例1 求下列各数的算术平方根:
解:(1)∵

; .
第十三页,编辑于星期一:一点 四分。
解:(2)因为



49 7 .
64 8
第九页,编辑于星期一:一点 四分。
例1 求下列各数的算术平方根:
(1)1 0 0
;(2)64
9 4
;(3) 0.0001.
解:(3)因为 0.0120.0001,
所以0.0001的算术平方根是0.01 .
即 0.00010.01 被.开方数的大小与对应的算
术平方根的大小之间有什么 关系呢?
被开方数越大,对应的算术平方根也越大
第十页,编辑于星期一:一点 四分。

算数平方根-七年级数学下册课件(人教版)

算数平方根-七年级数学下册课件(人教版)


0.0001 0.01 .
能力提升:
1
1
7.已知 2a+1 的算术平方根是 0,b-a 的算术平方根是 ,求 ab 的算术平方根.
2
2
解: 因为 0=0, 2a+1=0,所以 2a+1=0,
1
解得 a=- .
2
因为
1
2
1
= ,所以
4
1 1
= .
4 2
1
1
因为 b-a= ,所以 b-a= .
2
Hale Waihona Puke 496478
= .
(3) 由于 0.012=0.0001,因此 0.0001 = 0.01 .
被开方数越大,对应的算术平方根也越大.
新知探究
知识点2:算术平方根的性质
合作与交流:
1.一个正数的算术平方根有几个?
一个正数的算术平方根有1个
2.0的算术平方有几个?
0的算术平方根有一个,是0.
3.-1有算术平方根吗?负数有算术平方根?
所以 + 2 = 4,
解得 = 2,
所以 2 + 5 = 2 × 2 + 5 = 9.
课堂小结
概念





双重非负性
一般地,如果一个正数 x 的平方
等于 a,即 x2=a,那么这个正数
x 叫做 a 的算术平方根.
a ≥0
≥0
应用
几个非负数的和为0,则
每个数均为0.
当堂检测
基础练习:1.数 4 的算术平方根是( A
8
问题1: (1)因为_____
8
8
即 64 =______.

6.1平方根(课时2)课件(新人教版七年级数学下)

6.1平方根(课时2)课件(新人教版七年级数学下)

2 7 和27的大小.
【学习体会】
1.本节课你独立思考了那些知识?参与讨论了哪些知识? 还有那些疑惑? 2.本节课你最成功的地方是什么?说给你小组成员听听.
【当堂达标】 1. 比较下列各数的大小: (1)
65与8 ;(2)
5-1 与1 . 2
2.已知
2.3409 =1.53,求 23409 的值
6.2平方根(第二课时)
பைடு நூலகம்
【学习目标】
1.能用“夹值法”求一个数的平方根的近似值. 2.会用计算器求一个数的算术平方根. 3.理解被开方数扩大(缩小)与它的算数平方根扩大(缩小)的规律.
【重点难点】
重点:利用“夹值法”求一个数的算术平方根. 难点:理解被开方数扩大(缩小)与它的算术平方根扩大(缩小)的规律.
创设情景
怎样用两个面积为1的小正方形拼成一个面积为2的大正方形? 大正方形的边长是多少?
2 到底有多大?
【课中探究】
数学活动一:估值 根据自己的经验,你估计一下
2
大约有多大?
数学活动二:探究 ∵1² =1 2² =4 ∴1< 2 <2 ∵1.4² =1.96 1.5² =2.25 ∴1.4< 2 <1.5 ∵1.41² =1.9881 1.42² =2.0164 ∴1.41< 2 <1.42 ∵1.414² =1.999396 1.415² =2.002225 ∴1.414< 2 <1.415…… 事实上,越往下进行,得到的值就越准确。 2 =1.41421356…
3.用计算器计算:(如需取近似值,则精确到0.01) ( 1)
1369
;(2) 101.2036 ;(3) 5
.
它是一个无限不循环小数,像这样的数还有很多,如: 3、 5 …….

人教版数学七年级下册6.1-平方根(2)-课件

人教版数学七年级下册6.1-平方根(2)-课件

(√) (× )
7) (﹣10)2没有平方根
( ×)
8) 如果x2 = a,则 a 一定是正数 ( × )
有一个正数的两个平方根是2m-3和5m,求m的值。
解:由题意得 (2m-3)+(5-m)=0
∴ m=-2
练习:如果 x 2 2 ,求2x+5的算术平方根.
能力提升 (1)3-m有平方根,求m的取值范围 (2)a-4无平方根,求a的取值范围 (3) 3x 5 有意义,求x的取值范围
(2) 0.0036
=-0.06
(4) 25 36
=5+6 =11
判断下面的说法是否正确,如不正确,
说明理由,并加以改正.
1) ﹣3的平方根是 9
( ×)
2) 9的平方根是﹣3
( ×)
3) 3是9的平方根 4) 4的平方根是±2
( √) (√ )
5) ﹣5是25的平方根 6) ﹣1的平方根是±1
如(±5)2=25,则±5是25的平方根,
记作 25= 5
2.认识开平方运算
填空: 求平方
1 1
1
2 2
4
3
9
3
求平方根
1
1 1
4
2 2
9
3
3
两图中的运算有什么关系呢?
求一个数的平方根的运算,叫做开平方。
±3的平方等于9,9的平方根是±3, 所以平方与开平方互为逆运算.
初中所学的六种运算: 加法、减法、乘法、除法、乘方、开方. 对应的运算结果分别为: 和、 差、 积、 商、 幂、 方根.
学习小结:
1、平方根的概念. 2、开平方. 3、平方根的特征. 4、平方根的表示法:
a (a 0)

七年级数学下册 第六章 实数 6.1 平方根 第2课时 平方根同步课件下册数学课件

七年级数学下册 第六章 实数 6.1 平方根 第2课时 平方根同步课件下册数学课件
12/11/2021
第二十页,共二十一页。
第六章 实数(shìshù)
内容(nèiróng)总结
No
Image
12/11/2021
第二十一页,共二十一页。
12/11/2021
第六章 实数(shìshù) 6.1 平方根 第2课时(kèshí) 平方根
第一页,共二十一页。
平方根
1.下列各数中,没有平方根的是( D )
A.(-3)2
B.0
C.18
D.-63
12/11/2021
第二页,共二十一页。
同步考点手册 P13
2.9 的平方根是( B ) A.9 C.-3
12/11/2021
第十七页,共二十一页。
17. 先填写下表,通过观察后再回答问题.
a

0.000001
0.0001 0.01
1
±a

±0.001
±0.01 ±0.1 ±1
a
100
10000
1000000


±a
±10
±100
±1000


12/11/2021
第十八页,共二十一页。
问: (1)被开方数 a 的小数点位置移动和它的平方根± a的小数点位置移动 有无规律?若有规律,请写出它的移动规律; 解:有规律,当被开方数的小数点每向左(或向右)移动 2 位,平方根的 小数点向左(或向右)移动 1 位.
A.-3
B.-1
C.1
D.-3 或 1
11.(1)已知 a2=16, b=2,则 a+b=_0_或__8__.
(2)若 a 是(-3)2 的算术平方根, 42的平方根是 b,则 a+b=_1__或___5__.

人教七年级数学下课件(课件)6.1平方根(2)

人教七年级数学下课件(课件)6.1平方根(2)

1.96 2 2.25
因为,1.4,12 1.9881 1.422 2.0614
而,1.9所88以1 .2 2.0164
1.41 2 1.42
因为,1.4,142 1.999396 1.4152 2.002225
而,1.9所99以39.6 2 2.002225
你能将这个问题转化为数学问题吗?
解:设剪出的长方形的两边长分别为3xcm和2xcm,
则有3x∙2x=300,
6x2=300,
x2=50,

x 50
故长方形纸片的长为,3 宽50为cm. 2 50 cm
长方形的长和宽与正方形的边长之间的 大小关系是什么?小丽能用这块纸片裁 出符合要求的纸片吗?
解:设剪出的长方形的两边长分别为3xcm和2xcm,
8. 38介于整数 和6之间,它7 的小数 数部分是。38 6
9. x 7 6的最小值是 __6_____,此时x=__-__7__ .
10.12 m 8有 __最__大_ 值(填最大或最小) 是 ____12__,此时m ___8 .
所以m+n=25
所以m+n的算术平方根是5
1.这节课你有什么收获? 举例说明如何估算算术平方根的大小.
2.你还有什么问题或想法需要和大家交流?
• 1、一个数的算术平方根等于它本身,这个 数是。
• 2、若x²=16,则5-x的算术平方根是。 • 3、若4a+1的算术平方根是5,则a²的算术平
方根是。
探究一、提出问题
能否用两个面积为1的小正方形 拼成一个面积为2的大正方形?
能否用两个面积为1dm2的小正方形 拼成一个面积为2dm2的大正方形?

人教版七年级下数学第6章实数6.1平方根算术平方根课件(2)

人教版七年级下数学第6章实数6.1平方根算术平方根课件(2)

计 (-算23: )2=22= ____49____4___;_; 02=(-__2_)_02=_____._4___;(23)2=
4 ___9___

6.1 平方根
活动2 师生互动,学习新知 阅读教材第 40 页填表,然后完成下面的填空. (1)因为 22=4,所以 4 的算术平方根是__2__.
活动1、创设情境 引入新课 知识点 算术平方根的概念
第六章
实数
活动1、创设情境 引入新课
活动1、创设情境 引入新课 知识点 算术平方根的概念
活动1、创设情境 引入新课 这节课你学到了哪些知识?
6.1 平方根
知识点 算术平方根的概念
这节课你学到了哪些知识? 知识点 算术平方根的概念 活动1、创设情境 引入新课
6.1 平方根
[点拨] (1) a也可以写成2 a,读作“二次根号 a”,在这里
“2”叫做根指数,通常省略不写.
(2)由算术平方根的定义知:a≥0, a≥0,即算.术.平.方.根.和.被.
开.方.数.均.为.非.负.数..
6.1 平方根
动手实践 学以致用
例 1 [教材例 1 针对训练]求下列各数的算术平方根: (1)116;(2)214;(3)(-5)2;(4)-(-4). [解析] (1)直接根据算术平方根的定义;(2)先化成假分数; (3)先计算(-5)2,再求结果的算术平方根;(4)进行符号化简, 即-(-4)=4.
6.1 平方根
探究二 运用算术平方根进行计算
例 2 [教材补充例题]计算下列各式的值:
9
9
(1) 4- 49;(2) 116- 144+ 81.
[解析]
(1)94=232;(2)1196=2156=452.

【优课件】6.1 平方根(第2课时)-2021-2022学年七年级数学下册同步备课系列(人教版)

【优课件】6.1 平方根(第2课时)-2021-2022学年七年级数学下册同步备课系列(人教版)

解:(1)

(2) 与6.
= ,



= ,
∴ > .
(2)∵
= ,
∴ > ,
∴2 > .


已知非负数a、b
= ,

Байду номын сангаас
若a >b ,则a>b
例3:小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块
面积为300cm2的长方形纸片,使它的长宽之比为3∶2. 她不知能否裁得出
∴. < <1.415.
……
如此下去,可以得到 的更精确的近似值.
新知讲解
无限不循环小数:
继续重复上述的过程,可以得到
2 1.414 213 562 373......
小数位数无限,且小数部分不循环的小数称为无限不循环小数.
是一个无限不循环的小数.
典例分析
例1:估算 − 的值 ( B )
1. 若 . ≈ . , . ≈ . ,那么 ≈ . ,
. ≈ . .
2.若已知 . ≈ . , = . ,那么 = .
当堂巩固
1. 在计算器上按键
A. 3
B. -3
,下列计算结果正确的是 ( B )
A. 在1和2之间
B. 在2和3之间
C. 在3和4之间
D. 在4和5之间
解析:因为 < < ,
所以 <
< ,所以 < − < . 故选B.
估计一个有理数的算术平方根的近似值,要先判断这个
有理数位于哪两个数的平方之间.
例2:试比较下列各组数的大小
(1)与 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档