第七章--化学反应动力学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章化学反应动力学
一.基本要求
1.掌握化学动力学中的一些基本概念,如速率的定义、反应级数、速率系数、基元反应、质量作用定律和反应机理等。
2.掌握具有简单级数反应的共同特点,特别是一级反应和a = b的二级反应的特点。学会利用实验数据判断反应的级数,能熟练地利用速率方程计算速率系数和半衰期等。
3.了解温度对反应速率的影响,掌握Arrhenius经验式的4种表达形式,学会运用Arrhenius经验式计算反应的活化能。
4.掌握典型的对峙、平行、连续和链反应等复杂反应的特点,学会用合理的近似方法(速控步法、稳态近似和平衡假设),从反应机理推导速率方程。学会从表观速率系数获得表观活化能与基元反应活化能之间的关系。
5.了解碰撞理论和过渡态理论的基本内容,会利用两个理论来计算一些简单反应的速率系数,掌握活化能与阈能之间的关系。了解碰撞理论和过渡态理论的优缺点。
6.了解催化反应中的一些基本概念,了解酶催化反应的特点和催化剂之所以能改变反应速率的本质。
7.了解光化学反应的基本定律、光化学平衡与热化学平衡的区别,了解光敏剂、量子产率和化学发光等光化反应的一些基本概念。
二.把握学习要点的建议
化学动力学的基本原理与热力学不同,它没有以定律的形式出现,而是表现为一种经验规律,反应的速率方程要靠实验来测定。又由于测定的实验条件限制,同一个反应用不同的方法测定,可能会得到不同的速率方程,所以使得反应速率方程有许多不同的形式,使动力学的处理变得比较复杂。反应级数是用幂函数型的动力学方程的指数和来表示的。由于动力学方程既有幂函数型,又有非幂函数型,所以对于幂函数型的动力学方程,反应级数可能有整数(包括正数、负数和零)、分数(包括正分数和负分数)或小数之分。对于非幂函数型的动力学方程,就无法用简单的数字来表现其级数。对于初学者,要求能掌握具有简单级数的反应,主要是一级反应、a = b的二级反应和零级反应的动
力学处理方法及其特点。
动力学的一般处理方法是:对照反应的计量方程,(1)先写出起始(t = 0)和某一时刻(t = t)时,反应物和生成物的浓度;(2)写出速率方程的微分形式;(3)对速率方程进行不定积分,找出反应物(或生成物)的浓度与时间之间的线性关系;(4)对速率方程进行定积分,找出反应物(或生成物)浓度、时间与速率系数之间的定量关系。这样,就可以从实验测定的已知量求出未知量;(5)找出半衰期与反应物浓度之间的关系;(6)总结该反应的特点。主要掌握零级反应、一级反应和a = b的二级反应的特点。
确定反应级数的方法通常有4种,即积分法、微分法、半衰期法和改变反应物的比例的方法。但微分法由于需要多次作图,所以适合于在科学研究中使用。而改变反应物比例的方法是建筑在前面方法的基础上,仅仅是利用准级数的特点把两个未知级数分别进行确定而已。所以,通常用得最多的是积分法(也称为尝试法),适合于确定整级数的反应,其次是半衰期法,适合于确定除一级反应以外的其他级数反应。确定反应级数归根结底是要熟练掌握具有简单级数反应的特点,如速率系数的单位、浓度与时间的线性关系、半衰期的特点等,只要发现有一个特点符合某反应级数,就可以确定其反应级数。基元反应一定具有简单的反应级数,从基元反应的反应式就可知道其反应级数。基元反应通常是一级或二级,少数是三级,基元反应不可能是零级、分数级数或负级数。从基元反应的反应方程式,根据质量作用定律,就可以写出它的速率方程。值得注意的是具有简单级数的反应不一定是基元反应,这一点不能混淆。
典型的复杂反应是由两个或两个以上的基元反应组成的,所以速率系数不止一个,用一个定积分式无法确定两个速率系数,要从复杂反应的特点,找出两个速率系数之间的关系,才能分别计算两个速率系数的值。
Arrhenius经验式表明了温度对反应速率影响的程度,使用该公式时的温度区间不能太大,因为只有在温度温度区间不太大时,才能像Arrhenius那样把活化能看作为与温度无关的常数。Arrhenius经验式有若干种表达形式,各有各的用途。从微分式,很容易看出在速率系数随温度的变化率中,活化能的大小所起的作用,升高相同的温度,
活化能高的反应其速率系数增加的比例就多。从不定积分式,可以看出ln k与1
T
之间
的线性关系,从直线的斜率可以求出反应的活化能,这是科研中常用的求活化能的方法,因为作图的过程就是求活化能平均值的过程。从Arrhenius公式的定积分式,可以根据两个温度下的速率系数求反应的活化能,这样显然要比作图法简单,但可能引入的误差也大。利用定积分式,还可以在已知活化能时,从一个温度下的速率系数,计算另一个温度下的速率系数,所以这个公式在做习题或考试时用得较多。从Arrhenius公式的指数式,可以一目了然地看出在指数项上的活化能和温度对速率系数的影响。
基元反应的活化能有明确的物理意义,是指活化分子的平均能量与反应物分子平均能量的差值,可以利用图形看清楚正、逆反应活化能的含义和吸热反应与放热反应的区别。而复杂反应的活化能仅是基元反应活化能的数学组合,组合的方式由表观速率系数与基元反应速率系数之间的关系决定,没有明确的物理意义。
在处理复杂反应时,要掌握几种近似的处理方法,常用的近似法有速控步法、稳态近似和平衡假设三种,其中以稳态近似最为重要。速控步近似法主要用于连续反应,平衡假设只适用于快平衡后面是慢反应的复杂反应,而稳态近似方法对于有活泼中间产物生成的复杂反应基本都适用。
从爆炸反应,一方面了解发生爆炸有不同的机理,如支链爆炸和热爆炸等,但更重要的是要了解引起爆炸的各种原因,要关心日常生活中常见的爆炸事故,如煤矿的瓦斯爆炸、化纤厂的纤维尘爆炸、面粉厂的粉尘爆炸等,并记住今后如何设法防止爆炸的
发生。
速率理论只适用于基元反应。对于碰撞频率等计算公式的推导不必花太多时间,而重点要放在理论是以什么作为模型?推导中引进了什么假定?计算速率系数的公式中各项的物理意义等,这样才能领会速率理论的优点及不足之处。在碰撞理论、过渡态理论和单分子反应三种理论中,对于过渡态理论应该了解得更多一点,而单分子理论只是有所了解即可。
催化反应和光化学反应是两个内容丰富的大课题,基础课中不可能讲得很深入,主要了解催化反应和光化学反应的基本概念和特点,了解它们的最新科研成果和应用,以拓宽知识面和提高学习兴趣。
三.思考题参考答案
1.有如下几个化学反应计量式,分别写出用参与反应的各种物质表示的速率表示式。设反应都是基元反应,根据质量作用定律写出反应的速率方程。
(1)A B C +=
(2)2A B 2C +=
(3)A 2B C 2D +=+
(4)22Cl M Cl M +=+
答:化学反应速率的定义式为B B 1d d c r t
ν=,用参与反应的任意一种物质表示的速率,都应该有相同的结果。基元反应的速率与各反应物浓度的幂乘积成正比,其中各浓度项的方次即为反应方程中各种物质的计量系数,这就是质量作用定律,质量作用定律只适用于基元反应。所以
(1)1d[A]d[B]d[C]d d d r t t t
=-
=-= 11[A] [B]r k = (2)21d[A]d[B]1d[C]2 d d 2 d r t t t
=-=-= 222[A] [B]r k = (3)3d[A]1d[B]d[C]1d[D]d 2 d d 2 d r t t t t
=-=-== 233[A] [B]r k = (4)241d[Cl]d[M]d[Cl ]d[M]2 d d d d r t t t t =-=-== 244[Cl] [M]r k = 2.某化学反应的计量方程为A B C +=,能认为这是二级反应吗?