高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)
高中数学的数形结合思想方法-全(讲解例题巩固测试)
数形结合的思想方法(1)---讲解篇一、知识要点概述数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。
因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
二、解题方法指导1.转换数与形的三条途径:①通过坐标系的建立,引入数量化静为动,以动求解。
②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。
③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
高三数学数形结合思想方法
八、数形结合思想方法中学数学的基本知识分三类:一类是纯粹数的知识;如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识;如平面几何、立体几何等;一类是关于数形结合的知识;主要体现是解析几何。
数形结合一是一个数学思想方法;应用主要是借助形的直观性来阐明数之间的联系;其次是借助于数的精确性来阐明形的某些属性。
数形结合的思想;其实质是将抽象的数学语言与直观的图像结合起来;关键是代数问题与图形之间的相互转化。
Ⅰ、再现性题组:1. 设命题甲:0<x<5;命题乙:|x -2|<3;那么甲是乙的_____。
(90年全国文)2. 若log a 2<log b 2<0;则_____。
(92年全国理)A. 0<a<b<1B. 0<b<a<1C. a>b>1D. b>a>13. 如果|x|≤π4,那么函数f(x)=cos 2x +sinx 的最小值是_____。
(89年全国文) A. 212- B. -212+ C. -1 D. 122- 4. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5;那么f(x)的[-7,-3]上是____。
(91年全国)A.增函数且最小值为-5B.增函数且最大值为-5C.减函数且最小值为-5D.减函数且最大值为-55. 设全集I ={(x,y)|x,y ∈R};集合M ={(x,y)| y x --32=1};N ={(x,y)|y ≠x +1};那么M N ∪等于_____。
(90年全国)A. φB. {(2,3)}C. (2,3)D. {(x,y)|y =x +16. 如果θ是第二象限的角;且满足cos θ2-sin θ2=1-sin θ,那么θ2是_____。
7. 已知集合E ={θ|cos θ<sin θ;0≤θ≤2π};F ={θ|tg θ<sin θ};那么E ∩F 的区间是_____。
数形结合思想方法在高中数学教学中的运用
数形结合思想方法在高中数学教学中的运用一、数形结合思想方法的概念数形结合思想方法是指将数学中的抽象概念与具体图形相结合,使抽象概念更加形象化和具体化,从而帮助学生更好地理解和掌握数学知识。
这种方法通过将数学问题转化为几何问题,突出了问题的形象性和直观性,使学生更容易理解和掌握数学内容。
二、数形结合思想方法的运用1. 代数表达与几何图形在代数学习中,常常涉及到各种方程、函数及其图像。
教师可以引导学生通过绘制函数图像的方法,帮助学生更好地理解代数表达式的意义。
对于一元二次函数y=ax^2+bx+c,教师可以通过绘制抛物线的图像,让学生直观地感受到a、b、c对函数图像的影响,从而加深对函数的理解和运用。
2. 数列与平面几何在数列的学习中,常常涉及到数列的通项公式和求和公式。
通过将数列的通项公式和求和公式与平面几何结合起来,可以帮助学生更好地理解数列的规律和性质。
教师可以通过绘制数列的图形,让学生直观地感受到数列的增减规律及其和的变化规律,从而加深对数列的理解和掌握。
3. 解析几何与代数方程在解析几何的学习中,常常涉及到直线、圆、抛物线等几何图形的方程式。
教师可以通过将几何图形的方程式与代数方程结合起来,帮助学生更直观地理解几何图形的性质和方程的意义。
教师可以通过分析直线方程和圆的方程的关系,让学生理解方程式与几何图形的联系,从而加深对解析几何的理解和运用。
2. 培养学生的几何直观能力学生在数学学习中往往更倾向于代数计算,而对几何图形的理解和运用能力相对较弱。
数形结合思想方法可以帮助学生培养几何直观能力,提高他们对几何图形的理解和运用水平。
3. 提高学生的数学思维能力数形结合思想方法可以激发学生的求知欲,培养他们的数学思维能力。
通过将数学问题转化为几何问题,学生能够更主动地思考和解决问题,提高他们的数学思维能力。
2. 拓展教学手段和方法数形结合思想方法为教师提供了新的教学手段和方法,丰富了教学内容和形式,提高了教学的多样性和趣味性,能够激发学生的学习兴趣。
高中数学解题方法谈 解读高考中的数形结合思想
解读高考中的数学思想——数形结合篇数形结合是一种重要的数学思想方法,其应用大致可以分为两种情形:一是借助形的生动和直观来表明数之间的联系,即“以形助数”;二是借助于数的精确和严密来阐明形的某些属性,即“以数辅形”.这种思想方法在求解选择题和填空题的时候非常有用,对寻找解答题的求解思路也很有帮助.以下举例说明.一、用数形结合思想解决集合问题处理集合与集合的关系,借助图形进行直观思考,不仅可以使各集合之间的相互关系直观明了,而且也便于将各元素的归属确定下来,使抽象的集合问题,形象直观的得解. 例1 设22{()|(1)1}{()|0}A x y x y B x y x y m =+-==++,,,≥,则使A B ⊆成立的实数m 的取值范围是_____.解析:由于集合A ,B 都是点的集合,故可结合图形进行分析.集合A 是圆22(1)1x y +-=上的点的集合,集合B 是不等式0x y m ++≥表示的平面区域内的点的集合,要使A B ⊆,则应使圆被平面区域所包含(如图1),知直线0x y m ++=应与圆相切或相离且在圆的下方,即0m >.1=,解得1m =,故m的取值范围是1m . 评述:如果所给集合是点的集合,那么在研究它们之间的关系时,可以借助数形结合思想,将问题转化为函数图象或曲线之间的关系求解.二、用数形结合思想解决方程问题在研究某些方程的根的个数问题、根的大小问题以及根的取值范围等问题时,都可以将方程进行恰当的变形,通过引进函数,转化为两个或几个函数图象之间的关系来解决. 例2 已知函数()()()2()f x x a x b a b =--+<,若()αβαβ<,是方程()0f x =的两个根,则实数a b αβ,,,之间的大小关系是( ).(A )a b αβ<<< (B )a b αβ<<<(C )a b αβ<<< (D )a b αβ<<<解析:若令()()()g x x a x b =--,显然函数()g x 的两个零点是a 、b ,函数()f x 的两个零点是αβ,,而函数()f x 的图象是由函数()g x 的图象沿y 轴向上平移两个单位得到的,结合图象可知a b αβ<<<,故应选(B ).例3 若方程240x x m --=恰有4个不同的实数根,则实数m 的取值范围为_____. 解析:将方程化为24x x m -=,构造函数2()4()f x x x g x m =-=,,则方程240x x m --=恰有4个不同的实数根,亦即两个函数()f x 与()g x 的图象恰好有4个不同的交点,如图2,易知当-4<m <0时方程有4个根.三、用数形结合思想解决函数问题我们学过的一些初等函数,如:正比例、反比例函数、一次函数、二次函数、指数函数、对数函数、三角函数等都蕴含着丰富的数形结合的思想,因此,在处理函数问题时,要充分联系函数图象.例4 (2006年辽宁高考题)已知函数11()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是( ).(A )[11]-, (B)12⎡⎤-⎢⎥⎣⎦(C )12⎡-⎢⎣⎦, (D)12⎡--⎢⎣⎦, 解析:cos (sin cos )11()(sin cos )sin cos sin (sin cos )22x x x f x x x x x x x x ⎧=+--=⎨<⎩≥,,,即等价于min {sin cos }x x ,,因此在同一坐标系下分别画出函数sin cos y x y x ==,的图象,在两个图象的每两个交点之间取位于下方的图象,就是函数()f x 的图象,从而容易得到()f x 的值域是12⎡-⎢⎣⎦,,故答案为(C ). 四、数形结合思想解决数列问题由于数列的通项公式和前n 项和公式都可以看成n 的函数,因此,许多数列问题可以借助函数的图象解决.例5 设{}()n a n *∈N 是公差为d 的等差数列,n S 是前n 项的和,且56678S S S S S <=>,,则下列结论错误的是( ). (A )0d < (B )70a =(C )95S S > (D )6S 和7S 均为n S 的最大值解析:可以把等差数列的前n 项和2122n d d S n a n ⎛⎫=+- ⎪⎝⎭看成是关于n的二次函数,结合图形可知,答案为(C ).例6 已知在等差数列{}n a 中,312a =,前n 项和为n S ,且121300S S ><,.则当n S 取到最值时,n 等于( )(A )6 (B )7 (C )12 (D )13解析:由于121300S S ><,,所以130a <,而3120a =>,所以数列的公差d <0,即数列是递减数列.则2(0)n S an bn a b a =+∈<R ,,,如图3,可以把n S看成关于n 的二次函数,其图象是一条抛物线,经过原点,开口向下,又121300S S ><,,所以若设抛物线和x 正半轴的交点为(0)M m ,,则12<m <13,于是抛物线的对称轴为(66.5)2m x =∈,,因此当n =6时n S 取到最大值,选(A ). 编者注:数列的有关问题用函数的观点来解决是一种较好的方法,但要注意,他们并非真正意义上的一次、二次函数!五、用数形结合思想解决不等式问题例7 如图4,请你观察图形以及图形中线段的位置关系及其数量关系,说明如何通过该图形来说明不等式2a b +成立.你还能构造另外的图形来说明这个不等式成立吗?解析:在圆O 中,AB 是一条直径,M 是圆上任意一点,过M 点作MC ⊥AB 交AB 于C ,令CA =a ,CB =b ,则容易得到2a b MC MO +==,由于在Rt △MCO 中,MO 是斜边,MC是直角边,所以有2a b +>C 点与O点重合时,有2a b +=2a b +.由于问题的本质上是在Rt △AMB 中处理问题,所以可构造类似的图形如图5所示(注:CN a BN b ==,.). 评述:几何图形的直观解释和证明,真正体现了代数和几何的有机统一,可谓“无字的证明”.六、用数形结合思想解决最值或范围问题例8 已知a 、b 、c 是某一直角三角形的三边的长,其中c 为斜边,若点(m ,n )在直线ax +by +2c=0上,则22m n +的最小值等于_____.解析:令d ==d 表示点(m ,n )与坐标原点之间的距离.由于点(m ,n )在直线ax +by +2c =0上,所以d 的最小值就是坐标原点到直线ax +by +2c =022c c==,即22m n +的最小值等于4. 例9 在区间[01],上给定曲线2y x =,试在此区间内确定点t的值,使图6中的阴影部分的面积1S 与2S 之和最小.解:1S 面积等于边长为t 与2t 的矩形的面积去掉曲线2y x =与x 轴、直线x t =围成的面积,即22312023tS t t x dx t S =-=⎰;的面积等于曲线2y x =与x 轴、1x t x ==,围成的面积去掉矩形面积,矩形边长分别为2(1)t t -,,即12232221(1)33t S x dx t t t t =--=-+⎰. 所以阴影部分面积S 为:321241(01)33S S S t t t =+=-+≤≤ 由21()42402S t t t t t ⎛⎫'=-=-= ⎪⎝⎭,得 t =0,或12t =. 经验证知,当12t =时,S 最小.。
运用数形结合思想巧解高中数学题例析
运用数形结合思想巧解高中数学题例析数学是一门抽象的学科,与大多数人口中的“实在”“有形”等形容词相悖。
但是,数学却可以通过数形结合的方法让我们看到它的立体感。
在高中数学中,数形结合思想尤为重要,它能够启发我们思考问题,化繁为简,找到解题的技巧性思路。
数形结合思想是一种通过图形来解决数学问题的方法。
它将数学公式和几何图形有机地结合在一起,借助图形的视觉效果,使得数学问题更加直观易懂,容易解决。
以下将通过举例说明如何巧妙地运用数形结合思想解决高中数学问题。
例1. 在平面直角坐标系内,将直线 $y = x$ 上的点分别与 $x, y, -x,-y$ 坐标轴上的点两两连成线段,把平面分成了 $8$ 个部分,求其中钝角三角形的个数。
这是一道很巧妙的数形结合题。
题目中要求我们求的是钝角三角形的个数。
我们可以从图形入手,由题意可知,随着绕点 $O(0,0)$ 以 $(x, x)$,$(y, 0)$,$(-x,-x)$ 和$(0, y)$ 为端点的线段依次连接,整个平面被分成八个区域。
根据锐角、直角、钝角三角形三种情况,可以发现,当一个三角形中必须至少有一条边与 $y=x$ 相交时,这个三角形就是钝角三角形。
因为它的另外两条边必须显著“弯曲”,而直角三角形则需要两条边与 $y=x$ 垂直。
同样的,当一条边与 $y=-x$ 相交时,也可能会构成钝角三角形。
那么我们可以可以通过观察不同的区域得到钝角三角形的数目。
对于 $A$ 区域,只有 $(3)$ 构成的三角形(实心的)是钝角三角形。
通过以上分析,我们得到:在这八个区域中,钝角三角形的个数为$1+3+4+1+1+3+3+1=17$。
例2. 已知 $\triangle ABC$ 的三个顶点的坐标分别为 $A(0,0)$,$B(6,0)$,$C(3,5)$,$P$ 点在 $\triangle ABC$ 内部,$AP$ 与 $BC$ 相交于点 $D$,$BP$ 与$AC$ 相交于点 $E$,$CP$ 与 $AB$ 相交于点 $F$,三边上的点 $D$,$E$,$F$ 互不相同。
高中数学思想与逻辑11种数学思想方法总结与例题讲解.doc
高中数学思想与逻辑:11种数学思想方法总结与例题讲解高中数学思想与逻辑:11种数学思想方法总结与例题讲解一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径.例1 :四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不共面的取法共有__________种.A、150B、147C、144D、141分析:本题正面入手,情况复杂,若从反面去考虑,先求四点共面的取法总数再用补集思想,就简单多了.10个点中任取4个点取法有种,其中面ABC内的6个点中任取4点都共面有种,同理其余3个面内也有种,又,每条棱与相对棱中点共面也有6种,各棱中点4点共面的有3种,不共面取法有种,应选(D).策略二:局部向整体的转化从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗.例2:一个四面体所有棱长都是,四个顶点在同一球面上,则此球表面积为( )A、B、C、D、分析:若利用正四面体外接球的性质,构造直角三角形去求解,过程冗长,容易出错,但把正四面体补形成正方体,那么正四面体,正方体的中心与其外接球的球心共一点,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径为,应选(A).策略三:未知向已知转化又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生.例3:在等差数列中,若,则有等式( 成立,类比上述性质,在等比数列中,,则有等式_________成立.分析:等差数列中,,必有,故有类比等比数列,因为,故成立.二、逻辑划分思想例题1、已知集合A= ,B= ,若B A,求实数a 取值的集合.解A= :分两种情况讨论(1)B=¢,此时a=0;(2)B为一元集合,B= ,此时又分两种情况讨论:(i) B={-1},则=-1,a=-1(ii)B={1},则=1,a=1.(二级分类)综合上述所求集合为.例题2、设函数f(x)=ax -2x+2,对于满足1 x 4的一切x值都有f(x) 0,求实数a的取值范围.例题3、已知,试比较的大小.【分析】于是可以知道解本题必须分类讨论,其划分点为.小结:分类讨论的一般步骤:(1)明确讨论对象及对象的范围P.(即对哪一个参数进行讨论);(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论.;(3)逐类讨论,获取阶段性结果.(化整为零,各个击破);(4)归纳小结,综合得出结论.(主元求并,副元分类作答).十一种数学思想方法总结与详解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
高中数学数形结合思想必考题型全梳理(附例题)
⾼中数学数形结合思想必考题型全梳理(附例题)数学好教师2020-07-17⼀数形结合的三个原则⼀等价性原则在数形结合时,代数性质和⼏何性质的转换必须是等价的,否则解题将会出现漏洞.⾸先,由代数式、⽅程、不等式构造函数时⼀要注意变量(包括⾃变量和因变量)的取值范围。
⼆双向性原则既要进⾏⼏何直观分析,⼜要进⾏相应的代数抽象探求,直观的⼏何说明不能代替严谨的代数推理.另⼀⽅⾯,仅⽤直观分析,有时反倒使问题变得复杂,⽐如在⼆次曲线中的最值问题,有时使⽤三⾓换元,反倒简单轻松.三简单性原则不要为了“数形结合”⽽数形结合.具体运⽤时,⼀要考虑是否可⾏和是否有利;⼆要选择好突破⼝,确定好主元;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运⽤函数图象时应设法选择动直线(直线中含有参数)与定⼆次曲线.⼆数形结合的应⽤⼀利⽤数轴、韦恩图求集合利⽤数形结合的思想解决集合问题,常⽤的⽅法有数轴法、韦恩图法等。
当所给问题的数量关系⽐较复杂,不好找线索时,⽤韦恩图法能达到事半功倍的效果。
⼆数形结合在解析⼏何中的应⽤解析⼏何问题往往综合许多知识点,在知识⽹络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的⾓度把抽象的数学语⾔与直观的⼏何图形结合起来,达到研究、解决问题的⽬的.构建解析⼏何中的斜率、截距、距离等模型研究最值问题;如果等式、代数式的结构蕴含着明显的⼏何特征,就要考虑⽤数形结合的⽅法来解题,即所谓的⼏何法求解,⽐较常见的对应有:(⼀)与斜率有关的问题(⼆)与距离有关的问题三数形结合在函数中的应⽤(⼀)利⽤数形结合解决与⽅程的根有关的问题【点拨】数形结合可⽤于解决⽅程的根的问题,准确合理地作出满⾜题意的图象是解决这类问题的前提.(⼆)利⽤数形结合解决函数的单调性问题(三)利⽤数形结合解决⽐较数值⼤⼩的问题(四)函数的最值问题(五)利⽤数形结合解决抽象函数问题四运⽤数形结合思想解不等式(⼀) 解不等式(⼆)求参数的取值范围五运⽤数形结合思想解决三⾓函数问题纵观近三年的⾼考试题,巧妙地运⽤数形结合的思想⽅法来解决⼀些问题,可以简化计算,节省时间,提⾼考试效率,起到事半功倍的效果.六解决⼏何问题图象解决⼏何问题借助向量的借助向量的图象利⽤向量可以解决线段相等,直线垂直,⽴体⼏何中空间⾓(异⾯直线的⾓、线⾯⾓、⼆⾯⾓)和空间距离(点线距、线线距、线⾯距、⾯⾯距),利⽤空间向量解决⽴体⼏何问题,将抽象的逻辑论证转化为代数计算,以数助形,⼤⼤降低了空间想象能⼒,是数形结合的深化。
高中数学数形结合思想经典例题(含解析)
高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<19.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( )A.15B.25C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】 作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点. 又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又∵a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0.解得-1<x <0. 3.函数f (x )=ln|x +cos x |的图象为( )【答案】 A【解析】 因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排 除B ,选A.4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)【答案】 D【解析】 由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )x <0.若x >0,则需有f (x )<0,结合图象可知0<x <2;若x <0,则需有f (x )>0,结合图象可知-2<x <0.综上可知,不等式的解集为(-2,0)∪(0,2).5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .25【答案】 B【解析】 作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max=21.6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)【答案】 B【解析】 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.12【答案】 A【解析】 依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴影部分所示,其中A (3,0),C (2,1),z =2+yx 1+y x =1+11+y x ∈[53,2],故选A.8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1【答案】 D【解析】 本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<x 1x 2<1,故选D. 9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定【答案】 C【解析】 如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0=f (x 2)x 2,由于0<x 1<x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)x 2,故选C. 10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)【答案】 C【解析】 作出不等式组所表示的平面区域,根据题设条件分析求解. 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.89 B.109 C.259 D.269【答案】 B【解析】 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,43),所以AE →=(23,23),AF →=(13,43),所以AE →·AF →=23×13+23×43=109. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .1 【答案】 A【解析】 (x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方. 而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2x=2,解得x =1.从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为222+(-1)2=255,如图所示.故|PQ |的最小值为255,即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=45,当|PQ |最小时,P 点的坐标为(1,0),所以2a -0a -1×2=-1,解得a =15.13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3 D .2【答案】 C【解析】 利用FP →=4FQ →转化长度关系,再利用抛物线定义求解. ∵FP →=4FQ →, ∴|FP →|=4|FQ →|. ∴|PQ||PF|=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴|PQ||PF|=|QQ′||AF|=34.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4【答案】 B【解析】 x 2a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为x -2ay =0.由点到直线的距离公式得d =|a|12+4a 2=34,解得a =32或a =-32(舍去),故双曲线的方程为4x 23-4y 2=1.因为c =34+14=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|(-3)2+42=105=2,即距离之和的最小值为2,选B.二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.【答案】 (0,1)∪(1,4) 【解析】 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x>1或x<-1,-x -1,-1≤x<1.在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________. 【答案】 (-7,3)【解析】 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________. 【答案】 -2【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1x +1=y -(-1)x -(-1),则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,。
数形结合思想——构建几何模型解决最值问题(第一课时)
数形结合思想——构建几何模型解决最值问题(第一课时)教学内容分析数形结合思想是高中数学中的一个重要的思想,它作为一种思维策略,或者说作为一种模型化方法,一直是考试的热点,重点。
为了强化重点,突出热点,提高学生的解题速度和分析问题解决问题的能力,在高三第二轮复习最后的专题复习中安排了数形结合专题,我把它分成两大块,第一块讲解“构建几何模型解决有关数学问题”,它分两个课时,第一课时利用斜率公式模型和距离公式模型求最值问题,第二课时利用单位圆模型、复数向量模型、函数模型解数学问题。
第二块讲解“数形结合思想的分类解题技巧”它又分多个课时,分别解决数形结合思想在集合问题、函数问题、方程问题、不等式问题、三角问题、几何问题、解析几何问题、极值问题、复数和向量问题、导数的几何意义问题中的应用。
本教学设计是第一块的第一课时:利用斜率公式模型和距离公式模型求最值问题。
这是系统讲解数形结合思想的第一节课,它为第二节课讲解提供了一种类比,为第二块内容讲解作铺垫。
学生学习情况分析学生基础并不太好,但经过第一轮的系统复习,对基础知识有了一定的掌握,并且在知识教学的同时渗透了数学思想的教学,又通过第二轮的知识点的专题复习,我想对数学知识进行更高层次的抽象和概括应当是顺理成章,水到渠成的事情。
但学生对数形结合的理解还比较浅显,渗透数形结合的知识点不是很明确,数形转换特别是数转形的能力较差,更重要的是运用数形结合思想方法的意识还有待强化。
设计思想整堂课采取启发式教学,通过典型例题引路,逐步展开变式教学,并利用多媒体软件——几何画板进行动态演示,使抽象变得直观,思想变得可视,难点轻松化解。
教学流程如下:教学目标掌握两种几何模型用数形结合思想求最值。
培养思维品质,强化数形结合意识。
教学重点、难点重点是用数形结合求最值,学生见“数”想形,以“形”助“数”,用“数”解“形”难点是代数式与几何意义的转换教学支持条件几何画板课件教学过程一、引入——整体把握数形结合思想师:“数”与“形”是数学研究的两个侧面,同学们请看大屏幕(显示:下面这些数、代数式、方程、文字对应的“形”是什么?(1)2012 (2)|x-2| (3)y=3x+2 (4)y 2 =2x (5)ρ=1 (6)x+y+1>0 (7)()212121y y x xx x -≠-(8 (9 (10) AB(11) 三角形ABC (12)正四面体生:它们依次为:数轴上的点,数轴上两点的距离,直线,抛物线,圆,直线的一侧,两点连线的斜率,平面上两点间的距离,点到直线的距离,有向线段,平面几何图形,立体几何图形。
高中数学数形结合思想经典例题(含解析)
高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<19.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( )A.15B.25C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】 作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点. 又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又∵a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0.解得-1<x <0. 3.函数f (x )=ln|x +cos x |的图象为( )【答案】 A【解析】 因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排 除B ,选A.4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)【答案】 D【解析】 由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )x <0.若x >0,则需有f (x )<0,结合图象可知0<x <2;若x <0,则需有f (x )>0,结合图象可知-2<x <0.综上可知,不等式的解集为(-2,0)∪(0,2).5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .25【答案】 B【解析】 作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max=21.6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)【答案】 B【解析】 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.12【答案】 A【解析】 依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴影部分所示,其中A (3,0),C (2,1),z =2+yx 1+y x =1+11+y x ∈[53,2],故选A.8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1【答案】 D【解析】 本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<x 1x 2<1,故选D. 9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定【答案】 C【解析】 如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0=f (x 2)x 2,由于0<x 1<x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)x 2,故选C. 10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)【答案】 C【解析】 作出不等式组所表示的平面区域,根据题设条件分析求解. 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.89 B.109 C.259 D.269【答案】 B【解析】 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,43),所以AE →=(23,23),AF →=(13,43),所以AE →·AF →=23×13+23×43=109. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .1 【答案】 A【解析】 (x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方. 而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2x=2,解得x =1.从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为222+(-1)2=255,如图所示.故|PQ |的最小值为255,即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=45,当|PQ |最小时,P 点的坐标为(1,0),所以2a -0a -1×2=-1,解得a =15.13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3 D .2【答案】 C【解析】 利用FP →=4FQ →转化长度关系,再利用抛物线定义求解. ∵FP →=4FQ →, ∴|FP →|=4|FQ →|. ∴|PQ||PF|=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴|PQ||PF|=|QQ′||AF|=34.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4【答案】 B【解析】 x 2a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为x -2ay =0.由点到直线的距离公式得d =|a|12+4a 2=34,解得a =32或a =-32(舍去),故双曲线的方程为4x 23-4y 2=1.因为c =34+14=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|(-3)2+42=105=2,即距离之和的最小值为2,选B.二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.【答案】 (0,1)∪(1,4) 【解析】 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x>1或x<-1,-x -1,-1≤x<1.在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________. 【答案】 (-7,3)【解析】 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________. 【答案】 -2【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1x +1=y -(-1)x -(-1),则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,。
想学好高中数学,就要学会数形结合!数形结合六大应用及例题详解
想学好高中数学,就要学会数形结合!数形结合六大应用及例题详解数形结合是数学中的一种非常重要的思想方法,它包含了“以形助数”和“以数辅形”两个方面。
一、什么是数形结合?1、借助形的生动性和直观性来阐明数之间的联系。
例如应用函数的图象来直观的说明函数的性质;2、借助于数的精确性和规范性来阐明形的某些属性。
如应用曲线的方程来精确的阐明曲线的几何性质。
概括的说,就是在解决数学问题时,将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的联系与转化二、数形结合应用的三个原则1、等价性原则在数形结合时,代数性质和几何性质转换必须是等价的,否则解题将会出现漏洞。
有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应。
2、双方性原则既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数进行几何分析容易出错。
3、简单性原则不要为了“数形结合”而数形结合。
具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与二次曲线。
三、如何运用数形结合思想解答数学题1、要彻底明白一些概念和运算的几何意义以及曲线的代数特征;2、要恰当设参,合理用参,建立关系,做好转化;3、要正确确定参数的取值范围,以防重复和遗漏;4、精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
很多数学概念都具有明显的几何意义,善于利用这些几何意义,往往能收到事半功倍的效果。
数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
四、应用方式和例题详解(一)数形结合思想在解决方程的根、不等式解集问题中的应用解析:方法说明:(1)用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解得个数是一种重要的思想方法,其根本思想是先把方程两边的代数式看作是两个熟悉函数表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解得个数。
高中数学中的数形结合方法和应用
数形结合是一种数学思想方法,它通过将抽象的数学语言与直观的图形相结合,使问题变得更加清晰易懂。
在高中数学中,数形结合方法的应用非常广泛,包括函数、方程、不等式、三角函数、向量、解析几何等方面。
首先,我们来了解一下数形结合方法的定义。
数形结合方法是指将数学语言和图形相结合,通过直观的图形来帮助解决抽象的数学问题。
这种方法的核心思想是将抽象的数学语言转化为直观的图形,从而更好地理解问题。
接下来,我们来探讨数形结合方法在高中数学中的应用。
1. 函数函数是高中数学中的重要概念之一。
通过数形结合方法,我们可以将函数图像与函数解析式相结合,从而更好地理解函数的性质和特点。
例如,在研究函数的单调性时,我们可以画出函数的图像,通过观察图像来了解函数的单调性。
2. 方程方程是高中数学中的另一个重要概念。
通过数形结合方法,我们可以将方程的解转化为函数的图像,从而更好地理解方程的解。
例如,在求解一元二次方程时,我们可以画出根的判别式与根的关系图像,从而更好地理解方程的解。
3. 不等式不等式是高中数学中的另一个重要概念。
通过数形结合方法,我们可以将不等式的解转化为函数的图像,从而更好地理解不等式的性质和特点。
例如,在研究不等式的单调性时,我们可以画出函数的图像,通过观察图像来了解不等式的单调性。
4. 三角函数三角函数是高中数学中的另一个重要概念。
通过数形结合方法,我们可以将三角函数的图像与三角函数的解析式相结合,从而更好地理解三角函数的性质和特点。
例如,在研究三角函数的周期性时,我们可以画出三角函数的图像,通过观察图像来了解三角函数的周期性。
5. 向量向量是高中数学中的另一个重要概念。
通过数形结合方法,我们可以将向量的坐标与向量的长度、方向相结合,从而更好地理解向量的性质和特点。
例如,在研究向量的加法、减法时,我们可以画出向量的图像,通过观察图像来了解向量的加法、减法。
6. 解析几何解析几何是高中数学中的另一个重要概念。
高中数学数形结合思想
要点考向1:利用数学概念或数学式的几何意义解题例1:实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:(1)点(a,b)对应的区域的面积;(2)的取值范围;(3)(a-1)2+(b-2)2的值域.思路精析:列出a,b满足的条件→画出点(a,b)对应的区域→求面积→根据的几何意义求范围→根据(a-1)2+(b-2)2的几何意义求值域.解析:方程x2+ax+2b=0的两根在区间(0,1)和(1,2)上的几何意义分别是:函数y=f(x)= x2+ax+2b 与x轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,由此可得不等式组由,解得A(-3,1).由,解得C(-1,0).∴在如图所示的aOb坐标平面内,满足条件的点(a,b)对应的平面区域为△ABC(不包括边界).(1)△ABC的面积为(h为A到Oa轴的距离).(2)几何意义是点(a,b)和点D(1,2)边线的斜率.由图可知(3)∵(a-1)2+(b-2)2表示的区域内的点(a,b)与定点(1,2)之间距离的平方,注:如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有:(1)连线的斜率;(2)之间的距离;(3)为直角三角形的三边;(4)图象的对称轴为x=.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.要点考向2:用数形结合求方程根的个数,解决与不等式有关的问题例2:(1)已知:函数f(x)满足下面关系:①f(x+1)=f(x-1);②当x∈[-1,1]时,f(x)=x2,则方程f(x)=lgx 解的个数是()(A)5 (B)7 (C)9 (D)10(2)设有函数f(x)=a+ 和g(x)= ,已知x∈[-4,0]时,恒有f(x)≤g(x),求实数a的范围.思路精析:(1)画出f(x)的图象→画出y=lgx的图象→数出交点个数.(2)f(x)≤g(x)变形为→画出的图象→画出的图象→寻找成立的位置解析:(1)选C.由题间可知,f(x)是以2为周期,值域为[0,1]的函数.又f(x) =lgx,则x∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.(2)f(x)≤g(x),即,变形得,令…………①,………………②①变形得,即表示以(-2,0)为圆心,2为半径的圆的上半圆;②表示斜率为,纵截距为1-a的平行直线系.设与圆相切的直线为AT,其倾斜角为 ,则有tanα=,,要使f(x)≤g(x)在x∈[-4,0]时恒成立,则②成立所表示的直线应在直线AT的上方或与它重合,故有1-a≥6,∴a≤-5.注:(1)用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.(2)解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决不等式的解的问题,往往可以避免繁琐的运算,获得简捷的解答.(3)函数的单调性经常联系函数图象的升、降;奇偶性经常联系函数图象的对称性;最值(值域)经常联系函数图象的最高、最低点的纵坐标.要点考向2:数形结合在解析几何中的应用例3:已知椭圆C的中心在原点,一个焦点F.(Ⅰ)求椭圆C的方程;(Ⅱ)若椭圆C在第一象限的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B,求证:直线AB的斜率为定值;(Ⅲ)求PAB∆面积的最大值.解析:(Ⅰ)设椭圆C的方程为22221(0)y xa ba b+=>>.由题意222,:a b ca bc⎧=+⎪⎪=⎨⎪=⎪⎩………………………………………………2分解得24a=,22b=.所以椭圆C 的方程为22142y x +=.………………………………………………4分(Ⅱ)由题意知,两直线PA ,PB 的斜率必存在,设PB 的斜率为k ,则PB的直线方程为(1)y k x =-.由22(1),1.42y k x y x ⎧-=-⎪⎨+=⎪⎩得222(2)2))40k x k k x k +++-=.……6分设(,)A A A x y ,(,)B B B x y,则22212B B k x x k --=⋅=+,同理可得2222A k x k +-=+,则22A Bx x k -=+,28(1)(1)2A B A B k y y k x k x k -=----=+. 所以直线AB的斜率A BAB A By y k x x -==-为定值. ……………………………………8分(Ⅲ)设AB的直线方程为y m =+.由22,1.42y m y x ⎧=+⎪⎨+=⎪⎩得22440x m ++-=.由22)16(4)0m ∆=-->,得28m <.……………………………………10分此时2A B x x +=-,244A B m x x -⋅=. P 到AB的距离为d =,AB ==则12PABS AB d ∆==2282m m -+==因为24m =使判别式大于零,所以当且仅当2m =±时取等号,[所以PAB ∆13分注:1.数形结合思想中一个非常重要的方面是以数辅形,通过方程等代数的方法来研究几何问题,也就是解析法,解析法与几何法结合来解题,会有更大的功效.2.此类题目的求解要结合该类图形的几何性质,将条件信息或结论信息结合在一起,观察图形特征,转化为代数语言,即方程(组)或不等式(组),从而将问题解决.要点考向2:数形结合在立体几何中的应用例4:如图1,在直角梯形ABCD 中,90ADC ∠=︒,//CD AB ,4,2AB AD CD ===, M 为线段AB 的中点.将ADC ∆沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示.(Ⅰ) 求证:BC ⊥平面ACD ; (Ⅱ) 求二面角A CD M --的余弦值.解析:(Ⅰ)在图1中,可得AC BC ==从而222AC BC AB +=,故AC BC ⊥.取AC 中点O 连结DO ,则DO AC ⊥,又面ADC ⊥面ABC , 面ADC面ABC AC =,DO ⊂面ACD ,从而OD ⊥平面ABC . …………………4分∴OD BC ⊥,又AC BC ⊥,AC OD O =.∴BC ⊥平面ACD . ………………………………………………6分(Ⅱ)建立空间直角坐标系O xyz -如图所示,则M ,(C ,D(2,CM =,(2,0,CD =. ………………………………………………8分设1(,,)n x y z =为面CDM 的法向量,则1100n CM n CD ⎧⋅=⎪⎨⋅=⎪⎩即00+=+=,解得y x z x =-⎧⎨=-⎩. 令1x =-,可得1(1,1,1)n =-.又2(0,1,0)n =为面ACD的一个法向量,∴121212cos ,3||||3n n n n n n ⋅<>===.∴二面角A CD M --的余弦值为3.注:1.应用空间向量可以解决的常见问题有空间角中的异面直线所成的角、线面角、二面角;位置关系中的平行、垂直及点的空间位置.其一般思路是:尽量建立空间直角坐标系,将要证、要求的问题转化为坐标运算.2.立体几何问题的求解往往将题目所给信息先转换成几何图形性质,结合该类图形的几何性质,将条件信息和结论信息结合在一起,观察图形特征,为代数法求解找到突破口.【跟踪模拟训练】一、选择题(每小题6分,共36分)1.方程lgx=sinx 的根的个数( )(A)1个 (B)2个 (C)3个 (D)4个2.已知全集U=R ,集合A={x|x2-3x-10<0},B={x|x>3},则右图中阴影部分表示的集合为( )A .(3,5)B .(-2,+∞)C .(-2,5)D .(5,+ ∞)3.在平面直角坐标系xOy 中,已知平面区域A={(x,y)|x+y ≤1,且x ≥0,y ≥0},则平面区域B={(x+y,x-y)|(x,y)∈A}的面积为( ) (A)2 (B)1 (C)12 (D) 144.函数32()f x x bx cx d =+++图象如图,则函数 2233cy x bx =++的单调递增区间为( ) A .]2,(--∞ B .),3[+∞ C .]3,2[-D .),21[+∞5.不等式组2142x a x a⎧->⎨-<⎩有解,则实数a 的取值范围是( )A .(1,3)-B .(,1)(3,)-∞-+∞C .(3,1)-D .(,3)(1,)-∞-+∞6.已知f(x)是定义在(-3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,那么不等式f(x)·cosx<0的解集是 ( )二、填空题(每小题6分,共18分)7.复数(x-2)+yi ,其中x 、y 均为实数,当此虚数的模为1时,的取值范围是8.已知关于x 的方程x 2-4|x|+5=m 有四个不相等的实根,则实数m 的范围是_______. 9.设A={(x,y)|x 2+(y-1)2=1},B={(x,y)|x+y+m ≥0},则使A B 成立的实数m 的取值范围是______.三、解答题(10、11题每题15分,12题16分,共46分)10.如图,已知四棱锥P ABCD -的底面是正方形,PA ⊥底面ABCD ,且2PA AD ==,点M 、N 分别在侧棱PD 、PC 上,且PM MD = (Ⅰ)求证:AM ⊥平面PCD ;(Ⅱ)若12PN NC =,求平面AMN 与平面PAB 的所成锐二面角的大小11.如图,1l ,2l 是通过某市开发区中心0的两条南北和东西走向的道路,连接M 、N 两地的铁路是一段抛物线弧,它所在的抛物线关于直线L1对称.M 到L1、L2的距离分别是2 km 、4km ,N 到L1、L2的距离分别是3 km 、9 kin .(1)建立适当的坐标系,求抛物线弧MN的方程;(Ⅱ)该市拟在点0的正北方向建设一座工厂,考虑到环境问题,要求厂址到点0的距离大于5km而不超过8km,并且铁路上任意一点到工厂的距离不能小于6km.求此厂离点0的最近距离.(注:工厂视为一个点)12.已知函数f(x)=-x2+8x,g(x)=6lnx+m.(1)求f(x)在区间[t,t+1]上的最大值h(t);(2)是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由.参考答案1.【解析】选C.在同一坐标系中作出y=lgx与y=sinx的图象,如图.其交点数为3.2.答案:B3.作出不等式组表示的平面区域B,如图所示,根据图形可知该区域为等腰直角三角形,可求出面积,所以平面区域B的面积为1.4.答案:D5.答案:A6.【解析】选B.根据对称性画出f(x)在(-3,0)上的图象如图,结合y=cosx在(-3,0), (0,3)上函数值的正负,易知不等式f(x)cosx<0的解集是【解析】由题意知,设,则k为过圆(x-2)2+y2=17.上的点及原点的直线斜率,作图如下:又由对称性,可得答案:答案:8.【解析】令f(x)=x2-4|x|+5=(|x|-2)2+1,其图象如图.画直线y=m,由图象知当1<m<5时,方程有四个不相等的实根.答案:(1,5)9.【解析】由于集合A,B都是点的集合,故可结合图形进行分析、求解.集合A是一个圆x2+(y-1)2=1上的点的集合,集合B是一个不等式x+y+m≥0表示的平面区域内的点的集合, 要使A B,则应使圆被平面区域所包含(如图),即直线x+y+m=0应与圆相切或相离(在圆的下方),而当直线与圆相切时有故m 的取值范围是m ≥-1.答案:m ≥-110.解:(Ⅰ)建立如图所示的空间直角坐标系,xyz A -又 PA=AD=2,则有P (0,0,2),D (0,2,0) (0,1,1),(2,2,0).M C (2,2,2).PC ∴=-(0,1,1)AM =……3分(Ⅰ)0,0,AM CD AM PC AM CD AM PC ==∴⊥⊥又,.PC CD C AM PCD =∴⊥平面……………7分(Ⅱ)设1(,,),,2N x y z PN NC =则有120(2),.23x x x -=-∴= 同理可得24,.33y z ==即得224(,,).333N ………………9分 由4480,.333PC AN PC AN ⋅=+-=∴⊥(2,2,2).AMN PC ∴=-平面的法向量为而平面PAB 的法向量可为(0,2,0),AD =cos ,12PC AD PC AD PC AD⋅∴<>===⋅故所求平面AMN 与PAB 所成锐二面角的大小为.33arccos…………12分11.解析:(1)分别以1l 、2l为x 轴、y 轴建立如图所示的平面直角坐标系,则M (2,4),N (3,9)设MN 所在抛物线的方程为c ax y +=2,则有⎩⎨⎧+=+=c a c a 9944,解得⎩⎨⎧==01c a∴所求方程为2x y =(2≤x ≤3)5分(说明:若建系后直接射抛物线方程为)0(22>=p py x ,代入一个点坐标求对方程,本问扣2分)(2)设抛物线弧上任意一点P (x ,2x )(2≤x ≤3) 厂址为点A (0,t )(5<t ≤8),由题意得222)(||t x x PA -+=≥6∴)6()21(224-+-+t x t x ≥0 7分令2x u =,∵2≤x ≤3,∴4≤u ≤9∴对于任意的]9,4[∈u ,不等式)6()21(22-+-+t u t u ≥0恒成立(*) 8分设)6()21()(22-+-+=t u t u u f ,∵t <5≤8∴22129t --<≤215.要使(*)恒成立,需△≤0,即)6(4)12(22---t t ≤010分解得t ≥425,∴t 的最小值为425所以,该厂距离点O 的最近距离为6.25km12分12.【解析】(1)f(x)=-x 2+8x=-(x-4)2+16.①当t+1<4即t<3时,f(x)在[t,t+1]上单调递增(如图①).h(t)=f(t+1)=-(t+1)2+8(t+1)=-t 2+6t+7.②当t ≤4≤t+1即3≤t ≤4时,f(x)的最大值为h(t)=f(4)=16(如图②) ③当t>4时,f(x)在[t,t+1]上单调递减(如图③),h(t)=f(t)=-t 2+8t.(2)函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点,即函数φ(x)=g(x)-f(x)的图象与x轴的正半轴有且只有三个不同的交点.∵φ(x)=x2-8x+6lnx+m,[当x∈(0,1)时φ′(x)>0,φ(x)是增函数;当x∈(1,3)时,φ′(x)<0,φ(x)是减函数;当x∈(3,+∞)时,φ′(x)>0,φ(x)是增函数;当x=1或x=3时,φ′(x)=0.∴φ(x)极大值=φ(1)=m-7,φ(x)极小值=φ(3)=m+6ln3-15.∵当x充分接近0时,φ(x)<0,当x充分大时,φ(x)>0,∴要使φ(x)的图象与x轴正半轴有三个不同的交点,即7<m<15-6ln3.所以存在实数m,使得函数y=f(x)与y=g(x)的图象有且只有三个不同的交点,m的取值范围为(7,15-6ln3). 【备课资源】4.已知函数f(x)=|x2+2x|,若关于x的方程f2(x)+bf(x)+c=0有7个不同的实数根,则b,c的大小关系是( )(A)b>c (B)b≥c或b≤c中至少有一个正确 (C)b<c (D)不能确定【解析】选C.f(x)=|x2+2x|的图象如图.要使关于x的方程f2(x)+bf(x)+c=0有7个不同的实数根,则关于f(x)的一元二次方程f2(x)+bf(x)+c=0有两个不同的根.且一个根在(0,1)内,另一个根为1.∴b<c.5.若直线y=kx-1与曲线y=有公共点,则k的取值范围是________.【解析】∵曲线y=的定义域为[1,3],且其图象为圆(x-2)2+y2=1的下半圆,如图所示,则直线y=kx-1要与曲线有公共点,则直线只能处于l1,l2之间,且可与l1、l2重合,则k的取值范围是[0,1].答案:[0,1]6.已知有向线段PQ的起点P与终点Q的坐标分别为P(-1,1),Q(2,2).若直线l:x+my+m=0与有向线段PQ延长线相交,求实数m的取值范围.8.集合A={x|-1<x<1},B={x|x<a},(1)若A∩B=,求a的取值范围;(2)若A∪B={x|x<1},求a的取值范围.【解析】(1)如图所示:A={x|-1<x<1}B={x|x<a},且A∩B=,∴数轴上点x=a在x=-1左侧,∴a≤-1.(2)如图所示:A={x|-1<x<1},B={x|x<a}且A∪B={x|x<1},∴数轴上点x=a在x=-1和x=1之间,∴-1<a≤1.9.如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段.点A、B在l1上,C在l2上,AM=MB=MN.(1)证明AC⊥NB;(2)若∠ACB=60°,求NB与平面ABC所成角的余弦值.【解析】如图,建立空间直角坐标系M-xyz.令MN=1,则有A(-1,0,0),B(1,0,0),N(0,1,0).(1)∵MN是l1、l2的公垂线,l1⊥l2,∴l2⊥平面ABN,∴l2平行于z轴.故可设C(0,1,m).于是。
高中数学数形结合思想在解题中的应用
中学数学数形结合思想在解题中的应用一、学问整合1.数形结合是数学解题中常用的思想方法,运用数形结合的方法,许多问题能迎刃而解,且解法简捷。
所谓数形结合,就是依据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使困难问题简洁化,抽象问题详细化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与敏捷性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,奇妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是探讨“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发觉解题途径,而且能避开困难的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要留意培育这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
数形结合思想在高中数学解题中的运用
数形结合思想在高中数学解题中的运用数形结合思想属于高中数学解题过程中一种常用的思想,其本身具有简便、直观、形象等优势,针对集合问题采用代数的方法来进行解答,抑或是针对代数问题采用集合图形来进行解答。
通过掌握数形结合思想,能够有效整合高中的数学知识,更好地学习数学。
一、数形结合思想概念分析1.数形结合思想的概述“数”“形”都是数学组成的重要基础,数量关系当中一般都可以采用直观的图像来进行展示,而任何一个集合图形当中都包含着一定程度的数量关系,因此,将“数”“形”结合起来进行数学问题的解答是一种十分重要的数学解题思想。
其主要包含两个方面的内容,一是以形助数,二是以数解形。
2.数与形之间的转化措施从数形之间的有效转化模式来看,其主要囊括三种,分别为通过形转化为数、通过数转化为形、数与形的互相转化。
针对通过形转化为数的模式来看,其通常是根据已知的图形,经过认真地分析以后,将图像当中隐藏的各种数量与相关性造出来,使得几何图形的相关属性能够通过数的方式反映出来。
针对通过数转化为形的模式来看,其通常是根据问题当中所给出的各种假设,将与之对应的图形描绘出来,在图形当中体现对应的数量关系,最终揭示数与形之间的本质。
针对数与形的互相转化模式来看,其主要是充分利用数与形的相互对立统一特点,来针对图形的形状进行观察,针对数与式子之间的结构实施研究,从中进行对应的联想,进行相应的转化,把原本空洞、抽象的内容转变成形象、直观的内容。
二、数形结合在高中数学解题中的实例分析1.数形结合思想在集合解题中的运用集合属于高中数学教学中的基本知识,是掌握其他数学知识的重要基础。
而集合无论是在交集、补集以及并集等各个内在关系方面,抑或是其外在表达式方面,都包括了图形的重要意味,数形结合思想在集合解题当中具有十分重要的作用。
例:假设存在两个集合依次为M={(x,y)︳x2+y2=1,x∈R,y∈R},N={(x,y)︳x2-y=0,x∈R,y∈R},则集合M∩N当中的元素个数为几个?答案:2个。
(完整word)数形结合思想在解题中的应用(包含30例子)汇总,推荐文档
数形结合思想在解题中的应用(包含30例子)一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:“数形结合”在解题中的应用原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202 解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
运用数形结合思想巧解高中数学题例析
运用数形结合思想巧解高中数学题例析数形结合思想是数学解题中常用的一种方法,通过将抽象的数学问题转化为具体的形式,可以更直观地理解问题的本质,并且更加灵活地使用各种数学知识进行分析和解决。
在高中数学中,运用数形结合思想能够帮助学生更好地理解和掌握知识,提高解题的效率和准确性。
下面通过几个高中数学题例来具体分析运用数形结合思想巧解的方法。
例一:已知正三角形ABC的边长为s,点P在AB上,Q在BC上,PR=QB=s/3,则△PQR 的面积为多少?解析:首先我们可以将已知的情况用图形表示出来,画出正三角形ABC和点P、Q,并连接PQ。
然后我们可以根据给出的条件进行分析,发现△PQR实际上是一个梯形,因为PR 和QB是平行的,并且分别等于s/3。
我们可以通过求解梯形的面积来得到△PQR的面积。
由于梯形的面积公式为(S1+S2)×h/2,其中S1和S2分别为上底和下底的长度,h为梯形的高,因此我们可以根据已知条件求解出S1、S2和h的值,然后代入公式中进行计算,最终得到△PQR的面积。
通过上述分析,我们可以看到,利用数形结合思想可以将抽象的几何问题转化为具体的图形,然后通过图形的性质和几何知识进行分析和计算,帮助我们更好地理解和解决问题。
这种方法在高中数学中经常用到,对于解决各种几何问题都有一定的帮助。
例二:已知函数y=f(x)的图像关于y轴对称,则y=f(x-1)的图像与y=f(x)的图像有怎样的关系?解析:这个问题涉及到函数图像的平移和对称性质,我们可以通过数形结合思想来解决。
我们可以先分析y=f(x)的图像关于y轴对称的性质,可以得出当(x,y)在y=f(x)的图像上时,(-x,y)也在上面。
根据这个性质,我们可以进一步分析y=f(x-1)的图像,因为函数中x-1的变化,导致了图像在x轴上的平移,我们可以得出当(x,y)在y=f(x)的图像上时,(x-1,y)在y=f(x-1)的图像上。
也就是说,y=f(x-1)的图像相对于y=f(x)的图像向右平移了1个单位。
高中数学数形结合的应用举例
高中数学数形结合的应用举例高中数学的学习方法十分重要,基本上每堂课都涉及一些数学方法,比如说数形结合、分类讨论、转化与化归、方程与函数的思想等等。
而其中数形结合是贯穿整个数学学科的一种重要的思想方法。
不管是客观性试题还是主观性试题,在历年高考都显得尤其重要。
特别是客观性试题,能够又快又准确地解决.下面我们来探讨一下利用数形结合快速解决数学问题。
在初中我们就知道,求一个方程有几个根,实际上是看它的图象与x轴有几个交点。
若我们要求等式f(x)=g(x)有几个解或f(x)-g(x)=0的零点个数,即可以转化为求y=f(x)与y=g(x)的图象有几个交点,而下面几个例题求等式的解不太容易,我们可以转化为求两个函数的图象交点个数。
例1:已知,且,则的取值范围为()A、 B、C、 D、分析:本例题是一道有关三角函数的问题,但利用常规的思路不太容易解。
方法一:特殊值法:当时,;当时,;当时,;当时,所以:当时,。
方法二:图象法:且,则,则如图:显然当时,,当时,是单调递增的;是单调递减的。
取特殊值:当时. 又因为与的图象是连续的,当时,则。
例2:函数,的图象与直线有且仅有两个不同的交点,则的取值范围是____________。
分析:为所求参数,故此题可以从图象入手,这样解题更快捷。
解:因为 = ,则如图:由图知:要使与,的图象有且仅有两个不同交点,则 .思考:当实数的取值范围分别为什么时?与,的图象:有且只有一个交点?有三个交点?有四个交点?无交点?例3:求有几个零点?分析:上面方程不能直接求解,可以转化为一个三角函数与一个对数函数,利用两个函数的图象的交点个数来求;解:,转化为与的图象的交点个数,而,则当时,,而由图知:函数与的图象有3个交点,即方程有三个零点。
扩展:有几个实数根?(接第173页)浅谈小学低年级写话教学马晓兰(广河县上集小学甘肃广河 731300)中图分类号:G628.2文献标识码:A文章编号:ISSN1672-6715 (2018)09-173-01新课标指出:“写作是运用语言文字进行表达和交流的重要方式,是认识世界,认识自我,进行创造性表述的过程,是语文素养的综合体现。
运用数形结合思想巧解高中数学题例析
运用数形结合思想巧解高中数学题例析例题1:已知直角三角形ABC中,\angle B=90^\circ, AB=3, BC=4.过点B画高BD交AC于点D,求\bigtriangleup ABD的面积。
解析:在解决这个问题时,我们可以通过数形结合的思想来进行分析。
我们可以通过勾股定理知道AC=5。
然后我们可以通过计算直角三角形ABC的面积,S_{\bigtriangleup ABC}=\frac{1}{2}\times 3\times 4=6。
接着,我们可以通过计算直角三角形ABC在AC上的高BD,可以用\frac{1}{2}AB\times BC=6可以得到BD=1.5。
接下来,我们可以计算\bigtriangleup ABD的面积,S_{\bigtriangleup ABD}=\frac{1}{2}\times 3\times 1.5=2.25。
\bigtriangleup ABD的面积为2.25。
通过这个例题我们可以看到,通过数形结合的思想,我们可以用较为简洁的步骤来解决这个问题,使得我们更清晰地理解题目,找到更加直观的解法。
例题2:已知f(x)=x^2+bx+c是一个以x为自变量的二次函数,且f(2)+f(3)=26,f(4)=19,求b,c的值。
解析:对于这个问题,我们可以通过数形结合的思想来进行分析。
我们可以通过函数值的计算得到f(2)=4+2b+c,f(3)=9+3b+c,f(4)=16+4b+c。
由f(2)+f(3)=26可得13+5b+2c=26,所以5b+2c=13。
由f(4)=19可得16+4b+c=19,所以4b+c=3。
通过解这个方程组可以得到b=5,c=3。
例题3:已知椭圆的离心率为\frac{1}{2},长轴的长为8,求其短轴的长。
解析:对于这个问题,我们可以通过数形结合的思想来进行分析。
椭圆的离心率定义为e=\frac{\sqrt{a^2-b^2}}{a},其中a为长轴的长,b为短轴的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合的思想方法(1)---讲解篇一、知识要点概述数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。
因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
二、解题方法指导1.转换数与形的三条途径:①通过坐标系的建立,引入数量化静为动,以动求解。
②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。
③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
2.运用数形结合思想解题的三种类型及思维方法:①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
三、数形结合的思想方法的应用(一)解析几何中的数形结合解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的.1. 与斜率有关的问题【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0与有向线段PQ延长相交,求实数m的取值范围.解:直线l的方程x+my+m=0可化为点斜式:y+1=-(x-0),易知直线l过定点M(0,-1),且斜率为-.∵l与PQ的延长线相交,由数形结合可得:当过M且与PQ平行时,直线l的斜率趋近于最小;当过点M、Q时,直线l的斜率趋近于最大.【点评】含有一个变量的直线方程可化为点斜式或化为经过两直线交点的直线系方程.本题是化为点斜式方程后,可看出交点M(0,-1)和斜率-.此类题目一般结合图形可判断出斜率的取值范围. 2. 与距离有关的问题【例2】求:y=(cosθ-cosα+3)2+(sinθ-sinα-2)2的最大(小)值.【分析】可看成求两动点P(cosθ,sinθ)与Q(cosα-3,sinα+2)之间距离的最值问题.解:两动点的轨迹方程为:x2+y2=1和(x+3)2+(y-2)2=1,转化为求两曲线上两点之间距离的最值问题.如图:3. 与截距有关的问题【例3】若直线y=x+k与曲线x=恰有一个公共点,求k的取值范围.解:曲线x=是单位圆x2+y2=1的右半圆(x≥0),k是直线y=x+k在y轴上的截距.由数形结合知:直线与曲线相切时,k=-,由图形:可得k=-,或-1<k≤1.4. 与定义有关的问题【例4】求抛物线y2=4x上到焦点F的距离与到点A(3,2)的距离之和为最小的点P的坐标,并求这个最小值.【分析】要求PA+PF的最小值,可利用抛物线的定义,把PF转化为点P到准线的距离,化曲为直从而借助数形结合解决相关问题.解:P′是抛物线y2=4x上的任意一点,过P′作抛物线的准线l的垂线,垂足为D,连P′F(F 为抛物线的焦点),由抛物线的定义可知:.过A作准线l的垂线,交抛物线于P,垂足为Q,显然,直线AQ之长小于折线AP′D之长,因而所求的点P即为AQ与抛物线交点.∵AQ直线平行于x轴,且过A(3,2),所以方程为y=2,代入y2=4x得x=1.∴P(1,2)与F、A的距离之和最小,最小距离为4.【点评】(1)化曲线为直线是求距离之和最有效的方法,在椭圆,双曲线中也有类似问题.(2)若点A在抛物线外,则点P即为AF与抛物线交点(内分AF).(二) 数形结合在函数中的应用1. 利用数形结合解决与方程的根有关的问题方程的解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化. 【例5】已知方程x2-4x+3=m有4个根,则实数m的取值范围.【分析】此题并不涉及方程根的具体值,只求根的个数,而求方程的根的个数问题可以转化为求两条曲线的交点的个数问题来解决.解:方程x2-4x+3=m根的个数问题就是函数y=x2-4x+3与函数y=m图象的交点的个数.作出抛物线y=x2-4x+3=(x-2)2-1的图象,将x轴下方的图象沿x轴翻折上去,得到y=x2-4x+3的图象,再作直线y=m,如图所示:由图象可以看出,当0<m<1时,两函数图象有4交点,故m的取值范围是(0,1).数形结合可用于解决方程的解的问题,准确合理地作出满足题意的图象是解决这类问题的前提.2. 利用数形结合解决函数的单调性问题函数的单调性是函数的一条重要性质,也是高考中的热点问题之一.在解决有关问题时,我们常需要先确定函数的单调性及单调区间,数形结合是确定函数单调性常用的数学思想,函数的单调区间形象直观地反映在函数的图象中.【例6】确定函数y=的单调区间.画出函数的草图,由图象可知,函数的单调递增区间为(-∞,0],[1,+∞),函数的单调递减区间为[0,1].3. 利用数形结合解决比较数值大小的问题【例7】已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+4)=f(x);②对任意的0≤x1<x2≤2,都有f(x1)<f(x2);③y=f(x+2)的图象关于y轴对称.则f(4.5),f(6.5),f (7)的大小关系是.解:由①:T=4;由②:f(x)在[0,2]上是增函数;由③:f(-x-2)=f(x+2),所以f(x)的图象关于直线x=2对称.由此,画出示意图便可比较大小.显然,f(4.5)<f(7)<f(6.5).4. 利用数形结合解决抽象函数问题抽象函数问题是近几年高考中经常出现的问题,是高考中的难点.利用数形结合常能使我们找到解决此类问题的捷径.【例8】设f(x),g(x)分别是定义在R上的奇函数和偶函数,在区间[a,b](a<b<0)上,f ′(x)g(x)+f(x)g′(x)>0,且f(x)·g(x)有最小值-5.则函数y=f(x)·g(x)在区间[-b,-a]上().A. 是增函数且有最小值-5B. 是减函数且有最小值-5C. 是增函数且有最大值5D. 是减函数且有最大值5【解析】f ′(x)g(x)+f(x)g′(x)=[f(x)·g(x)]′>0.∴y=f(x)·g(x)在区间[a,b](a<b<0)上是增函数,又∵f(x),g(x)分别是定义在R上的奇函数和偶函数.∴y=f(x)·g(x)是奇函数.因此它的图象关于原点对称,作出示意图,易知函数y=f(x)·g(x)在区间[-b,-a]上是增函数且有最大值5,因此选C.(三)运用数形结合思想解不等式1. 求参数的取值范围【例9】若不等式>ax的解集是{x|0<x≤4},则实数a的取值范围是().A. [0,+∞)B. (-∞,4]C. (-∞,0)D. (-∞,0]解:令f(x)=,g(x)=ax,则f(x)=的图象是以(2,0)为圆心,以2为半径的圆的上半部分,包括点(4,0),不包括点(0,0);g(x)=ax的图象是通过原点、斜率为a的直线,由已知>ax的解集是{x|0<x≤4},即要求半圆在直线的上方,由图可知a<0,所以选C.【点评】本题很好的体现了数形结合思想在解题中的妙用.【例10】若x∈(1,2)时,不等式(x-1)2<logax恒成立,则a的取值范围是().A. (0,1)B. (1,2)C. (1,2]D. [1,2]解:设y1=(x-1)2(1<x<2),y2=logax.由图可知若y1<y2(1<x<2),则a>1.y1=(x-1)2过(2,1)点,当y2=logax也过(2,1)点,即a=2时,恰有y1<y2(1<x<2)∴1<a≤2时(x-1)2<logax在x∈(1,2)上成立,故选C.【点评】例1、例2两题的求解实际上综合运用了函数与方程以及数形结合的思想方法.2. 解不等式【例11】已知f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),那么不等式xf(x)<0的解集是().A. {x|0<x<a}B. {x|-a<x<0或x>a}C. {x|-a<x<a}D. {x|x<-a或0<x<a}解:依题意得f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),可得到f(x)图象,又由已知xf(x)<0,可知x与f(x)异号,从图象可知,当x∈(-a,0)∪(a,+∞)时满足题意,故选B.【例12】设函数f(x)=2,求使f(x)≥2的取值范围.【解法1】由f(x)≥2得2≥2=2.易求出g(x)和h(x)的图象的交点立时,x的取值范围为[,+∞).【解法3】由的几何意义可设F1(-1,0),F2(1,0),M(x,y),则,可知M的轨迹是以F1、F2为焦点的双曲线的右支,其中右顶点为(,0),由双曲线的图象和x+1-x-1≥知x≥.【点评】本题的三种解法都是从不同角度构造函数或不等式的几何意义,让不等式的解集直观地表现出来,体现出数形结合的思想,给我们以“柳暗花明”的解题情境.(四)运用数形结合思想解三角函数题纵观近三年的高考试题,巧妙地运用数形结合的思想方法来解决一些问题,可以简化计算,节省时间,提高考试效率,起到事半功倍的效果.【例13】函数f(x)=sinx+2sinx,x∈[0,2π]的图象与直线y=k有且仅有2个不同的交点,则k的取值范围是.【分析】本题根据函数解析式,画出图象,可以直观而简明地得出答案,在有时间限制的高考中就能大大地节约时间,提高考试的效率.解:函数f(x)=由图象可知:1<k<3.【例14】当0<x<时,函数f(x)=的最小值为().A. 2B. 2C. 4D. 4解:y=则y为点A(0,5)与点B(-sin2x,3cos2x)两点连线的斜率,又点B的轨迹方程(0<α<),即x2+=1(x<0),如图,当过点A的直线l∶y=kx+5与椭圆x2+=1(x<0)相切时,k有最小值4,故选C.【例15】若sinα+cosα=tanα(0<α<),则α∈().解:令f(x)=sinx+cosx=sin(x+ )(0<α<),g(x)=tanx,画出图象,从图象上看出交点P的横从标xP>.再令α=,则sin+cos=≈1.366,tan=≈1.732>1.367,由图象知xP应小于.故选C.【点评】本题首先构造函数f(x),g(x),再利用两个函数的图象的交点位置确定α>,淘汰了A、B两选项,然后又用特殊值估算,结合图象确定选项C,起到了出奇制胜的效果.【例16】已知函数f(x)是定义在(-3,3)上的奇函数,当0<x<3时f(x)图象如下图所示,那么不等式f(x)cosx<0的解集是().解:函数f(x)定义在(-3,3)上,且是奇函数,根据奇函数图象性质可知,f(x)在(-3,0)上的图象如图所示,若使f(x)cosx<0,只需f(x)与cosx异号,即图象须分别分布在x轴上下侧,由图可知,有三部分区间符合条件要求,即(-,-1)∪(0,1)∪(,3),故选B.【点评】已知函数的一部分图象,根据函数的性质可得到函数的另一部分图象,利用数形结合的思想,可以先画出完整的函数图象,再研究有关问题.【例17】△ABC中,A=,BC=3,则△ABC的周长为().解:本题是我们常用三角恒等变形和正弦定理通过一定量的计算来完成的,但是应用数形结合,可以很快解决问题.为此,延长CA到D,使AD=AB,则CD=AB+AC,∠CBD=∠B+,∠D=,由正弦定理即AB+AC=6sin(B+),故选C.(五)运用数形结合思想解复数题【例18】设|z1|=5,|z2|=2, |z1-z2|=13,求zz12的值。