第1章 材料力学概述
起重机械检验员培训教材(QZ-1)基础知识

从机械工程应用角度出发,工程力学是一门研究物体机械运动一般规律及有关构件强度、刚度和稳 定性等理论的科学,它包括理论力学和材料力学两门学科的有关内容。
理论力学是研究物体机械运动一般规律的科学。所谓机械运动就是物体在空间的位置随时间的变 化规律。它是人们在日常生活和生产实践中最常见的一种运动形式,如各种机器的运转及车辆、船只 的行驶等。理论力学的内容包括以下三个部分:(1)静力学—研究物体平衡的一般规律,包括物体的 受力分析、力系的简化方法、力系的平衡条件;(2)运动学—从几何学角度来研究物体的运动(如轨迹、 速度和加速度等),而不研究引起物体运动的物理原因;(3)动力学—研究受力物体的运动与作用力之 间的关系。
物体按照运动所受限制条件的不同可以分为两类:自由体与非自由体。自由体是指物体在空间可 以有任意方向的位移,即运动不受任何限制。非自由体是指在某些方向的位移受到一定限制而不能随 意运动的物体。对非自由体的位移起限制作用的周围物体称为约束。
约束限制着非自由体的运动,与非自由体接触相互产生了作用力,约束作用于非自由体上的力称 为约束反力。以下介绍工程中常见的几种典型约束模型:
1. 柔索约束 胶带、绳索、传动带、链条等均属于柔索约束。这类约束的特点是只能承受拉力,不能承受压力。
该类约束的约束反力是作用在接触点,方向沿柔索,背离物体,恒为拉力。 如下图1.6所示,起重机用绳索吊起大型机械主轴。绳索的约束反力都通过它们与吊钩的连接点,
沿着各绳索的轴线,背离吊钩。
·4·
第 1 章 力学基础
从广义上说,工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与 工程技术联系极为密切的技术基础学科。其针对不同的工程技术领域,内容应涵盖:刚体力学(理论 力学)、固体力学、流体力学、流变学、土力学、岩体力学等众多力学学科分支。
第1章材料力学概述111

以上两方面的结合使材料力学成为工程设计的重要 组成部分,即设计出杆状构件或零部件的合理形状和尺
寸,以保证它们具有足够的强度、刚度和稳定性。
1.2 杆件的受力与变形形式
实际杆件的受力可以是各式各样的,但都可以归纳
为以下4种基本受力和变形形式: 轴向拉伸(或压缩) 剪切 扭转 弯曲 以及由两种或两种以上基本受力和变形形式叠加而
假想截面
F3 1 .沿横截面截开,留 下一部分作为研究对象, 弃去另一部分——截开 FN 2.用作用于截面上的 x 内力代替弃去部分对留 下部分的作用——替代 F4 3.对留下部分建立平 衡方程并解之——平衡
材料力学概述
材料力学主要研究变形体受力后发生的变形、由于 变形而产生的附加内力以及由此而产生的失效和控制失 效的准则。在此基础上导出工程构件静力学设计的基本 方法。
材料力学与理论力学在分析方法上也不完全相同。
材料力学的分析方法是在实验基础上,对于问题作一些
科学的假定,将复杂的问题加以简化,从而得到便于工
成的组合受力与变形形式。 扭 转
M A l
M
BA
B
扭转变形
1.2 杆件的受力与变形形式
实际杆件的受力可以是各式各样的,但都可以归纳
为以下4种基本受力和变形形式: 轴向拉伸(或压缩) 剪切 P 扭转 q 弯曲 弯 曲
弯曲( bend ) ― 当外加力偶 M (图 1 一 4 ( a ”或 外力作用于杆件的 纵向平面内(图 1 一 4 ( b ) )时,杆 件将发生弯曲变形, 其轴线将变成曲线。
认为物体在其整个体积内毫无空隙地充满了物质,
其结构是密实的。
实际的变形固体,从其物质结构来说,均具有不
同程度的空隙;但这些空隙的大小与构件的尺寸相比
孙训方版材料力学第一章

14
§1.4材料力学主要研究对象(杆件)的几何特征
构件的分类:杆件、板壳*、块体* 材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆——横截面的大小 或形状变化的杆 等截面直杆——等直杆 横向(垂直于长度方向) 15
一、基本概念
1、荷载:外力(约束 力,已知力)主要是静 荷载。 2、构件:工程结构或 机械的每一组成部分。 (例如:行车结构中的 横梁、吊索等)。 3、构件正常工作的要 求:
5
强度:在载荷作用下,构件具有抵抗破坏的能力。 例如储气罐不应爆破。 刚度:在载荷作用下,构件具有抵抗变形的能力。 例如机床主轴不应变形过大,否则影响加工精度 。稳定性:在载荷作用下,构件具有保持原有 平衡状态的能力。 例如柱子不能弯等。
大家好
1
材料力学
孙训方主编(第5版) 高等教育出版社
目录
2
第一章及基本概念
§1.1 材料力学的任务 §1.2 材料力学发展概述 §1.3 可变行固体的性质及其基本假设 §1.4 材料力学主要研究对象(杆件)的几 何特征 §1.5 杆件变形的基本形式
目录
4
§1.1 材料力学的任务
§1.5 杆件变形的基本形式
杆件的基本变形:拉伸(压缩)、剪切、扭转、弯曲
拉压变形
16
剪切变形
17
扭转变形
18
弯曲变形
组合变形
19
11
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
材料力学教学课件ppt作者范钦珊第一章材料力学概述

3. 常见组合变形的类型 : (1) 斜弯曲 (2) 拉伸(压缩)与弯曲组合 (3) 偏心拉伸(压缩) (4) 弯扭组合
计算方法 : 组合变形若忽略变形过程中各基本变形间的互相影
响,则可依据叠加原理计算。
1. 叠加原理 :弹性范围小变形情况下,各荷载分别单独 作用所产生的应力、变形等互不影响,可叠加计算。
1.7.2、剪切
(1)受力特点:杆件受到一对大小相等、 方向相反、作用线互相平行且相距很近的横 向力的作用; (2)变形特点:受剪杆件的两部分沿外 力作用方向发生相对错动;
1.7.3、扭转
(1)受力特点:杆件受到一对大小相等、方 向相反、作用面垂直于杆轴的力偶作用;
(2)变形特点:杆件的任意两个横截面发生绕轴线的相对转动。
围绕某点作一个各边分别为 、 、 的正六面体。 正六面体的x方向在力的作用下, 产生了变形 ,线 段ab 沿x方向单位长度的平均变形量为 。
平均变形量的极限:
称为点a沿x方向的的线应变 或简称应变。
由于切应力的作用,正六面体的各棱边还会发生角度的改变,当 和 趋近于零时,ab和ad所夹直角的改变量的极限
3、广义虎克定律 只有 作用时
1.7 杆件受力与变形的基本形式
材料力学的主要研究对象
杆件:长度远大于横截面尺寸的构件。 等直杆:轴线为直线且沿轴线横截面不发生变化的杆件。
杆件变形的基本形式
1.7.1、拉伸或压缩
(1)受力特点:杆件受到一对大小相等、方向相 反、作用线与杆件轴线重合的力的作用。 (2)变形特点:杆件长度方向发生伸长或缩短。
上分布内力 的合力为 ,
上分布内力的平均集度为
;
当 趋近于零时
的极限
称为点K的全应力。
材料力学第一章 引论

P P
ΔA ΔP
σ= lim ΔA 0
ΔN ΔA
τ= lim ΔA 0
ΔQ ΔA
ΔQ
ΔA ΔP
ΔN
正应力—— 垂直于截面的应力,σ 切应力—— 平行于截面的应力,τ
F
过一点所取截面方位不同,则σ、 τ 不同,所以除说明大小、方向外,必须 说明截面方位。
F
yτ ρ σ x
z
τρ σ
F σ
§1—5 变形与应变
AB Δx Δu
εy
A
F
微元体、单元体—— 边长无穷小的正六方体
dy
dx
2、剪应变—— 度量杆件一点处剪切变形程度的量
F
dy dx
dy γ dx
剪应变γ: 微元体直角的改变量
γ单位:弧度(无量纲)
γxy、 γyz、 γzx
y
x z
§1—6杆件变形的基本形式
一、轴向拉伸(压缩)
受力特点: 杆件承受沿轴线方向的拉力 或压力
四、弯曲
受力特点:当外加力偶M或外力 作用于杆件的包含杆轴线的纵向 平面内时
变形特点:杆轴线由直变弯
Me Me
M Me FP
M Me FP
再见!
返回
软件编制:马 群 佟晓君 武春廷 刘廷权
监 制:张茂斌 责任编辑:多明明
注:按鼠标右键调出菜单,选结束放映便可退出
③对分离体列静力平衡方程, 求解未知内力的大小、方向
ΣX = 0,N—FP = 0, ∴ N = FP
二、应力
应力—— 内力的集度。
P
p= lim ΔA 0
ΔP ΔA
一点处总应力
P
量纲:
[力]
[长度]2
材料力学电子教案

材料力学电子教案第一章:材料力学概述1.1 材料力学的定义和研究对象1.2 材料力学的发展简史1.3 材料力学的研究方法1.4 材料力学的应用领域第二章:内力、截面法和剪切力2.1 内力的概念及其计算2.2 截面法的基本原理与应用2.3 剪切力的概念及其计算2.4 剪切强度计算及剪切失效分析第三章:弯曲和扭转3.1 弯曲的基本概念3.2 纯弯曲梁的应力和应变3.3 弯曲强度计算3.4 扭转的基本概念3.5 扭转应力计算及扭转失效分析第四章:材料的基本力学性能4.1 弹性变形与弹性模量4.2 塑性变形与塑性极限4.3 材料的其他力学性能4.4 材料力学性能的测定方法第五章:应力-应变关系与胡克定律5.1 应力与应变的定义及关系5.2 胡克定律的表述及应用5.3 非线性材料的应力-应变关系5.4 弹性模量的测定方法及应用第六章:材料力学中的能量原理6.1 能量原理概述6.2 势能和弹性势能6.3 能量原理在材料力学中的应用6.4 能量原理在弹性问题求解中的应用第七章:材料力学中的强度理论7.1 强度理论概述7.2 强度条件及其应用7.3 安全系数的概念及其计算7.4 材料力学中的失效准则及应用第八章:梁的弯曲与扭转组合8.1 梁的弯曲与扭转组合问题概述8.2 纯弯曲梁的扭转应力8.3 扭转梁的弯曲应力8.4 弯曲与扭转组合问题的求解方法第九章:壳体力学9.1 壳体力学概述9.2 壳体的基本方程及其求解9.3 壳体的弯曲与轴向变形9.4 壳体的稳定性问题及其求解方法第十章:材料力学在工程中的应用10.1 材料力学在结构设计中的应用10.2 材料力学在机械设计中的应用10.3 材料力学在材料加工中的应用10.4 材料力学在其他工程领域的应用重点和难点解析1. 第一章中“材料力学的研究方法”是重点内容,因为它涉及到材料力学的基本研究方法和思维方式。
补充和说明:材料力学的研究方法包括实验研究、理论分析和数值模拟等。
FDN-材料力学-第1章

FP
1
理论力学 & 材料力学
TSINGHUA UNIVERSITY
(a)
(b)
受 力 分 析
(c)
(d)
1
第1章 材料力学的基本概念
TSINGHUA UNIVERSITY
返回总目录
材料力学概述
理论力学的发展;
TSINGHUA UNIVERSITY
经典力学:研究质点、质点系、刚体、刚体系、 摩擦、静力学、动力学。矢量原理。 Lagrange系统、Hamilton系统:运用达朗贝尔原 理、虚位移原理。标量原理。 近年来研究侧重在多刚体,柔体动力学。如卫星 编队飞行,卫星充液晃动,卫星姿态和轨道控制 等。 是学习力学的基础,高中的力学属于理论力学。
σx
TSINGHUA UNIVERSITY
x E x ,
O
x
x
E
εx
τ
胡克定律
Gg , g
G
O
γ
1
材料力学简单应用:简单的超静定问题
例题
结构受力如图所示,E1I1l1、 E2I2l2、 α、 FP等均为已 知。 求:各杆受力。
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
1
材料力学概述
TSINGHUA UNIVERSITY
材料力学与工程设计密切相关。
1
材料力学概述
金茂大厦 上海标志性建筑 楼高:420.5m
TSINGHUA UNIVERSITY
(世界第三,中国第一)
复合材料力学课件第01章 绪论

教材:沈观林,复合材料力学,清华 教材:沈观林,复合材料力学, 大学出版社, 大学出版社,2006 学时: 学时:32h。 1-8周,最后一次课考试 。 周
第一章
§1.1 概述
绪论
§1.2 连续纤维复合材料的构造 §1.3 复合材料的特点 §1.4 复合材料的应用 §1.5 复合材料的力学分析方法
应用于航空(1)
航空工程中应用复合材料的例子 如表1-7: 如表1 碳纤维树脂基发动机叶片,玻璃钢 直升机飞机螺旋桨,非金属蜂窝夹层雷 达罩,CF/GF复合材料、中间硼纤维增强 蜂窝结构飞机机身,平尾,水平安定面, 垂直安定面,石墨纤维复合材料喷气发 动机,CF/KF混杂复合材料整流罩、主起 落架舱门等。AD200/400,基本上是高强 玻璃纤维/环氧复合材料制造的。
特点二
使用复合材料, 使用复合材料,可使设计提前到材料 的制造阶段, 的制造阶段,以最有效地发挥材料的潜力 和作用。例如: 和作用。例如:
图5 可设计复合材料结构
特点三
与金属材料相比, 与金属材料相比,复合材料的抗疲劳 断裂性能要好。一般而言, 断裂性能要好。一般而言, 复合材料 :σe ≈60%σb % 金属材料: 金属材料: σe ≈30%σb %
§1.4
§1.4 复合材料的应用
复合材料是各国目前都正在大力发展 的新型材料,使得其性能不断提高, 的新型材料,使得其性能不断提高,同时 在先进结构上也得到了越来越广泛的应用。 在先进结构上也得到了越来越广泛的应用。 1∘在航空结构上的应用 2∘在航天工程中的应用 3∘在车辆制造业的应用 4∘其他用途
层合板结构
图4 叠层材料构造形式
层合板的表示
层合板的表示方法是按叠层顺序依次将各铺 的角度写入方括号中, 层(ply)的角度写入方括号中,并用斜杠分隔 的角度写入方括号中 例如: 之。例如:[0/90/45/0/45/90/0]、[30/-30] 、 当有对称面时,可只写一半,并用下标S表 当有对称面时,可只写一半,并用下标 表 示对称。例如: 示对称。例如:[60/0/0/60] → [60/0]s 当有重复铺层时,可用数字下标表示。例如: 当有重复铺层时,可用数字下标表示。例如: [60/60/0/0/60/60] → [602/0]s [30/-30/0/0/-30/30] → [±30/0]s ± [30/0/0/30/30/0/0/30] → [30/0]2s 半重复层合板的表示方法为: 半重复层合板的表示方法为: [-30/60/0/60/-30] → [定义: 其它定义:
南航材料力学第2讲(第1章-续)PPT

习题1.3
应用有限元法求解弹性力学问题,包括建立 有限元模型、求解有限元方程等。
习题1.4
应用有限差分法求解弹性力学问题,包括建 立差分模型、求解差分方程等。
思考题解析
思考题1.1
如何理解弹性力学的基本概念?
思考题1.3
如何应用有限元法和有限差分法求解弹性力 学问题?
思考题1.2
如何建立和求解弹性力学的基本方程?
南航材料力学第2讲(第1章-续)
目录
• 材料力学的基本概念 • 材料的力学性质 • 杆件的基本变形 • 应力分析与应变分析 • 材料的失效与强度理论 • 习题与思考题
01 材料力学的基本概念
材料力学的定义
总结词
材料力学是一门研究材料在力作用下 变形、破坏和恢复的学科。
详细描述
材料力学主要关注材料在不同外力作 用下的行为,包括变形、断裂、疲劳 等,以及这些行为对材料性能的影响。
泊松比
描述材料横向变形与纵向变形之比的物理量。
杨氏模量与泊松比的关系
杨氏模量是弹性模量的一种,它描述了材料在单向受力时的弹性性质,而泊松比则描述了材料在横向受 力时的变形性质。
材料的强度和塑性极限
强度极限
材料所能承受的最大应力值,超过这个值材料会发生断裂。
塑性极限
材料在受力过程中所能发生的最大塑性形变量,超过这个值材料的塑性变形会变得不稳定。
应变分析
定义
应变定义为物体形状的改变量与 其原始尺寸的比值,表示物体形 状的相对变化。
分类
应变分为线应变和角应变。线应 变表示长度方向的改变,角应变 表示角度的改变。
应变协调方程
在连续介质中,应变分量之间存 在一定的关系,即应变协调方程, 它确保物体内部各点应变分量的 连续性。
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-第1~3章【圣才出品】

2.根据均匀、连续性假设,可以认为( )。[北京科技大学 2012 研] A.构件内的变形处处相同 B.构件内的位秱处处相同 C.构件内的应力处处相同 D.构件内的弹性模量处处相同 【答案】C
4 / 96
圣才电子书 十万种考研考证电子书、题库规频学习平台
【解析】连续性假设认为组成固体的物质丌留空隙地充满固体的体积,均匀性假设认为 在固体内各处有相同的力学性能。
5 / 96
圣才电子书
十万种考研考证电子书、题库规频学习平台
第 2 章 轴向拉伸和压缩
2.1 复习笔记
工程上有许多构件,如桁架中的钢拉杆,作用亍杆上的外力(或外力合力)的作用线不 杆轴线重合,这类构件简称拉(压)杆,轴向拉伸不压缩是杆件受力或变形的一种基本形式。 本章研究拉压杆的内力、应力、变形以及材料在拉伸和压缩时的力学性能,幵在此基础上, 分析拉压杆的强度和刚度问题。此外,本章还将研究拉压杆连接件的强度计算问题。
2.拉(压)杆内的应力(见表 2-1-6)
9 / 96
圣才电子书 十万种考研考证电子书、题库规频学习平台
表 2-1-6 拉(压)杆内的应力
四、拉(压)杆的变形不胡克定律 1.变形(见表 2-1-7)
10 / 96
圣才电子书
12 / 96
圣才电子书 十万种考研考证电子书、题库规频学习平台
标准试样及材料拉伸和压缩时的力学性能见表 2-1-10。 表 2-1-10 标准试样及材料拉伸和压缩时的力学性能
2.低碳钢试样的拉伸图、应力-应变曲线及其力学性能 (1)低碳钢试样的拉伸图、应力-应变曲线见表2-1-11:
一、轴向拉伸和压缩概述 拉(压)杆的定义、计算简图和特征见表 2-1-1。
材料力学第5版(孙训方编高等教育出版社)第一章

第27页 / 共79页
材料力学
第一章 绪论及基本概念
四、对学生的能力的培养要求
通过材料力学课程的学习,学生应掌握杆件的强 度、刚度以及稳定性问题的基本概念、基础知识和一 定的分析能力,具有比较熟练的计算能力和一定的实 验能力。
第28页 / 共79页
材料力学
1、拉伸或压缩实例
第58页 / 共79页
材料力学
轴向拉伸或压缩 • 受力特征 • 变形特征
轴向拉伸
b 轴向压缩
第59页 / 共79页
材料力学
2、剪切实例
第60页 / 共79页
材料力学
第61页 / 共79页
材料力学
剪切
• 受力特征 • 变形特征
第62页 / 共79页
材料力学
3、扭转实例
第63页 / 共79页
第39页 / 共79页
材料力学
竹竿 金属杆 玻璃纤维 碳纤维复合材料
→ →→
撑 高 跳 女 皇
伊 辛 巴 耶 娃
第40页 / 共79页
材料力学
第41页 / 共79页
材料力学
材料力学与工程密切相关
力学是一种文化。 基础力学教育是一种素质教育。
第42页 / 共79页
材料力学
第一章 绪论及基本概念
三、材料力学课程内容及基本要求
总共9章:
1、绪论及基本概念(2课时) 材料力学的任务,可变形固体的基本假设,杆件变形的
基本形式。 2、轴向拉伸和压缩(8+2课时)
截面法,轴力和轴力图,横截面上的应力,纵向变形, 线应变,拉压胡克定律,变形和位移的计算,材料拉伸和 压缩时的力学性质,强度条件,应力集中的概念。
材料力学电子教案

材料力学电子教案第一章:材料力学概述1.1 课程介绍介绍材料力学的基本概念、研究对象和内容强调材料力学在工程领域的重要性1.2 材料的力学性能介绍材料的弹性、塑性、韧性、硬度等力学性能解释各种力学性能指标的定义和意义1.3 应力与应变定义应力、应变、泊松比等基本概念解释应力-应变关系的图形和特点第二章:弹性变形2.1 弹性理论基础介绍弹性模量、剪切模量等基本弹性参数解释弹性矩阵和弹性方程的定义和应用2.2 拉伸和压缩分析拉伸和压缩试验的应力-应变关系计算拉伸强度、压缩强度等指标2.3 弯曲和扭转分析弯曲和扭转试验的应力-应变关系计算弯曲强度、扭转刚度等指标第三章:塑性变形3.1 塑性理论基础介绍塑性变形的基本概念和特点解释塑性极限、塑性应变等参数的定义和计算方法3.2 拉伸和压缩塑性变形分析拉伸和压缩试验的应力-应变关系计算屈服强度、伸长率等指标3.3 弯曲和扭转塑性变形分析弯曲和扭转试验的应力-应变关系计算屈服强度、挠度等指标第四章:材料的高温力学性能4.1 高温弹性变形介绍高温下材料的弹性性能变化分析高温下弹性模量的变化规律和影响因素4.2 高温塑性变形介绍高温下材料的塑性性能变化分析高温下塑性极限、屈服强度等指标的变化规律和影响因素4.3 高温韧性介绍高温下材料的韧性变化分析高温下韧性的评价方法和指标第五章:材料的疲劳与断裂5.1 疲劳基础介绍疲劳现象和疲劳寿命的概念解释疲劳循环应力、疲劳极限等参数的定义和意义5.2 疲劳强度计算介绍疲劳强度的计算方法和疲劳寿命的预测模型分析影响疲劳寿命的因素和提高疲劳强度的方法5.3 断裂力学基础介绍断裂力学的基本概念和断裂韧性解释应力强度因子、裂纹扩展速率等参数的定义和计算方法第六章:材料力学在结构分析中的应用6.1 梁的弯曲介绍梁的弯曲理论,包括剪力、弯矩和曲率的关系分析梁的弯曲强度和稳定性问题6.2 杆件的拉伸和压缩分析杆件在拉伸和压缩状态下的应力分布计算杆件的拉伸强度和压缩强度6.3 平面应力问题和空间应力问题解释平面应力问题和空间应力问题的概念分析应力转换和应力解的基本原理第七章:材料力学在材料设计中的应用7.1 材料设计的基本原则介绍材料设计的目标和基本原则解释材料设计的基本流程和方法7.2 材料的力学性能设计分析材料的力学性能对材料设计的影响介绍提高材料力学性能的设计方法和策略7.3 新型材料的力学性能研究介绍新型材料的研究和发展趋势分析新型材料在材料力学性能方面的优势和应用前景第八章:实验技能与数据分析8.1 实验设备与方法介绍材料力学实验设备的使用和操作方法解释实验数据的采集和处理流程8.2 材料力学实验项目分析常见的材料力学实验项目及其目的和意义介绍实验结果的评估和分析方法8.3 数据分析与处理介绍数据分析的基本方法和技巧解释数据处理在材料力学研究中的应用和重要性第九章:材料力学在工程中的应用9.1 土木工程中的应用分析材料力学在土木工程中的应用案例介绍材料力学在结构设计、桥梁工程等方面的应用9.2 机械工程中的应用分析材料力学在机械工程中的应用案例介绍材料力学在机械零件设计、材料选择等方面的应用9.3 航空航天工程中的应用分析材料力学在航空航天工程中的应用案例介绍材料力学在飞行器结构设计、航天材料选择等方面的应用第十章:材料力学的未来发展10.1 新型材料的研究与发展介绍新型材料的研究方向和发展趋势分析新型材料在材料力学性能方面的创新和突破10.2 材料力学与其他学科的交叉研究介绍材料力学与其他学科的交叉研究领域分析交叉研究对材料力学发展的影响和意义10.3 材料力学的挑战与机遇分析材料力学面临的挑战和问题探讨材料力学的未来机遇和发展方向重点和难点解析1. 弹性变形和塑性变形的理解和区分。
材料力学第1章材料力学概述

第1章 材料力学概述
“材料力学”的研究内容 杆件的受力与变形形式 工程构件静力学设计的主要内容
关于材料的基本假定 弹性体受力与变形特征 材料力学的分析方法 内力与内力分量
应力、应变及其与外力的相互关系 结论与讨论
第1章 材料力学概述
1.1 “材料力学”的研究内 容
第1章 材料力学概述
杆件变形的基本形式
弯曲(bend)
当外加力偶M或外力作用于与杆件垂直的纵向平面内时, 杆件将发生弯曲变形,其轴线将变成曲线。
第1章 材料力学概述
杆件变形的基本形式
组合受力(complex loads and deformation)
由基本受力形式中的两种或两种以上共同形成的受力 与变形形式即为组合受力与变形 。
第1章 材料力学概述
“材料力学”的研究内容
材料力学(strength of materials)的研究内容分 属于两个学科。 第一个学科是固体力学(solid mechanics),即研究 物体在外力作用下的应力、变形和能量,统称为应力分 析(stress analysis)。但是,材料力学所研究的仅限于 杆、轴、梁等物体,其几何特征是纵向尺寸(长度)远 大于横向(横截面)尺寸,这类物体统称为杆或杆件 ( bars或 rods )。大多数工程结构的构件或机器的零部 件都可以简化为杆件。
体:空间三个方向且有相同量级的 尺度,这种弹性体称为体 body。
第1章 材料力学概述
“材料力学”的研究内容
材料力学(strength of materials)的研究内容分属于 两个学科。
第二个学科是材料科学(materials science)中的材 料的力学行为(behaviours of materials),即研究材料在 外 力 和 温 度 作 用 下 所 表 现 出 的 力 学 性 能 ( mre)行为。但是,材料力学所研 究的仅限于材料的宏观力学行为,不涉及材料的微观机理。 以上两方面的结合使材料力学成为工程设计 (engineering design)的重要组成部分,即设计出杆状构 件或零部件的合理形状和尺寸,以保证它们具有足够的强 度(strength)、刚度(stiffness)和稳定性(stability)。
复合材料力学答案

复合材料力学答案【篇一:材料力学】教程第二版 pdf格式下载单辉祖主编本书是单辉祖主编《材料力学教程》的第2版。
是根据高等工业院校《材料力学教学基本要求》修订而成。
可作为一般高等工业院校中、少学时类材料力学课程的教材,也可作为多学时类材料力学课程基本部分的教材,还可供有关工程技术人员参考。
内容简介回到顶部↑本教村是普通高等教育“十五”国家级规划教材。
. 本教材仍保持第一版模块式的特点,由《材料力学(Ⅰ)》与《材料力学(Ⅱ)》两部分组成。
《材料力学(Ⅰ)》包括材料力学的基本部分,涉及杆件变形的基本形式与组合形式,涵盖强度、刚度与稳定性问题。
《材料力学(Ⅱ)》包括材料力学的加深与扩展部分。
本书为《材料力学(Ⅱ)》,包括非对称弯曲与特殊梁能量法(二)、能量法(二)、静不定问题分析、杆与杆系分析的计算机方法、应力分析的实验方法、疲劳与断裂以及考虑材料塑性的强度计算等八章。
各章均附有复匀题与习题,个别章还安排了利用计算机解题的作业。
..与第一版相同,本教材具有论述严谨、文字精炼、重视基础与应用、重视学生能力培养、专业面宽与教学适用性强等特点,而且,在选材与论述上,特别注意与近代力学的发展相适应。
本教材可作为高等学校工科本科多学时类材料力学课程教材,也可供高职高专、成人高校师生以及工程技术人员参考。
以本教材为主教材的相关教学资源,尚有《材料力学课堂教学多媒体课件与教学参考》、《材料力学学习指导书》、《材料力学网上作业与查询系统》与《材料力学网络课程》等。
...作译者回到顶部↑本书提供作译者介绍单辉祖,北京航空航天大学教。
1953年毕业于华东航空学院飞机结构专业,1954年在北京航空学院飞机结构专业研究生班学习。
1992—1993年,在美国特拉华大学复合材料中心.从事合作研究。
.历任教育部工科力学教材编审委员、国家教委工科力学课程指导委员会委员、中国力学学会教育工作委员会副主任委员、北京航空航天大学校务委员会委员、校学科评审组成员与校教学指导委员会委员等。
材料力学第五版

材料力学第五版材料力学是材料科学与工程领域的一门重要学科,它研究的是材料在外力作用下的变形和破坏规律。
材料力学的发展对于材料设计、加工、应用以及材料性能的评价都具有重要意义。
本文将从材料力学的基本概念、应用领域和发展趋势等方面进行介绍。
首先,材料力学的基本概念包括应力、应变、弹性模量、屈服强度、断裂韧性等。
应力是单位面积上的力,而应变是材料单位长度的变形量。
弹性模量是材料在弹性阶段的应力和应变之比,屈服强度则是材料开始发生塑性变形的应力值。
断裂韧性则是材料抗断裂的能力。
这些基本概念是材料力学研究的基础,也是材料设计和工程应用的重要参数。
其次,材料力学的应用领域非常广泛,涉及到金属材料、非金属材料、复合材料等多个方面。
在航空航天、汽车制造、建筑工程、电子产品等领域,都需要对材料的力学性能进行深入研究和应用。
例如,在航空航天领域,要求材料具有较高的强度和韧性,以确保飞行器在极端环境下的安全飞行;在汽车制造领域,要求材料具有较高的硬度和耐磨性,以确保汽车在行驶过程中的安全性和可靠性。
最后,材料力学在未来的发展趋势主要包括两个方面,一是对新材料的研究和应用,二是对材料力学理论的深入探索。
随着科学技术的不断进步,新材料的涌现使得材料力学面临着新的挑战和机遇,例如纳米材料、生物材料、功能材料等的研究将成为材料力学的重要方向。
同时,材料力学理论的深入探索也将推动材料科学与工程领域的发展,例如多尺度建模、计算材料力学等将成为未来的研究热点。
综上所述,材料力学作为材料科学与工程领域的重要学科,对于材料的设计、加工、应用以及性能评价具有重要意义。
随着科学技术的不断进步,材料力学的研究和应用将迎来新的机遇和挑战。
希望本文对于材料力学的理解和应用能够有所帮助,也希望材料力学能够为人类社会的发展做出更大的贡献。
工程力学材料力学第一章

直杆、杆的截面无突变、截面到载荷作用点有一定 的距离。
直杆轴向拉伸或压缩时斜截面上的应力 k
设有一等直杆受拉力P作用。 P 求:斜截面k-k上的应力。 解:采用截面法 由平衡方程:Pα=P P P k P
α α
k Pα k
Pα 则: pα = Aα
Aα:斜截面面积;Pα:斜截面上内力。
A 由几何关系: α = cos Aα
σ 0 ( 45°斜截面上剪应力达到最大 ) |τ 当α = ± 45°时, α |max =
目 录
公式的应用条件: 公式的应用条件: 直杆、杆的截面无突变、 的距离。 直杆、杆的截面无突变、截面到载荷作用点有一定 的距离。 圣维南( 原理: 圣维南 Saint-Venant)原理: 原理 离开载荷作用处一定距离, 离开载荷作用处一定距离,应力分布与大小不受外载荷作 用方式的影响。 用方式的影响。 应力集中( 应力集中(Stress Concentration): ): 在截面尺寸突变处,应力急剧变大。 在截面尺寸突变处,应力急剧变大。
工程构件,大多数情形下,内力并非均匀分布,集度的定 义不仅准确而且重要,因为“破坏”或“失效”往往从内力集 度最大处开始。 2. 应力的表示: 应力的表示: ① 平均应力: 平均应力: ∆P M ∆A
ΔP pM = ΔA
全应力(总应力): ② 全应力(总应力):
p = lim
∆A → 0
∆P dP = ∆ A dA
目 录
目 录
目 录
例题
图示结构,已知斜杆AB长2m,横截面面积为 图示结构,已知斜杆AB长2m,横截面面积为 AB 水平杆AC的横截面面积为250mm AC的横截面面积为 200mm2。水平杆AC的横截面面积为250mm2。材料的 弹性摸量E=200GPa 载荷F=10kN 试求节点A E=200GPa。 F=10kN。 弹性摸量E=200GPa。载荷F=10kN。试求节点A的位 移。 计算各杆件的轴力。(设斜杆为1 。(设斜杆为 解:1、计算各杆件的轴力。(设斜杆为1杆,水 平杆为2 用截面法取节点A 平杆为2杆)用截面法取节点A为研究对象
《材料性能学》1-4章电子教案2

4、真应力-真应变曲线(S-e曲线)
实际上,在拉伸过程中,试棒的截面积和长度随着拉伸力的增大是 不断变化的,工程应力一应变曲线并不能反映试验过程中的真实情 况.如果以瞬时截面积A除其相应的拉伸力F,则可得到瞬时的真应力S, 同样,当拉伸力F有一增量dF时,试样在瞬时长度 L的基础上变为L+dL, 于是应变的微分增量应是 de=dL/L,则试棒自 L0伸长至L后, 总的应变量为 : e L dL L
6
第一节 力-伸长曲线和应力一应变曲线
一、力-伸长曲线(拉伸图)
材料的单向静拉伸试验通常是在室温下按常 规的试验标准,采用光滑圆柱试样在缓慢加载和低 的变形速率下进行的.试验方法和试样尺寸在试验 标准中有明确规定.在拉伸过程中,随着载荷的不 断增加,圆柱试样的长度将不断的增加,这些量的 变化可由试验机上安装的自动绘图机构连续描绘出, 拉伸力F和绝对伸长量ΔL的关系曲线,直至试样断 裂.如图1-1所示。
二、金属、陶瓷类材料弹性变形的微观过程的双原子模型解释. 在正常状态下,晶格中的离子能保持在其平衡位置仅作微小的热 振动,这是受离子之间的相互作用力控制的结果.一般认为,这种作 用力分为引力和斥力,引力是由正离子和自由电子间的库仑力所产生, 而斥力是由离子之间因电子壳层产生应变所致.引力和斥力都是离子 间距的函数。 图1-5即为离子互相作用时的受力模型,图冲N1、N2分别为两离子 的平衡位置,曲线1为引力,曲线2为斥力,曲线3为合力,
《材料性能学》电子教案
〔面向21世纪材料科学与工程高等教育改革 试用教材 (北京工业大学出版社) 王从曾 主编〕
材料与科学工程学院
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范钦珊教育教学工作室
FAN Qin-Shan’s Education & Teaching Studi o
eBook
材料力学习题详细解答
教师用书
(第1章)
2008-8-8
习题1-1 习题1-3 习题1-2 习题1-4
材料力学习题详细解答之一
第1章材料力学概述
1-1已知两种情形下直杆横截面上的正应力分布分别如图(a)和(b)所示。
请根据应力与内力分
量之间的关系,分析两种情形下杆件横截面存在什么内力分量?(不要求进行具体计算)。
(a) (b)
习题1-1 图
解:对于图(a)中的情形,横截面上的应力积分的结果将形成一个沿轴线方向的轴力。
对于图(b)中的情形,横截面上的应力积分的结果将形成一个弯矩。
1-2微元在两种情形下受力后的变形分别如图(a)和(b)中所示,请根据剪应变的定义确定两种情形下微元的剪应变。
〈
(a)
〈
d
d + ⊗d
习题1-3 图
(b)
习题1-2 图
解:对于图(a)中的情形,微元的剪应变
© = 〈
对于图(b)中的情形,微元的剪应变
© = 0
1-3由金属丝弯成的弹性圆环,直径为d(图中的实线),受力变形后变成直径为d+⊗d的圆(图中
π ( d + ⊗d ) πd ⊗d
的虚线)。
如果 d 和⊗d 都是已知的,请应用正应变的定义确定:
(1) (2)
圆环沿直径方向的正应变; 圆环沿圆周方向的正应变。
解:1. 圆环沿直径方向的正应变
∑ r =
⊗d d
2. 圆环沿圆周方向的正应变
∑ t =
= πd d
1-4 微元受力如图中实线 ABCD 所示,其中 ABC 为直角。
受力变形后如图中虚线 其中 d x =d y
A 2BC 2D 所示。
(1) (2)
请分析微元的四边可能承受什么样的应力才会产生这样的变形? 如果已知
CC 2 =
求 AC 方向上的正应变。
d x 1000
(3)
如果已知图中变形后的角度 〈 ,求微元的剪应变。
A'
〈 〈
A
d y
B
D
d x
〈
C'
习题 1 一 4 图
解:1. 微元所受应力如下图所示
2. 微元 AC 方向上的正应变
AA 2 + CC 2 2CC 2
∑ AC =
AA 2 + CC 2 AC
2CC 2 AC
其中
于是有
AC =
CC 2 =
d x
1000
∑ AC
= = =
AC AC
2d x
3. 微元的剪应变即直角的改变量
© = π
2
2〈
返回总目录
下一章。