第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学二轮专题复习精品课件
第一部分专题二 数列-2021届高三数学二轮专题复习课件
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
所以 an=2n. (2)由于 21=2,22=4,23=8,24=16,25=32,26= 64,27=128, 所以 b1 对应的区间为:(0,1],则 b1=0; b2,b3 对应的区间分别为:(0,2],(0,3]则 b2=b3=1, 即有 2 个 1; b4,b5,b6,b7 对应的区间分别为:(0,4],(0,5],(0, 6],(0,7],则 b4=b5=b6=b7=2,即有 22 个 2;
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
第一部分专题二 数列-2021届高三数学二轮专题复 习课件 【精品 】
专题二 数 列
真题研析 命题分析 知识方法
b8,b9,…,b15 对应的区间分别为:(0,8],(0,9],…, (0,15],则 b8=b9=…=b15=3,即有 23 个 3;
b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
(1)证明:{an+bn}是等比数列,{an-bn}是等差数列;
(2)求{an}和{bn}的通项公式. (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+ bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8,即 an+1-bn+1= an-bn+2.
专题二 数 列
真题研析 命题分析 知识方法
-2Sn=1×(-2)+2×(-2)2+3×(-2)3+…(n-1)(- 2)n-1+n(-2)n,②
最新高考数学二轮复习-专题三-第2讲-数列求和及其综合应用-学案讲义
第2讲数列求和及其综合应用[考情分析] 1.数列求和重点考查分组转化、错位相减、裂项相消三种求和方法.2.数列的综合问题,一般以等差数列、等比数列为背景,与函数、不等式相结合,考查最值、范围以及证明不等式等.3.主要以选择题、填空题及解答题的形式出现,难度中等.考点一数列求和核心提炼1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是相邻项抵消,有的是间隔项抵消.常见的裂项方式有:1n (n +k )=14n 2-1=2.错位相减法求和,主要用于求{a n b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列.考向1分组转化法例1(2023·枣庄模拟)已知数列{a n }的首项a 1=3,且满足a n +1+2a n =2n +2.(1)证明:{a n -2n }为等比数列;(2)已知b n n ,n 为奇数,2a n ,n 为偶数,T n 为{b n }的前n 项和,求T 10.(1)证明由a n +1+2a n =2n +2可得a n +1-2n +1=2n +1-2a n =-2(a n -2n ).又a 1-21=1≠0,所以{a n -2n }是以1为首项,-2为公比的等比数列.(2)解由(1)可得a n -2n =(-2)n -1,即a n =2n +(-2)n -1.当n 为奇数时,b n =a n =2n +(-2)n -1=3×2n -1;当n 为偶数时,b n =log 2a n =log 2[2n +(-2)n -1]=log 22n -1=n -1.所以T 10=(b 1+b 3+b 5+b 7+b 9)+(b 2+b 4+b 6+b 8+b 10)=(3+3×22+3×24+3×26+3×28)+(1+3+5+7+9)=3×(1-45)1-4+(1+9)×52=1048.考向2裂项相消法例2(2023·沈阳质检)设n ∈N *,向量AB →=(n -1,1),AC →=(n -1,4n -1),a n =AB →·AC →.(1)令b n =a n +1-a n ,求证:数列{b n }为等差数列;(2)求证:1a 1+1a 2+…+1a n <34.证明(1)由题意可得a n =AB →·AC →=(n -1)2+4n -1=n 2+2n ,则b n =a n +1-a n =[(n +1)2+2(n +1)]-(n 2+2n )=2n +3,可得b n +1-b n =(2n +5)-(2n +3)=2,故数列{b n }是首项b 1=5,公差d =2的等差数列.(2)由(1)可得1a n =1n 2+2n则1a 1+1a 2+…+1a n=12×-13+12-14+…+1n -=12×-1n +1-∵1n +1>0,1n +2>0,故1a 1+1a 2+…+1a n =12×-1n +1-<34.考向3错位相减法例3(2023·全国甲卷)记S n 为数列{a n }的前n 项和,已知a 2=1,2S n =na n .(1)求{a n }的通项公式;(2)n 项和T n .解(1)因为2S n =na n ,当n =1时,2a 1=a 1,即a 1=0;当n =3时,2(1+a 3)=3a 3,即a 3=2,当n ≥2时,2S n -1=(n -1)a n -1,所以2S n -2S n -1=na n -(n -1)a n -1=2a n ,化简得(n -2)a n =(n -1)a n -1,则当n ≥3时,a n a n -1=n -1n -2,则a n a n -1·a n -1a n -2·…·a 3a 2=n -1n -2·n -2n -3·…·21,即a n a 2=n -1,又因为a 2=1,所以a n =n -1,当n =1,2时都满足上式,所以a n =n -1,n ∈N *.(2)令b n =a n +12n =n 2n,则T n =b 1+b 2+…+b n -1+b n=12+222+…+n -12n -1+n 2n ,①12T n =122+223+…+n -12n +n 2n +1,②由①-②得12T n =12+122+123+…+12n -n 2n +1=21-12-n 2n +1=1-2+n 2n +1,即T n =2-2+n 2n .规律方法(1)分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和或差.(2)裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.(3)用错位相减法求和时,应注意:①等比数列的公比为负数的情形;②在写出“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.跟踪演练1(1)(2023·淮南模拟)已知数列{a n }满足a n +1-a n =2n ,且a 1=1.①求数列{a n }的通项公式;②设b n =a n +1a n a n +1,求数列{b n }的前n 项和T n .解①∵数列{a n }满足a n +1-a n =2n ,且a 1=1,∴当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=2n -1.当n =1时也成立,∴a n =2n -1(n ∈N *).②b n =a n +1a n a n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,∴数列{b n }的前n 项和T n …1-12n +1-1.(2)(2023·浙江省强基联盟模拟)已知a 1=1,{a n +1}是公比为2的等比数列,{b n }为正项数列,b 1=1,当n ≥2时,(2n -3)b n =(2n -1)b n -1.①求数列{a n },{b n }的通项公式;②记c n =a n ·b n .求数列{c n }的前n 项和T n .解①因为数列{a n +1}为等比数列,公比为2,首项为a 1+1=2,所以a n +1=2×2n -1=2n ,所以a n =2n -1(n ∈N *),由(2n -3)b n =(2n -1)b n -1,推得b n b n -1=2n -12n -3(n ≥2),所以b 2b 1=31,b 3b 2=53,b 4b 3=75,…,b n b n -1=2n -12n -3(n ≥2),故b n b n -1·b n -1b n -2·…·b 2b 1=2n -12n -3·2n -32n -5·…·31(n ≥2),又b 1=1,所以当n ≥2时,b n =2n -11b 1=2n -1,又b 1=1符合上式,所以b n =2n -1(n ∈N *).②由题可得c n =2n (2n -1)-(2n -1),令d n =2n (2n -1),{d n }的前n 项和为P n .所以P n =1×21+3×22+5×23+…+(2n -1)2n ,2P n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)2n +1,两式相减得-P n =2+2(22+23+…+2n )-(2n -1)2n +1,所以P n =(2n -1)2n +1-2-2(2n +1-4),所以P n =6+(2n -3)2n +1.令e n =2n -1,{e n }的前n 项和为E n ,则E n =(1+2n -1)n 2=n 2,综上,T n =P n -E n =(2n -3)2n +1+6-n 2.考点二数列的综合问题核心提炼数列与函数、不等式,以及数列新定义的综合问题,是高考命题的一个方向,考查逻辑推理、数学运算、数学建模等核心素养.解决此类问题,一是把数列看成特殊的函数,利用函数的图象、性质求解;二是将新数列问题转化为等差或等比数列,利用特殊数列的概念、公式、性质,结合不等式的相关知识求解.例4(1)分形的数学之美,是以简单的基本图形,凝聚扩散,重复累加,以迭代的方式而形成的美丽的图案.自然界中存在着许多令人震撼的天然分形图案,如鹦鹉螺的壳、蕨类植物的叶子、孔雀的羽毛、菠萝等.如图所示,为正方形经过多次自相似迭代形成的分形图形,且相邻的两个正方形的对应边所成的角为15°.若从外往里最大的正方形边长为9,则第5个正方形的边长为()A.814 B.8168C .4 D.463答案C 解析设第n 个正方形的边长为a n ,则由已知可得a n =a n +1sin 15°+a n +1cos 15°,∴a n +1a n =1sin 15°+cos 15°=12sin 60°=63,∴{a n }是以9为首项,63为公比的等比数列,∴a 5=a 1q 4=9=4.(2)(2023·武汉模拟)将1,2,…,n 按照某种顺序排成一列得到数列{a n },对任意1≤i <j ≤n ,如果a i >a j ,那么称数对(a i ,a j )构成数列{a n }的一个逆序对.若n =4,则恰有2个逆序对的数列{a n }的个数为()A .4B .5C .6D .7答案B解析若n=4,则1≤i<j≤4,由1,2,3,4构成的逆序对有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),若数列{a n}的第一个数为4,则至少有3个逆序对;若数列{a n}的第二个数为4,则恰有2个逆序对的数列{a n}为{1,4,2,3};若数列{a n}的第三个数为4,则恰有2个逆序对的数列{a n}为{1,3,4,2}或{2,1,4,3};若数列{a n}的第四个数为4,则恰有2个逆序对的数列{a n}为{2,3,1,4}或{3,1,2,4},综上,恰有2个逆序对的数列{a n}的个数为5.规律方法数列的“新定义问题”,主要是指定义新概念、新公式、新定理、新法则、新运算等,关键是将新数列转化为等差或等比数列,或者找到新数列的递推关系,主要考查的还是数列的基础知识.跟踪演练2(1)如图甲是第七届国际数学家大会(简称ICME-7)的会徽图案,会徽的主题图案是由图乙的一连串直角三角形演化而成的.已知OA1=A1A2=A2A3=A3A4=A4A5=A5A6=A6A7=A7A8=…=2,A1,A2,A3…为直角顶点,设这些直角三角形的周长从小到大组成的数列为{a n},令b n=2a n-2,S n为数列{b n}的前n项和,则S120等于()A.8B.9C.10D.11答案C解析由OA1=A1A2=A2A3=A3A4=A4A5=A5A6=A6A7=A7A8= (2)可得OA2=22,OA3=23,…,OA n=2n,所以a n=OA n+OA n+1+A n A n+1=2n+2n+1+2,所以b n=2a n-2=1n+n+1=n+1-n,所以前n项和S n=b1+b2+…+b n=2-1+3-2+…+n+1-n=n+1-1,所以S120=120+1-1=10.(2)(2023·郑州模拟)“角谷猜想”首先流传于美国,不久便传到欧洲,后来一位名叫角谷静夫的日本人又把它带到亚洲,因而人们就顺势把它叫作“角谷猜想”.“角谷猜想”是指一个正整数,如果是奇数就乘以3再加1,如果是偶数就除以2,这样经过若干次运算,最终回到1.对任意正整数a0,按照上述规则实施第n次运算的结果为a n(n∈N),若a5=1,且a i(i=1,2,3,4)均不为1,则a0等于()A.5或16B.5或32C.5或16或4D.5或32或4答案B解析由题知a n+1+1,a n为奇数,a n为偶数,因为a5=1,则有,若a4为奇数,则a5=3a4+1=1,得a4=0,不合题意,所以a4为偶数,且a4=2a5=2;若a3为奇数,则a4=3a3+1=2,得a3=13,不合题意,所以a3为偶数,且a3=2a4=4;若a2为奇数,则a3=3a2+1=4,得a2=1,不合题意,所以a2为偶数,且a2=2a3=8;若a1为奇数,则a2=3a1+1=8,得a1=73,不合题意,所以a1为偶数,且a1=2a2=16;若a0为奇数,则a1=3a0+1=16,可得a0=5;若a0为偶数,则a0=2a1=32.综上所述,a0=5或a0=32.专题强化练一、单项选择题1.数列{a n}满足2a n+1=a n+a n+2,且a8,a4040是函数f(x)=x2-8x+3的两个零点,则a2024的值为()A.4B.-4C.4040D.-4040答案A解析因为a8,a4040是函数f(x)=x2-8x+3的两个零点,即a8,a4040是方程x2-8x+3=0的两个根,所以a8+a4040=8.又2a n+1=a n+a n+2,所以数列{a n}是等差数列,所以a8+a4040=2a2024=8,所以a2024=4.2.(2023·阜阳模拟)在数列{a n}中,已知a n+1+a n=3·2n,则{a n}的前10项和为() A.1023B.1024C.2046D.2047答案C解析∵a n+1+a n=3·2n,∴a2+a1=3×2,a4+a3=3×23,a6+a5=3×25,a8+a7=3×27,a10+a9=3×29,则{a n}的前10项和为3×(2+23+25+27+29)=3×2-29×41-4=2046.3.已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线的斜率为3n项和为S n,则S2026的值为()A.2023 2024B.2024 2025C.2025 2026D.2026 2027答案D解析由题意得f′(x)=2x+b,∴f′(1)=2+b=3,解得b=1,∴f(n)=n2+n,∴1f(n)=1n2+n=1n(n+1)=1n-1n+1,∴S2026=1-12+12-13+13-14+…+12026-12027=1-12027=20262027.4.(2023·佛山模拟)已知数列{a n}的通项公式为a n=n2+kn+2,若对于n∈N*,数列{a n}为递增数列,则实数k的取值范围为()A.k≥-3B.k≥-2C.k>-3D.k>-2答案C解析因为数列{a n}为递增数列,所以a n+1>a n,即(n+1)2+k(n+1)+2>n2+kn+2,整理得k>-(2n+1),因为当n∈N*时,f(n)=-(2n+1)单调递减,f(n)max=f(1)=-(2×1+1)=-3,所以k>-3.5.(2023·盐城模拟)将正整数n 分解为两个正整数k 1,k 2的积,即n =k 1·k 2,当k 1,k 2两数差的绝对值最小时,我们称其为最优分解.如20=1×20=2×10=4×5,其中4×5即为20的最优分解,当k 1,k 2是n 的最优分解时,定义f (n )=|k 1-k 2|,则数列{f (5n )}的前2023项的和为()A .51012B .51012-1C .52023D .52023-1答案B 解析当n =2k (k ∈N *)时,由于52k =5k ×5k ,此时f (52k )=|5k -5k |=0,当n =2k -1(k ∈N *)时,由于52k -1=5k -1×5k ,此时f (52k -1)=|5k -5k -1|=5k -5k -1,所以数列{f (5n )}的前2023项的和为(5-1)+0+(52-5)+0+(53-52)+0+…+(51011-51010)+0+(51012-51011)=51012-1.6.某软件研发公司对某软件进行升级,主要是软件程序中的某序列A ={a 1,a 2,a 3,…}重新编辑,编辑新序列为A *,a 3a 2,a 4a 3,…n 项为a n +1a n,若序列(A *)*的所有项都是3,且a 5=1,a 6=27,则a 1等于()A.19B.127C.181D.1243答案A 解析令b n =a n +1a n,即A *={b 1,b 2,b 3,…},则(A *)*,b 3b 2,b 4b 3,由已知得b 2b 1=b 3b 2=b 4b 3=…=b n +1b n=3,所以数列{b n }为公比为3的等比数列,设b 1=m ,则a 2a 1=b 1=m ,a 3a 2=b 2=3m ,…,a n +1a n=b n =3n -1·m ,当n ≥2时,累乘可得a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=m ·3m ·32m ·…·3n -2m =m n -131+2+3+…+(n -2),即a n a 1=m n -1(2)(1)23n n --,当n =5时,1a 1=m 436,当n =6时,27a 1=m 5310,解得m =13,a 1=19.二、多项选择题7.(2023·唐山模拟)如图,△ABC 是边长为2的等边三角形,连接各边中点得到△A 1B 1C 1,再连接△A 1B 1C 1的各边中点得到△A 2B 2C 2,…,如此继续下去,设△A n B n C n 的边长为a n ,△A n B n C n 的面积为M n ,则()A .M n =34a 2n B .a 24=a 3a 5C .a 1+a 2+…+a n =2-22-n D .M 1+M 2+…+M n <33答案ABD 解析显然△A n B n C n 是正三角形,因此M n =34a 2n ,故A 正确;由中位线性质易得a n =12a n -1,即{a n }是等比数列,公比为12,因此a 24=a 3a 5,故B 正确;a 1=12AB =1,a 1+a 2+…+a n 1-12=2-21-n ,故C 错误;M 1=34×12=34,{a n }是等比数列,公比为12,则{M n }也是等比数列,公比是14,M 1+M 2+…+M n =34×11-14<33,故D 正确.8.已知函数f (x )=e x -x -1,数列{a n }的前n 项和为S n ,且满足a 1=12,a n +1=f (a n ),则下列有关数列{a n }的叙述不正确的是()A .a 5<|4a 2-3a 1|B .a 7≤a 8C .a 10>1D .S 100>26答案BCD 解析由e x ≥x +1知,a n +1=f (a n )=e n a -a n -1≥0,故{a n }为非负数列,又a n +1-a n =e n a -2a n -1,设g (x )=e x -2x -1,则g ′(x )=e x -2,易知g (x )在[0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,且-12<1-2ln 2=g (x )min <g (0)=0,又0<a 1=12<ln 2,所以0≤a 2<a 1=12,从而-12<a n +1-a n <0,所以{a n }为递减数列,且0≤a n ≤12,故B ,C 错误;又a 2=12e -12-1=12e -32<-32=14,故当n ≥2时,有a n <14,所以S 100=a 1+a 2+a 3+…+a 100<12+14+14+…+14=1014,故D 错误;又a 2<14,a 5<12,而|4a 2-3a 1|=|4a 2-32|>12,故A 正确.三、填空题9.(2023·铜仁质检)为了进一步学习贯彻党的二十大精神,推进科普宣传教育,激发学生的学习热情,营造良好的学习氛围,不断提高学生对科学、法律、健康等知识的了解,某学校组织高一10个班级的学生开展“红色百年路·科普万里行”知识竞赛.统计发现,10个班级的平均成绩恰好成等差数列,最低平均成绩为70,公差为2,则这10个班级的平均成绩的第40百分位数为________.答案77解析记10个班级的平均成绩构成的等差数列为{a n},则a n=70+2(n-1)=2n+68,又10×40%=4,所以这10个班级的平均成绩的第40百分位数为a4+a52=76+782=77.10.在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列称为等和数列,这个常数称为该数列的公和.已知数列{a n}是等和数列,且a1=-2,a2024=8,则这个数列的前2024项的和为________.答案6072解析依题意得a1+a2=a2+a3=a3+a4=a4+a5=…,故a1=a3=a5=…=a2023=-2,a2=a4=a6=…=a2024=8,则S2024=1012×(-2)+1012×8=6072.11.(2023·江苏联考)已知a1,a2,…,a n(n∈N*)是一组平面向量,记S n=a1+a2+…+a n,若a n=(4-n,1),则满足a n⊥S n的n的值为____________.答案5或6解析记b n=4-n的前n项和为T n,则T n=(3+4-n)n2=7n-n22,因为a n=(4-n,1),所以S n=a1+a2+…+a n=(3,1)+(2,1)+…+(4-n,1)又a n⊥S n,所以a n·S n=(4-n)×7n-n22+n=0,整理得n(n-5)(n-6)=0,解得n=0或n=5或n=6,因为n∈N*,所以n=5或n=6.12.在圆x2+y2=5x n条弦的长度成等差数列,最短弦长为数列的首项a1,最长弦长为a n,若公差d ,13,那么n的取值集合为__________.答案{4,5,6}解析由圆的方程为x 2+y 2=5x ,得圆心r =52.∴过点P 即a n =2r =5,过点P CP 垂直的弦为圆的最短弦,即a 1=2r 2-|PC |2=4,由a n =a 1+(n -1)d ,得5=4+(n -1)d ,∴d =1n -1,∵16<d ≤13,∴16<1n -1≤13,∴4≤n <7,n ∈N *,∴n 的取值为4,5,6.∴n 的取值集合为{4,5,6}.四、解答题13.(2023·锦州模拟)已知数列{a n }和{b n }满足a n +b n =2n -1,数列{a n },{b n }的前n 项和分别记作A n ,B n ,且A n -B n =n .(1)求A n 和B n ;(2)设c n =2n b +12A n,求数列{c n }的前n 项和S n .解(1)因为a n +b n =2n -1,所以数列{a n +b n }是首项为1,公差为2的等差数列,所以其前n 项和A n +B n =12(1+2n -1)×n =n 2,又因为A n -B n =n ,所以A n =n (n +1)2,B n =n (n -1)2.(2)当n ≥2时,b n =B n -B n -1=n (n -1)2-(n -1)(n -2)2=n -1.当n =1时,b 1=B 1=0也适合通项公式,故b n =n -1.所以c n =2n b +12A n =2n -1+1n (n +1)=2n -1+1n -1n +1,所以S n =(1+2+22+…+2n -1)-12+12-13+…+1n -=1×(1-2n )1-2+2n -1n +1.14.(2023·湖南省新高考教学教研联盟联考)已知数列{a n }的前n 项和为S n ,且S n =n -a n .(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且2b n =(n -2)(a n -1),若T n ≥λb n 对于n ∈N *恒成立,求λ的取值范围.解(1)∵S n =n -a n ,∴S n -1=(n -1)-a n -1(n ≥2),两式作差得2a n =a n -1+1,∴2(a n -1)=a n -1-1,当n =1时,S 1=1-a 1,∴a 1-1=-12,∴{a n -1}是首项为-12,公比为12的等比数列,故a n =1.(2)∵2b n =(n -2)(a n -1),∴b n =(2-n +1,∴T n =b 1+b 2+…+b n =1+0+(-1)+…+(2-n +1,①12T n =1+0+(-1)+…+(2-n +2,②两式作差得12T n =1+…+1-(2-n +2,化简得T n =n 2n +1,∵T n ≥λb n 恒成立,∴n 2n +1≥λ(2-n )12n +1,n ≥λ(2-n ),当n =1时,λ≤1;当n =2时,λ∈R ;当n ≥3时,λ≥n 2-n =-(n -2)+2n -2=-即λ≥-,∴λ≥-1,综上所述,-1≤λ≤1.。
专题二微专题2数列求和及简单应用-2021届高三数学二轮专题复习课件
微专题2 数列求和及简单应用
对点训练
(2)解:当 n=1 时,4S1-2a1=21 ,解得 a1=1,又 an+1+ an=2n-1,
故当 n 为偶数时有 Sn=(a1+a2)+(a3+a4)+…+(an-1+an)= 20+22+…+2n-2=2011--44n2=2n-3 1.
当 n 为奇数时有 Sn=a1+(a2+a3)+(a4+a5)+…+(an-1+ an)=1+21+23+…+2n-2=1+211-1-4n4-2 1=2n+3 1.
微专题2 数列求和及简单应用
对点训练
因此 an=1(,λ+n=1)1,·2n-2,n≥2. 若数列{an}是等比数列,则 a2=1+λ=2a1=2. 所以 λ=1,经验证得 λ=1 时,数列{an}是等比数列.
微专题2 数列求和及简单应用
对点训练
1.判定等差(比)数列的主要方法:(1)定义法:对于 任意 n≥1,n∈N*,验证 an+1-an或aan+n 1为与正整数 n 无关的一常数;(2)中项公式法.
对点训练
大题考法 2 等差数列、等比数列基本量的运算 已知等差数列{an}的前 n 项和为 Sn,且满足 S4=
24,S7=63. (1)求数列{an}的通项公式; (2)若 bn=2an+(-1)n·an,求数列{bn}的前 n 项和 Tn.
解 : (1) 因 为 {an} 为 等 差 数 列 , 所 以 S4=4a1+4×2 3d=24, S7=7a1+7×2 6d=63,
2.分组求和的策略: (1)根据等差、等比数列分组. (2)根据正号、负号分组.
微专题2 数列求和及简单应用
对点训练
(2020·石家庄二中质检)Sn 为数列{an}的前 n 项和满 足:4Sn-2an=2n(n∈N*).
2021高考数学复习课件:专题二 微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
谢谢观赏
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
专题二ꢀ数 列
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练ห้องสมุดไป่ตู้
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
对点训练
微专题2 数列求和及简单应用
高考数学大二轮复习层级二专题三数列第2讲数列求和及综合应用课件
1,n=1, 答案:an=-nn2+1,n≥2.
(2)各项均不为 0 的数列{an}满足an+1an2+an+2=an+2an(n∈N*), 且 a3=2a8=15,则数列{an}的通项公式为____________.
解析:因为an+1an2+an+2=an+2an,所以 an+1an+an+1an+2=2an+2an. 因为 anan+1an+2≠0,所以an1+2+a1n=an2+1, 所以数列a1n为等差数列.
[解析] (1)由已知,an+1-an=lnn+n 1,a1=2, 所以 an-an-1=lnn-n 1(n≥2), an-1-an-2=lnnn- -12, … a2-a1=ln21,
将以上 n-1 个式子叠加,得 an-a1=lnn-n 1+lnnn--21+…+ln21 =lnn-n 1·nn- -12·…·21 =ln n. 所以 an=2+ln n(n≥2), 经检验 n=1 时也适合.故选 A.
②-①得,2Tn=-3-32-33-…-3n+n×3n+1=-311--33n+ n×3n+1=2n-123n+1+3.
所以 a1c1+a2c2+…+a2nc2n=3n2+6Tn=3n2+3×2n-123n+1+3 =2n-13n+22+6n2+9(n∈N*).
[主干整合] 1.数列通项 (1)数列通项 an 与前 n 项和 Sn 的关系,an=SS1n-Sn-1nn≥=21., (2)应用 an 与 Sn 的关系式 f(an,Sn)=0 时,应特别注意 n=1 时的 情况,防止产生错误.
12Tn=3·12+7·212+…+(4n-9)·21n-2+(4n-5)·21n-1, 所以12Tn=3+4·12+4·212+…+4·21n-2-(4n-5)·21n-1, 因此 Tn=14-(4n+3)·21n-2,n≥2, 又 b1=1,所以 bn=15-(4n+3)·12n-2.
2021届高考二轮数学人教版课件:第2部分 专题2 第2讲 数列求和及其综合应用(文理)
第二部分 专题二 数列(文理)
高考二轮总复习 • 数学
返回导航
年份 卷别 Ⅰ卷
2018 Ⅱ卷 Ⅲ卷
题号 17 17 17
考查角度
分值
数列的递推公式以及等差数列通项公 12
式求和
等差数列前n项和与通项公式及最值问
题
12
数列的递推公式及通项公式、裂项相 10
消法求和
第二部分 专题二 数列(文理)
返回导航
02 考点分类 • 析重点
高考二轮总复习 • 数学
考点一 数列的通项公式
返回导航
1.数列通项an与前n项和Sn的关系, an=SS1n, -nS= n-11,,n≥2. 2.应用an与Sn的关系式f(an,Sn)=0时,应特别注意n=1时的情况, 防止产生错误.
第二部分 专题二 数列(文理)
高考二轮总复习 • 数学
(2)由(1)得到Sn=1+2+…2n-1=2n-1, 所以n·Sn=n(2n-1)=n·2n-n, Tn=1×2+2×22+3×23+…+n·2n-(1+2+…+n), 设t=1×2+2×22+3×23+…+n·2n, 2t=1×22+2×23+3×24+…+n·2n+1, 两式相减可得,-t=2+22+23+…+2n-n·2n+1=211--22n-n·2n+1 故t=(n-1)·2n+1+2,所以Tn=(n-1)·2n+1+2-1+2nn.
高考二轮总复习 • 数学
返回导航
(2)由(1)知an=21n,∴Sn=12×11--1212n=1-12n. ∵bn=8n,∴Tn=4n2+4n, ∴T1n=4n2+1 4n=141n-n+1 1, ∴T11+T12+…+T1n=141-12+21-31+…+1n-n+1 1=141-n+1 1<14,
专题2 数列求和及其综合应用-2021届高三高考数学二轮复习PPT全文课件
【解析】 (1)设等差数列{an}的公差为d, ∵a9=12a12+6,a2=4,∴12=a1+5d,又a1+d=4, 解得a1=d=2,∴Sn=2n+nn- 2 1×2=n(n+1). ∴S1n=nn1+1=1n-n+1 1. 则数列S1n的前10项和=1-12+12-13+…+110-111=1-111=1110.
分值 17 12 10
专题2 数列求和及其综合应用-2021届高三高 考数学 二轮复 习PPT 全文课 件
年份 卷别 Ⅰ卷
2018 Ⅱ卷 Ⅲ卷
题号 17 17 17
考查角度
分值
数列的递推公式以及等差数列通项公 12
式求和
等差数列前n项和与通项公式及最值问
题
12
数列的递推公式及通项公式、裂项相 10
● 应用错位相减法求和的关注点
●
( 1 ) 错 位 相 减 法 适 用 于 求 数 列 { a n ·b n } 的 前 n 项 和 , 其 中 { a n } 为 等 差 数 列 , { b n } 为 等 比 数 列 .
●
(2)在写“Sn”与“qSn”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确地写出
【解析】 (1)由题意,设an=a1qn-1(q>0),
则a1=12
,
21-a1q2=2a1+3a1q
解得q=12或q=-2(舍),
∴an=12×12n-1=12n,即an=21n.
(2)由(1)知an=21n,∴Sn=12×11--1212n=1-12n. ∵bn=8n,∴Tn=4n2+4n, ∴T1n=4n2+1 4n=141n-n+1 1, ∴T11+T12+…+T1n=141-12+21-31+…+1n-n+1 1=141-n+1 1<14,
2021高考数学二轮复习专题练三核心热点突破专题二数列第2讲数列求和及综合问题含解析
高考数学二轮复习专题练:第2讲数列求和及综合问题高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透.真题感悟1.(2020·全国Ⅰ卷)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=________. 解析法一因为a n+2+(-1)n a n=3n-1,所以当n为偶数时,a n+2+a n=3n-1,所以a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41,所以a2+a4+a6+a8+a10+a12+a14+a16=92.因为数列{a n}的前16项和为540,所以a1+a3+a5+a7+a9+a11+a13+a15=540-92=448.①因为当n为奇数时,a n+2-a n=3n-1,所以a3-a1=2,a7-a5=14,a11-a9=26,a15-a13=38,所以(a3+a7+a11+a15)-(a1+a5+a9+a13)=80.②由①②得a1+a5+a9+a13=184.又a3=a1+2,a5=a3+8=a1+10,a7=a5+14=a1+24,a9=a7+20=a1+44,a11=a9+26=a1+70,a13=a11+32=a1+102,所以a1+a1+10+a1+44+a1+102=184,所以a1=7.法二 同法一得a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448. 当n 为奇数时,有a n +2-a n =3n -1,由累加法得a n +2-a 1=3(1+3+5+…+n )-n +12=32(1+n )·n +12-n +12=34n 2+n +14, 所以a n +2=34n 2+n +14+a 1.所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=a 1+⎝⎛⎭⎫34×12+1+14+a 1+⎝⎛⎭⎫34×32+3+14+a 1+⎝⎛⎭⎫34×52+5+14+a 1+ ⎝⎛⎭⎫34×72+7+14+a 1+⎝⎛⎭⎫34×92+9+14+a 1+⎝⎛⎭⎫34×112+11+14+a 1+ ⎝⎛⎭⎫34×132+13+14+a 1=8a 1+392=448,解得a 1=7. 答案 72.(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 法一 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1),所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列, 所以a n =-2n -1.所以S 6=-1×(1-26)1-2=-63.法二 由S n =2a n +1,得S 1=2S 1+1,所以S 1=-1,当n ≥2时,由S n =2a n +1得S n =2(S n -S n -1)+1,即S n =2S n -1-1,∴S n -1=2(S n -1-1),又S 1-1=-2,∴{S n -1}是首项为-2,公比为2的等比数列,所以S n -1=-2×2n -1=-2n ,所以S n =1-2n ,∴S 6=1-26=-63. 答案 -633.(2020·新高考山东卷)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100.解 (1)设{}a n 的公比为q (q >1). 由题设得a 1q +a 1q 3=20,a 1q 2=8. 解得q =12(舍去),q =2.由题设得a 1=2.所以{}a n 的通项公式为a n =2n .(2)由题设及(1)知b 1=0,且当2n ≤m <2n+1时,b m =n .所以S 100=b 1+(b 2+b 3)+(b 4+b 5+b 6+b 7)+…+(b 32+b 33+…+b 63)+(b 64+b 65+…+b 100)=0+1×2+2×22+3×23+4×24+5×25+6×(100-63)=480.4.(2020·全国Ⅰ卷)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.解 (1)设{a n }的公比为q ,由题设得2a 1=a 2+a 3, 即2a 1=a 1q +a 1q 2.所以q 2+q -2=0,解得q =1(舍去)或q =-2. 故{a n }的公比为-2.(2)记S n 为{na n }的前n 项和.由(1)及题设可得a n =(-2)n -1,所以S n =1+2×(-2)+…+n ·(-2)n -1, -2S n =-2+2×(-2)2+…+(n -1)·(-2)n -1+n ·(-2)n . 所以3S n =1+(-2)+(-2)2+…+(-2)n -1-n ·(-2)n =1-(-2)n 3-n ·(-2)n .所以S n =19-(3n +1)(-2)n9.考 点 整 合1.常用公式:12+22+32+42+…+n 2=n (n +1)(2n +1)6.2.(1)数列通项a n 与前n 项和S n 的关系为a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).(2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 3.数列求和(1)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并.(2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 4.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查不等关系或恒成立问题.热点一 a n 与S n 的关系问题【例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1.(1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值. 解 (1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14,所以数列{a n }是公比、首项均为-14的等比数列.所以数列{a n }的通项公式a n =⎝⎛⎭⎫-14n. (2)由(1)知b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2,c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.探究提高 1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.由S n 求a n 时,一定注意分n =1和n ≥2两种情况,最后验证两者是否能合为一个式子,若不能,则用分段形式来表示.【训练1】 (2020·合肥检测)已知正项数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1.(1)求数列{a n }的通项公式;(2)设b n =(1-a n )2-a (1-a n ),若{b n }是递增数列,求实数a 的取值范围. 解 (1)a 2n =S n +S n -1(n ≥2), a 2n -1=S n -1+S n -2(n ≥3).相减可得a 2n -a 2n -1=a n +a n -1,∵a n >0,a n -1>0,∴a n -a n -1=1(n ≥3). 当n =2时,a 22=a 1+a 2+a 1, ∴a 22=2+a 2,a 2>0,∴a 2=2. 因此n =2时,a n -a n -1=1成立. ∴数列{a n }是等差数列,公差为1. ∴a n =1+n -1=n .(2)b n =(1-a n )2-a (1-a n )=(n -1)2+a (n -1), ∵{b n }是递增数列,∴b n +1-b n =n 2+an -(n -1)2-a (n -1) =2n +a -1>0,即a >1-2n 恒成立,∴a >-1.∴实数a 的取值范围是(-1,+∞). 热点二 数列求和 方法1 分组转化求和【例2】 (2020·山东五地联考)已知等差数列{a n }的前n 项和为S n ,且满足关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2). (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =a 2n +2a n -1,求数列{b n }的前n 项和T n . 解 (1)设等差数列{a n }的公差为d ,因为关于x 的不等式a 1x 2-S 2x +2<0的解集为(1,2), 所以S 2a 1=1+2=3,得a 1=d ,又易知2a 1=2,所以a 1=1,d =1.所以数列{a n }的通项公式为a n =n . (2)由(1)可得,a 2n =2n ,2a n =2n .因为b n =a 2n +2a n -1,所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n ) =n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.探究提高 1.求解本题要过四关:(1)“转化”关,把不等式的解转化为方程根的问题;(2)“方程”关,利用方程思想求出基本量a 1及d ;(3)“分组求和”关,观察数列的通项公式,把数列分成几个可直接求和的数列;(4)“公式”关,会利用等差、等比数列的前n 项和公式求和. 2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组.本题易忽视数列通项的下标如错得a 2n =n ,应注意“=”左右两边保持一致.【训练2】 (2020·潍坊调研)设等差数列{a n }的前n 项和为S n ,且a 2=8,S 4=40.数列{b n }的前n 项和为T n ,且T n -2b n +3=0,n ∈N *. (1)求数列{a n },{b n }的通项公式;(2)设c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前n 项和P n .解 (1)设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧a 1+d =8,4a 1+6d =40,解得⎩⎪⎨⎪⎧a 1=4,d =4, 所以a n =4n , 因为T n -2b n +3=0,所以当n =1时,b 1=3,当n ≥2时,T n -1-2b n -1+3=0, 两式相减,得b n =2b n -1(n ≥2),则数列{b n }为首项为3,公比为2的等比数列, 所以b n =3·2n -1.(2)c n =⎩⎪⎨⎪⎧4n ,n 为奇数,3·2n -1,n 为偶数,当n 为偶数时,P n =(a 1+a 3+…+a n -1)+(b 2+b 4+…+b n ) =(4+4n -4)·n 22+6(1-4n 2)1-4=2n +1+n 2-2.当n 为奇数时,法一 n -1(n ≥3)为偶数,P n =P n -1+c n =2(n -1)+1+(n -1)2-2+4n =2n +n 2+2n -1,n =1时符合上式.法二 P n =(a 1+a 3+…+a n -2+a n )+(b 2+b 4+…+b n -1) =(4+4n )·n +122+6(1-4n -12)1-4=2n +n 2+2n -1.所以P n =⎩⎪⎨⎪⎧2n +1+n 2-2,n 为偶数,2n +n 2+2n -1,n 为奇数.方法2 裂项相消求和【例3】 (2020·江南六校调研)设数列{a n }的前n 项和为S n ,已知S 1=2,a n +1=S n +2. (1)证明:{a n }为等比数列;(2)记b n =log 2a n ,数列⎩⎨⎧⎭⎬⎫λb n b n +1的前n 项和为T n ,若T n ≥10恒成立,求λ的取值范围.(1)证明 由已知,得a 1=S 1=2,a 2=S 1+2=4, 当n ≥2时,a n =S n -1+2,所以a n +1-a n =(S n +2)-(S n -1+2)=a n ,所以a n +1=2a n (n ≥2).又a 2=2a 1,所以a n +1a n=2(n ∈N *),所以{a n }是首项为2,公比为2的等比数列. (2)解 由(1)可得a n =2n ,所以b n =n . 则λb n b n +1=λn (n +1)=λ⎝⎛⎭⎫1n -1n +1,T n =λ⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=λ⎝⎛⎭⎫1-1n +1,因为T n ≥10,所以λn n +1≥10,从而λ≥10(n +1)n ,因为10(n +1)n =10⎝⎛⎭⎫1+1n ≤20, 所以λ的取值范围为[20,+∞).探究提高 1.裂项相消求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 【训练3】 设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1,又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n ,由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1,则S n =⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =1-12n +1=2n2n +1.方法3 错位相减法求和【例4】 (2020·济南统测)在①a 3=5,a 2+a 5=6b 2,②b 2=2,a 3+a 4=3b 3,③S 3=9,a 4+a 5=8b 2这三个条件中任选一个,补充至横线上,并解答问题.已知等差数列{a n }的公差为d (d >1),前n 项和为S n ,等比数列{b n }的公比为q ,且a 1=b 1,d =q ,________.(1)求数列{a n },{b n }的通项公式; (2)记c n =a nb n,求数列{c n }的前n 项和T n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 选条件①.(1)∵a 3=5,a 2+a 5=6b 2,a 1=b 1,d =q ,d >1,∴⎩⎪⎨⎪⎧a 1+2d =5,2a 1+5d =6a 1d ,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎨⎧a 1=256,d =512(舍去).∴⎩⎪⎨⎪⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a n b n ,∴c n =2n -12n -1=(2n -1)×⎝⎛⎭⎫12n -1.∴T n =1+3×12+5×⎝⎛⎭⎫122+…+(2n -3)×⎝⎛⎭⎫12n -2+(2n -1)×⎝⎛⎭⎫12n -1,12T n =12+3×⎝⎛⎭⎫122+5×⎝⎛⎭⎫123+…+(2n -3)×⎝⎛⎭⎫12n -1+(2n -1)×⎝⎛⎭⎫12n.上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -1-(2n -1)×⎝⎛⎭⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n -11-12-(2n -1)×⎝⎛⎭⎫12n=3-(2n +3)×⎝⎛⎭⎫12n. ∴T n =6-(2n +3)×⎝⎛⎭⎫12n -1.选条件②.(1)∵b 2=2,a 3+a 4=3b 3,a 1=b 1,d =q ,d >1,∴⎩⎪⎨⎪⎧a 1d =2,2a 1+5d =3a 1d 2,即⎩⎪⎨⎪⎧a 1d =2,2a 1+5d =6d ,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=-1,d =-2(舍去).∴⎩⎪⎨⎪⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a nb n ,∴c n =2n -12n -1=(2n -1)×⎝⎛⎭⎫12n -1.∴T n =1+3×12+5×⎝⎛⎭⎫122+…+(2n -3)×⎝⎛⎭⎫12n -2+(2n -1)×⎝⎛⎭⎫12n -1,12T n =12+3×⎝⎛⎭⎫122+5×⎝⎛⎭⎫123+…+(2n -3)×⎝⎛⎭⎫12n -1+(2n -1)×⎝⎛⎭⎫12n.上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -1-(2n -1)×⎝⎛⎭⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n -11-12-(2n -1)×⎝⎛⎭⎫12n=3-(2n +3)×⎝⎛⎭⎫12n. ∴T n =6-(2n +3)×⎝⎛⎭⎫12n -1.选条件③.(1)∵S 3=9,a 4+a 5=8b 2,a 1=b 1,d =q ,d >1,∴⎩⎪⎨⎪⎧a 1+d =3,2a 1+7d =8a 1d , 解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎨⎧a 1=218,d =38(舍去),∴⎩⎪⎨⎪⎧b 1=1,q =2.∴a n =a 1+(n -1)d =2n -1,b n =b 1q n -1=2n -1. (2)∵c n =a nb n ,∴c n =2n -12n -1=(2n -1)×⎝⎛⎭⎫12n -1.∴T n =1+3×12+5×⎝⎛⎭⎫122+…+(2n -3)×⎝⎛⎭⎫12n -2+(2n -1)×⎝⎛⎭⎫12n -1,12T n =12+3×⎝⎛⎭⎫122+5×⎝⎛⎭⎫123+…+(2n -3)×⎝⎛⎭⎫12n -1+(2n -1)×⎝⎛⎭⎫12n.上面两式相减,得12T n =1+2⎣⎢⎡⎦⎥⎤12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -1-(2n -1)×⎝⎛⎭⎫12n=1+2×12⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n -11-12-(2n -1)×⎝⎛⎭⎫12n =3-(2n +3)×⎝⎛⎭⎫12n. ∴T n =6-(2n +3)×⎝⎛⎭⎫12n -1.探究提高 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解. 2.在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“S n -qS n ”的表达式.【训练4】 (2020·潍坊模拟)在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中,a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .(注:如果选择多个条件分别解答,按第一个解答计分) 解 因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列, 所以a n =3n -1.选①②时,设数列{b n }的公差为d 1. 因为a 2=3,所以b 1+b 2=3(ⅰ).因为b 2n =2b n +1,所以当n =1时,b 2=2b 1+1(ⅱ). 由(ⅰ)(ⅱ)解得b 1=23,b 2=73,所以d 1=53,所以b n =5n -33.所以b n a n =5n -33n .所以S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,所以13S n =232+733+1234+…+5n -83n +5n -33n +1.上面两式相减,得23S n =23+5⎝⎛⎭⎫132+133+…+13n -5n -33n +1 =23+56-152×3n +1-5n -33n +1=32-10n +92×3n +1. 所以S n =94-10n +94×3n.选②③时,设数列{b n }的公差为d 2.因为a 2=3,所以b 1+b 2=3,即2b 1+d 2=3.因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 2)2=b 1(b 1+3d 2),化简得d 22=b 1d 2.因为d 2≠0,所以b 1=d 2,从而d 2=b 1=1,所以b n =n . 所以b n a n =n 3n -1.所以S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,所以13S n =131+232+333+…+n -13n -1+n 3n .上面两式相减,得23S n =1+131+132+133+…+13n -1-n 3n =32⎝⎛⎭⎫1-13n -n 3n =32-2n +32×3n . 所以S n =94-2n +34×3n -1.选①③时,设数列{b n }的公差为d 3.因为b 2n =2b n +1,所以b 2=2b 1+1,所以d 3=b 1+1.又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d 3)2=b 1(b 1+3d 3),化简得d 23=b 1d 3.因为d 3≠0,所以b 1=d 3,无解,所以等差数列{b n }不存在.故不合题意. 热点三 与数列相关的综合问题【例5】 (2020·杭州滨江区调研)设f (x )=12x 2+2x ,f ′(x )是y =f (x )的导函数,若数列{a n }满足a n+1=f ′(a n ),且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)由f (x )=12x 2+2x ,得f ′(x )=x +2.∵a n +1=f ′(a n ),且a 1=1. ∴a n +1=a n +2,则a n +1-a n =2,因此数列{a n }是公差为2,首项为1的等差数列. ∴a n =1+2(n -1)=2n -1.(2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2,等比数列{b n }中,设公比为q ,∵b 1=a 1=1,b 2=a 2=3, ∴q =3.∴b n =3n -1,∴数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 可化为3n -12≤n 2.又n ∈N *,∴n =1,或n =2.故适合条件T n ≤S n 的所有n 的值为1和2.探究提高 1.求解数列与函数交汇问题要注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别注意; (2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【训练5】 已知数列{a n }与{b n }满足:a 1+a 2+a 3+…+a n =2b n (n ∈N *),若{a n }是各项为正数的等比数列,且a 1=2,b 3=b 2+4. (1)求数列{a n }与{b n }的通项公式;(2)若数列{c n }满足c n =a n b n b n +1(n ∈N *),T n 为数列{c n }的前n 项和,证明:T n <1.(1)解 由题意知,a 1+a 2+a 3+…+a n =2b n ,① 当n ≥2时,a 1+a 2+a 3+…+a n -1=2b n -1,② ①-②可得a n =2(b n -b n -1) ⇒a 3=2(b 3-b 2)=2×4=8,∵a 1=2,a n >0,设{a n }的公比为q , ∴a 1q 2=8⇒q =2,∴a n =2×2n -1=2n (n ∈N *). ∴2b n=21+22+23+…+2n =2(1-2n )1-2=2n +1-2,∴b n =2n -1(n ∈N *).(2)证明 由已知c n =a n b n ·b n +1=2n(2n -1)(2n +1-1) =12n-1-12n +1-1, ∴T n =c 1+c 2+…+c n =121-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1,当n ∈N *时,2n +1>1, ∴12n +1-1>0,∴1-12n +1-1<1,故T n <1.A 级 巩固提升一、选择题1.已知T n 为数列⎩⎨⎧⎭⎬⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A.1 026B.1 025C.1 024D.1 023解析 因为2n +12n =1+12n ,所以T n =n +1-12n ,则T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013,所以整数m 的最小值为1 024. 答案 C2.(2020·河北“五个一”名校联盟诊断)在等差数列{a n }中,a 3+a 5=a 4+7,a 10=19,则数列{a n cos n π}的前2 020项的和为( ) A.1 009B.1 010C.2 019D.2 020解析 设{a n }的公差为d ,则有⎩⎪⎨⎪⎧2a 1+6d =a 1+3d +7,a 1+9d =19,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1,设b n =a n cos n π,则b 1+b 2=a 1cos π+a 2cos 2π=2,b 3+b 4=a 3cos 3π+a 4cos 4π=2,…,∴数列{a n cos n π}的前2 020项的和S 2 020=(b 1+b 2)+(b 3+b 4)+…+(b 2 019+b 2 020)=2×1 010=2 020. 答案 D3.数列{a n }满足a 1=1,对任意n ∈N *,都有a n +1=1+a n +n ,则1a 1+1a 2+…+1a 99=( )A.9998B.2C.9950D.99100解析 对任意n ∈N *,都有a n +1=1+a n +n ,则a n +1-a n =n +1,则a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+1=n (n +1)2, 则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以1a 1+1a 2+…+1a 99=2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫199-1100]=2×⎝⎛⎭⎫1-1100=9950. 答案 C4.(多选题)(2020·青岛质检)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=S n +2a n +1,数列⎩⎨⎧⎭⎬⎫2n a n a n +1的前n 项和为T n ,n ∈N *,则下列选项正确的为( ) A.数列{a n +1}是等差数列 B.数列{a n +1}是等比数列 C.数列{a n }的通项公式为a n =2n -1 D.T n <1解析 由S n +1=S n +2a n +1,得a n +1=S n +1-S n =2a n +1,可化为a n +1+1=2(a n +1).由a 1=1,得a 1+1=2,则数列{a n +1}是首项为2,公比为2的等比数列.则a n +1=2n ,即a n =2n -1.由2n a n a n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,得T n=1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1<1.所以A 错误,B ,C ,D 正确.故选BCD. 答案 BCD5.(多选题)(2020·烟台模拟)已知数列{a n }满足a n +1+a n =n ·(-1)n (n +1)2,其前n 项和为S n ,且m +S 2 019=-1 009,则下列说法正确的是( ) A.m 为定值B.m +a 1为定值C.S 2 019-a 1为定值D.ma 1有最大值解析 当n =2k (k ∈N *)时,由已知条件得a 2k +a 2k +1=2k ·(-1)k (2k +1),所以S 2 019=a 1+a 2+a 3+…+a 2 019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 018+a 2 019)=a 1-2+4-6+8-10+…-2 018=a 1+1 008-2 018=a 1-1 010,所以S 2 019-a 1=-1 010.m +S 2 019=m +a 1-1 010=-1 009,所以m +a 1=1,所以ma 1≤⎝ ⎛⎭⎪⎫m +a 122=14,当且仅当m =a 1=12时等号成立,此时ma 1取得最大值14.故选BCD. 答案 BCD 二、填空题6.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =________.解析 因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案 2n +1-27.已知数列{a n }的前n 项和为S n ,且2S n =3a n +1,则a 1=________,a n =________. 解析 令n =1,则2S 1=3a 1+1,又S 1=a 1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=12(3a n -3a n -1),整理得a n =3a n -1,即a na n -1=3(n ≥2).因此,{a n }是首项为-1,公比为3的等比数列. 故a n =-3n -1. 答案 -1 -3n -18.(2020·福州调研)已知数列{na n }的前n 项和为S n ,且a n =2n ,则使得S n -na n +1+50<0的最小正整数n 的值为________.解析 S n =1×21+2×22+…+n ×2n ,则2S n =1×22+2×23+…+n ×2n +1,两式相减得 -S n =2+22+ (2)-n ·2n +1=2(1-2n )1-2-n ·2n +1,故S n =2+(n -1)·2n +1. 又a n =2n ,∴S n -na n +1+50=2+(n -1)·2n +1-n ·2n +1+50 =52-2n +1,依题意52-2n +1<0,故最小正整数n 的值为5. 答案 5 三、解答题9.(2020·合肥调研)记S n 为等差数列{a n }的前n 项和,且a 10=4,S 15=30. (1)求数列{a n }的通项公式以及前n 项和S n ;(2)记数列{2a n +4+a n }的前n 项和为T n ,求满足T n >0的最小正整数n 的值. 解 (1)记数列{a n }的公差为d ,S 15=30⇒15a 8=30⇒a 8=2,故d =a 10-a 810-8=1,故a n =a 10+(n -10)d =4+n -10=n -6,S n =na 1+n (n -1)d 2=-5n +n (n -1)2=n 22-11n2.(2)依题意,2a n +4+a n =n -6+2n -2 T n =(-5-4+…+n -6)+(2-1+20+…+2n -2)=n (n -11)2+2n -12, 当n =1时,T 1=-1×10+21-12<0;当n =2时,T 2=-2×9+22-12<0;当n =3时,T 3=-3×8+23-12<0;当n =4时,T 4=-4×7+24-12<0;当n ≥5时,n (n -11)2≥-15,2n -12≥312,所以T n >0.故满足T n >0的最小正整数n 的值为5.10.(2020·临沂模拟)甲、乙两同学在复习数列时发现曾经做过的一道有关数列的题目因纸张被破坏,导致一个条件看不清,具体如下:等比数列{a n }的前n 项和为S n ,已知________. (1)判断S 1,S 2,S 3的关系;(2)若a 1-a 3=3,设b n =n 12|a n |,记{b n }的前n 项和为T n ,求证:T n <43.甲同学记得缺少的条件是首项a 1的值,乙同学记得缺少的条件是公比q 的值,并且他俩都记得第(1)问的答案是S 1,S 3,S 2成等差数列.如果甲、乙两同学记得的答案是正确的,请你通过推理把条件补充完整并解答此题. (1)解 由S 1,S 3,S 2成等差数列,得 2S 3=S 1+S 2,即2(a 1+a 1q +a 1q 2)=2a 1+a 1q , 解得q =-12或q =0(舍去).若乙同学记得的缺少的条件是正确的,则公比q =-12.所以S 1=a 1,S 2=a 1+a 2=a 1-12a 1=12a 1,S 3=a 1+a 2+a 3=a 1-12a 1+14a 1=34a 1,可得S 1+S 2=2S 3,即S 1,S 3,S 2成等差数列.(2)证明 由a 1-a 3=3,可得a 1-14a 1=3,解得a 1=4,所以a n =4×⎝⎛⎭⎫-12n -1.所以b n =n 12|a n |=n 12⎪⎪⎪⎪⎪⎪4×⎝⎛⎭⎫-12n -1=23n ·⎝⎛⎭⎫12n. 所以T n =23⎝⎛⎭⎫1×12+2×14+3×18+…+n ×12n , 12T n =23⎝⎛⎭⎫1×14+2×18+3×116+…+n ×12n +1, 两式相减,得12T n =23⎝⎛⎭⎫12+14+18+116+…+12n -n ·12n +1 =23⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎫1-12n 1-12-n ·12n +1, 化简可得T n =43⎝ ⎛⎭⎪⎫1-n +22n +1.由1-n +22n +1<1,得T n <43.B 级 能力突破11.设数列{a n }的各项均为正数,前n 项和为S n ,对于任意的n ∈N *,a n ,S n ,a 2n成等差数列,设数列{b n }的前n 项和为T n ,且b n =(ln x )na 2n ,若对任意的实数x ∈(1,e](e 为自然对数的底数)和任意正整数n ,总有T n <r (r ∈N *),则r 的最小值为________.解析 由题意得,2S n =a n +a 2n, 当n ≥2时,2S n -1=a n -1+a 2n -1,∴2S n -2S n -1=a n +a 2n -a n -1-a 2n -1,∴(a n +a n -1)(a n -a n -1-1)=0,∵a n >0,∴a n -a n -1=1,即数列{a n }是公差为1的等差数列,又2a 1=2S 1=a 1+a 21,a 1=1,∴a n =n (n ∈N *).又x ∈(1,e],∴0<ln x ≤1,∴T n ≤1+122+132+…+1n 2<1+11×2+12×3+…+1(n -1)n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =2-1n <2,∴r ≥2,即r 的最小值为2. 答案 212.(2020·衡水中学检测)等差数列{a n }的公差为2,a 2,a 4,a 8分别等于等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }和{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+…+c na n =b n +1,求数列{c n }的前2 020项的和.解 (1)依题意得b 23=b 2b 4, 所以(a 1+6)2=(a 1+2)(a 1+14),所以a 21+12a 1+36=a 21+16a 1+28,解得a 1=2.∴a n =2n .设等比数列{b n }的公比为q ,所以q =b 3b 2=a 4a 2=84=2,又b 2=a 2=4,∴b n =4×2n -2=2n .(2)由(1)知,a n =2n ,b n =2n . 因为c 1a 1+c 2a 2+…+c n -1a n -1+c n a n =2n +1①当n ≥2时,c 1a 1+c 2a 2+…+c n -1a n -1=2n ②由①-②得,c n a n =2n ,即c n =n ·2n +1,又当n =1时,c 1=a 1b 2=23不满足上式,∴c n =⎩⎪⎨⎪⎧8,n =1,n ·2n +1,n ≥2.故S 2 020=8+2×23+3×24+…+2 020×22 021 =4+1×22+2×23+3×24+…+2 020×22 021设T 2 020=1×22+2×23+3×24+…+2 019×22 020+2 020×22 021③, 则2T 2 020=1×23+2×24+3×25+…+2 019×22 021+2 020×22 022④, 由③-④得:-T 2 020=22+23+24+…+22 021-2 020×22 022 =22(1-22 020)1-2-2 020×22 022=-4-2 019×22 022,所以T 2 020=2 019×22 022+4, 所以S 2 020=T 2 020+4=2 019×22 022+8.。
高三数学文二轮复习 3.2数列求和与数列的综合应用 课件
2.数列求和的方法技巧 (1)转化法 有些数列,既不是等差数列,也不是等比数列,若将数 列通项拆开或变形,可转化为几个等差、等比数列或常见的 数列,即先分别求和,然后再合并.
由 y=0,得 xk=xk-1-1(2≤k≤n).
(2)由 x1=0,xk-xk-1=-1,得 xk=-(k-1), 所以|PkQk|=exk=e-(k-1),于是 Sn=|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn| =1+e-1+e-2+…+e-(n-1)=11- -ee- -n1=e-e-e11-n.
热点之四 数列与解析几何的综合问题 数列与解析几何的综合应用,展示了知识的交汇性、方 法的灵活性.数列是一种特殊的函数,解题时应充分利用这 一特征,同时要注意数形结合思想的应用.
【例 4】 (2011·陕西高考) 如图,从点 P1(0,0)作 x 轴的垂线交曲线 y=ex 于点 Q1(0,1),曲线在 Q1 点处的切线与 x 轴交于点 P2,再从 P2 作 x 轴的垂线交曲线于 Q2,依次重复上述过程得到一系列点: P1,Q1;P2,Q2;…;Pn,Qn,记 Pk 点的坐标为(xk,0)(k=1,2,…, n).
(2)数列应用题一般是等比、等差数列问题,其中,等比 数列涉及的范围比较广,如经济上涉及利润、成本、效益的 增减,解决该类题的关键是建立一个数列模型{an},利用该 数列的通项公式、递推公式或前 n 项和公式.
1.若数列{an}的通项公式为 an=2n+2n-1,则数列{an}
高三数学(理)二轮专题复习文档:专题二数列第2讲数列求和及综合应用(1)
高三数学(理)二轮专题复习文档:专题二数列第2讲数列求和及综合应用(1)高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透.真 题 感 悟1.(2017·全国Ⅲ卷)设数列{an}满足a1+3a2+…+(2n -1)an =2n.(1)求{an}的通项公式;(2)求数列的前n 项和.解 (1)因为a1+3a2+…+(2n -1)an =2n ,①故当n≥2时,a1+3a2+…+(2n -3)an -1=2(n -1),② ①-②得(2n -1)an =2,所以an =,又n =1时,a1=2适合上式,从而{an}的通项公式为an =.(2)记的前n 项和为Sn ,由(1)知==-,则Sn =++…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-=.2.(2017·山东卷)已知{an}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{an}的通项公式;(2){bn}为各项非零的等差数列,其前n 项和为Sn ,已知S2n +1=bnbn +1,求数列的前n 项和Tn.解 (1)设{an}的公比为q ,由题意知q =a1q2,))又an>0,解得所以an =2n.(2)由题意知:S2n +1==(2n +1)bn +1,又S2n +1=bnbn +1,bn +1≠0,所以bn =2n +1.令cn =,则cn =,因此Tn =c1+c2+…+cn=+++…++,又Tn =+++…++,两式相减得Tn =+-,所以Tn =5-.考 点 整 合1.(1)数列通项an 与前n 项和Sn 的关系,an =⎩⎪⎨⎪⎧S1 (n =1),Sn -Sn -1 (n≥2). (2)应用an 与Sn 的关系式f(an ,Sn)=0时,应特别注意n =1时的。
新教材高考数学二轮专题复习第一部分专题攻略专题三数列第二讲数列求和及综合应用课件
微专题1
微专题2
微专题3
【命题规律】
数列大题一般为两问:第一问通常求数列通项公式,有时涉及用定 义证明等差或等比数列;第二问一般与和有关,通常是求前n项和或 特定项的和,有时也涉及不等式证明或逆求参数等.
微专题1
2.[2022·湖北武汉模拟]已知数列{an}中,a1=3且an+1=2an-n+ 1(n∈N*).
(1)求数列{an}的通项公式; (2)若bn=(2n+1)an,求数列{bn}的前n项和Tn.
第一列 第二列 第三列
第一行 3
5
6
第二行 7
4
8
第三行 11
12
9
微专题3
保分题
1.[2022·山东日照二模]已知等差数列{an}的公差为正数,a2与a8的等 差中项为8,且a3a7=28.
(1)求证:数列{an-n}为等比数列; (2)求数列{an}的前n项一模]已知数列{an}为等比数列,其前n项和为Sn,且 an+1-an=2·3n. (1)求数列{an}的公比q和a4的值; (2)求证:-a1,Sn,an+1成等差数列.
微专题2
2.[2022·福建龙岩一模]已知数列{an}是等比数列,公比q>0,且a3 是2a1,3a2的等差中项,a5=32.
技法领悟 通过题目表达确立关键信息或关系,找准新数列与原数列的关系, 是解题的关键.
(1)求{an}的通项公式; (2)从{an}中依次取出第3项,第6项,第9项,…,第3n项,按照原来 的顺序组成一个新数列{bn},判断938是不是数列{bn}中的项?并说明 理由.
2.已知等比数列{an}的前n项和为Sn,且a3=4,S3=3a1. (1)求{an}的通项公式; (2)若{an}的前3项按某种顺序重新排列后是递增等差数列{bn}的第八、 九、十项,求{bn}的前n项和Tn的最小值.
2024版高考数学二轮总复习第1篇核心专题提升多维突破专题2数列第2讲数列求和及其综合应用课件
真题研究·悟高考
1. (2023·全国新高考Ⅰ卷)设等差数列{an}的公差为 d,且 d>1.令 bn =n2a+n n,记 Sn,Tn 分别为数列{an},{bn}的前 n 项和.
(1)若3a2=3a1+a3,S3+T3=21,求{an}的通项公式; (2)若{bn}为等差数列,且S99-T99=99,求d.
考点突破·提能力
核心考点1 求数列的通项公式
核 心 知 识·精 归 纳
求数列通项公式的方法 (1)Sn 与 an 的关系:若数列{an}的前 n 项和为 Sn,通项公式为 an,则 an=SS1n,-nS=n-11,,n≥2. (2)由递推关系式求通项公式:①构造法;②累加法;③累乘法.
角度1:由Sn与an的关系求通项公式
方 法 技 巧·精 提 炼
根据所求的结果的不同要求,将问题向两个不同的方向转化 (1)利用an=Sn-Sn-1(n≥2)转化为只含Sn,Sn-1的关系式,再求解. (2)利用an=Sn-Sn-1(n≥2)转化为只含an,an-1的关系式,再求解.
加 固 训 练·促Байду номын сангаас提 高
1.数列{an}满足:a1+2a2+3a3+…+nan=2+(n-1)·2n+1,n∈N*. 求数列{an}的通项公式.
2. (2023·全国新高考Ⅱ卷){an}为等差数列,bn=a2na-n,6, n为n为 偶奇 数数 ,, 记 Sn,Tn 分别为数列{an},{bn}的前 n 项和,S4=32,T3=16.
(1)求{an}的通项公式; (2)证明:当n>5时,Tn>Sn.
【解析】 (1)设等差数列{an}的公差为d, 而 bn=a2na-n,6,n=n=2k,2k-1, k∈N*, 则b1=a1-6,b2=2a2=2a1+2d,b3=a3-6=a1+2d-6, 于是ST43==44aa11++64dd=-3122,=16, 解得 a1=5,d=2,an=a1+(n-1)d
2021年高考数学二轮复习:第23课时 数列求和
2021年高考数学二轮复习:第23课时数列求和____高考数学二轮复习(新人教A版)教案课题:数列求和教学目标:1.熟练掌握等差数列与等比数列的求和公式; 2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进行求和运算;3.熟记一些常用的数列的和的公式.教学重点:特殊数列求和的方法.(一)主要知识: 1.等差数列与等比数列的求和公式的应用;2.倒序相加、错位相减,分组求和、拆项求和等求和方法;(二)主要方法:1.基本公式法: 1 等差数列求和公式:Snna1,2 等比数列求和公式:Sn a1 1 qn a1 anq,q 11 q1 q211nn 1 3 12 22 n2 6n n 1 2n 1 ; 4 13 23 33 n3 4 ;12n Cn Cn 2n. 5 Cn0 Cn2.错位相消法:给Sn a1 a2 an各边同乘以一个适当的数或式,然后把所得的等式和原等式相减,对应项相互抵消,最后得出前n项和Sn.一般适应于数列 anbn 的前n向求和,其中 an 成等差数列, bn 成等比数列。
n a1 an n n 1na1 d 22q 13.分组求和:把一个数列分成几个可以直接求和的数列,然后利用公式法求和。
4.拆项(裂项)求和:把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和. 常见的拆项公式有:1 若 an 是公差为d的等差数列,则aa 211nn 11 11; d anan 11 11 ;2n 12n 12 2n 12n 111 113 nn 1n 2 2 nn 1 n 1n 2 ;11; 54a bk;6 Cnm 1 Cnm 1 Cnm;7 n n! n 1 ! n!;8 ann 1 S1,S S,n≥2n 1 n5.倒序相加法:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的。
6导数法:灵活利用求导法则有时也可以完成数列求和问题的解答. 7.递推法.8.奇偶分析法.。
2021高考数学二轮专题训练2.21课时突破数列解答题数列求和及数列的综合应用课件
n a
n
,求数列{cn}的前n项和Sn.
【解析】(1)由已知得an+1=3an+3n,得bn+1a3=nn+1=3a3n+ n3n=3an- n=1+ b1n+1,所以 bn+1-bn=1,又a1=1,所以b1=1,
所以数列{bn}是首项为1,公差为1的等差数列. (所2以)bSn=n=3 an1-n 1=1(1n,1所31n以)= a32n=(1n·31n3).= n-132,cn2=331n1n-- 11,
(1)利用定义,证明an+1-an(n∈N*)为一常数;
(2)利用等差中项,即证明2an=an-1+an+1(n≥2).
2.证明数列{an}是等比数列的两种基本方法
(1)利用定义,证明 a n 1 (n∈N*)为一常数;
an
(2)利用等比中项,即证明
a
2 n
=an-1an+1(n≥2).
3.若要判断一个数列不是等差(等比)数列,只需判断存在连续三项不成等差(等
(2)设Sn为{nan}的前n项和.
由(1)及题设可得,an=(-2)n-1.
所以Sn=1+2×(-2)+…+n×(-2)n-1,
-2Sn=-2+2×(-2)2+…+(n-1)×(-2)n-1+n×(-2)n.
可得3Sn=1+(-2)+(-2)2+…+(-2)n-1-n×(-2)n1=
( 3
2
)n -n×(-2)n.
a1 a2
an
3
1 3 n1
=3 (1 1 ). 3
2 3n 2
最新-2021届高考数学文二轮复习课件:2.4.2 数列求和及综合应用 精品
3.已知各项均是正数的等比数列{an}中,a2,12a3,a1 成等差数列,
则aa43++aa54的值为(
)
5-1 A. 2
5+1 B. 2
C.-
5-1 2
D.
52-1或
5+1 2
解析:设{an}的公比为 q(q>0),由 a3=a2+a1,得 q2-q-1=0,
解得 q=1+2
5.从而aa43+ +aa54=q=1+2
5.nn+11n+2=12nn1+1-n+11n+2
6.
1 n+
n+1=
n+1-
n
7.
1 n+
n+k=1k(
n+k-
n)
8.n·n!=(n+1)!-n!
[专题回访]
1.若数列{an}是等差数列,且 a1+a8+a15=π,则 tan(a4+a12)= ()
A. 3
B.- 3
3 C. 3
D.-
3 3
答案:an=21n4+,5n,=n1≥2
2.(热点一)在数列{an}中,a1=2,an+1=an+lg1+1n,则 an=(
)
A.2+lgn
B.2+(n-1)lgn
C.2+nlgn
D.1+n+lgn
解析:由 an+1=an+lg1+1n得 an+1-an=lg1+1n=lgn+n 1,那么
an
=
a1
答案:B
6.(热点三)已知函数 f(x)=cos4x·cos2π-4x·cosπ-2x,将函数 f(x) 在(0,+∞)上的所有极值点从小到大排成一数列,记为{an},则数列 {an}的通项公式为________.
解析:由 f(x)=cos4xsin4x·-cos2x=-14sinx,得 f′(x)=-14cosx, 由 cosx=0,得 x=kπ+π2(k∈Z),所以函数 f(x)在(0,+∞)上的所有极 值点为π2,32π,52π,…,2n-2 1π,…,所以数列{an}的通项公式为 an =2n-2 1π.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
微专题2 数列求和及简单应用
对点训练
解:选①,当 n=1 时,a1=S1=2,当 n≥2 时,an= Sn-Sn-1=2n,
又 n=1 满足 an=2n,所以 an=2n. 设{bn}的公比为 q,又因为 a1=2,a2=4,由 b1=a1, b2=a12a2, 得 b1=2,q=2,所以 bn=2n.所以数列{bn}的前 n 项和 为2-1-2n2+1=2n+1-2,
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
微专题2 数列求和及简单应用
对点训练
当 n 为奇数时,Gn=2×n-2 1-(2n+1)=-n-2, 所以 Tn=8(4n3-1)-n-2, 所以 Tn=88((44nn33--11))-+nn-,2n,为n偶为数奇,数.
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
微专题2 数列求和及简单应用
对点训练
设{bn}的公比为 q,又因为 a1=2,a2=4,由 b1=a1, b2=a12a2,得 b1=2,q=2,所以 bn=2n.
所以数列{bn}的前 n 项和为2-1-2n2+1=2n+1-2, 又S1n=n2+1 n=n(n1+1)=n1-n+1 1, 数列S1n的前 n 项和为 1-12+12-13+…+n1-n+1 1= 1-n+1 1,
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
微专题2 数列求和及简单应用
对点训练
(2)解:当 n=1 时,4S1-2a1=21 ,解得 a1=1,又 an+1+ an=2n-1,
解 : (1) 因 为 {an} 为 等 差 数 列 , 所 以 S4=4a1+4×2 3d=24, S7=7a1+7×2 6d=63,
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
微专题2 数列求和及简单应用
对点训练
1.裂项相消法求和就是将数列中的每一项裂成两项 或多项,使这些裂开的项出现有规律的相互抵消,要注 意消去了哪些项,保留了哪些项.
2.消项规律:消项后前边剩几项,后边就剩几项, 前边剩第几项,后边就剩倒数第几项.
微专题2 数列求和及简单应用
对点训练
(2020·江西省重点中学协作体联考)已知数列{an}满 足 an+1=2an-n+1(n∈N*).
-2[1-(-2)n] 1-(-2)
=
2 3
[(-2)n-1],
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
微专题2 数n+1-1],Sn+2=23[(-2)n+2-1], 所以 Sn+1+Sn+2=23[(-2)n+1-1]+23[(-2)n+2-1]=23 [2(-2)n-2]=43[(-2)n-1]=2Sn, 所以 Sn+1,Sn,Sn+2 成等差数列.
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
微专题2 数列求和及简单应用
对点训练
大题考法 3 裂项相消法求数列的和 (2020·泰安市 6 月模拟)在①Sn=n2+n,②a3+ a5=16,S3+S5=42,③aan+n 1=n+n 1,S7=56 这三个条件中 任选一个补充在下面的问题中,并加以解答. 设等差数列{an}的前 n 项和为 Sn,数列{bn}为等比数 列,________,b1=a1,b2=a12a2. 求数列S1n+bn的前 n 项和 Tn.
对点训练
所以 nd+a1-d=n+d-1,对应系数相等,易得 a1=1, d=1,所以 an=n.
设 cn=ana1n+1,则 cn=n(n1+1)=n1-n+1 1. 所以 Sn=1-12+12-13+…+n1-n+1 1=n+n 1. (2)证明:假设数列{an+2}是等比数列,则(a2+2)2=(a1 +2)(a3+2), 由已知 an+1=2an-n+1(n∈N*),可得 a2=2a1,a3=2a2 -1=4a1-1,
故 Tn=2n+1-2+1-n+1 1=2n+1-n+1 1-1. 选②,设公差为 d,由 a3+a5=16,S3+S5=42,得 2a1+6d=16, 8a1+13d=42, 解得ad1==22,,所以 an=2n,Sn=n2+n.
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
故当 n 为偶数时有 Sn=(a1+a2)+(a3+a4)+…+(an-1+an)=
20+22+…+2n-2=2011--44n2=2n-3 1. 当 n 为奇数时有 Sn=a1+(a2+a3)+(a4+a5)+…+(an-1+
an)=1+21+23+…+2n-2=1+211-1-4n4-2 1=2n+3 1. 故 Sn=22nn+ -33 11,,nn为为偶奇数数,.
(1)求{an}的通项公式;
(2)求 Sn,并判断 Sn+1,Sn,Sn+2 是否成等差数列.
解:(1)设{an}的公比为 q,由题设可得
aa11((11++qq)+=q2)2,=-6,解得qa=1=--22,.
故{an}的通项公式为 an=(-2)n.
(2)由(1)得
Sn
=
a1(11--qqn)=
(1)设 bn=an+an+1,证明{bn}是等比数列; (2)求 Sn. (1)证明:因为 4Sn-2an=2n,① 故 4Sn+1-2an+1=2n+1(n∈N*),② ②-①可得 4an+1-2an+1+2an=2n+1-2n. 整理可得 an+1+an=2n-1,即 bn=2n-1,(n∈N*). 因为bbn+n 1=22n-n 1=2,(n∈N*),故{bn}是等比数列.
微专题2 数列求和及简单应用
对点训练
得 b1=2,q=2,所以 bn=2n.所以数列{bn}的前 n 项 和为2-1-2n2+1=2n+1-2,
又S1n=n2+1 n=n(n1+1)=n1-n+1 1, 数列S1n的前 n 项和为 1-12+12-13+…+n1-n+1 1= 1-n+1 1, 故 Tn=2n+1-2+1-n+1 1=2n+1-n+1 1-1.
专题二 数 列
微专题2 数列求和及简单应用
对点训练
大题考法 1 等差数列、等比数列证明与判定 已知数列{an}的前 n 项和为 Sn,a1=1,an>0,
S2n=a2n+1-λSn+1,其中 λ 为常数. (1)证明:Sn+1=2Sn+λ; (2)是否存在实数 λ,使得数列{an}为等比数列,若存
微专题2 数列求和及简单应用
对点训练
因此 an=1(,λ+n=1)1,·2n-2,n≥2. 若数列{an}是等比数列,则 a2=1+λ=2a1=2. 所以 λ=1,经验证得 λ=1 时,数列{an}是等比数列.
微专题2 数列求和及简单应用
对点训练
1.判定等差(比)数列的主要方法:(1)定义法:对于 任意 n≥1,n∈N*,验证 an+1-an或aan+n 1为与正整数 n 无关的一常数;(2)中项公式法.
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
微专题2 数列求和及简单应用
对点训练
故 Tn=2n+1-2+1-n+1 1=2n+1-n+1 1-1. 选③,由aan+n 1=n+n 1,得na+n+11=ann,所以ann=a11,即 an=a1n, S7=7a4=28a1=56,所以 a1=2,所以 an=2n,Sn= n2+n. 设{bn}的公比为 q,又因为 a1=2,a2=4,由 b1=a1, b2=a12a2,
在,求出 λ;若不存在,请说明理由.
(1)证明:因为 an+1=Sn+1-Sn,S2n=a2n+1-λSn+1, 所以 S2n=(Sn+1-Sn)2-λSn+1, 则 Sn+1(Sn+1-2Sn-λ)=0.
微专题2 数列求和及简单应用
对点训练
因为 an>0,知 Sn+1>0, 所以 Sn+1-2Sn-λ=0, 故 Sn+1=2Sn+λ. (2)解:由(1)知,Sn+1=2Sn+λ, 当 n≥2 时,Sn=2Sn-1+λ, 两式相减,an+1=2an(n≥2,n∈N*), 所以数列{an}从第二项起成等比数列,且公比 q=2. 又 S2=2S1+λ,即 a2+a1=2a1+λ,所以 a2=a1+λ=1 +λ>0,得 λ>-1.
2.分组求和的策略: (1)根据等差、等比数列分组. (2)根据正号、负号分组.
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
微专题2 数列求和及简单应用
对点训练
(2020·石家庄二中质检)Sn 为数列{an}的前 n 项和满 足:4Sn-2an=2n(n∈N*).
第一部分专题二 微专题2 数列求和及简单应用-2021届高三数学 二轮专 题复习 课件
微专题2 数列求和及简单应用
对点训练
大题考法 2 等差数列、等比数列基本量的运算 已知等差数列{an}的前 n 项和为 Sn,且满足 S4=