随机事件的概率教案

合集下载

《随机事件的概率》教案

《随机事件的概率》教案

《随机事件的概率》教案1教学目标1.通过试验,形成对随机亊件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素.2.了解频数、频率的概念.3.了解概率的定义,会应用概率公式求简单事件的概率.数学思考与问题解决让学生经历猜想试验-收集数据-分析结果的探索过程.在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.情感与态度在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;得出随机事件发生的可能性大小的准确结论,需经过大量重复的试验,让学生从中体验到科学的探究态度.通过概率意义教学,渗透辩证思想教育.重点难点重点1.对随机事件发生可能性大小的定性分析.2.概率的意义.难点1.理解大量重复试验的必要性.2.在具体情境中了解概率的意义.教学设计一、情境引入课件显示教材第63页“大家谈谈”中的第2题.提出问题:(1)“今天有雨”是必然事件还是随机事件?(2)“很可能要下雨”是什么意思?学生畅所欲言,只要合理即可.引出课题:今天我们就来研究可能性大小的问题.设计意图:采用现实情境引入,学生一下被实际情境所吸引,积极思考,发表意见.由此引出今天研究的内容,使学生在现实生活的经验基础上分析并体会可能性有大小乏分.二、新知探究1.摸球试验:一个袋子中有大小相同的5个球,其中3个红球,2个黄球,从中任意摸出一个球,记事件A=“摸到红球”,B=“摸到黄球”.2.提出问题:(1)你认为事件A 和B 哪个发生的可能性大?(2)4名同学一组,轮流从袋子中摸球,记下颜色后放回袋子中,重复20次试验,记录事件A 和B 发生的次数.(3)汇总全班各小组的试验结果,统计摸到红球和黄球的次数,计算摸到红球和黄球的次数占试验总次数的百分比,将结果填入下表中.(投影显示教材第64页表格)设计意图:让学生养成动脑筋、想办法的学习习惯,明白小组合作的优势.(4)事件A 和B 发生的次数所占的百分比大小有什么规律吗?(5)用哪两个数值可以刻画事件A 和B 发生的可能性大小?设计意图:通过这两个问题,引出频数、频率的概念.设总共做n 次重复试验,而事件A 发生了m 次,则称事件A 发生的次数m 为频数,称比值m n 为A 发生的频率.提问:通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大必须怎么做?先让学生回答,回答时教师注意纠正学生的不准确用语,最后由教师总结:要判断随机事件发生的可能性大小,必须经过大量重复试验.设计意图:本小节是教学难点,这个结论由学生得出,体现了自主学习的理念,有利于学生思维的发展.3.概率定义.上述摸球试验中,任意摸出一个球,有5种可能结果,摸到毎个球的可能性大小相同.可以用15刻画摸到每个球的可能性大小.于是用35|刻画摸到红球的可能性大小,用25刻画摸到黄球的可能性的大小.用一个数刻画随机事件A 发生的可能性大小,称这个数为事件A 的概率.一般记作P (A ). 一般地,如果一个试验有n 个等可能的结果,而事件A 包含其中k 个结果,则P (A )=.事件包含的可能结果数所有可能结果总数k A n 对任何一个事件A ,它的概率P (A )满足0<P (A )<1,必然事件的概率是1,不可能事件的概率是0.教师活动:参与分析定义、公式,并讲解求概率的方法.学生活动:参与分析定义、公式,从中认识概率的意义和运算公式.[说明]概率的意义较难理解,教师分析,学生参与探讨,问题可明.三、新知应用1.课件显示教材第64页例题.引导学生自己完成.设计意图:培养学生自主学习习惯,激发学生的学习积极性.2.练习:教材第65页练习.在例题学习的基础上,趁热打铁,熟练概率公式的应用.要求学丰尽量独立完成,有困难者,可小组探讨.四、课堂小结1.问题:本节课你有什么收获?2.你学到哪些具体知识?五、布置作业必做题:教材第65〜66页A组第1〜5题,B组第1题.选做题:B组第2题.《随机事件的概率》教案2教学目标知识与技能1.进一步理解概率的意义.2.会通过对某一事件概率的计算来判断游戏的公平性.数学思考与问题解决使学生经历合作交流的过程,在此过程中积累经验,加深对概念的理解.情感与态度由游戏的公平性,感受理论和实践的关系,体会数学来源于实践,又指导生活实践.重点难点重点:利用概率的计算判断游戏的公平性.难点:对于游戏规则的设定.教学设计一、创设情境同学们,下周一我们班要和(二)班进行广播体操比赛,我们班是愿意第一个出场呢,还是(二)班做完咱们再做?(学生回答)其实,谁第一个出场,学校是有规则的,并且规则是公平的.你知道规则是什么吗?学校的规则是这样的,将一枚质地均匀的硬币抛出,落地之后如果正面朝上,则(一)班第一个出场;如果反面朝上,则第一个出场的是(二)班.(规则公平)同学们,如果是将一枚质地均匀的硬币抛掷两次,如果都是正面朝上,我们(一)班第一个出场;如果一个正面朝上,一个反面朝上,(二)班就第一个出场,现在的规则还公平吗?二、大家谈谈1.小组内同学进行交流,大家踊跃发表看法,教师适时将教材第66页“甲、乙两同学的观点”展示出来,再重点讨论这两种方法正确与否.2.指导学生进行将一枚硬币投掷两次的试验,进行验证.小组内一人掷硬币,一个人记结果,其余的同学观察、体会.3.教师总结:甲同学的观点只是停留在日常生活中的经验,没有进行深入的思考、分析,更没有进行试验验证,这个结果是不正确的.乙同学没有停留在日常生活经验的表面,而是对之进行试验验证,试验的结果证明了日常生活的经验和实际的数学规则是有差距的,乙同学的结果是正确的,最值得同学们学习的是乙同学的做法,能够对于数学上的问题进行深入的思考,并进行试验验证,这才是学好数学最重要的品质.而对于我们本节所要讨论的游戏规则公平问题:实际上,在机会游戏中,有两个事件A和B,如果规定A发生,甲胜发生,乙胜,那么当事件A和B的概率相等时,游戏就是公平的.否则,就不公平.三、—起探究教材第67页“一起探究”:(把掷两次硬币的结果列举出来)我们刚才已经通过掷硬币的试验了解到了掷两次硬币共有四种结果,每种结果出现的机会是均等的.具体结果:所以,P(两次正面朝上)=14,P(—次正面朝上,一次反面朝上)=12,P(两次反面朝上)=14.因此如果按“两次正面朝上和一次正面朝上,一次反面朝上”来制订游戏规则显然是不公平的,那么我们该怎样修改游戏规则,使其成为一个公平的游戏?(学生小组内讨论) 学生答案只要是合理的,就应予以肯定、表扬.四、做一做1.学生小组合作,做教材第67页“做一做因此试验共有9种结果,P(两数之和为奇数)=49,P(两数之和为偶数)=59.教师总结,给出正确的答案.重点讲清(讨论):“所有可能出现的结果”“每种出现的结果机会是否均等”,特别是对于“1+2=3”和“2+1=3”是否看为同一种结果,明确它们的不同之处,和“试验共有多少种等可能结果”的区别,这也是解决本节开头甲同学观点错误的关键.2.学生独立做教材第67页例2.3.教材第68页练习第1、2题.学生独立做完之后,指定学生讲述答案,最后教师总结,及时点评.五、课堂小结本节课你最大的收获是什么?(请同学们谈一谈本节课最大的收获)六、布置作业必做题:教材第68〜69页A组第1,4题.选做题:教材第69页B组第1、2題.。

随机事件的概率教学设计

随机事件的概率教学设计

随机事件的概率教学设计随机事件的概率教学设计作为一名人民教师,很有必要精心设计一份教学设计,教学设计是实现教学目标的计划性和决策性活动。

那么应当如何写教学设计呢?以下是小编帮大家整理的随机事件的概率教学设计,仅供参考,欢迎大家阅读。

一、教材分析1.教学内容《随机事件的概率》是人教版普通高中课程标准实验教科书数学必修3第一章第一节课。

本节课在教材中的地位和作用《随机事件的概率》是高中阶段学生学习《概率》的入门课,也是一堂概念课。

不仅要学习随机事件和概率的概念,而且要初步感受概率的实际意义和思考方法,将直接影响到对后续概率课程的学习.这节课不仅是全章内容的理论基础,同时也向学生指明了概率课程的研究方向就是进一步揭示随机事件的规律性。

概率是一个非常重要的数学分支,它真正直接地反映了数学来源于生活而又反过来服务生活。

同时,概率也是每年高考的必查内容之一,主要是对基础知识的运用以及生活中的随机事件的概率的计算,都是学生今后的学习、工作与生活中必备的数学素养。

二、教学目标分析1、教学目标:(1)知识目标:使学生了解必然事件,不可能事件,随机事件的概念;理解频率和概率的含义和两者的区别和联系.(2)能力目标:培养学生观察和思考问题的能力,提高综合运用知识的能力和分析解决问题的能力.(3)情感目标:通过师生、生生的合作学习,培养学生团结协作的精神和主动与他人合作交流的意识.同时,概率的定义与性质是学生学习概率的基石,其中也蕴含了重要的数学思想,因此,我确定重点、难点和教学方法如下:2、教学重点:①事件的分类;②概率的统计定义;③概率的性质.3、教学难点:随机事件的发生所呈现的规律性.4、教学方法:以多媒体教学课件为教学辅助.三、学情分析我所面对的学生是高一的学生,具有一定的分析问题与解决问题的能力,逻辑思维也在初步形成中,但由于年龄的原因,他们思维活跃却不够冷静、严谨,因此较片面。

虽然概率来源于生活,却也要深刻地挖掘生活中的事例,学生会因为一点阻碍而产生厌学情绪,同时由于这堂课主要学习的是概念,学生会觉得枯燥而产生烦躁的心理。

数学随机概率教学计划(优秀4篇)

数学随机概率教学计划(优秀4篇)

数学随机概率教学计划(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学随机概率教学计划(优秀4篇)本文是本店铺本店铺给家人们收集的数学随机概率教学计划(优秀4篇)希望大家能够喜欢。

随机事件的概率教案

随机事件的概率教案

随机事件的概率教案一、教学目标1. 知识目标(1)理解随机事件的概念。

(2)掌握随机事件的基本性质。

(3)了解事件的互斥和独立性质,并能根据情况进行应用。

2. 能力目标(1)能运用概率论的知识预测和决策。

(2)培养学生的逻辑思维能力和判断能力。

3. 情感目标(1)培养学生的数学兴趣。

(2)在教学过程中,强调合作精神和探究精神。

二、教学重点1. 随机事件的概念和性质的理解。

2. 随机事件的互斥和独立性质的应用。

五、教学过程1. 引入(5分钟)教师出示一组未排序的数字 1、2、3、4、5,让学生思考如何判断这些数字中有多少个是偶数。

引导学生思考用何种方法可以推断出这些数字中有哪些是偶数。

通过引导,让学生发现这些数字是否是随机出现的。

引导学生思考:如果拿出一组数字,它们是随机出现的或是有规律出现的,那么可以如何计算它们的概率呢?2. 基础知识讲解(25分钟)(1)随机事件的概念随机事件是一个有可能发生或不发生的自然现象或过程。

概率是表示随机事件的可能性大小的数字,通常用百分数或小数表示。

(2)随机事件的性质① 必然性:事件必定发生。

② 不可能性:事件不可能发生。

③ 互斥性:两个事件不能同时发生。

④ 完备性:属于一定事件之一的事件一定会发生。

⑤ 加法:多个互斥事件的概率之和等于它们的总体概率。

(3)随机事件的互斥和独立性质互斥:若两事件不能同时发生,则称它们为互斥事件。

互斥事件概率的加法公式: P (A ∪ B) = P (A) + P (B)。

独立:若两事件的发生不相互影响,则称它们为独立事件。

独立事件乘法公式:P(A∩B)=P(A)×P(B)。

3. 例题演示(25分钟)例一:从扑克牌中任取两张牌,求它们都是红色的概率。

解:将此事件分解成两个子事件,设 event A 为第一张牌为红色,event B 为第二张牌为红色,则如下图所示,其中 26 为红色牌数,52 为总扑克牌数。

由于第一张牌选了一张红色牌后,第二张牌中还有 25 张红色牌,则有 P(A)=26/52,P(B|A)=25/51,因此有:P(A∩B)=P(A)×P(B|A)=26/52×25/51=1/2×25/51=25/102≈0.245。

311随机事件的概率(教学案)

311随机事件的概率(教学案)

§.随机事件的概率一、教材分析在现实世界中,随机现象是广泛存在的,而随机现象中存在着数量规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。

随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美.二、教学目标2.发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。

三、教学重点难点难点:随机事件发生存在的统计规律性.四、学情分析求随机事件的概率主要要用到排列、组合知识,学生没有根底,但学生在初中已经接触个类似的问题,所以在教学中学生并不感到陌生,关键是引导学生对“随机事件的概率〞这个重点、难点的掌握和突破,以及如何有具体问题转化为抽象的概念。

五、教学方法1.引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性2.学案导学:见后面的学案。

3.新授课教学根本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备多媒体课件,硬币数枚七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

〔二〕情景导入、展示目标日常生活中,有些问题是能够准确答复的.例如,明天太阳一定从东方升起吗明天上午第一节课一定是八点钟上课吗等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确答复的.例如,你明天什么时间来到学校明天中午12:10有多少人在学校食堂用餐你购置的本期福利彩票是否能中奖等等,这些问题的结果都具有偶然性和不确定性设计意图:步步导入,吸引学生的注意力,明确学习目标。

随机事件的概率教案

随机事件的概率教案

随机事件的概率教案随机事件的概率教案一、教学目标:1. 了解随机事件的定义和特征;2. 掌握计算随机事件概率的方法;3. 发展学生的逻辑思维和数学推理能力。

二、教学重点与难点:1. 随机事件的定义和特征;2. 计算随机事件概率的方法。

三、教学方法:1. 概念讲解与示范引导相结合;2. 案例分析与讨论互动;3. 小组合作探究。

四、教学过程:1. 引入:教师出示两个骰子,向学生提问:“如果我抛掷这两个骰子,这样的一次实验的结果有哪些?请举例说明。

”提供几个例子后,引导学生发现实验的结果并不是唯一的,可能出现的结果很多。

2. 讲解随机事件的概念:教师解释随机事件的定义,即在一次试验中,可能发生的结果的集合称为这个试验的随机事件。

然后,说明随机事件的两个特征:“随机性”和“不确定性”。

3. 单个随机事件的概率计算:教师以实际问题为例,介绍如何计算单个随机事件的概率。

引导学生找出可能的结果数量和总的可能结果数量,并进行计算。

然后,通过多个实例讲解不同类型的概率计算方法。

4. 复合随机事件的概率计算:教师介绍复合随机事件的概念,即由几个简单事件组成的事件。

通过数学公式和实例分析,讲解如何计算复合随机事件的概率。

重点讲解“与事件”和“或事件”的计算方法。

5. 综合练习:教师组织学生进行综合练习,通过实际问题的解答,巩固并应用所学的概率计算方法。

鼓励学生进行小组合作,激发学生的主动性和创造力。

6. 案例分析:教师提供一个复杂的实际问题,引导学生运用所学的概率计算方法进行分析和解答。

鼓励学生提出自己的解题思路和方法,并进行讨论和交流。

7. 总结与评价:教师与学生一起总结所学的内容,强调随机事件概率计算的基本方法和注意事项。

同时,通过评价学生的回答和讨论情况,评价教学效果,并指导学生的学习方向。

五、教学资源:1. 骰子;2. 实际问题的案例;3. 小组合作讨论材料。

六、教学评价与反思:本节课采用了讲解与实践相结合的教学方法,通过引导学生发现问题、引导学生探索解决问题的方法,培养了学生的逻辑思维和数学推理能力。

(完整版)随机事件的概率教案

(完整版)随机事件的概率教案
法目标
发现法教学,通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.
情感态度与价值观目标
(1) 在探究过程中,鼓励学生大胆尝试,培养学生勇于创新,敢于实践等良好的个性品质。
(2) 通过对概率的学习,渗透偶然寓于必然,事物之间既对立又统一的辩证唯物主义。
教学重点
在这三类事件中,必然事件一定会发生,不可能事件绝对不发生,而随机事件可能发生也可能不发生。我们不仅关注它发生或者不发生,更关注它发生的可能性大小,对于“可能性大小”,我们把它称为概率,这节课我们重点来研究随机事件的概率。那如何获得随机事件发生的可能性大小呢?最有用最直接的方法就是试验。
随机事件在一次试验中是否发生是不能事先确定的,那么在大量重复试验的情况下,它的发生是否会有规律性呢?
引出三类事件的概念:
在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件;
在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;
在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件;
注:(1)必然事件与不可能事件统称为确定事件.
(2)确定事件和随机事件统称为事件,一般用大写字母A,B,C……表示.
第四步:把试验的结果看成一个样本,统计每个个体的频数,并计算相应的频率:
问题4:根据上表画出相应的正面朝上次数的频率分布条形图:
第五步:找出抛掷硬币时正面朝上这个事件发生的规律。
问题5:找出抛掷硬币时正面朝上这个事件发生的规律:随着试验次数的增加,正面向上的频率稳定在0.5附近.
II
观察
与归纳
接下来同学们观察课本表3-1计算机模拟掷硬币的试验结果、掷硬币的频率图及表3-2历史上一些掷硬币试验的结果,我们发现:

随机事件的概率 精品课教案

随机事件的概率 精品课教案

随机事件的概率【教学目标】1.知识与技能:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率的意义,明确事件A 发生的频率fn (A )与事件A 发生的概率P (A )的区别与联系。

2.过程与方法:(1)发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。

3.情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识。

【学法与教学用具】1.引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2.教学用具:硬币数枚,投灯片,计算机及多媒体教学。

【教学过程】1.创设情境:日常生活中,有些问题是很难给予准确无误的回答的。

例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。

2.基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数为事件A 出现的频数;称事件A 出现的比例f (A )=nnA 为事件A出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值nn A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

《随机事件的概率》教学设计3篇

《随机事件的概率》教学设计3篇

《随机事件的概率》教学设计作为一名老师,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那要怎么写好教学设计呢?以下是小编为大家收集的《随机事件的概率》教学设计,欢迎大家分享。

《随机事件的概率》教学设计1教学目标知识目标:了解必然事件、不可能事件、随机事件的概念;理解和掌握概率的统计定义及其性质.能力目标:通过不断地提出问题和解决问题,培养学生猜测、验证等探究能力;情感目标:在探究过程中,鼓励学生大胆猜测,大胆尝试,培养学生勇于创新、敢于实践等良好的个性品质。

教学重点与难点重点:理解概率的统计定义及其基本性质;难点:认识频率与概率的区别和联系。

教学过程(一)设置情境、引入课题观察下列事件发生与否,各有什么特点?(教师用课件演示情境)(1)地球不停地转动; 必然发生(2)木柴燃烧,产生能量; 必然发生(3)在常温下,石头风化; 不可能发生(4)某人射击一次,中靶; 可能发生也可能不发生(5)掷一枚硬币,出现正面; 可能发生也可能不发生(6)在标准大气压下且温度低于0℃时,雪融化。

不可能发生定义:在条件S下可能发生也可能不发生的事件叫随机事件;在条件S下必然要发生的事件叫必然事件;在条件S下不可能发生的事件叫不可能事件。

确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示。

(二)探索实践、建构知识让我们来做两个实验:实验(1):把一枚硬币抛多次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。

上课前一天事先布置作业,要求学生每人完成50次,并完成下表(一):的频数,然后计算各频率。

上课前一天事先布置作业,要求学生每人完成50次,并完成下表(一):然后请同学们再以小组为单位,统计好数据,完成表格。

投掷一枚硬币,出现正面可能性究竟有多大?(教师用电脑模拟演示)实验(2):把一个骰子抛掷多次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。

随机事件的概率教案

随机事件的概率教案

3.1.1 随机事件的概率一、教学目标1.知识与技能(1)了解必然事件、不可能事件、随机事件的概念;(2)理解频率的稳定性及概率的统计定义.2.过程与方法发现法教学,通过学生在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.理解在大量重复试验的情况下,随机事件的发生呈现规律性,进而理解概率和频率的关系. 从而培养学生从试验中归纳出一般规律的能力以及学生动手能力与解决实际问题的能力.3.情感态度价值观(1)在探究过程中,鼓励学生大胆尝试,培养学生勇于创新、敢于实践等良好的个性品质;(2)通过对概率的学习,渗透偶然寓于必然、事物之间既对立又统一的辩证唯物主义思想;增强学生的科学素养.二、学情分析1.学生心理特点虽然高中学生有一定的抽象思维能力,但是概率的定义过于抽象,学生较难理解。

2.学生已有的认知结构(1)初中已经学习过随机事件,不可能事件,必然事件的概念(2)学生在日常生活中,对于概率可能有一些模糊的认识。

(3)学生思维比较灵活,有较强的动手操作能力和较好的实验基础。

3.动机和兴趣概率与生活息息相关,这部分知识能够引起学生的兴趣。

三、教学重点、难点重点:理解频率的稳定性及概率的统计定义;难点:频率与概率的区别和联系.三、教学方法与手段方法:试验、观察、探究、归纳和总结;手段:采用实物试验,多媒体计算机辅助教学.四、教学过程1.新课导入引导学生阅读第三章的章头图,引入课题。

在现实生活中,我们常听到“概率”这个词. 比如说:买彩票时,总关心中奖的概率有多大;正规的足球比赛,为了体现比赛的公平性,比赛前,主裁判往往以抛硬币的方式,根据是正面还是反面来确定比赛场地,这些都和概率有关. 那么什么是概率呢?怎么获得概率的大小呢?知道概率的大小又有何意义呢?2.回顾事件的分类首先,请同学们看这样一些事件,回答它们是什么事件?(教师随机口述,学生回答;并由学生列举自己熟悉的事件),进而引出三类事件的概念:在一定的条件下必然要发生的事件,叫做必然事件;在一定的条件下不可能发生的事件,叫做不可能事件;在一定的条件下可能发生,也可能不发生的事件,叫做随机事件.向学生指出:(1)它们是按照事件的发生与否这个标准,来进行分类的;(2)这三类事件是相对于一定条件来说的,条件改变了,事件的性质有时也会改变.3.试验、观察和归纳在三类事件中,必然事件和不可能事件,它的发生与否是很容易确定的,事先就知道它发生或者不发生;而随机事件的发生具有不确定性,可能发生,也可能不发生. 那么,它发生的可能性有多大呢?对于随机事件,知道它发生的可能性大小是非常重要的,能为我们的决策提供关键性的依据. 那么,如何才能获得随机事件发生的可能性大小呢?最直接的方法就是试验(观察).一次试验,就是将事件的条件实现一次.例如:“抛掷一枚硬币,正面向上”这个事件来说,做一次试验,就是将硬币抛掷一次.随机事件在一次试验中是否发生是不能事先确定的,那么在大量重复试验的情况下,它的发生是否会有规律性呢?下面我们通过做一个抛掷硬币的试验,来了解“抛掷一枚硬币,正面向上”这个随机事件发生的可能性大小.(一)先将学生进行分组,指定组长.(二)试验要求及规则每人做10次抛掷硬币试验,记录正面向上的次数,并计算正面向上的频率,将试验结果填入表中:抛硬币的规则:(1)硬币统一(1角硬币);(2)垂直下抛;(3)离桌面高度大约为一尺.(这样的话,我们基本上在相同的条件下做试验)(三)试验做完后,让学生比较他们的试验结果是否相同,并请组长统计本组的结果教师问:试验结果与其他同学比较,你的结果和他们相同吗?为什么?因为“抛掷一枚硬币,正面向上”这个事件是一个随机事件,在每一次试验中,它的结果是随机的,所以10次的试验结果也是随机的,可能会不同.(四)教师将组长统计的数据及历史上科学家得到的大量试验的数据输入电脑,借助Excel统计功能把频率图画出来.(1)抛掷硬币试验结果表引导学生来观察这个频率图,看一看由个人到小组、全班再到大量试验频率的变化,有什么规律?(同学们相互讨论,请同学来回答,如果不完善,请其他同学补充,最后教师总结)规律:“掷一枚硬币,正面向上”在一次试验中是否发生不能确定,但随着试验次数的增加,正面向上的频率逐渐地接近于0.5.(五)教师用计算机来演示大量抛掷硬币的模拟试验,让学生进一步来体会这样一个规律.(六)再让学生看另外两组试验结果,观察分析频率的变化规律.实践1、某射手在同一条件下进行射击,结果如下:射击次数n 10 20 50 100 200 500击中靶心的次数m 8 19 44 92 178 455击中靶心的频率m/n(1)计算表中击中靶心的各个频率;(2)这个射手射击一次,击中靶心的概率约为多少?实践2、一个地区从某年起几年之内的新生儿数及其中的男婴数如下:时间范围1年内2年内3年内4年内新生婴儿数5544 9607 13520 17190男婴数2883 4970 6994 8892男婴出生频率(1)填写上表中的男婴出生频率(如果用计算器计算,结果保留到小数点后第3位);(2)这一地区男婴出生的概率约为多少?(七)教师问:通过观察以上试验结果及频率图,它们的规律有什么共性呢?(引导学生归纳)结论:随机事件A在每次试验中是否发生是不能事先确定的,但是在进行大量重复试验后,随着试验次数的增加,事件A发生的频率总是接近于某个常数.这个常数,我们给它起个名称,叫做概率.4.概率的统计定义一般地,在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).这里的P是英文Probability(概率)的第一个字母.说明:(1)概率从数量上反映了一个事件发生的可能性的大小;(概率越大,表明事件A发生的频率越大,它发生的可能性越大;概率越小,它发生的可能性也越小)例如:抛一枚硬币出现“正面向上”的概率是0.5,是指:“正面向上”可能性为50%.任取一个乒乓球得到优等品的概率是0.95,是指:得到优等品的可能性为95%.(2)概率是频率的稳定值,频率是概率的近似值;上面有关概率的定义,实际上也是求一个事件的概率的基本方法:进行大量的重复试验,用这个事件发生的频率近似地作为它的概率.频率是否等同于概率呢?(可以提示:频率是不是不变的?概率是不是不变的?)频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都有可能不同. 而概率是一个确定数,是客观存在的,与每次试验无关.(3)随机事件A 的概率范围.记随机事件A 在n 次试验中发生了m 次,那么有 ≤0m n ≤≤, 01m n ≤≤,于是 0()1P A ≤≤由概率的统计定义,可以得到:必然事件的概率1,不可能事件的概率是0. 从这个意义上,必然事件与不可能事件可以看作随机事件的两种极端情况.可见,虽然它们是两类不同的事件,但在一定的情况下又可以统一起来,这也正反映了事物间既对立又统一的辨证关系.5.例题讲解例1、对某电视机厂生产的电视机进行抽样检测的数据如下:抽取台数 n 10 2050 100 200 500 优等品数 m 8 19 44 92 178 455优等品率m/n(1)计算表中优等品的各个频率;(2)该厂生产的电视机优等品的概率约是多少?例2、判断下列说法是否正确:1)因为抛一枚质地均匀的硬币出现正面的概率为0.5,因此,抛两次时,肯定出现一次正面,对吗?2)某医院治疗某种疾病的治愈率为10%,那么,前9个人都没有治愈,第10个人一定能治愈?3)试验1000次得到的频率一定比试验800次得到的频率更接近概率吗?练习:1、下列说法是否正确,为什么?(1)天气预报说下星期一降水概率为90%,下星期三降水概率为10%,于是有位同学说:“下星期一肯定下雨,下星期三肯定不下雨.”(2)掷一枚硬币,连续出现5次正面向上,我认为下次反面向上的概率大于0.5.(3)小明的爸爸这几天迷上了体育彩票,该体育彩票每注是一个7位的数码,如能与开奖结果一致,则获特等奖;如果有相连的6位数码正确,则获一等奖;依次类推,小明的爸爸昨天一次买了10注这种彩票,果中了一注一等奖,他高兴地说:“这种彩票好,中奖率高,中一等奖的概率是10%!”2、某射手在同一条件下进行射击,结果如下表所示:射击次数n 10 20 50 100 200 500击中靶心次数m 8 19 44 92 178 455击中靶心的频率(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是多少?6.课堂小结(1)事件的分类:必然事件、不可能事件和随机事件;(2)随机事件概率的定义;(3)统计的思想方法.(让学生回顾获得概率定义的过程:试验、观察、探究、归纳和总结,进一步体会统计的思想方法)通过对概率知识的学习,我们知道一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说),这里面也渗透了偶然寓于必然,事物之间既对立又统一的辨证唯物主义思想.7.布置作业1.教材必修3第113页练习1、2、32.查阅并了解关于概率应用的故事五、板书设计。

《随机事件的概率》教学设计

《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标:1. 知识与能力:让学生掌握随机事件、概率的基本概念,了解概率的计算方法和应用。

2. 过程与方法:通过教学设计,引导学生使用数学的思维方式解决实际问题,培养学生的逻辑思维和数学建模能力。

3. 情感态度与价值观:培养学生对数学的兴趣,增强学生对概率的认识和应用能力。

二、教学内容:1. 随机事件的概念:介绍随机事件的定义和特征,引导学生了解随机事件的概念和分类。

2. 概率的基本概念:通过例题和实例,让学生了解概率的含义和基本性质,引导学生学会计算简单概率。

3. 概率的计算方法:介绍古典概率和几何概率的计算方法,通过实例让学生了解概率计算的基本步骤和技巧。

4. 概率的应用:通过实际问题和案例,引导学生了解概率在现实生活中的应用场景,培养学生运用概率解决问题的能力。

三、教学过程:1. 导入环节:通过引入一些有趣的概率问题,引起学生的兴趣,如投硬币的概率问题,随机抽奖的概率问题等。

5. 练习与检测:设计一些练习题和测试题,让学生熟练掌握概率计算方法,检测学生的学习效果。

6. 总结与展望:对本节课的内容进行总结,展望下一节课的内容,引导学生对概率知识进行深入学习和探索。

四、教学方法:1. 启发式教学法:通过提出问题和引导思考,启发学生对概率问题的思考和解决。

2. 实例分析法:通过具体的例题和实例,引导学生掌握概率的计算方法和应用技巧。

3. 讨论交流法:通过小组讨论和师生互动,引导学生积极参与教学活动,共同解决难题。

五、教学手段:1. 多媒体教学:利用多媒体教学手段,向学生展示生动有趣的例题和案例,提高学生的学习兴趣和参与度。

2. 实物教具:通过一些实物教具,如纸牌、硬币等,进行概率实验和展示,让学生直观地感受概率问题。

3. 教学软件:利用一些数学软件,如Geogebra、MathType等,进行概率计算和图形展示,帮助学生更好地理解概率知识。

4. 小组讨论:组织学生进行小组讨论活动,促进学生之间的思想碰撞,激发学生学习兴趣和动力。

《随机事件的概率》教学设计

《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标1. 知识与技能:学生能够掌握随机事件的概率概念和基本原理,能够利用概率公式解决简单的概率问题。

2. 过程与方法:学生能够通过观察、实验和计算,了解随机事件的规律,并能够运用数学知识解决实际问题。

3. 情感态度与价值观:培养学生对数学的兴趣,增强他们对数学的信心,使他们了解数学在日常生活中的应用。

二、教学内容1. 随机事件的概念,随机事件的分类2. 概率的基本原理和性质3. 概率的计算方法4. 概率在日常生活中的应用三、教学重点和难点重点:随机事件的概念和概率的计算方法难点:概率的计算方法的运用四、教学方法和手段1. 讲授法:通过简单清晰的语言和例题,让学生了解随机事件的概念和基本原理。

2. 实验法:通过实际的实验操作,让学生亲自感受随机事件的规律。

3. 综合法:通过案例分析和讨论,让学生了解概率在日常生活中的应用。

五、教学过程1. 创设情境教师通过介绍某次抽奖活动的中奖规则,引出随机事件概率的概念。

让学生通过猜测自己中奖的概率,引发对概率的思考。

2. 教师讲解教师通过简单明了的语言,向学生介绍随机事件的概念、概率的基本原理和性质。

3. 实验操作教师设计一些简单的实验,让学生通过实际操作,了解随机事件的规律。

比如抛硬币的实验、掷骰子的实验等。

4. 计算概率教师向学生介绍概率的计算方法,并通过例题进行讲解,让学生掌握概率的计算方法。

5. 案例分析教师通过日常生活中的一些实例,让学生了解概率在现实生活中的应用,如购彩、抽奖、比赛等。

6. 练习教师布置一些练习题,让学生巩固所学的知识,并通过批改作业的方式检查学生的学习情况。

七、教学工具1. 实验器材:硬币、骰子等2. 教学课件:包括随机事件的概念、概率的计算方法等内容3. 教学案例:购彩、抽奖等实际案例八、教学评价1. 学生的日常表现:学生在课堂上的表现及实验操作的情况2. 练习成绩:学生完成的练习题的成绩3. 教学效果:学生对概率概念和计算方法的掌握情况九、教学反思在教学过程中,要注重培养学生的实际动手操作能力,让他们通过实验和计算,探究随机事件的规律。

(完整版)随机事件的概率教案

(完整版)随机事件的概率教案

教课课题讲课年级讲课种类教学目标教课要点教课难点教课方法教课器具教学流程3.1.1 随机事件的概率(杨亚红)高一( 16)班新讲课(1) 认识随机事件, 必定事件 , 不行能事件的观点 ;知识与技(2) 正确理解事件 A 出现的频次的意义 ;能目标(3) 正确理解概率的观点和意义, 明确事件 A 发生的频次fn(A) 与事件 A 发生的概率 P(A) 的差别与联系 .过程与方发现法教课 , 经过在抛硬币的试验中获取数据, 概括总结试验结法目标果 , 发现规律 , 真实做到在研究中学习 , 在研究中提高 .(1) 在研究过程中,鼓舞学生勇敢试试,培育学生勇于创新,敢于感情态度与价实践等优秀的个性质量。

值观目标(2) 经过对概率的学习,浸透有时寓于必定,事物之间既对峙又统一的辩证唯心主义。

事件的分类 ;概率的统计定义以及和频次的差别与联系;用概率的知识解说现实生活中的详细问题.学生研究、教师指引硬币彩票回首观点实验察看发现概括理论提高实质应用教课过程同学们 ,看我手里拿着什么 ?(彩票 )对了 ,这是我清晨刚买的彩票 ,大家说我必定能中奖吗 ?(不一一定 )那就是可能中也可能不中 ,也就是说买彩票中奖这个事件可能发生也可能不发生,在数学中我导们把这种事件称为随机事件。

入那“太阳从东方升起呢”?(必定事件)“没有水分,种子抽芽”?(不行能事件)请同学们利用初中所学的知识判断以下事引出三类事件的观点:二件的种类:事( 1)“导体通电时,发热” ;件( 2)“抛一石块,着落” ;的( 3)“在标准大气压下且温度为 3℃时,冰分消融”;类( 4)“在常温下,钢铁消融”;(5)“某人射击一次,中靶” ;(6)“掷一枚硬币,出现正面” .在条件 S 下,必定会发生的事件,叫做相关于条件S的必定事件,简称必定事件;在条件 S 下,必定不会发生的事件,叫做相关于条件 S 的不行能事件,简称不行能事件;在条件 S 下,可能发生也可能不发生的事件,叫做相关于条件 S 的随机事件,简称随机事件;注: (1) 必定事件与不行能事件统称为确立事件.(2)确立事件和随机事件统称为事件,一般用大写字母 A,B,C 表示 .在这三类事件中,必定事件必定会发生,不行能事件绝对不发生,而随机事件可能发生也可能不发生。

《随机事件的概率》教学设计

《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标1. 知识目标:学生能够理解何为随机事件、概率的概念。

2. 能力目标:学生能够应用概率计算随机事件发生的可能性。

3. 情感态度目标:培养学生对数学的兴趣,培养学生的数学思维和解决问题的能力。

二、教学重点难点1. 随机事件、概率的概念2. 概率的计算方法四、教学方法1. 情境教学法:通过实际生活中的例子引入概率的概念,增加学生的兴趣和参与度。

2. 案例教学法:通过实际问题,让学生在解决问题的过程中体会概率的应用方法。

3. 合作学习法:鼓励学生之间相互讨论、合作,提高学生的学习效果。

五、教学过程1. 导入(10分钟)教师通过抛硬币、掷骰子等活动,引入随机事件的概念。

可以让学生分组自行进行抛硬币、掷骰子的活动,然后回答相关问题,引导学生了解随机事件的概念。

2. 概念讲解(20分钟)教师通过教材或PPT讲解概率的基本概念和性质,引导学生了解概率的含义,以及概率的规律和特点。

3. 示例分析(20分钟)教师选择一些实际问题,引导学生分析问题并应用概率计算方法解决问题。

例如:抽奖问题、生日悖论等。

4. 拓展活动(20分钟)教师出示一些实际生活中的问题,让学生自行分组讨论并解决问题,鼓励学生之间相互交流,提高学生的综合应用能力。

5. 练习与检测(20分钟)教师布置相关练习题,让学生进行练习并相互交流,巩固所学知识,并及时发现和纠正错误。

6. 总结与反思(10分钟)教师引导学生进行总结,回顾本节课所学内容,并引导学生思考概率在生活中的应用,以及概率的重要性。

六、教学手段1. 教学PPT2. 抛硬币、掷骰子等实际物品3. 教学案例七、教学评估1. 学生课堂表现评价2. 练习与作业评价3. 学生综合应用能力评价九、教学反思教学中要注重理论联系实际,让学生在实际问题中应用所学知识,加深学生对概率的理解和掌握。

要注重培养学生的数学思维和解决问题的能力,引导学生主动学习,提高学生的自主学习能力。

2024年《随机事件的概率》公开课教案

2024年《随机事件的概率》公开课教案

2024年《随机事件的概率》公开课教案一、教学内容本节课选自高中数学教材《概率与统计》第二章《随机事件的概率》第1节。

内容包括:随机事件的定义,事件的关系与运算,概率的定义及其性质,等可能事件的概率计算。

二、教学目标1. 理解并掌握随机事件的定义,能区分不同类型的随机事件。

2. 掌握事件的关系与运算,能正确进行事件的并、交、补运算。

3. 理解概率的定义及其性质,掌握等可能事件的概率计算方法。

三、教学难点与重点重点:随机事件的定义,事件的关系与运算,概率的定义及其性质,等可能事件的概率计算。

难点:事件的并、交、补运算,等可能事件的概率计算。

四、教具与学具准备1. 教具:PPT,黑板,粉笔。

2. 学具:教材,练习本,计算器。

五、教学过程1. 实践情景引入(5分钟)利用PPT展示抛硬币、掷骰子、抽签等实际情景,引导学生思考这些活动中包含的随机现象。

2. 知识讲解(10分钟)介绍随机事件的定义,通过示例使学生理解并区分不同类型的随机事件。

讲解事件的关系与运算,通过例题使学生掌握并、交、补运算。

3. 概率定义及其性质(10分钟)引出概率的定义,讲解概率的三个性质。

结合具体例子,使学生理解概率的含义。

4. 等可能事件的概率计算(10分钟)介绍等可能事件的概率计算方法,通过例题讲解,使学生掌握如何求解等可能事件的概率。

5. 随堂练习(5分钟)出示练习题目,让学生独立完成,巩固所学知识。

七、作业设计1. 作业题目:(1)判断下列事件是否为随机事件,并说明理由。

抛掷两枚硬币,求得到两个正面的概率。

从一副扑克牌中随机抽取一张,求得到红桃的概率。

(3)某班有30名学生,其中有男生18名,女生12名。

随机选取3名学生,求选取的学生中至少有一名女生的概率。

2. 答案:(1)略。

(2)1/4;1/4。

(3)19/20。

八、课后反思及拓展延伸1. 反思:本节课学生对随机事件的定义、事件的关系与运算掌握较好,但在等可能事件的概率计算上存在一定难度,需要在课后加强巩固。

随机事件的概率教案

随机事件的概率教案

随机事件的概率教案【随机事件的概率教案】一、引言随机事件的概率是概率论的基础概念之一,它在现代科学和日常生活中都有广泛的应用。

本教案旨在通过具体的案例和实践活动,匡助学生理解随机事件的概念、计算概率的方法以及概率在实际问题中的应用。

二、教学目标1. 理解随机事件的概念和基本术语;2. 掌握计算随机事件的概率的方法;3. 能够运用概率理论解决实际问题。

三、教学内容1. 随机事件的概念1.1 随机事件的定义:随机事件是指在一定条件下,可能发生也可能不发生的事情。

1.2 样本空间和事件:样本空间是指随机试验所有可能结果的集合,事件是样本空间的一个子集。

1.3 事件的分类:必然事件、不可能事件、简单事件和复合事件。

2. 计算概率的方法2.1 经典概型:指样本空间中所有基本事件的概率相等的情况。

2.2 频率概率:指通过实验统计数据计算概率的方法。

2.3 几何概型:指利用几何图形计算概率的方法。

2.4 古典概型:指利用罗列组合等数学方法计算概率的方法。

3. 概率在实际问题中的应用3.1 生活中的概率问题:如掷骰子、抽奖等。

3.2 统计学中的概率问题:如抽样调查、统计判断等。

3.3 金融领域的概率问题:如股票涨跌、投资收益等。

四、教学方法1. 讲授法:通过讲解理论知识,引导学生理解随机事件的概念和计算概率的方法。

2. 案例分析法:通过具体案例,匡助学生掌握概率在实际问题中的应用。

3. 实践活动:设计一些实践活动,让学生亲自进行概率计算和实际问题的解决,提高学生的动手能力和实际运用能力。

五、教学过程1. 导入:通过一个生活中的例子引入随机事件的概念,如抛硬币的结果。

2. 理论讲解:讲解随机事件的定义、样本空间和事件的概念,以及概率的计算方法。

3. 案例分析:通过一些实际案例,引导学生运用概率理论解决问题,如抽奖中奖的概率计算、掷骰子的概率计算等。

4. 实践活动:设计一些实践活动,让学生自己进行概率计算和实际问题的解决,如设计一个抽奖游戏、进行一次投资决策等。

《随机事件的概率》教案

《随机事件的概率》教案

《随机事件的概率》教案一、教学内容本节课选自人教版《普通高中数学课程标准实验教科书·数学》必修3第2章“随机事件的概率”第1节。

详细内容包括:1. 随机事件的定义及分类;2. 概率的定义及性质;3. 概率的计算方法,包括理论计算和频率估计;4. 古典概型及其概率计算。

二、教学目标1. 让学生理解随机事件的定义,能够正确区分随机事件、必然事件和不可能事件;2. 让学生掌握概率的定义和性质,能够运用概率的计算方法解决实际问题;3. 让学生掌握古典概型的特点,能够熟练运用排列组合知识进行古典概型的概率计算。

三、教学难点与重点教学难点:随机事件的分类、概率的计算方法、古典概型的概率计算。

教学重点:随机事件的定义、概率的性质、概率的计算方法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:教材、练习本、计算器。

五、教学过程1. 实践情景引入利用多媒体展示抛硬币、掷骰子、抽签等实际场景,引导学生思考这些事件的特点,从而引出随机事件的定义。

2. 理论讲解(1)随机事件的定义及分类;(2)概率的定义、性质及计算方法;(3)古典概型的特点及概率计算。

3. 例题讲解(1)判断下列事件是否为随机事件、必然事件或不可能事件;(2)计算古典概型的概率问题;(3)频率估计概率问题。

4. 随堂练习(1)填空题:随机事件、必然事件、不可能事件的判断;(2)选择题:概率的性质;(3)计算题:古典概型的概率计算。

六、板书设计1. 随机事件的定义及分类;2. 概率的定义、性质及计算方法;3. 古典概型的特点及概率计算;4. 例题及解题方法。

七、作业设计1. 作业题目(1)判断下列事件是否为随机事件、必然事件或不可能事件;(2)计算古典概型的概率问题;(3)频率估计概率问题。

2. 答案(1)随机事件:A、C;必然事件:B;不可能事件:D;(2)解答过程及答案;(3)解答过程及答案。

八、课后反思及拓展延伸1. 反思:本节课学生对随机事件的分类掌握较好,但在古典概型概率计算方面还需加强练习;2. 拓展延伸:引导学生思考现实生活中的随机事件,尝试运用所学知识解决实际问题,提高学生的应用能力。

《随机事件的概率》教案

《随机事件的概率》教案

《随机事件的概率》教案一、教学内容本节课选自高中数学教材《概率论与数理统计》第二章第一节“随机事件的概率”。

详细内容包括:1. 随机事件的定义与分类;2. 概率的定义及其性质;3. 概率的计算方法,包括古典概率、几何概率和统计概率;4. 概率的基本运算,如加法公式、乘法公式等。

二、教学目标1. 理解随机事件的概念,能对实际问题进行分类和分析;2. 掌握概率的定义及其性质,了解不同类型概率的计算方法;3. 学会运用概率的基本运算,解决实际问题。

三、教学难点与重点1. 教学难点:概率的定义及其性质,概率的基本运算;2. 教学重点:随机事件的分类,概率的计算方法。

四、教具与学具准备1. 教具:PPT,黑板,粉笔;2. 学具:教材,练习本,计算器。

五、教学过程1. 导入:通过生活中的实例,引导学生了解随机事件的概念,激发学生的学习兴趣;2. 新课导入:详细讲解随机事件的定义与分类,引导学生学习概率的定义及其性质;3. 例题讲解:结合实际例子,讲解概率的计算方法,让学生掌握不同类型概率的计算;4. 随堂练习:设计具有代表性的习题,让学生运用所学知识解决问题,巩固课堂所学;6. 布置作业:布置具有挑战性的作业,培养学生独立思考和解决问题的能力。

六、板书设计1. 随机事件的定义与分类;2. 概率的定义及其性质;3. 概率的计算方法;4. 概率的基本运算。

七、作业设计1. 作业题目:A. 抛掷一枚硬币,正面朝上;B. 一副52张的扑克牌中随机抽取一张,抽到红桃;C. 从一个装有3个红球和2个蓝球的袋子中,随机抽取一个球,抽到红球。

2. 答案:(1)随机事件;(2)A. 0.5;B. 1/4;C. 3/5。

八、课后反思及拓展延伸1. 课后反思:本节课通过实际例子引入,让学生充分理解随机事件的概念,掌握概率的计算方法。

但在讲解概率的基本运算时,可能存在学生难以理解的情况,今后教学中需加强此处的内容;2. 拓展延伸:引导学生运用所学知识,解决生活中的实际问题,如彩票中奖概率、游戏胜负概率等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.联系:
2.区别:
规律:探讨概率与频率之间的关系。
五课堂练习
练习1.某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,则此人中靶的概率大约是________,假设此人射击1次,试问中靶的概率约为______,中10环的概率约为_________.
练习2某射击手在同一条件下进行射击,结果如下表所示:
事件的分类;概率的统计定义以及和频率的区别与联系;
教学难点
用概率的知识解释现实生活中的具体问题.
教学方法
学生探究、教师引导
教学用具
硬币彩票多媒体课件
教学过程
一导入
同学们,看我手里拿着什么?(彩票)对了,这是我早上刚买的彩票,大家说我一定能中奖吗?(不一定)那就是可能中也可能不中,也就是说买彩票中奖这个事件可能发生也可能不发生。发生的可能性又是多大呢?
在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件;
注:(1)必然事件与不可能事件统称为确定事件.
(2)确定事件和随机事件统称为事件,一般用大写字母A,B,C……表示.
在这三类事件中,必然事件一定会发生,不可能事件绝对不发生,而随机事件可能发生也可能不发生。我们不仅关注它发生或者不发生,更关注它发生的可能性大小,对于“可能性大小”,我们把它称为概率,这节课我们重点来研究随机事件的概率。那如何获得随机事件发生的可能性大小呢?最有用最直接的方法就是试验。
试验次数
正面向上次数
5
问题1:探讨事件A发生的次数,得出频率的概念。
1.频数:
2.频率:
实验有人将一枚硬币抛掷5次、50次、500次,各做7遍,观察正面出现的次数及频率.
问题2:事件A发生的频率随着试验次数的增加有什么样的变化特征。
分析历史上一些掷硬币的试验结果。
问题3:比较这些试验的频率哪个更接近0.5?
法目标
发现法教学,通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.
情感态度与价值观目标
(1)在探究过程中,鼓励学生大胆尝试,培养学生勇于创新,敢于实践等良好的个性品质。
(2)通过对概率的学习,渗透偶然寓于必然,事物之间既对立又统一的辩证唯物主义。
教学重点
A、(1)(2) B、(2)(3) C、(2)(4) D、(1)(4)

课堂小结
知识内容
(1)三个事件:必然事件
不可能事件
随机事件
(2)概率的统计定义
(3)频率和概率的区别与联系
(4)解决问题的一种重要方法:试验
思想方法:统计的思想方法
七布置作业
课本113页,练习1,2,3
A.f(n)与某个常数相等B.f(n)与某个常数的差逐渐减小C.f(n)与某个常数的差的绝对值逐渐减小D.f(n)在某个常数的附近摆动并趋于稳定
(3)下列事件:
(1)口袋里有伍角、壹角、壹元的硬币若干枚,随机地摸出一枚是壹角。
(2)在标准大气压下,水在90℃沸腾。
(3)射击运动员射击一次命中10环。






请同学们利用初中所学的知识判断下列事件的类型:
(1)木材燃烧,产生热量;
(2)明天,地球还会转动;
(3)煮熟的鸭子,还会跑吗;
(4)王义夫下一枪还会打中十环;.
让学生感受事件发生可能性的情况。
引出三类事件的概念:
在条件S下,一定会发生的事件,叫做相对于条件S的必然事件,简称必然事件;
在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;
(3)“取出的是白球或者是黑球”是什么事件?概率是多少?
联系4:(1)从12个同类产品(其中10个正品,两个次品)中,任抽三个产品,则下列事件中哪个是必然事件()
A.三个都是正品B.至少有一个是次品
C.三个都是次品D.至少有一个是正品
(2)若在同等条件下进行n次重复实验得到某个事件A发生的频率f(n),则随着n的增大,有( )
教学课题
3.1.1随机事件的概率
授课年级
高二年级
授课人杨勇授课类型Fra bibliotek新授课
授课地点
纳雍一中




知识与技
能目标
(1)了解随机事件,必然事件,不可能事件的概念;
(2)正确理解事件A出现的频率的意义;
(3)正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系.
过程与方
(4)同时掷两颗骰子,出现的点数之和不超过12。
其中是随机事件的有()
A. (1) B.(1)(2) C.(1)(3) D.(2)(4)
(4)下列事件:
(1)a,b∈R且a<b,则a-b∈R。(2)抛一石块,石块飞出地球。
(3)掷一枚硬币,正面向上。(4)掷一颗骰子出现点8。
其中是不可能事件的是()
射击次数n
10
20
50
100
200
500
击中靶心次数m
9
19
43
92
178
455
击中靶心的频率
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是什么?
练习3:盒中装有4个白球5个黑球,从中任意的取出一个球。
(1)“取出的是黄球”是什么事件?概率是多少?
(2)“取出的是白球”是什么事件?
随机事件在一次试验中是否发生是不能事先确定的,那么在大量重复试验的情况下,它的发生是否会有规律性呢?

试验
观察
归纳
I
试验
下面我们通过做一个抛掷硬币的试验,来了解“抛掷一枚硬币,正面向上”这个随机事件发生的可能性大小.
试验:掷一枚硬币,出现正面朝上叫做事件A。若把试验在相同条件下重复5次,观察事件A发生的情况。
讨论:找出抛掷硬币时正面朝上这个事件发生的规律。
问题5:找出抛掷硬币时正面朝上这个事件发生的规律:随着试验次数的增加,正面向上的频率稳定在0.5附近.
II
观察
与归纳
发现:随着试验次数的增加,事件A的频率会逐渐稳定在[0,1]中的某个常数,我们可以用这个常数来度量事件A发生的可能性,即事件A的概率。
概率与频率的关系:
相关文档
最新文档