(1)用代入消元法解二元一次方程组的步骤是

合集下载

中考数学复习《二元一次方程组》

中考数学复习《二元一次方程组》

中考考点精讲精练
考点1 解二元一次方程组[5年1考:2013年(解答题)]
典型例题
1. 解方程组: x+y=5, 2x+3y=11.
解: x+y=5, ① 2x+3y=11. ②
①×3-②,得x=4. 把x=4代入①,得y=1. 则方程组的解为 x=4,
y=1.
2x+3y=12, 2. 解方程组:
y= -1.
4. 解方程组: x+3y=-1, 3x-2y=8.
解: x+3y=-1, ①
3x-2y=8. ②
由①得x=-1-3y. ③
把③代入②,得3(-1-3y)-2y=8.
解得y=-1.
则x=-1-3×(-1)=2. 故二元一次方程组的解为
x=2, y=-1.
考点点拨: 本考点是广东中考的高频考点,题型一般为计算题,难度简 单. 解答本考点的有关题目,关键在于熟练掌握消元法和代入法 解二元一次方程组. 注意以下要点: (1)用代入消元法解二元一次方程组的步骤; (2)用加减消元法解二元一次方程组的步骤.
பைடு நூலகம்
方法规律
1. 用代入消元法解二元一次方程组的一般步骤(概括为“变, 代,解,回代,联”五步) (1)从方程组中选出一个系数比较简单的方程,将这个方程中
的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示 出来,即写成y=ax+b的形式,即“变”. (2)将y=ax+b代入到另一个方程中,消去y,得到一个关于x的
3. 列二元一次方程组解应用题的一般步骤(概括为“审,找, 列,解,答”五步) (1)审:通过审题,把实际问题抽象成数学问题,分析已知数 和未知数,并用字母表示其中的两个未知数. (2)找:找出能够表示题意的两个相等关系. (3)列:根据这两个相等关系列出必需的代数式,从而列出方 程组. (4)解:解这个方程组,求出两个未知数的值. (5)答:在对求出的方程组的解做出是否合理的判断的基础上, 写出答案.

第2节消元第一课时代入消元法(1)

第2节消元第一课时代入消元法(1)

第2节 消元第一课时 代入消元法(1)要点突破一、代入法解二元一次方程组由二元一次方程组中的一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。

代入法解二元一次方程组需要注意以下几点:①正确用代入法解二元一次方程组的一般步骤;②从方程组中选一个系数比较简单的方程变形;③求得的两个未知数的值要用大括号括起来。

二、用代入法解二元一次方程组的一般步骤:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y =ax +b (或x =ay +b )的形式。

②将y =ax +b (或x =ay +b )代入另一个方程中,消去y (或x )得到一个关于关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把求得的x (或y )的值代入y =ax +b (或x =ay +b )中,求出y (或x )的值。

⑤把求得的x ,y 的值用“{”联立起来,就是方程组的解。

典例剖析:例 (2007年南京市)解方程组425x y x y +=⎧⎨-=⎩ 思路探索:由x +y =4变形得y =4-x ③,把③代入②求得x 的值。

解析:由①得:y =4-x ③把③代入②得:2(4)5x x --=解得:x =3把x =3代入③得:y =1∴这个方程组的解为31x y =⎧⎨=⎩规律总结:利用代入法解二元一次方程组的一般步骤:1°选择一个系数比较简单的二元一次方程,把这个方程化成y kx b =+(或x ky b =+)的形式。

2°将y kx b =+(或x ky b =+)代入另一个方程,得到一个关于x (或y )的一元一次方程,解这个一元一次方程,求出x (或y )的值。

3°将求得的x (或y )的值代入y kx b =+(或x ky b =+)中,求出另一个未知数。

代入消元法解二元一次方程组步骤

代入消元法解二元一次方程组步骤

代入消元法解二元一次方程组步骤
代入消元法是一种解二元一次方程组的方法,它的步骤如下:
1. 将其中一个方程解出其中一个变量,通常选择其中一个方程中的一个变量(例如x)来解出。

写出该方程的解法。

2. 将所得的解代入另一个方程中,将另一个方程中的变量(例如y)用所得的解代替。

这样就得到了一个只包含一个变量(例如y)的一次方程。

3. 解这个只包含一个变量的一次方程,求出该变量的值。

4. 将求得的变量的值代回到已经解出的方程中,求出另一个变量的值。

5. 将该变量的值和这个另一个变量的值都代入到原来的方程组中,检验是否满足原方程组。

6. 如果满足原方程组,则解得最终解;如果不满足,则表示没有解。

这样,通过代入消元法,可以求得二元一次方程组的解。

二元一次方程组的解法(代入消元法)教学设计

二元一次方程组的解法(代入消元法)教学设计

7.2二元一次方程组的解法(代入消元法)教学设计一、教学内容:初中数学华东师大2011课标版七年级下册第七章第二节二元一次方程组的解法。

二、教学目标1、使学生通过探求二元一次方程组的解法,经历把“二元”转化为“一元”的过程,从而初步体会消元的思想;2、了解把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。

三、教学重难点:重点:用代入消元法解二元一次方程组的解题步骤;难点:如何正确消元。

四、教具、学具准备:教具:课件、电脑投影、导学案等;学具:签字笔、草稿纸、课本等。

五、设计理念这一堂课的学习目标是“探索二元一次方程组的解法”,通过学生身边熟悉的事情,建构“问题情境”,使学生感受到问题是“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的“最近发展区”,愉悦地接受教学活动.这是我备课时的设计意图。

六、教学流程(一)创设情境上课一开始,我就把学生学过的、熟悉的问题提出来,引导学生解答,说:“同学们,在生活中,我们时常遇到这样的问题,你能用前面我们学过的知识解决这个问题吗?问题1:小明到商店购买签字笔和作业本,签字笔价格是作业本价格的2倍,小明购买一支笔和一个作业本共花了6元钱,请你算一算签字笔和作业本的价格分别是多少元?学生活动:独立完成问题1的解答教师活动:通过巡视,发现问题的解答有可能会出现两种,一种是列一元一次方程解,另一种是列二元一次方程解,分别让学生将两种解法写在黑板上。

师:“同学们,黑板上两位同学用了不同的方法来解决这个问题,你认为哪一种方法是正确的呢?那我想请一位同学来说一说这两种方法分别是用到了前面我们学过的什么知识?那列出来的这个二元一次方程组和这个一元一次方程有没有什么联系呢,我们又该如何求解呢?这就是今天我们要一起探讨的内容,请同学们翻开书27页,并熟悉本节课的学习目标。

设计意图:当学生看到自己所学的知识与“现实世界”息息相关时,学习通常会更主动。

“与其拉马喝水,不如让它口渴”。

8.2《消元——解二元一次方程组》同步练习题(2)及答案

8.2《消元——解二元一次方程组》同步练习题(2)及答案


二. 选择题 10. 若 y=kx+b中,当 x=-1 时,y=1;当 x=2 时,y=-2,则 k 与 b 为( )
k 1 A. b 1
k 1 B. b 0
k 1 C. b 2
k 1 D. b 4
x 1
ax by 0
8.2《消元——解二元一次方程组》同步练习题(2)
知识点:
1、代入法:用代入消元法解二元一次方程组的步骤: (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用 含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
13. 对于方程组 4x 5y 17 ,用加减法消去 x,得到的方程是(

A. 2y=-2
B. 2y=-36 C. 12y=-2 D. 12y=- 36
14.
将方程-
1 2
x+y=1中
x
的系数变为
5,则以下正确的是(

A. 5x+y=7
B. 5x+10y=10 C. 5x-10y=10 D. 5x-10y=-10
∴原方程组解为 x 2 y 2
(4)解:由②得:x=3y-7……③ ③代入① :2(3y-7)+5y=8 11y=22 y=2
把 y=2代入③得 x=-1 ∴原方程组解为
x 1 y 2
16. (1)解:②×4-①×3 得:11y=-33 ∴y=-3 把 y=-3 代入①得:4x-9=3 x=3
7. 二元一次方程组 kx 2 y 5 的解是方程 x-y=1的解,则 k=

求解二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

求解二元一次方程组(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练(北师大版)

专题5.4求解二元一次方程组(知识梳理与考点分类讲解)【知识点1】代入消元法解二元一次方程组代入消元法:(1)定义:将其中一个方程组中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程组,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.(2)用代入消元法解二元一次方程组的一般步骤:步骤具体做法目的注意事项(1)变形选取一个系数比较简单的二元一次方程变形,用含一个未知数的式子表示另一个未知数变形为x=ax+b(或x=ay+b)(a,b 是常数,a≠0)的形式一般选未知数系数比较简单的方程变形(2)代入把y=ax+B(或x=ay+b)代入另一个没有变形的方程消去一个未知数,将二元一次方程组转化为一元一次方程变形后的方程只能代入另一个方程(或另一个方程变形后的方程)(3)求解解消元后的一元一次方程求出一个未知数的值去括号时不能漏乘,移项时所移的项要变号(4)回代把求得的未知数的值代入步骤(1)中变形后的方程求出另一个未知数的值一般代入变形后的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:将方程组中的一个二元一次方程写成用含一个未知数的式子表示另一个未知数的形式,是用代入法解二元一次方程组的前提和关键,其方法就是利用等式的性质将其变形为y=ax+b(或x=ay+b)的形式,其中a,b 为常数,a≠0.用含一个未知数的式子表示另一个未知数后,应代入另一个方程求解,否则只能得到一个恒等式,并不能求出方程组的解.【知识点2】加减消元法解二元一次方程组1.加减消元法的定义通过将两个方程相加(减)消去其中一个未知数,将二元一次方程组转化为一元一次方程来解,这种解二元一次方程组的方法叫做加减消元法,简称加减法.2.用加减消元法解二元一次方程组的一般步骤步骤具体做法目的注意事项(1)变形根据绝对值较小的未知数(同一个未知数)的系数的最小公倍数,给方程的两边都乘适当的数.使某一个未知数在两个方程中的系数相等或互为相反数.给某个方程乘一个数时,方程两边的每一项都要和这个数相乘(2)代入两个方程中同一个未知数的系数互为相反数时,将两个方程相加;同一个未知数的系数相等时,将两个方程相减.消去一个未知数,将二元一次方程组转化为一元一次方程把两个方程相加(减)时,一定要把两个方程两边分别相加(减).(3)求解解消元后的一元一次方程求出一个未知数的值(4)回代把求得的未知数的值代入方程组中某个较简单的方程求出另一个未知数的值回代时选择系数较简单的方程(5)写解把两个未知数的值用大括号联立起来特别提醒:1.两个方程同一未知数的系数的绝对值相等或成倍数关系时,解方程组应考虑用加减消元法.2.如果同一未知数的系数的绝对值既不相等又不成倍数关系,我们应设法将一个未知数的系数的绝对值转化为相等关系.3.用加减法时,一般选择系数比较简单(同一未知数的系数的绝对值相等或成倍数关系)的未知数作为消元对象.【考点目录】【考点1】代入消元法解二元一次方程组;【考点2】加减消元法解二元一次方程组;【考点3】同解方程组;【考点4】整体思想解二元一次方程组;【考点5】求解二元一次方程组——错题复原问题;【考点6】求解二元一次方程组——参数问题;【考点7】构造二元一次方程组求解。

《8.2消元——解二元一次方程组》第1课时教案

《8.2消元——解二元一次方程组》第1课时教案

《8.2消元——解二元一次方程组》第1课时教案《《8.2消元——解二元一次方程组》第1课时教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、内容及内容解析:1.内容:“用代入法解二元一次方程组”是人教实验版教科书七年级下册第八章第二节的第一课时.2.内容解析:本节内容是在学习了一元一次方程的基础上的进一步深入,本节对比根据题意列出的二元一次方程组和一元一次方程,发现把方程组中一个方程变形为用含一个未知数的式子表示另一个未知数后,将它代入方程组中的另一个方程,原来的二元一次方程组就转化为一元一次方程.这种转化对解二元一次方程很重要,它的基本思路是“将未知数的个数由多化少,逐一解决”的消元思想. 通过代入法,减少了未知数的个数,使多元方程最终转化为一元方程,达到消元的目的.在提出消元思想后,又归纳得出代入法的基本步骤,既渗透了算法中程序化的思想,又有助于培养学生良好的学习习惯,提高思考的深度.基于此,本节课的教学重点是:会用代入消元法解简单的二元一次方程组,能体会“代入法”解二元一次方程组的基本思路是“消元“.二、目标及目标解析:1.目标(1).会运用代入消元法解二元一次方程组.(2).理解代入消元法的基本思想体现的“化未知为已知”的化归思想方法.2.目标解析达成目标(1)的标志是:学生掌握代入消元法解二元一次方程组的一般步骤,并能正确的求出二元一次方程组的解.培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较简单的方程进行变形.达成目标(2)的标志是:学生通过探索,逐步发现解方程的基本思想是“消元”,化二元一次方程组为一元一次方程.通过代入消元,使学生初步理解把未知转化为已知和复杂问题转化为简单问题的思想方法.三、问题诊断分析:1、教学时,应结合具体的例子指出这里解二元一次方程组的关键在于消元,即把“二元”转化为“一元”.我们是通过等量代换的方法,消去一个未知数,从而求得原方程组的解.2、用代入法解二元一次方程组时,学生选择哪一个方程进行变形,容易出现不一样的选择.因此,教师讲解例题时要注意由简到繁,由易到难,逐步加深,而且要特别强调解方程组时应努力使变形后的方程比较简单和代入后化简比较容易.这样不仅可以迅速解方程,而且可以减少错误.基于此,本节的教学难点是:灵活运用代入法解二元一次方程组.四、教学过程设计:1.创设情境,复习导入二元一次方程组:有___个未知数,含有每个未知数的项的次数都是____,并且一共有____个方程的方程组.二元一次方程的解:使二元一次方程两边的值相等的______________.二元一次方程组的解:二元一次方程组的两个方程的________.2.探究新知问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队为了争取较好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?问题一:你会用一元一次方程解决这个问题吗?解:设胜x场,则有:.问题二:你会用二元一次方程组解决这个问题吗?解:设胜x场,负y场,则问题三:怎样求得二元一次方程组的解呢?(设计意图:这题说明要想求出两个未知数的值,必须先知道其中一个未知数的值.这为用代入法解二元一次方程组打下基础:即消去一个未知数的值,转化为一元一次方程去解。

消元--解二元一次方程组知识点总结(含例题)

消元--解二元一次方程组知识点总结(含例题)

消元—解二元一次方程组知识点教案1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K 知识参考答案:1.消元 2.加减法一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y =ax +b (或x =ay +b ),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y x x y =-⎧⎨-=⎩时,代入正确的是 A .x -2-x =4B .x -2-2x =4C .x -2+2x =4D .x -2+x =4 【答案】C【解析】124y x x y =-⎧⎨-=⎩①②,把①代入②得:x -2(1-x )=4,整理得:x -2+2x =4.故选C . 二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:6936416x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.。

【暑假分层作业】第08练 二元一次方程组及其解法-2022年七年级数学(人教版)(答案及解析)

【暑假分层作业】第08练 二元一次方程组及其解法-2022年七年级数学(人教版)(答案及解析)

第08练二元一次方程组及其解法知识点一、二元一次方程:(1)二元一次方程的定义含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程(2)二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.(3)二元一次方程有无数解.求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.知识点二、二元一次方程组的定义:(1)二元一次方程组的定义:由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组.(2)二元一次方程组也满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.知识点三、二元一次方程组的解法:(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x (或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用{x=ax=b的形式表示.一、单选题1.方程组34225x yx y+=⎧⎨-=⎩的解是()A.23xy=⎧⎨=⎩B.21xy=⎧⎨=-⎩C.11xy=⎧⎨=⎩D.11xy=⎧⎨=-⎩【答案】B【解析】【分析】由2x-y=5可得y=2x-5,将方程y=2x-5代入方程3x+4y=2进行求解,得到x的值,再将x 的值代入y=2x-5求解即可.【详解】解:由2x-y=5可得y=2x-5将方程y=2x-5代入方程3x+4y=2得:3x+4(2x-5)=2,解得:x=2,将x=2代入方程y=2x-5得:y=2×2-5=-1,∴该方程组的解为21x y =⎧⎨=-⎩故选:B . 【点睛】此题考查了二元一次方程组的求解能力,关键是能根据题目选择合适的消元方法进行计算.2.已知关于x ,y 的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解为24x y =⎧⎨=⎩,则关于方程组111222(1)2(1)3(1)2(1)3a x b y c a x b y c ++-=⎧⎨++-=⎩的解为( ) A .57x y =⎧⎨=⎩B .513x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .17x y =⎧⎨=⎩【答案】A 【解析】 【分析】将方程组变形,结合题意得出()()11232143x y ⎧+=⎪⎪⎨⎪-=⎪⎩,即可求出x ,y 的值.【详解】解:方程组()()()()11122212131213a x b y c a x b y c ⎧++-=⎪⎨++-=⎪⎩变形为()()()()111222121133121133a x b y c a x b y c⎧++-=⎪⎪⎨⎪++-=⎪⎩,设()()113213x m y n ⎧+=⎪⎪⎨⎪-=⎪⎩则111222a m b n c a m b n c +=⎧⎨+=⎩,x 和y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,∴24m n =⎧⎨=⎩,∴()()11232143x y ⎧+=⎪⎪⎨⎪-=⎪⎩, 解得57x y =⎧⎨=⎩,故A 正确.故选:A .【点睛】本题主要考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.3.若二元一次联立方程式2143221x yx y+=⎧⎨-+=⎩的解为,x a y b==,则a b+之值()A.192B.212C.7 D.13【答案】D【解析】【分析】先求出二元一次方程组的解,然后代入代数式求解即可.【详解】解:解方程组214 3221x yx y+=⎧⎨-+=⎩得112 xy=⎧⎨=⎩因为二元一次方程组2143221x yx y+=⎧⎨-+=⎩的解为x ay b=⎧⎨=⎩,所以a=1,b=12,所以a+b=13.故选D.【点睛】题目主要考查解二元一次方程组,求代数式的值,熟练掌握解二元一次方程组的方法是解题关键.4.已知关于x,y的方程组34754x yx y m+=⎧⎨-=⎩的解互为相反数,则m的值为()A.63 B.7 C.-7 D.-63【答案】D【解析】【分析】根据相反数的定义得到x=-y,代入第一个方程求出x、y的值,再代入第二个方程求出m.【详解】解:∵方程组34754x yx y m+=⎧⎨-=⎩的解互为相反数,∴x=-y,∵3x +4y =7,∴-3y +4y =7,得y =7, ∴x =-7,∴m =5x -4y =-35-28=-63, 故选:D . 【点睛】此题考查了解二元一次方程组的解法,正确理解题意得到x=-y 是解题的关键.5.已知关于x ,y 的方程组1427x y ax y a +=+⎧⎨-=--⎩,则下列结论中正确的是:①当0a =时方程组的解是方程1x y +=的解;②当x y =时,52a =-;③当1y x =,则a 的值为1或3-;④不论a 取什么实数,3x y -的值始终不变.( ) A .①②③ B .①②④C .②③④D .①③④【答案】B 【解析】 【分析】①把a 看作已知数表示出方程组的解,把0a =代入求出x 与y 的值,代入方程检验即可; ②令x y =求出a 的值,即可作出判断;③把x 与y 代入3x y -中计算得到结果,判断即可; ④令23x y =求出a 的值,判断即可. 【详解】解:1427x y a x y a +=+⎧⎨-=--⎩,据题意得:336x a =-, 解得:2=-x a ,把2=-x a 代入方程14x y a +=+得:33y a =+, 当0a =时,2x =-,3y =,把2x =-,3y =代入1x y +=得:左边231=-+=,右边1=, 所以2x =-,3y =是方程的解,故①正确; 当x y =时,233a a -=+, 即52a =-,故②正确;当1y x =时,()3321a a +-=,即1a =±或3,故③错误336339x y a a -=---=-,无论a 为什么实数,3x y -的值始终不变为-9,故④正确.∴正确的结论是:①②④,故选:B . 【点睛】本题主要考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.6.如果32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,则a 2008+2b 2008的值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】将方程组的解代入方程组可得关于a 、b 的二元一次方程组321325a b a b -=⎧⎨+=⎩,再求解方程组即可求解. 【详解】解:∵32x y =⎧⎨=-⎩是方程组15ax by ax by +=⎧⎨-=⎩的解,∴321325a b a b -=⎧⎨+=⎩①②,①+②得,a =1, 将a =1代入①得,b =1, ∴a 2008+2b 2008=1+2=3, 故选:C . 【点睛】本题考查了二元一次方程组的解,熟练掌握加减消元法和代入消元法解二元一次方程组是解题的关键.二、填空题7.对于实数,x y ,规定新运算:1x y ax by *=+-,其中,a b 是常数.若124*=,()2*310-=,则a b *= ___________. 【答案】9 【解析】 【分析】先根据题意得到关于a 、b 的二元一次方程组21423110a b a b +-=⎧⎨-+-=⎩,求出a 、b 的值,然后根据221a b a b *=+-进行求解即可. 【详解】解:由题意得:21423110a b a b +-=⎧⎨-+-=⎩,解得13a b =-⎧⎨=⎩,∴()222211319a b a b *=+-=-+-=, 故答案为:9. 【点睛】本题主要考查了新定义下的实数运算,解二元一次方程组,正确理解题意求出a 、b 的值是解题的关键.8.若x =a ,y =b 是方程组342,25x y x y +=⎧⎨-=⎩的解,则22a b -=______.【答案】3 【解析】 【分析】先解方程组求出x 和y 的值,然后代入计算即可. 【详解】解:34225x y x y +=⎧⎨-=⎩①②,①+②×4,得 11x =22, ∴x =2. 把代入②,得 4-y =5, ∴y =-1,∵x =a ,y =b 是方程组342,25x y x y +=⎧⎨-=⎩的解,∴a =2,b =-1, ∴22a b -=4-1=3. 故答案为:3. 【点睛】本题考查了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式. 9.若()22x y -与25x y +-互为相反数,则()2021x y -=______.【答案】1- 【解析】 【分析】由题意,得到()22250x y x y -++-=,然后利用非负数的性质,求出x 、y 的值,再代入计算,即可得到答案. 【详解】解:∵()22x y -与|25|x y +-互为相反数, ∴()22250x y x y -++-=, ∴20x y -=,250x y +-=,联合两个方程,解得12x y =⎧⎨=⎩,∴()20212021 (12)1x y -=-=-故答案为:-1. 【点睛】本题考查了相反数的定义,绝对值的非负性,解题的关键是熟练运用非负数的性质进行解题. 10.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(0m >,0n >),得到正方形A B C D ''''及其内部的点,其中点A ,B 的对应点分别为A ',B ',则=a ______,m =______,n =______.若正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,则点F 的坐标为______.【答案】12,12,2,(1,4) 【解析】 【分析】首先根据点A 到A ',B 到B '的点的坐标可得方程组3102a m a n -+=-⎧⎨⨯+=⎩,3202a m a n +=⎧⎨⨯+=⎩,解可得a 、m 、n 的值,设F 点的坐标为(x ,y ),点F '、点F 重合可列出方程组,再解可得F 点坐标. 【详解】解:将点A (-3,0)的横、纵坐标都乘以实数a ,再将得到的点向右平移m 个单位,向上平移n 个单位后的坐标为:(- 3a + m , n ), 又知点A '的坐标为(-1,2), ∴3102a m a n -+=-⎧⎨⨯+=⎩①, 解得2n =,将点B (3,0)的横、纵坐标都乘以实数a ,再将得到的点向右平移m 个单位,向上平移n 个单位后的坐标为:(3a + m ,n ), 又知点B '的坐标为(2,2), ∴3202a m a n +=⎧⎨⨯+=⎩②,①+②得:2m = 1, 解得12m =,将12m =代入②得:1322a +=,解得12a =, ∴正方形进行的操作为:把每个点的横、纵坐标都乘以实数12,再将得到的点向右平移12个单位,向上平移2个单位,设点F 的坐标为(x ,y ),依题意得1122122x y y y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14x y =⎧⎨=⎩,∴点F 的坐标为(1,4). 故答案为:12,12,2,(1,4). 【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组. 11.对于x 、y 定义一种新运算“※”:x y ax by =+※,其中a 、b 为常数,等式右边是通常的加法和乘法的运算,已知5227=※,3419=※,那么23=※_______. 【答案】13 【解析】 【分析】利用题中的新定义化简已知等式求出a 与b 的值,即可确定出所求. 【详解】解:根据题中的新定义得:52273419a b a b +=⎧⎨+=⎩①②,①×2﹣②得:7a =35, 解得:a =5,把a =5代入①得:b =1, 则23=※2×5+3×1=13. 故答案为13. 【点睛】本题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解答本题的关键.12.已知关于x ,y 的二元一次方程组3226x y kx y k +=⎧⎨-=+⎩有下列说法:①当x 与y 相等时,解得k =﹣4;②当x 与y 互为相反数时,解得k =3;③若4x •8y =32,则k =11;④无论k 为何值,x 与y 的值一定满足关系式x +5y +12=0,其中正确的序号是_____. 【答案】①②③④ 【解析】 【分析】用代入消元法先求出方程组的解,①根据x =y 列出方程,求出a 即可判断;②根据互为相反数的两个数的和为0,列出方程,求出a 即可判断;③把底数统一化成a ,等式左右两边的底数相同时,指数也相同,得到x ,y 的方程,把方程组的解代入求出a ;④在原方程中,我们消去a ,即可得到x ,y 的关系. 【详解】解:3226x y k x y k +=⎧⎨-=+⎩①②,由②得:x =2y +k +6③, 把③代入①中,得:y =187k --④,把④代入③中,得:x =567k +,∴原方程组的解为567187k x k y +⎧=⎪⎪⎨--⎪=⎪⎩.①当x 与y 相等时,x =y , 即567k +=187k --,解得:k =﹣4,∴①正确;②∵方程的两根互为相反数,∴x +y =0, 即567k ++187k --=0,解得:k =3,∴②正确;③4x •8y =32,∴(22)x •(23)y =25,∴22x •23y =25,∴22x +3y =25,∴2x +3y =5,将方程组的解代入得: 2×567k ++3×187k --=5,解得:k =11,∴③正确;④3226x y k x y k +=⎧⎨-=+⎩①②,①﹣②×2得x +5y =﹣12,即x +5y +12=0.∴④正确.综上所述,①②③④都正确.故答案为:①②③④.【点睛】本题考查二元一次方程组的解,解二元一次方程组,解一元一次方程,熟练掌握用加减法求解二元一次方程组是解题的关键.三、解答题13.解二元一次方程组:3324x y x y -=⎧⎨+=⎩. 【答案】21x y =⎧⎨=-⎩【解析】【分析】利用加减消元法即可求解.【详解】3324x y x y -=⎧⎨+=⎩①②, ①×2+②得:5x =10,解得x =2;将x =2代入①中,得y =-1,∴方程组的解为:21x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组的知识,掌握加减消元法、代入消元法是解答本题的关键. 14.解方程组:(1)11912435x y x y -=⎧⎨-+=-⎩(2)()()22341312x y x y y ⎧+=⎪⎨⎪--=--⎩【答案】(1)373x y =⎧⎪⎨=⎪⎩(2)23x y =⎧⎨=⎩【解析】【分析】利用两个整式加减消元或者代入消元来解二元一次方程组;(1)11912435x y x y -=⎧⎨-+=-⎩①②②式×3+①式得,x =3,将x =3,代入①式得,y =73, 故方程组的解为373x y =⎧⎪⎨=⎪⎩; (2)()()22341312x y x y y ⎧+=⎪⎨⎪--=--⎩①② ②式化简后得,4x -y =5 ③,①式×3+③式得,x =2,将x =2代入①得,y =3,故方程组的解为23x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,熟练掌握整式加减消元或代入消元是解题的关键. 15.北京冬奥会、冬残奥会期间,大批的大学生志愿者参与服务工作,为双奥的成功举办做出巨大贡献.同时,“绿色办奥”是北京冬奥会、冬残奥会四大办奥理念之一.期间,节能与清洁能源车辆占全部赛事保障车辆的84.9%,为历届冬奥会最高.冬奥会开幕式当天,北京大学组织本校全体参与开幕式活动的志愿者统一乘车去国家体育场鸟巢,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?北京大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【答案】(1)计划调配36座新能源客车6辆,北京大学共有218名志愿者;(2)调配36座新能源客车3辆,调配22座新能源客车5辆.【解析】【分析】(1)根据题意,找到等量关系式,列一元一次方程求解即可;(2)由(1)得,志愿者有218人,根据题意,列二元一次方程,找整数解即可.(1)解:设计划调配36座新能源客车x 辆,则调配22座新能源客车(x +4)辆,由题意,得36x +2=22(x +4)-2解得x=6则志愿者的人数为:36x+2=36×6+2=218答:计划调配36座新能源客车6辆,北京大学共有218名志愿者.(2)解:设调配36座新能源客车a辆,则调配22座新能源客车b辆,由题意,得36a+22b=218∴18a+11b=109∵a,b为正整数∴当a=3,b=5时,既保证每人有座,又保证每车不空座答:调配36座新能源客车3辆,调配22座新能源客车5辆.【点睛】本题考查一元一次方程和二元一次方程的实际应用,根据题意找到等量关系式是解决问题的关键.16.将1到2021之间的所有奇数按顺序排成下图:记Pmn表示第m行第n个数,如P23表示第2行第3个数是17.(1)P45=;(2)若Pmn=2021,则m=,n=;(3)将表格中的4个阴影格子看成一个整体(“T”字)并平移,所覆盖的4个数之和能否等于200若能,求出4个数中的最大数;若不能,请说明理由.【答案】(1)45;(2)169,3;(3)覆盖的4个数之和能等于200【解析】【分析】(1)根据题意可知P45表示第4行第5个数,每行都有6个数,所有的数字都是奇数,然后即可计算出相应的值;(2)根据题意,可以得到2[6(m﹣1)+n]﹣1=2021,然后m为整数,1≤n≤6,即可得到m、n的值;(3)先判断,然后设4个阴影格子中的数分别为2n﹣3、2n﹣1、2n+1、2n+11,即可列出相应的方程,然后求解即可说明理由.(1)解:(1)由题意可得,P 45=2×(6×3+5)﹣1=45, 故答案为:45;(2)解:∵Pmn =2021,∴2[6(m ﹣1)+n ]﹣1=2021,∴12m +2n ﹣13=2021,∵m 为正整数,1≤n ≤6,∴m =169,n =3,故答案为:169,3;(3)解:所覆盖的4个数之和能等于200,理由:设4个阴影格子中的数分别为2n ﹣3、2n ﹣1、2n +1、2n +11,由题意可得(2n ﹣3)+(2n ﹣1)+(2n +1)+(2n +11)=200,解得:n =24,∴所覆盖的4个数之和能等于200.【点睛】此题考查了数字类规律的运算,有理数的混合运算,解一元一次方程,正确理解数字的排列规律并应用是解题的关键.17.对于任意的实数x ,y ,规定运算“※”如下:x y ax by =+※.(1)当3a =,4b =时,求12-※()的值; (2)若5316=※,232-=-※(),求a 与b 的值.【答案】(1)-5(2)a 的值为2,b 的值为2【解析】【分析】(1)根据规定运算“※”,进行计算即可解答;(2)根据题意可得关于a ,b 的二元一次方程组,然后进行计算即可解答.(1)当a =3,b =4时,∴1※(-2)=3×1+4×(-2)=-5,∴1※(-2)的值为-5;(2)∵5※3=16,2※(-3)=-2,∴5316232a b a b +⎧⎨--⎩=①=②, ①+②得:2a +5a=14解得a =2,把a =2代入①得:10+3b =16,解得b =2,∴原方程组的解为22a b ⎧⎨⎩==, ∴a 的值为2,b 的值为2.【点睛】本题考查了实数的运算,解二元一次方程组,熟练掌握解二元一次方程的步骤,以及理解材料中规定的运算是解题的关键.18.备解二元一次方程组4*8x y x y -=⎧⎨+=⎩,现系数“*”印刷不清楚. (1)李宁同学把“*”当成3,请你帮助李宁解二元一次方程组438x y x y -=⎧⎨+=⎩; (2)数学老师说:“你猜错了”,该题标准答案的结果x 、y 是一对相反数,你知道原题中“*”是 .【答案】(1)31x y ==-⎧⎨⎩(2)5【解析】【分析】(1)将方程组中的两个方程相加消掉未知数y ,得到x 的一元一次方程,求出x 的值,把x 的值代入第一个方程,求出y 的值,即得方程组的解;(2)用x -y =4与x +y =0组成方程组,求出x 、y 的值,把x 、y 的值代入*x +y =8,求出*的值.(1)438x y x y -=⎧⎨+=⎩①②, ①+②得,4x =12,把x =3代入①,得,3-y =4,∴y =-1,∴31x y ==-⎧⎨⎩; (2)04x y x y +=⎧⎨-=⎩①②, ①+②,得,2x =4,∴x =2,把x =2代入①,得,2+y =0,∴y =-2,∴22x y =⎧⎨=-⎩, ∴228*-=,∴5*=.故答案为:5.【点睛】本题主要考查了二元一次方程的解,解二元一次方程组,熟练掌握二元一次方程的解的定义,运用加减消元法解二元一次方程组,是解决问题的关键.1.定义新运算:对于任意实数a ,b 都有a ※b =am -bn ,等式右边是通常的减法和乘法运算.若3※2=5,1※(-2)=-1,则(-3)※1的值为( )A .-2B .-4C .-7D .-11 【答案】A【解析】【分析】按照定义新运算的法则,先求出m 和n 的值,再把算式转化为有理数运算即可.解:根据题意,3※2=5,1※(-2)=-1,得,32521m n m n -=⎧⎨+=-⎩, 解得,11m n =⎧⎨=-⎩, 则(-3)※1=(-3)×1-1×(-1)=-2,故选:A .【点睛】本题考查了定义新运算,二元一次方程组和有理数混合计算,解题关键是根据定义新运算法则把两个等式转化为二元一次方程组,求出m 、n 的值.2.已知关于x ,y 的方程组25241x y a x y a +=-⎧⎨-=-⎩给出下列结论:正确的有_____.(填序号) ①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值,x ,y 的值不可能是互为相反数;③x ,y 都为正整数的解有3对【答案】①②【解析】【分析】①将a=1代入方程组的解,求出方程组的解,即可做出判断;②将a 看做已知数求出方程组的解表示出x 与y ,即可做出判断;③将a 看做已知数求出方程组的解表示出x 与y ,即可判断正整数解;【详解】解关于x ,y 的方程组25241x y a x y a +=-⎧⎨-=-⎩得2122x a y a =+⎧⎨=-⎩①当1a =时,原方程组的解是30x y =⎧⎨=⎩,此时30x y =⎧⎨=⎩是213x y a +=+=的解,故①正确; ②原方程组的解是2122x a y a =+⎧⎨=-⎩,∴30x y +=≠,即无论a 取何值,x ,y 的值不可能是互为相反数,故②正确;③x ,y 都为正整数,则210220x a y a =+>⎧⎨=->⎩,解得112a -<<,正整数解分别是当10,2a a ==时,故只有两组,故③错误;故答案为①②【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.3.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.【答案】(1)见解析;(2)a和b的值分别为2,5.【解析】【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k的值即可;(2)根据加减消元法的过程确定出a与b的值即可.【详解】解:(1)选择甲,3274232m n km n+=-⎧⎨+=-⎩①②,①×3﹣②×2得:5m=21k﹣8,解得:m=2185k-,②×3﹣①×2得:5n=2﹣14k,解得:n=2145k-,代入m+n=3得:21821455k k--+=3,去分母得:21k﹣8+2﹣14k=15,移项合并得:7k=21,解得:k=3;选择乙,3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m +5n =7k ﹣6,解得:m +n =7-65k , 代入m +n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m +2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.[阅读材料]善于思考的小明在解方程组253(1)4115(2)x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程(2)变形:4105x y y ++=,即()2255(3)x y y ++=,把方程(1)代入(3)得:235y ⨯+=,所以1y =-,将1y =-代入(1)得4x =,所以原方程组的解为41x y =⎧⎨=-⎩.21 [解决问题](1)模仿小明的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩, (2)已知x ,y 满足方程组2222321250425x xy y x xy y ⎧-+=⎨++=⎩,求224x y +的值. 【答案】(1)原方程组的解为32x y =⎧⎨=⎩;(2)22420x y += 【解析】【分析】(1)根据题意,利用整体的思想进行解方程组,即可得到答案;(2)根据题意,利用整体的思想进行解方程组,即可得到答案.【详解】解:()13259419x y x y -=⎧⎨-=⎩①② 将方程②变形得:()332219x y y -+=③把方程①代入③得:35219y ⨯+=,所以2,y =将2y =代入①得3x =,所以原方程组的解为32x y =⎧⎨=⎩; ()22222321250425x xy y x xy y ⎧-+=⎨++=⎩①②, 把方程①变形,得到223(4)550x xy y xy ++-=③,然后把②代入③,得325550xy ⨯-=,∴5xy =,∴22425520x y +=-=;【点睛】本题考查了方程组的“整体代入”的解法.整体代入法,就是变形组中的一个方程,使该方程左边变形为另一个方程的左边的倍数加一个未知数的形式,整体代入,求出一个未知数,再代入求出另一个未知数.。

第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。

二元一次方程组(代入消元法)

二元一次方程组(代入消元法)

(4)
4(x y 1) 3(1 y) 2,
x 2
y 3
2.
知识梳理
• 这节课我们学习了 什么知识?
1、二元一次方程组
代入消元法 一元一次方程
转化
2、代入消元法的一般步骤:
变 代 求写
3、思想方法:转化思想、消元思想、 1 方程(组)思想.
作业
教材第97页第1、2题
例题分析:
例1 解方程组
x –y = 3 ① 3x -8 y = 14 ②
用代入法解二元一次 方程组的一般步骤
解:由①得:x = 3+ y ③ 变
1、将方程组里的一个方程变 形,用含有一个未知数的式子
把③代入②得:
表示另一个未知数;
3(3+y)– 8y= 14 代
解之得:
2、用这个式子代替另一个方 程中相应的未知数,得到一个 一元一次方程,求得一个未知
练习:98面,第1题。
谈谈过程:
解方程组
X+Y=22 ① 2X+Y=40 ②
解:由①得 y = 22 – x. ③
把③代入②得
2x + (22-x) =40.
解之得 x= 18.
把x = 18代入③,得
y =4
∴方程组的解是
x = 18 y=4
归纳 上面的解方程组的基本思路是什
么?基本步骤有哪些?
8.2 消元
——用代入法解二元一次方程组 (第1课时)
问题情境
篮球联赛中,每场比赛都要分出胜负,每队胜一场 得2分,负一场得1分,某队在全部22场比赛中得 到40分,那么这个队胜负场数应分别是多少? 你
会用你学过的一元一次方程解决这个问题吗?

代入法解二元一次方程组教案

代入法解二元一次方程组教案

代入法解二元一次方程组教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!代入法解二元一次方程组教案代入法解二元一次方程组教案(通用5篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。

二元一次方程组的消元方法

二元一次方程组的消元方法

二元一次方程组的消元方法作者:李章来源:《初中生(一年级)》2009年第05期解二元一次方程组最基本的思路是消元,通过消元将二元一次方程组转化为一元一次方程来解决.那么消元的途径有哪些呢?一般来说,有以下几种常见的消元方法.一、代入消元法例1解方程组:x-4y=-1,①2x+y=16. ②分析:如果将x-4y=-1写成用一个未知数来表示另一个未知数的形式,那么用x表示y,还是用y表示x好呢?观察方程组,因为x的系数为正数,且系数也较小,所以用y来表示x较好.解:由①,得x= 4y-1,③把③代入②,得2(4y-1)+y=16,解得y= 2.把y=2代入③,得x=7.所以方程组的解为x=7,y=2.评点:用代入消元法求解二元一次方程的关键是选择哪一个方程变形,消什么元.选得恰当往往会使计算简单,而且不易出错.选取的原则是:①选择未知数的系数是1或-l的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程.二、加减消元法例2解方程组:3x+2y=5,①2x-y=8. ②分析:本题虽然可以把②式变形后用代入消元法求解,但考虑到y的两个系数的符号相反且绝对值的差是1,所以用加减消元法解较简单.解:将方程②两边同乘以2,得4x-2y=16,③把③和①相加,得7x=21,解得x=3.把x=3代入②,得y=-2.所以原方程组的解是x=3,y=-2.评点:用加减消元法解二元一次方程组的一般步骤是:①方程组的两个方程中,如果同一个未知数的系数既不相等,又不是互为相反数,就用适当的数乘以方程的两边,使其中的一个未知数的系数相等或互为相反数;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程;④将求得的未知数的值代入原方程组中的任意一个方程,求出另一个未知数,从而得到方程组的解.加减消元法的步骤可以简单地归纳为下图:三、换元消元法例3解方程组:+ =13, - =3.分析:观察方程组,不难发现x+y和x-y都是以整体的形式出现的,故可通过换元的方法解题.设x+y=m,x-y=n,则原方程可转化为关于m和n的方程,解题时简单明了,不易出错.解:设x+y=m,x-y=n,则原方程组可变形为:m+ n=13, m- n=3.即3m+2n=78,4m-3n=36. 解得m=18,n=12.则有x+y=18,x-y=12.解得x=15,y=3. 所以原方程组的解为 x=15,y=3.评点:当二元一次方程组的结构比较复杂,但又有一定的规律时,可以考虑利用换元法把原方程组变成结构简单、求解方便的二元一次方程组.四、整体消元法例4解方程组3x+4z=23,①5x+y=8,② 6x+y+8z=49. ③解:由③可得2(3x+4z)+y=49. ④把①整体代入④,消去x、z,解得y=3,把y=3代入②,解得x=1,把x=1代入①,得z=5.原方程组的解为 x=1,y=3,z=5.评点:解二元以上的方程组的基本思路是消元,如化“三元”为“二元”.代入消元法是其中常用的一种方法.考虑到题目的结构特点,有时也可以用整体加减、整体代入等消元方法.五、参数消元法例5解方程组:= ,x+2y=11.分析:本题可以对=化简后用代入消元法或加减消元法解题,但都有一定的运算量.若考虑用参数消元法,即用另一个字母同时代替x、y,求解时会出现意想不到的效果.解:设==k,则x=3k,y=4k,把x=3k,y=4k代入x+2y=11,得3k+2×4k=11,解得k=1,即x=3k=3,y=4k=4.所以原方程组的解为 x=3,y=4.评点:利用参数消元的目的是:通过参数换元把原来的方程组变为一元一次方程,从而降低难度.这种参数消元又称为设k法、归一法等.注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

二元一次方程的代入消元法

二元一次方程的代入消元法

二元一次方程的代入消元法
假设我们有两个未知数x和y,可以表示为以下形式的方程组: ax + by = c.
dx + ey = f.
其中a、b、c、d、e、f为已知的系数。

我们的目标是找到x和
y的值,使得上述方程组成立。

首先,我们可以通过其中一个方程解出其中一个未知数,然后
将其代入另一个方程中,从而消除一个未知数。

接下来,我们可以
解出另一个未知数的值,从而得到整个方程组的解。

举个例子,假设我们有以下方程组:
2x + 3y = 8。

4x 2y = 10。

我们可以通过第一个方程解出x的值,然后将其代入第二个方程中:
2x = 8 3y.
4(8 3y) 2y = 10。

通过代入消元法,我们可以得到y的值,然后再将y的值代入第一个方程中,解出x的值。

最终,我们可以得到方程组的解。

通过代入消元法,我们可以有效地解决两个未知数的线性方程组,这种方法在实际问题中有着广泛的应用,例如在经济学、物理学和工程学等领域。

希望通过本文的介绍,读者能够更好地理解二元一次方程的代入消元法的原理和应用。

北京市七年级数学下学期期试题知识点分类汇编-10解二元一次方程组(选择、填空题)

北京市七年级数学下学期期试题知识点分类汇编-10解二元一次方程组(选择、填空题)

北京市七年级数学下学期期末三年(2020-2022)试题知识点分类汇编-10解二元一次方程组(选择、填空题)1.(2022春•顺义区期末)用加减消元法解二元一次方程组时,下列做法正确的是()A.要消去x,可以将①×3+②×5B.要消去x,可以将①×5﹣②×3C.要消去y,可以将①×2﹣②D.要消去y,可以将①×2+②2.(2022春•西城区期末)解方程组的思路可用如图的框图表示,圈中应填写的对方程①②所做的变形为()A.①×2+②×3B.①×2﹣②×3C.①×3﹣②×2D.①×3+②×2 3.(2021春•丰台区校级期末)设y=kx+b,当x=1时,y=1;当x=2时,y=﹣4,则k,b的值分别为()A.3,﹣2B.﹣3,4C.﹣5,6D.6,﹣5 4.(2021春•丰台区校级期末)解方程组,你认为下列四种方法中,最简便的是()A.代入消元法B.①×27﹣②×13,先消去xC.①×4﹣②×6,先消去y D.②×3﹣①×2,先消去y5.(2021春•海淀区校级期末)二元一次方程组的解是()A.B.C.D.6.(2021春•海淀区校级期末)已知二元一次方程组,则x﹣y的值为()A.﹣5B.﹣2C.﹣1D.17.(2021春•海淀区校级期末)解方程组加减消元法消元后,正确的方程为()A.6x﹣3y=3B.y=﹣1C.﹣y=﹣1D.﹣3y=﹣1 8.(2021春•丰台区校级期末)关于x,y的二元一次方程组的解满足x<y,则a的取值范围是()A.a>B.a<C.a<D.a>9.(2021春•丰台区校级期末)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13B.13C.2D.﹣210.(2021春•石景山区校级期末)二元一次方程组的解是()A.B.C.D.11.(2021春•东城区校级期末)二元一次方程组的解是()A.B.C.D.12.(2020春•海淀区校级期末)由方程组可得x与y的关系式是()A.3x=7+3m B.5x﹣2y=10C.﹣3x+6y=2D.3x﹣6y=2 13.(2020春•海淀区校级期末)已知方程组,则x﹣y的值是()A.2B.﹣2C.0D.﹣114.(2020春•丰台区期末)二元一次方程组的解是()A.B.C.D.15.(2020春•通州区期末)已知二元一次方程组,那么a+b的值是()A.1B.0C.﹣2D.﹣116.(2020春•东城区期末)用加减法解方程组时,(1)×2﹣(2)得()A.3x=﹣1B.﹣2x=13C.17x=﹣1D.3x=1717.(2020春•东城区校级期末)方程组的解是()A.B.C.D.18.(2020春•通州区期末)若x,y满足方程组,则x﹣6y=.19.(2020春•顺义区期末)已知x,y是有理数,且满足|2x﹣y+1|+(5x﹣2y﹣3)2=0,则x=,y=.20.(2020春•通州区期末)用代入消元法解二元一次方程组时,由①变形得y=.21.(2020春•东城区校级期末)已知a、b满足方程组,则a+b的值为.22.(2020春•东城区校级期末)若(x﹣2y+1)2+|x+y﹣5|=0,则x=,y=.23.(2021春•西城区期末)已知|2x﹣y|+(x+2y﹣5)2=0,则x﹣y的值是.24.(2021春•海淀区校级期末)已知关于x,y的二元一次方程y+ax=b的部分解如表①所示,二元一次方程2x﹣cy=d的部分解分别如表②所示,则关于x,y的二元一次方程组的解为.x﹣10123y﹣4﹣3﹣2﹣10表①x﹣10123y531﹣1﹣3表②25.(2021春•西城区校级期末)若(a+3b﹣9)2与互为相反数,则a=,b=.26.(2021春•海淀区校级期末)若实数a、b满足|2a﹣b﹣2|+(2a﹣2b)2=0,则a+b的值为.27.(2021春•东城区校级期末)对于实数x,y我们定义一种新运算F(x,y)=mx+ny(其中m,n均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,例如m=3,n=1时,F(2,4)=3×2+1×4=10.若F(1,﹣3)=6,F(2,5)=1,则F(3,﹣2)=.28.(2021春•海淀区校级期末)已知关于x,y的二元一次方程组,则x﹣y 的值是29.(2021春•海淀区校级期末)已知方程组,则x+y的值为.30.(2021春•西城区校级期末)已知|x+3y﹣4|+(2y﹣x﹣6)2=0,则=.31.(2020秋•顺义区期末)方程组的解是.32.(2022春•怀柔区校级期末)如图是小强同学解方程组过程的框图表示,请你帮他补充完整:其中,①为,②为.33.(2022春•平谷区期末)观察下列表格,写出方程组的解是.7x﹣3y=50x…﹣125811…y…﹣19﹣12﹣529…8x﹣y=62x…﹣125811…y…﹣70﹣46﹣22226…34.(2022春•房山区期末)若有理数a,b满足|2a﹣b+6|+(a+4b)2=0,则a+b的值为.35.(2022春•朝阳区期末)二元一次方程组的解是.参考答案与试题解析1.【解析】解:∵①×3+②×5得:15x﹣3y+15x+10y=18+70,∴30x+7y=88,∴A不合题意.∵①×5﹣②×3得:25x﹣5y﹣9x﹣6y=30﹣42,∴16x﹣11y=﹣12,∴B不合题意.∵①×2﹣②得:10x﹣2y﹣﹣3x﹣2y=12﹣14,∴7x﹣4y=﹣2,∴C不合题意.∵①×2+②得:10x﹣2y+3x+2y=12+14,∴13x=26,∴D符合题意.【答案】D.2.【解析】解:,①×3,得6x+9y=24③,②×2,得6x﹣4y=﹣2④,③﹣④,得(6x+9y)﹣(6x﹣4y)=24﹣(﹣2),即变形的思路是①×3﹣②×2,【答案】C.3.【解析】解:∵设y=kx+b,当x=1时,y=1;当x=2时,y=﹣4,∴,解得:,【答案】C.4.【解析】解:解方程组,你认为下列四种方法中,最简便的是②×3﹣①×2,先消去y,【答案】D.5.【解析】解:,①+②得:2x=6,即x=3,把x=3代入①得:y=1,则方程组的解为,【答案】B.6.【解析】解:由二元一次方程组,两式相加得:3x﹣3y=3,则x﹣y=1.【答案】D.7.【解析】解:,①﹣②得:﹣y=﹣1,【答案】C.8.【解析】解:,①×3﹣②得:8x=7a﹣5,即x=,①﹣②×3得:8y=13a﹣15,即y=,根据题意得:<,去分母得:7a﹣5<13a﹣15,移项合并得:6a>10,解得:a>.【答案】D.9.【解析】解:根据题意得:3⊕(﹣5)=3m+5n=15,4⊕(﹣7)=4m+7n=28∴,解得:∴(﹣1)⊕2=﹣m﹣2n=35﹣48=﹣13【答案】A.10.【解析】解:,①+②得,3x=3,解得x=1,把x=1代入①得,1+y=2,解得y=1,所以,方程组的解是.【答案】B.11.【解析】解:,把①代入②得,3y﹣y=4,即y=2.再把y=2代入x=3y得,x=6.∴原方程组的解为.【答案】D.12.【解析】解:,①×2﹣②得:3x﹣6y=2,【答案】D.13.【解析】解:,②﹣①得:x﹣y=2,【答案】A.14.【解析】解:,①﹣②得:x=1,把x=1代入②得:y=﹣1,所以方程组的解为:,【答案】A.15.【解析】解:,①﹣②得:a+b=﹣1.【答案】D.16.【解析】解:(1)×2﹣(2),得2(5x+y)﹣(7x+2y)=2×4﹣(﹣9),去括号,得10x+2y﹣7x﹣2y=2×4+9,化简,得3x=17.【答案】D.17.【解析】解:,①+②得:3x=6,x=2,把x=2代入①得:y=0,∴,【答案】D.18.【解析】解:,②﹣①得:x﹣6y=8,【答案】819.【解析】解:∵x,y是有理数,且满足|2x﹣y+1|+(5x﹣2y﹣3)2=0,∴,②﹣①×2得:x=5,把x=5代入①得:y=11,【答案】5,11.20.【解析】解:用代入消元法解二元一次方程组时,由①变形得y=3x﹣2.【答案】3x﹣2.21.【解析】解:,①+②得:3a+3b=15,则a+b=5,【答案】522.【解析】解:由题意得:,解得:,【答案】3;2.23.【解析】解:∵|2x﹣y|+(x+2y﹣5)2=0,∴2x﹣y=0,x+2y﹣5=0,即,解得:x=1,y=2,∴x﹣y=1﹣2=﹣1,【答案】﹣1.24.【解析】解:把x=0,y=﹣3;x=1,y=﹣2代入y+ax=b得:,解得:;把x=0,y=3;x=1,y=1代入2x﹣cy=d得:,解得:,代入方程组得:,解得:.【答案】25.【解析】解:∵(a+3b﹣9)2与互为相反数,∴(a+3b﹣9)2+=0,∴,②×3得,6a﹣3b﹣12=0③,①+③得,a=3,将a=3代入②得,b=2,故答案为3,2.26.【解析】解:∵|2a﹣b﹣2|+(2a﹣2b)2=0,∴2a﹣b﹣2=0,2a﹣2b=0,∴2a=b+2,a=b,∴a=2,b=2,∴a+b=4,故答案为4.27.【解析】解:∵F(1,﹣3)=6,F(2,5)=1,∴根据题中的新定义化简得:,解得:,即F(x,y)=3x﹣y,则F(3,﹣2)=9+2=11.【答案】11.28.【解析】解:,①﹣②×2得:3y=3k﹣3,解得:y=k﹣1,把y=k﹣1代入②得:x﹣2(k﹣1)=﹣k+2,解得:x=k,x﹣y=k﹣(k﹣1)=1,【答案】129.【解析】解:,①+②得:3x+3y=3(x+y)=9,则x+y=3.【答案】3.30.【解析】解:∵|x+3y﹣4|+(2y﹣x﹣6)2=0,∴,解得:,则==2,【答案】2.31.【解析】解:在方程组中,①+②得:3x=6,解得:x=2.代入①得:y=1.即原方程组的解为.32.【解析】解:由代入法求解二元一次方程组的步骤可知:①为代入,②为消去y,【答案】代入,消去y.33.【解析】解:观察表格得:方程组的解是.【答案】.34.【解析】解:∵|2a﹣b+6|+(a+4b)2=0,∴2a﹣b=﹣6①,a+4b=0②,∴①+②得,3a+3b=﹣6;因此a+b=﹣2.【答案】﹣2.35.【解析】解:方程组,①+②得:2x=6,解得:x=3,①﹣②得:2y=﹣2,解得:y=﹣1,则方程组的解为.【答案】.。

消元法解二元一次方程组的概念、步骤与方法

消元法解二元一次方程组的概念、步骤与方法

消元法解二元一次方程组的概念、步骤与方法湖南李琳高明生一、概念步骤与方法:1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

用加减消元法解二元一次方程组的基本思路仍然是“消元”.4.用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;⑵找出题中的两个等量关系;⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;⑷解这个方程组,求出未知数的值.⑸检验所得结果的正确性及合理性并写出答案.注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程.即未知数的个数应与方程组中方程的个数相等.二、化归思想所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.三、典型例题解析:类型一:基本概念:例1、(2005年盐城大纲)若一个二元一次方程的一个解为21xy=⎧⎨=-⎩,,则这个方程可以是________.(只要写出一个)分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。

消元-解二元一次方程组(共28张ppt)七年级下册数学人教版

消元-解二元一次方程组(共28张ppt)七年级下册数学人教版
组 500x+250y=22 500 000
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,

x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全

七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版

七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版

初一数学教学设计消元——二元一次方程组的解法(代入消元法)教学设计思路在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。

讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。

知识目标通过探索,领会并总结解二元一次方程组的方法。

根据方程组的情况,能恰当地应用“代入消元法”解方程组;会借助二元一次方程组解简单的实际问题;提高逻辑思维能力、计算能力、解决实际问题的能力。

能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法。

情感目标体会解二元一次方程组中的“消元” 思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。

由此感受“划归”思想的广泛应用。

教学重点难点疑点及解决办法重点是用代入法解二元一次方程组。

难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。

疑点是如何“消元”,把“二元”转化为“一元”。

解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。

教学方法:引导发现法,谈话讨论法,练习法,尝试指导法课时安排: 1 课时。

教具学具准备:电脑或投影仪。

教学过程教 师 活动学生活动(一)创设情境,激趣导入在 8.1 中我们已经看到,直接设两个未知数( 设胜 x 场,负 yx y 22看图,分析已知条2x y40表示本章引言中场 ) ,可以列方程组件问题的数量关系。

如果只设一个未知数 ( 设胜 x 场 ) , 思考 这个问题也可以用一元一次方程________________________[1] 来解。

师生互动分析: [1]2x + (22 - x)=40 。

列式解答观察思考,同 上面的二元一次方程组和一元一次方程有什么关系?[2]桌交流 [2] 通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方 总结程。

防城港市第四中学七年级数学上册第3章一次方程与方程组3.3二元一次方程组及其解法第4课时灵活运用消元

防城港市第四中学七年级数学上册第3章一次方程与方程组3.3二元一次方程组及其解法第4课时灵活运用消元

例4 解方程组 :
2(x – 150)=5(3y+50), ①
10%·x+6%·y=8.5%×800.

解 将原方程组化简 , 得 2x – 15y=550, ③
5x+3y=3 400.

③+④×5,得 27x=17 550. x=650.
将x=650代入④,得 5×650+3y=3 400. y=50.
〔2〕异号两数相加 , 绝対值相等时和为0 ; 绝対值不等时 , 取绝対值较大的数的符号 , 并 用较大的绝対值减去较小的绝対值.
假设a>0 , b<0 , |a| > |b| , 那么a + b = |a| + 假|b|设. a>0 , b<0 , |a| < |b| , 那么a + b = -(|b| |a|).
〔3〕一个数同0相加 , 仍得这个数.
a 是任一个有理数 , 那么 a + 0 = a
2.有理数减法法那么 减去一个数 , 等于加上这个数的相反数.
a-b=a+(-b)
3.有理数的乘法法那
么 两数相乘 , 同号得正 , 异号得负 , 并
把绝対值相乘 ; 任何数同0相乘 , 积仍为0.
同号
假设a>0 , b>0 , 那么 ab = +假|a设|×a<|b0|., b<0 , 那么 ab = +异|a号|×|b|. 假设a>0 , b<0 , 那么 ab = |假a|×设|ab<|.0 , b>0 , 那么 ab = -
科学记数法
水星
58 000 000
5.8×107
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月13 日星期 日上午 1时53 分43秒0 1:53:43 20.12.1 3

7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月上午 1时53 分20.12. 1301:5 3December 13, 2020

8、业余生活要有意义,不要越轨。20 20年12 月13日 星期日 1时53 分43秒0 1:53:43 13 December 2020

9、一个人即使已登上顶峰,也仍要自 强不息 。上午 1时53 分43秒 上午1时 53分01 :53:432 0.12.13
• 10、你要做多大的事情,就该承受多大的压力。12/13/
小结 解二元一次方程组的步骤: 二元一次方程组 消元 一元一次方程 (求出方程的解) 回代 二元一次方程(求出另一个未知数的值
写出方程组的解
Байду номын сангаас作业P197;1
一练一练用加减消元法解下列方程组:
1
7x-2y=-3 9x+2y=-19
2、
6x-5y=3
6x+y= -15
3、 4s+3t=5 2s-t=-15

3、越是没有本领的就越加自命不凡。 20.12.1 301:53: 4301:5 3Dec-20 13-Dec-20

4、越是无能的人,越喜欢挑剔别人的 错儿。 01:53:4 301:53: 4301:5 3Sunda y, December 13, 2020

5、知人者智,自知者明。胜人者有力 ,自胜 者强。 20.12.1 320.12. 1301:5 3:4301: 53:43D ecembe r 13, 2020
4、 5x-6y=-5 7x-4y=9
4
5

1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1320. 12.13Sunday, December 13, 2020

2、阅读一切好书如同和过去最杰出的 人谈话 。01:5 3:4301: 53:4301 :5312/ 13/2020 1:53:43 AM
复习;(1)用代入消元法解二元一次方程组的步骤是; (2)用代入消元法解下列方程组
3x+5y=21

2x-5y= -11 ②
(3)认真观察上个方程组中各个未知数的系数 有什么特点并分组计论看还有没有其它的解法. 并尝试一下能否求出它的解
3x+5y=21

2x-5y= -11 ②
解;由①+②得;(3x+5y)+(2x-5y)=21+(-11) 化简得;5x=10 方程的两边同时除以5得;x=2 把X=2代入①得;2*2-5y =-11 解方程得;y=3 方程组的解为 x=2
2020 1:53:43 AM01:53:432020/12/13
• 11、自己要先看得起自己,别人才会看得起你。12/13/
谢 谢 大 家 2020 1:53 AM12/13/2020 1:53 AM20.12.1320.12.13
• 12、这一秒不放弃,下一秒就会有希望。13-Dec-2013 December 202020.12.13
• 13、无论才能知识多么卓著,如果缺乏热情,则无异 纸上画饼充饥,无补于事。Sunday, December 13, 20201
3-Dec-2020.12.13
• 14、我只是自己不放过自己而已,现在我不会再逼自 己眷恋了。20.12.1301:53:4313 December 202001:53
所以原方程组的解是 x=3 y=2
从上面的问题中我们可以得到什么启发呢? 我们可以得到解方程组的基本思路? 1.对某些二元一次方程组可通过方程两边分相加
(减)消去其中一个未知数,得到一个一元一次方程, 从而求出它的解,这就是本节课解方程组的基本思 路。
2.解这种类型的方程组的主要步骤, 观察求未知数的系数的绝对值是否相同, (1)若互为相反数就用加, (2)若相同,就用减,达到消元目的。 3;这种通过两式相加(减)消去一个未知数, 这种解二元一次方程组的方法叫做加减消元法, 简称加减法。
Y=3
例3解方程组 2x-5y=7 ① 2x+3y= -1 ②
解:②-①,得 (2x+3y)-(2x-5y)=-1-7 化简得; 8y= - 8
y= - 1 将y= - 1代入①,得2x+5=7
x=1 所以原方程组是 x=1
y= -1
例4解方程组 2x+3y=12 ①
3x+4y=17 ②
解:①×3, 得6x+9y=36 ③ ②×2,得6x+8y==34 ④ ③-④,得y=2 将y=2代入①, 得x=3
相关文档
最新文档