聚合物流变学

合集下载

第4章 聚合物流体的流变性

第4章 聚合物流体的流变性
Eη↑
聚合物本性的影响:链刚性↑极性↑ M的影响:M>103, E η=k

T的影响:T 的影响:
E η↓ E η↑
溶剂的影响
聚合物浓度的影响:C↑
的影响:↑
E η↓
E η反映聚合物流体流动的难易程度,更重要的是反映了材料黏度 随温度变化的敏感性。 例:PLLA熔体的Eη为123kJ/mol, PET熔体的Eη为80kJ/mol. 所以PLLA熔体在纺丝过程中对温度极其敏感,应严格控制纺丝温 度.
在外界力作用下,发生流动和形变的规律。 流动和形变都是物体中质点相对运动的结果。一般力学把质点、 质点系、刚体、刚体系看作一个整体而运动,而流变学则研究物体 中多质点相对运动规律。 流变学的主要内容是研究应力及其引起的应变和应变速率的关系。 包括物料的某些特性:黏度、模量、松弛时间等。 流变学是高分子材料加工极为重要的基础理论。
四.聚合物流体的特性及其表征
聚合物流体兼具黏性和弹性,导致其流体具有3个重要特性: (1)非牛顿剪切黏性 (2)拉伸黏性 (3)弹性
可以导出表征聚合物流体流变性的四个材料常数,用它们表征聚合 物流体的三个特性:
第一节 聚合物流体的非牛顿剪切黏性
一、聚合物流体的流动类型
1.层流(Laminar Flow)和湍流(Turbulent Flow)
C↑
cr ↓
n↓
(三) 温度对黏度的影响
1.温度对0 (或)的影响
常见聚合物流体的表观黏度与温度的关系
T ↑,链段活动能力↑ 体积↑ 分子间相互作用↓

当T>>Tg时,
由Arrhenius方程式: η =AexpEη /RT
lnη =lnA+Eη /RT lnη ~1/T 直线斜率=E η/R

聚合物的流变性

聚合物的流变性

第9章聚合物的流变性流变学是研究材料流动和变形规律的一门科学。

聚合物液体流动时,以粘性形变为主,兼有弹性形变,故称之为粘弹体,它的流变行为强烈地依赖于聚合物本身的结构、分子量及其分布、温度、压力、时间、作用力的性质和大小等外界条件的影响。

9.1牛顿流体与非牛顿流体9.1.1非牛顿流体描述液体层流行为最简单的定律是牛顿流动定律。

凡流动行为符合牛顿流动定律的流体,称为牛顿流体。

牛顿流体的粘度仅与流体分子的结构和温度有关,与切应力和切变速率无关。

式中:——剪切应力,单位:牛顿/米2(N/㎡);——剪切速率,单位:s-1;——剪切粘度,单位:牛顿•秒/米2(N•s/㎡),即帕斯卡•秒(Pa•s)。

非牛顿流体:不符合牛顿定律的液体,即η是或时间t的函数。

包括:1、假塑性流体(切力变稀体)η随的↗而↙例:大多数聚合物熔体2、膨胀性流体(切力变稠体)η随的↗而↗例:泥浆、悬浮体系、聚合物胶乳等。

3、宾汉流体。

τ<τy,不流动;τ>τy,发生流动。

按η与时间的关系,非牛顿流体还可分为:(1)触变体:维持恒定应变速率所需的应力随时间延长而减小。

(2)流凝体:维持恒定应变速率所需的应力随时间延长而增加。

牛顿流体,假塑性流体与膨胀性流体的应力-应变速率关系可用幂律方程来描述:式中:K为稠度系数n:流动指数或非牛顿指数n=1时,牛顿流体 k=η; n>1 时,假塑性流体; n<1 时,膨胀性流体。

定义表观粘度9.2聚合物的粘性流动9.2.1聚合物流动曲线聚合物的流动曲线可分为三个主要区域:图9-1 聚合物流动曲线1、第一牛顿区低切变速率,曲线的斜率n=1,符合牛顿流动定律。

该区的粘度通常称为零切粘度,即的粘度。

2、假塑性区(非牛顿区)流动曲线的斜率n<1,该区的粘度为表观粘度ηa,随着切变速率的增加,ηa值变小。

通常聚合物流体加工成型时所经受的切变速率正在这一范围内。

3、第二牛顿区在高切变速率区,流动曲线的斜率n=1,符合牛顿流动定律。

第四章-聚合物流体的流变性

第四章-聚合物流体的流变性

(4)聚合物链结构中的侧基 当侧基体积较大时,自由体积增
大,流体黏度对压力和温度敏感性增 加. 如PMMA和PS可以提高T或者改 变P来改善流动性
顺丁胶的黏度与相对分子质量的关系 1-直链,2—三支链,3—四支链
2. 相对分子质量的影响
(1)相对分子质量对0 的影响
丙烯腈共聚物在NaSCN-H2O 中浓溶液的零切黏度对分子量的依赖性
0 A exp E RT
ln0 ln A E RT
lg 0
lg
A
E 2.303 RT
当T>Tg+100℃时, 由Arrhenius方程式:
0 A exp E RT
ln0 ln A E RT
lg 0
lg
A
E 2.303 RT
须知
➢ 黏流活化能的大小显著受剪切应力或剪切速率的 影响,因此,测定黏流活化能必须说明具体的实 验条件。
C =45.4%,Mc=1.3103; C = 15%时, Mc=6.03104
(2)分子量对流动曲线的影响(P71)
聚合物流体流动曲线对分 子量的依赖性
M ↑ 流动曲线上移 , 0 ↑
相cr同向低值移下动的a ↑
cr
3.相对分子质量分布的影响
(二) 聚合物溶液浓度对黏度的影响
1.聚合物溶液浓度对0 (或)的影响
不稳定流动
• 凡流体在输送通道中流动 时,其流动状况及影响流 动的各种因素都随时间而 变化,此种流动称为不稳 定流动。如在注射成型的 充模过程中,在模腔内的 流动速率、温度和压力等 各种影响流动的因素均随 时间而变化。
等温流动和非等温流动
等温流动
• 流体各处的温度保持不变 情况下的流动。在等温流 动情况下,流体与外界可 以进行热量传递,但传入 和输出的热量保持相等, 达到平衡。

聚合物流变学(绪论)课件

聚合物流变学(绪论)课件
聚合物流变学还可以用于研究高分子材料的结构与性能关系,通过分析聚合物的微观结构和流变性质,可以揭示材料在不同条件下的性能变化规律,为材料科学的发展提供理论支持。
除了在高分子材料加工和性能研究中的应用外,聚合物流变学还广泛应用于其他领域,如生物医学、食品科学、石油化工等。
05
聚合物流变学的未来发展
1
2
3
流变学与材料科学、物理学、化学等学科的交叉融合将进一步加强,为流变学理论的发展提供更多思路和方法。
跨学科融合
实验和计算模拟的相互补充和验证将成为流变学研究的重要手段,有助于更深入地揭示流体的复杂行为。
实验与计算模拟相结合
人工智能、大数据和云计算等技术在流变学中的应用将逐渐普及,提高流变学研究的效率和精度。
智能化技术的应用
聚合物流变学研究面临实验难度大、理论模型复杂、多尺度效应等问题,需要不断探索和创新。
随着科技的发展,聚合物流变学在材料制备、加工、性能优化等方面具有广阔的应用前景,为相关领域的发展提供有力支持。
机遇
挑战
THANK YOU
聚合物流变学(绪论)课件
目录
contents
聚合物流变学简介聚合物流变学基础知识聚合物流变学研究方法聚合物流变学应用聚合物流变学的未来发展
01
聚合物流变学简介
01
02
它涉及到高分子材料的流变性质、流动行为、结构变化以及与加工工艺之间的关系等多个方面。
聚合物流变学是一门研究高分子材料在流动和变形过程中所表现出来的各种物理和化学行为的科学。
将连续的流体离散为有限个单元,如有限差分法、有限元法等。
离散化方法
根据物理定律和边界条件,建立描述流体运动的偏微分方程或积分方程。
建立模型方程

Rheological Behavior of Polymers

Rheological Behavior of Polymers

Rheological Behavior of Polymers 聚合物的流变行为在现代物理和化学研究中,聚合物是一个重要的研究对象。

随着人们对聚合物研究的深入,我们开始逐步了解聚合物的流变行为。

聚合物的流变行为影响着聚合物的力学性能和加工性能,因此深入研究聚合物的流变行为对于提高聚合物的性能具有重要作用。

一、聚合物的流变学聚合物的流变学主要研究塑料、橡胶等高分子物质在受力和流动时所表现出的物理性质。

由于聚合物分子量大,具有较高的柔韧性和可变性,因此其在受力和流动时表现出的特殊性质特别值得研究。

根据牛顿流体和非牛顿流体的不同,聚合物可分为牛顿性聚合物和非牛顿性聚合物。

牛顿性聚合物是指其流变特性符合牛顿流体的流动方式,即在外力作用下,聚合物会立即产生运动,并且所流出的液体质量与时间成正比。

而非牛顿性聚合物则会表现出各种不同的流变特性,如剪切稀释、屈服现象等不同的流动方式。

二、聚合物的流变特性聚合物的流变特性主要分为剪切性能和扭转性能。

剪切性能是指聚合物在剪切力下的应力-应变关系,而扭转性能则是指聚合物在扭转力下的应力-应变关系。

这两种性能对于聚合物的力学性能和加工性能都有着重要作用。

聚合物的剪切性能主要由剪切模量、剪切应力和剪切应变等参数来衡量。

剪切模量是指聚合物在受到外力作用下产生剪切变形的能力,剪切应力是指在剪切变形中聚合物受力的强度大小,剪切应变则是指聚合物在剪切变形中所产生的形变程度。

聚合物的扭转性能则是通过扭转模量、扭转应力和扭转应变等参数来衡量。

扭转模量是指聚合物在受到扭转力作用下所产生的变形能力,扭转应力是指在扭转变形中聚合物受力的强度大小,扭转应变则是指聚合物在扭转变形中所产生的形变程度。

三、聚合物流变行为的影响因素聚合物的流变行为在很大程度上受到诸多因素的影响。

这些因素主要包括聚合物分子量、聚合物分子结构、聚合物溶液中其他物质的浓度等。

其中,分子量是影响聚合物流变行为的最重要因素之一。

聚合物流变学

聚合物流变学

聚合物流变学的学习与心得体会通过一学期的聚合物流变学的学习,使我对其有了初步的了解。

现在针对平时学习笔记和课后浏览相关书籍所获知识进行总结。

一、聚合物流变学学习内容1. 流变学中的基本概念流变学是研究材料的流动和变形规律的科学,是一门介于力学、化学、物理与工程科学之间的新兴交叉学科。

聚合物随其分子结构、分子量的不同,以及所处温度的不同,可以是流体或固体,它们的流动和变形规律各不相同,也即有不同的流变性能。

聚合物流变学是研究聚合物及其熔体的变形和流动特性。

1.1 粘弹性流体特性及材料流变学分类粘性流体的流动是:变形的时间依赖性;变形不可恢复(外力作的功转化为热能);变形大,力与变形速率成正比,符合Newton's流动定律。

根据经典流体力学理论,不可压缩理想流体的流动为纯粘性流动,在很小的剪切应力作用下流动立即发生,外力释去后,流动立即停止,但粘性形变不可恢复。

切变速率不大时,切应力与切边速率呈线性关系,遵循牛顿粘性定律,且应力与应变本身无关。

流体→流动→粘性→耗散能量→产生永久变形→无记忆效应根据经典固体力学理论,在极限应力范围内,各向同性的理想弹性固体的形变为瞬时间发生的可逆形变。

应力与应变呈线性关系,服从胡克弹性定律,且应力与应变速率无关。

固体→变形→弹性→储存能量→变形可以恢复聚合物流动时所表现的粘弹性,即有粘性流动又有弹性变形,与通常所说的理想固体的弹性和理想液体的粘性大不相同,也不是二者的简单组合。

材料流变学分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧==⎩⎨⎧⋅=⋅=⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧==∞=⎩⎨⎧⋅=⋅=)),,(()),,((.3.2())((.1)),,(.30,(.2))((.1t f t f t f G G G G E γγσγγσγησγγησγγσγγγσγσ 非线性线性粘弹性流体无粘性牛顿流体)线性非线性粘性流体流体非线性线性(粘弹性固体)刚体非线性)为常数、线性(弹性固体固体 其中非牛顿流体⎩⎨⎧粘弹性流体广义牛顿流体非牛顿流体 基本变形方式:拉伸(压缩)、剪切、膨胀。

聚合物流变学第一章

聚合物流变学第一章

第一章 绪 论1. 流变学概念流变学——研究材料流动及变形规律的科学。

高分子材料流变学——研究高分子液体,主要指高分子熔体、高分子溶液,在流动状态下的非线性粘弹行为,以及这种行为与材料结构及其它物理、化学性质的关系。

图1-1 液体流动与固体变形的一般性对比Newton’s 流动定律 γησ 0= 牛顿流体 H ooke’s 弹性定律 εσE = 虎克弹性体实际材料往往表现出远为复杂的力学性质。

如沥青、粘土、橡胶、石油、蛋清、血浆、食品、化工原材料、泥石流、地壳,尤其是形形色色高分子材料和制品,它们既能流动,又能变形;既有粘性,又有弹性;变形中会发生粘性损耗,流动时又有弹性记忆效应,粘弹性结合,流变性并存。

对于这类材料,仅用牛顿流动定律或虎克弹性定律已无法全面描述其复杂力学响应规律,必须发展一门新学科——流变学对其进行研究。

流变性实质——“固-液两相性”,“粘弹性”并存。

这种粘弹性不是小变形下的线性粘弹性,而是材料在大变形、长时间应力作用下呈现的非线性粘弹行为。

流动与变形又是两个紧密相关的概念。

在时间长河中,万物皆流,万物皆变。

流动可视为广义的变形,而变形也可视为广义的流动。

两者的差别主要在于外力作用时间的长短及观察者观察时间的不同。

按地质年代计算,坚硬的地壳也在流动,地质学中著名的“板块理论”揭示了亿万年来地球大陆板块的变化和运动。

另一方面,如果以极快的速度瞬间打击某种液体时,甚至连水都表现了一定的“反弹性”。

1928年,美国物理化学家E.C.Bingham正式命名“流变学(rheology)”,字头取古希腊哲学家Heraclitus所说的“ ”,意即万物皆流。

1929年成立流变学会,创办流变学报(Journal of Rheology),一般将此认为流变学诞生日。

流变学是一门涉及多学科交叉的边缘科学。

高分子材料流变学的研究内容与高分子物理学、高分子化学、高分子材料加工原理、高分子材料工程、连续体力学、非线性传热理论等联系密切;其研究对象的力学、热学性质相当复杂。

聚合物的流变学性质

聚合物的流变学性质

为何具有“剪切增稠”特性?
多分散体系; 高含量,高硬度微粒为分散相,分散介质在其间起润滑作用。
增大 ,粒子相互碰撞,导致润滑不足,流动阻力增加,粘度上升。
2
1
特征:τ较小不流动,呈现凝胶状态,只发生弹性变形;
该液体在静止时内部存有凝胶结构,当外加应力大于 τy时,凝胶崩溃,流动行为与牛顿流体相似。
05
提高熔体的流动性。
1.3 聚合物的流变学性质
温度及压力对聚合物熔体粘度的影响
——聚合物大分子的热运动有赖于温度。
与分子热运动有关的熔体流动必然与温度有关。
——在聚合物注射成型过程中,温度对熔体粘
度的影响与剪切速率同等重要。
温度升高——
大分子间的自由空间随之增大,分子间作用力
减小,分子运动变得容易,从而有利于大分子的
01
这时,大分子链段的运动相对减少,分子间的
02
相互作用力(范德华力)逐渐减弱,熔体内的自由
03
空间增加,从而导致相对运动加大,宏观上体现
04
为表观粘度相对降低。
05
——注射成型中,多数聚合物的表观粘度对熔
06
体内部的剪切速率具有敏感性,可以通过调整剪
07
切速率来控制聚合物的熔体粘度。
08
在注射成型中,聚合物熔体发生剪切稀化效应
率区域时,流体变形和流动所需的切应力随剪切
速率而变化,并呈指数规律增大;
流体的表观粘度也随剪切速率而变化,呈指数
规律减小。
假塑性液体的“剪切稀化”的原因:
聚合物具有大分子结构,当熔体进行假塑性流
动时,剪切速率的增大,使熔体所受的切应力加
大,从而导致聚合物大分子结构伸长、解缠和滑

聚合物流体的流变性

聚合物流体的流变性

聚合物流体的流变性引言聚合物流体是由聚合物分子组成的流体,其独特的流变性质使其在许多工业和科学领域中得到广泛应用。

本文将介绍聚合物流体的流变学性质,包括流变学基本概念、聚合物流体流变学模型、流变学测试方法和聚合物流体的应用领域。

流变学基本概念流变学是研究流体在外力作用下的变形和流动规律的科学。

聚合物流体的流变学行为与传统液体有所不同,其主要特点是非牛顿性。

非牛顿流体指的是流体的粘度随应力变化而变化的流体。

聚合物流体的非牛顿性主要由聚合物链的长而柔软的特性所决定。

根据应力与应变速率之间的关系,可以将聚合物流体分为剪切稀化和剪切增稠流体。

聚合物流体流变学模型为了描述聚合物流体的流变学行为,研究人员发展了许多流变学模型。

其中最经典的模型之一是Maxwell模型,它将聚合物流体看作是由弹簧和阻尼器组成的串联结构。

除此之外,还有Oldroyd-B模型、Giesekus模型和白金布卢米斯模型等。

这些模型可以有效地描述聚合物流体的应力-应变关系,并能预测流体的流变学行为。

流变学测试方法为了研究聚合物流体的流变学特性,需要进行一系列的流变学测试。

常见的流变学测试包括剪切应力-剪切应变测试、动态剪切测试、扩展流动测试和振动测试等。

这些测试方法可以提供流体的粘度、弹性模量、流动极限等参数,从而深入了解聚合物流体的流变学性质。

聚合物流体的应用领域聚合物流体的流变学性质使其在许多应用领域中得到广泛应用。

在食品工业中,聚合物流体用作稳定剂、增稠剂和乳化剂等。

在化妆品工业中,聚合物流体则用于调整产品的黏度和流动性。

此外,聚合物流体还在油田开发、药物传输和生物医学工程中起着重要作用。

结论聚合物流体的流变学性质对其在各种应用领域中的表现起着至关重要的作用。

在了解聚合物流体的流变学行为之后,我们能够更好地设计和控制这些流体,以满足不同领域的需求。

未来,随着对聚合物流体流变学性质研究的不断深入,我们可以预见聚合物流体在更多领域中发挥更重要的作用。

聚合物流变学

聚合物流变学

聚合物流变学:研究聚合物流动和变形的科学,是介于力学、化学和工程科学之间的边缘科学,是现代流变学的重要分支。

研究聚合物流变学对聚合物的合成、加工、加工机械和模具的设计等均具有重要意义。

聚合物流变学是随高分子材料的合成、加工和应用的需要,于50年代发展起来的。

在聚合物的聚合阶段,流变学与化学结合在一起;而在以后的阶段,主要是与聚合物加工相结合。

聚合物流变学70年代发展较快,在1984年第九届国际流变学会议上总结了最近的研究成果,B.米纳等主编了《流变学进展》一书。

研究方法:主要有宏观与微观两种:宏观法即经典的唯象研究方法,是将聚合物看作由连续质点组成,材料性能是位置的连续函数,研究材料的性能是从建立粘弹模型出发,进行应力-应变或应变速率分析。

微观法即分子流变学方法,是从分子运动的角度出发,对材料的力学行为和分子运动过程进行相互关联,提出材料结构与宏观流变行为的联系。

两种方法结合起来的研究,常取得较好效果。

但它们都离不开实验室流变性能的测定。

常用的仪器主要有:挤出式流变仪(毛细管流变仪、熔体指数仪)、转动式流变仪(同轴圆筒粘度计、门尼粘度计、锥板式流变仪)、压缩式塑性计、振荡式流变仪、转矩流变仪以及拉伸流变仪等。

影响因素:流动性以粘度的倒数表示流动性。

按作用方式的不同,流动可分为剪切流动和拉伸流动,相应地有剪切粘度和拉伸粘度。

前者为切应力与切变速率之比;后者为拉伸应力与拉伸应变速度之比。

聚合物的结构不同,流动性(或粘度)就不同。

对于聚合物熔体,大多数是属于假塑性液体,其剪切粘度随剪切应力的增加而降低,同时测试条件(温度、压力)、分子参数(分子量及其分布、支化度等)和添加剂(填料、增塑剂、润滑剂等)等因素对剪切粘度-剪切应力曲线的移动方向均有影响(见图)。

对于拉伸粘度,当应变速率很低时,单向拉伸的拉伸粘度约为剪切粘度的3倍,而双向相等的拉伸,其拉伸粘度约为剪切粘度的6倍。

拉伸粘度随拉伸应力增大而增大,即使在某些情况下有所下降,其下降的幅度远较剪切粘度的小。

聚合物的流变形

聚合物的流变形
熔融指数(Melt index ——简称MI ):指在一定的温度下和规定
负荷下,10min内从规定直径和长度的标准毛细管内流出的聚合物
的熔体的质量,用MI表示,单位为g/10min。
例PE:190℃,2160g的熔融指数MI190/2160。 对于同种聚合物而言,熔融指数越大,聚合物熔体的流动性越好。 由于不同聚合物的测定时的标准条件不同,因此不具可比性。 工业上常用MI值作为衡量聚合物分子量大小的一种相对指标,分 子量越大,MI值越小。
17
9.2.2 影响粘流温度的因素
分子结构的影响
分子链越柔顺,粘流温度越低; 分子链的极性越大,粘流温度越高。
分子量的影响
分子量越大,分子运动时受到的内摩擦阻力越大; 分子量越大,分子间的缠结越厉害,各个链段难以向
同一方向运动,因此,粘流温度越高。
外力的影响
外力的大小与作用时间
18
When T >Tg+100 a AeE / RT
E - 粘流活化能 viscous flow energy
高分子流动时的运动单元: 链段(的协同运动)
E 由链段的运动能力决定, 与分子链的
柔顺性有关, 而与分子量无关!!
29
a AeE / RT
刚性链 E大 粘度对温度敏感
柔性链
E小
粘度对温度不敏感 对剪切速率敏感
3、第二牛顿区 高切变速率区,流动曲线的斜率n=1,符合牛顿流动定律。剪切速率 很高时,缠结遭破坏,再缠结困难,缠结点几乎不存在,表观粘度再 次维持恒定 ,又类似牛顿流体行为。该区的粘度称为无穷切粘度或极 限粘度η∞。从聚合物流动曲线,可求得η、η∞和ηa。
11
9.2 .1 熔体粘度的测定方法

聚合物流变学

聚合物流变学

• 高分子的流动:不是简单的整条分子链的跃迁,而是通过
链段的相继跃迁来实现,即通过链段的逐步位移完成整条 大分子链的位移。形象地说,这种流动类似于蚯蚓的蠕动 • 这模型并不需在高聚物熔体中产生整个分子链那样大小的 孔穴,而只要如链段大小的孔穴就可以了。这里的链段也称 流动单元,尺寸大小约含几十个主链原子 • (2)高分子流动不符合牛顿流体的流动定律 • 一般不符合牛顿流体定律,即不是牛顿流体,而是非牛顿 流体,常是假塑性流体,这是由于分子链的解缠结或流动 时链段沿流动方向取向,使黏度降低。
影响粘流温度的因素
• 化学结构
• (1)链柔性好,则Tƒ 低;刚性大,
Tƒ 高。
• 原因:柔性分子的链段小,流动所需的孔较小,流动活化
能也小,Tƒ低。柔性差,因为链段大,流动所需的孔较大, 流动活化能也大,所以在较高的温度下才可流动, Tƒ高 。 • (2)分子间作用力大,则Tƒ 高;分子间作用力小,则Tƒ低 • 原因:若分子间的相互作用力很大,则必须在较高的温度 下才能克服分子间的相互作用而产生相对位移,因此高分 子的极性越大, Tƒ越高
• 流体在平直管内受剪切应力而发生流动的形式有层流和湍
流两种。 • 层流时,液体主体的流动是按许多彼此平行的流层进行的, 同一流层之间的各点速度彼此相同,但各层之间的速度却 不一定相等,而且各层之间也无可见的扰动。 • 如果流动速度增大且超过临界值时,则流动转变为湍流。 湍流时,液体各点速度的大小和方向都随时间而变化,此 时流体内会出现扰动
• (3)高分子流动伴有高弹形变 • 有粘性形变(不可逆形变): 整条大分子链质心移动产生的。
除去外力不能回复。还有高弹形变:由链段运动产生的(可 逆形变) • 不是简单的整个分子的迁移,而是各个链段分段运动的总 结果,在外力作用下,高分子链不可避免的要顺外力的方 向有所伸展,即同时伴随着一定量的高弹形变,外力消失 后高分子链又要蜷曲,形变要恢复一部分。

聚合物流变学知识点总结

聚合物流变学知识点总结

聚合物流变学知识点总结一、聚合物的结构1. 聚合物的结构聚合物是由大量重复单体组成的高分子化合物,它的结构可以分为线性聚合物、支化聚合物和交联聚合物三种类型。

线性聚合物是由单一的链状分子组成,支化聚合物是具有分支结构的聚合物,而交联聚合物则是由互相交联的聚合物链构成的。

2. 聚合物的结构对流变性质的影响聚合物的分子结构对其流变性质有着重要的影响。

例如,线性聚合物的流变行为往往比较简单,而支化聚合物和交联聚合物因为其分子结构的复杂性而表现出更加复杂的流变行为。

3. 聚合物的分子量聚合物的分子量也是影响其流变性质的重要因素。

分子量越高,聚合物越倾向于呈现出固态的性质,例如高分子量的聚合物会表现出较高的粘度和内聚力。

4. 聚合物的形状聚合物的形状对其流变性质也有一定的影响。

例如,球形分子的聚合物在流动状态下会表现出不同于线性分子的流变行为。

二、聚合物的流变性质1. 聚合物的黏度聚合物的黏度是其在流动状态下对外部应变的抵抗力,是衡量聚合物流变性质的重要指标。

由于聚合物的复杂分子结构和内聚力,其黏度通常会随着应变速率的增加而增加,呈现出剪切稀化的特性。

2. 聚合物的弹性聚合物的弹性是指其在受力后能够恢复原状的能力。

在流变学中,弹性通常用弹性模量来描述,高分子链的可延展性和排列状态会影响聚合物的弹性模量。

3. 聚合物的流变型态聚合物在流变过程中可能会呈现出多种类型的流变行为,包括牛顿型流体、剪切稀化型流体、剪切增稠型流体等。

4. 聚合物的剪切稀化和剪切增稠在流变过程中,聚合物通常会表现出剪切稀化和剪切增稠的特性。

剪切稀化是指在剪切应力作用下,聚合物的黏度随着应变速率的增加而减小;而剪切增稠则是指聚合物的黏度随着应变速率的增加而增加。

三、流变学测试方法1. 平行板流变仪平行板流变仪是用于测定聚合物流变性质的常用实验仪器,它通过施加不同频率和幅值的应力来测量聚合物的黏度和弹性等性质。

2. 旋转流变仪旋转流变仪是另一种常用的流变学测试设备,它通过旋转圆盘或圆柱的方式来施加剪切应力,测量聚合物的流变性质。

聚合物流变学

聚合物流变学

1 导言1.1 流变学的定义术语“流变学”(英文为RHEOLOGY)是由美国物理学家宾汉(E. C. Bingham)于1929年创造出来的,其定义为“流变学是研究物质形变和流动的科学”。

尽管流变学一词作为一门学科出现,只有半个世纪的历史,但流变学思想的起源却可追溯到17世纪的Newton(牛顿流体)和Hooke(胡克定律)。

经过众多科学家和学者的不懈努力,时至今日,流变学已发展成为一门与物理、化学、生物、材料、工程以及食品等多学科交叉的重要学科。

1.2 流变学的研究对象和内容狭义流变学研究的对象主要是非牛顿流体,即复杂流体(USA)或称软物质(Euro)。

研究的内容是复杂流体的形变和流动。

1.3 流变学的分类从研究方法上流变学可分为两种。

一种是将材料当作连续介质处理,用连续介质力学的数学方法进行研究,称为连续介质流变学。

由于这种研究方法不考虑物质内部结构,因此又称为宏观流变学或唯象流变学。

另一种是从物质结构的观点出发,研究材料流变性与物质结构(包括化学结构、物理结构和形态结构)的关系,称为结构流变学,还可称为分子流变学或微观流变学。

按研究对象又可分为聚合物流变学、食品流变学、化妆品流变学、血液流变学、石油流变学、矿山流变学等。

1.4 聚合物流变学研究对象:聚合物溶液、聚合物熔体和聚合物基复合体系。

流变学是聚合物加工成型的基础,流变学测试是聚合物表征的一种重要手段。

1.5 本课程的主要内容流变学的数学基础(张量分析初步)和唯象流变学的理论基础(连续介质力学引论)流变测量学(流变学参数、流变仪、测试模式和数据处理)本构方程(描述应力与应变关系的经验方程和力学模型)聚合物共混体系的流变学(相容、部分相容和不相容共混体系的粘弹性)聚合物复合体系的流变学流变学在聚合物研究中的应用(分子量、接枝率、相容性、相图、相形态、相反转、相分离动力学)聚合物结构流变模型(Rouse Model、Doi-Edwards Model、Reptation Model)1.6 几个重要期刊Journal of Rheology /journals/doc/JORHD2-home/Rheologica Acta /openurl.asp?genre=journal&issn=0035-4511 Applied Rheology http://www.ar.ethz.ch/Korea-Australia Rheology Journal http://www.rheology.or.kr/karj/karj.htmMacromolecules /journals/mamobx/index.htmlPolymer /science/journal/003238611.7 参考书目John D. Ferry, Viscoelastic Properties of Polymers (3rd), John Wiley & Sons Inc. 1980Leszek A. Utracki, Polymer alloys and Blends: Thermodynamics and Rheology, Hanser Pub., 1989Leszek A. Utracki, Polymer Blends Handbook (V ol. 1, Chap. 7), Kluwer Academic Pub., 2002江体乾,化工流变学,华东理工大学出版社,2004周持兴,聚合物流变学实验与应用,上海交通大学出版社,2003许元泽,高分子结构流变学,四川教育出版社,1988江体乾,工业流变学,化学工业出版社,1995周持兴,聚合物加工理论,科学出版社,2004。

聚合物流变学名词解释

聚合物流变学名词解释

聚合物流变学名词解释
聚合物流变学是研究聚合物材料在外力作用下的流变行为的学科。

在聚合物流变学中,有一些常见的名词需要解释,如下:
1. 聚合物,聚合物是由重复单元组成的大分子化合物,它们可以通过化学反应或物理方法合成。

聚合物具有高分子量、可塑性和可变形性。

2. 流变行为,流变行为是指物质在外力作用下的变形和流动特性。

对于聚合物材料,其流变行为可以分为弹性变形、塑性变形和流动变形等。

3. 弹性变形,弹性变形是指物质在受到外力作用后能够恢复到原始形状的能力。

聚合物在低应力下一般表现出弹性行为,即受力后能够迅速恢复原状。

4. 塑性变形,塑性变形是指物质在受到外力作用后无法完全恢复到原始形状的能力。

聚合物在高应力下会发生塑性变形,导致永久性的形变。

5. 流动变形,流动变形是指物质在外力作用下发生持续的形变和流动。

聚合物在高温或高应力条件下会发生流动变形,使其形状发生改变。

6. 剪切应力,剪切应力是指作用在物质表面上的力与单位面积的比值。

在聚合物流变学中,剪切应力是导致聚合物发生流变行为的主要力量。

7. 剪切应变,剪切应变是指物质在受到剪切应力作用下的形变程度。

聚合物的剪切应变与剪切应力呈线性关系,称为线性剪切应变。

8. 流变曲线,流变曲线是描述聚合物材料在外力作用下剪切应力和剪切应变之间关系的曲线图。

根据流变曲线的形状,可以判断聚合物的流变行为类型。

以上是关于聚合物流变学常见名词的解释。

聚合物流变学的研究对于聚合物材料的设计、加工和应用具有重要意义,可以帮助理解和控制聚合物材料的流变性能。

聚合物的流变性.ppt

聚合物的流变性.ppt
η>ηa>η∞
聚合物流动曲线的解释
缠结理论解释:缠结破坏与形成的动态过程。
ⅰ第一牛顿区: 切变速率足够小,高分子处于高度 缠结的拟网结构,流动阻力大;缠结结构的破坏 速度等于形成的速度,粘度保持不变,且最高。
ⅱ假塑性区:切变速率增大,缠结结构被破坏,破 坏速度大于形成速度,粘度减小,表现出假塑性 流体行为。
9.2.2影响聚合物熔体粘度的因素
A、粘度的分子量依赖性
(1)分子结构
临界分子量发生缠结的最小分子量
When M<Mc
0

KM
1~1.6 w
When M>Mc
0

KM
3~ w
3.4
△成型加工考虑,流动性好(充模好,表面光洁)。 降低分子量,增加流动性,但影响机械强度。在加 工时适当调节分子量大小,满足加工要求尽可能提 高分子量。
定义:挤出机挤出的高聚物熔体其直径比挤出 模孔的直径大的现象。
如何减小挤出涨大?
——引起聚合物弹性形变储能剧烈变化区域 为:模孔入口处,毛细管壁和模孔出口处。
——模口设计成流线型,提高加工温度等。 胀大比B随切变速率提高而增大,B随L/D↑而 减小。
9.4.4 不稳定流动 •波浪形 •鲨鱼皮形 •竹节形 •螺旋形 •不规则破裂
9.1牛顿流体和非牛顿流体
1、牛顿流体:
剪切形变


dx dy

剪切应力
F
A
切变速( dx)
d
(dx) dv
dt dt dy dy dt dy
(s-1 )
牛顿流动定律:


:单位Pa·s
凡流动行为符合牛顿流动定律的流体, 称为牛顿流体。牛顿流体的粘度仅与流 体分子的结构和温度有关,与切应力和 切变速率无关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反并在同一直线上的外力作用。拉伸应力在成型中也较重 要,例如吹塑中型坯的引伸,吹塑薄膜时泡管的膨胀,塑 料熔体在锥形流道内的流动以及单丝的生产。拉伸流动的 速度梯度方向与流动方向平行。 • 压缩:材料受到均匀的围压力,一般不是很重要,可以忽 略 • 剪切:材料受到与截面平行、大小相等、方向相反,但不 在一条直线上的两个外力作用,使材料发生偏斜。其偏斜 角的正切值定义为剪切应变()。高分子熔体或浓溶液在 挤出机、注射机管道中、喷丝板孔道中、 等截面管道及毛细管中的流动大多属于 剪切流动。剪切流动的速度梯度方向与 流动方向垂直。
双对数流动曲线
• 在较宽的剪切应力和剪切速率变化范围观察高聚物熔体的
流动行为时,由于两个变量都可有几个数量级的变化,通 常将σs-γ关系改写成对数式,并用双对数坐标图来表示
第 一 牛 顿 区
假塑区
斜 =1 率
第 二 牛 顿 区



斜 =1 率
0

• 曲线包含三段:在低切变速率范围内,是一段斜率为1的直
• (3)高分子流动伴有高弹形变 • 有粘性形变(不可逆形变): 整条大分子链质心移动产生的。
除去外力不能回复。还有高弹形变:由链段运动产生的(可 逆形变) • 不是简单的整个分子的迁移,而是各个链段分段运动的总 结果,在外力作用下,高分子链不可避免的要顺外力的方 向有所伸展,即同时伴随着一定量的高弹形变,外力消失 后高分子链又要蜷曲,形变要恢复一部分。
高聚物流体普适流动曲线
• 高聚物熔体在较宽剪切应力和切变速
率范围的普适流动曲线,该曲线分五 个区: ①第一牛顿区:剪切力太大,高分子 链为无规线团,有缠结存在。 ②假塑性区:线团解缠结,链段沿流 动方向取向。 ③第二牛顿区:分子链完全取向,黏度达恒定值。 ④胀流区:发生拉伸流动,黏度急剧上升,为胀塑性流体。 ⑤湍流(熔体破裂) • 曲线形状和分子机理与高分子固体的应力-应变曲线非常相 似
高聚物熔体的流动特性
• 除极少数几种工艺外,在大多数成型过程中都要求聚合物
处于粘流状态(塑化状态),因为在这种状态下聚合物不 仅易于流动,而且易于变形,这给它的输送和成型都带来 极大方便。 • 液体的流动和变形都是在受有应力的情况下得以实现的。 重要的应力有剪切、拉伸和压缩应力三种。
• 拉伸:材料受到一对垂直于材料截面、大小相等、方向相
• 膨胀性流体: 随着剪切速率的增加,粘度变大,即发生切
力变稠。 • 膨胀性流体所以有这样的流动行为,多数的解释是:当悬 浮液处于静态时,体系中由固体粒子构成的空隙最小,流 体只能勉强充满这些空间。当剪切速率较小时,流体就可 以在移动的固体粒子间充当润滑剂,因此,表观粘度不高。 但当剪切速率逐渐增高时,固体粒子的紧密堆砌就被破坏, 整个体系就显得有些膨胀。此时流体不再能充满所有的空 隙,润滑作用因而受到限制,表观粘度就随着剪切速率的 增长而增大 • 属于这一类型的流体大多数是固体含量高的悬浮液,高聚 物的固体颗粒填充体系。处于较高剪切速率下的聚氯乙烯 糊塑料的流动行为就很接近这种流体。
高聚物熔体的流变行为
• 当温度高于聚合物的Tf时,聚合物变为可流动的粘流态。
几乎所有高聚物的加工成型都是利用其粘流态下的流动性 进行的(塑料、橡胶、纤维)。 • 不存在粘流态的情况:(1)Td < Tf 的聚合物,如PAN、 PTIF;(2)交联度很大(体型)或分子链刚性过强的聚合 物,如聚乙炔、联苯 • 当高聚物熔体和溶液(简称流体)在受外力作用时,既表 现粘性流动(不可逆形变),又表现出弹性形变(可逆形 变),因此称为高聚物流体的流变性或流变行为。
• 流体在平直管内受剪切应力而发生流动的形式有层流和湍
流两种。 • 层流时,液体主体的流动是按许多彼此平行的流层进行的, 同一流层之间的各点速度彼此相同,但各层之间的速度却 不一定相等,而且各层之间也无可见的扰动。 • 如果流动速度增大且超过临界值时,则流动转变为湍流。 湍流时,液体各点速度的大小和方向都随时间而变化,此 时流体内会出现扰动
.
0
lg γ
• 在一般实验中,高聚物熔体的第二牛顿区不容易得到,原因是在
高剪切速率下,高聚物熔体会产生大量热量,使温度升高,流动 行为发生变化,并且在高剪切速率下,熔体流动的稳定性受到破 坏,出现弹性湍流(不稳定流动)。
高聚物熔体流动的解释:1分子缠结理论
• 分子量超过MC后,链间可能因为缠结或者范德华力作用形成链
. dg s = h = hg dt
• 高分子熔体、浓溶液、分散体系等许多流体不符合牛顿流
动定律,称为非牛顿流体。通常可以用流动曲线来作判定
iB PB N y S D
切变速率 各类流体的流动曲线
切变速率 各类流体的粘度与切变速率的关系

N-牛顿流体; D-切力增稠流体(胀流体) S-切力变稀流体(假塑性流体) iB-理想的宾汉流体; PB-假塑性宾汉体
分子量的影响
• Tg是高分子链段开始运动的温度,因此它与分子量关系不
大(当分子量达到某数值时),而Tf则是整个高分子链开 始运动的温度, M越大,内摩擦力越大,整个分子链向某 一方向运动的阻碍越大,Tf越高。分子量过大,将影响加 工温度,因此在能够保证制品有足够强度的前提下,尽量 降低分子量,以降低加工温度。 • 需要注意的是,非晶高聚物的Tƒ不是一个点,而是一个较 宽的范围,这是由于分子量的分布的多分散性引起的
影响粘流温度的因素
• 化学结构
• (1)链柔性好,则Tƒ 低;刚性大,
Tƒ 高。
• 原因:柔性分子的链段小,流动所需的孔较小,流动活化
能也小,Tƒ低。柔性差,因为链段大,流动所需的孔较大, 流动活化能也大,所以在较高的温度下才可流动, Tƒ高 。 • (2)分子间作用力大,则Tƒ 高;分子间作用力小,则Tƒ低 • 原因:若分子间的相互作用力很大,则必须在较高的温度 下才能克服分子间的相互作用而产生相对位移,因此高分 子的极性越大, Tƒ越高
• 宾汉流体(塑性体):剪切应力小于一定值y,流体不动,当
• • • •

y时,才产生牛顿流动。 宾汉流体之所以有这种行为,是因为流体在静止时形成了 凝胶结构,外力超过 y 时,这种三维结构即受以破坏。 泥浆、牙膏、油漆、润滑脂、涂料、下水污泥、沥青、聚 合物在良溶剂中的浓溶液等属于或接近于宾汉流体。 假塑性流体:粘度随着剪切速率的增加而变小, 切力变稀(剪 切变稀,流动性变好)。 假塑性流体的流动行为是由于①高分子在流动过程中分子 沿流动方向的取向,规则排列,降低了粘度②大分子彼此 之间的缠结,当缠结的大分子承受应力时,其缠结点就会 被解开,降低了粘度。 大多数的聚合物熔体和浓溶液属于假塑性流体
• 例:PAN用湿法纺丝而PET用熔融纺丝--- PAN,大分子之
• • •

间极性力太强,以致 Td >Tƒ ,尚未流动已经分解,所以不 能用熔融法纺丝。 PVC的Tƒ 高接近Td 在加工中一方面加入增塑剂,降低Tƒ ; 另一方面加入热稳定剂,提高Td。 Tƒ 是材料加工的下限温度, Td是材料加工的上限温度 (3)高聚物的交联程度提高,Tƒ 显著提高。 交联程度达到一定值后,所有分子链成为一个总体,高聚 物不再出现粘流态。许多热固性高聚物,如环氧树脂、体 形酚醛树脂都没有粘流态。
2 构象理论
• 聚合物流体的假塑性行为的一种解释认为在速度梯度的流动场中, • •


大分子构象发生变化。 1.在第一牛顿区,切变速率较低,构象基本不变,流动对结构没 有影响,故服从牛顿定律。 2.随着切变速率的增大,大分子构象发生变化,长链分子偏离平 衡构象而沿流动方向取向,使大分子之间的相对运动容易,表观 粘度随着剪切速率的增大而减小,即为非牛顿区。 3.当剪切速率增大到某一个值时,使大分子的取向达到极限状态, 取向程度不再随着剪切速率的增大而变化,流体又服从牛顿定律, 即进入第二牛顿区。 对于聚合物的浓溶液来说,切力变稀还有另一个原因,即当切力 增大时,大分子链发生脱溶剂化,使大分子链的有效尺寸变小, 导致粘度随切力的增大而下降。
间物理交联点,并在分子热运动的作用下,处在不断解体与重建 的动态平衡中结果使整个熔体具有瞬变的交联空间网状结构,称 为拟网状结构。 • 1.在足够小的切变速率下,大分子处于高度缠结的拟网状结构, 流动阻力很大,此时缠结结构的破坏速度等于生成速度,故粘度 保持恒定最高值,表现为牛顿流体的流动行为 • 2.当切变速率变大时,大分子在剪切作用下由于构象的变化而解 缠结并沿流动方向取向,此时缠结结构破坏速度大于生成速度, 故粘度逐渐变小,表现出假塑性流体的行为 • 3.当达到强剪切速率时,大分子的缠结结构完全被破坏,并完全 取向,此时的流动粘度最小,体系粘度达到最小值,表现出牛顿 流体的行为。
外力大小与作用时间
• 外力增大实质上是更多抵消着分子链沿外力相反方向的热
运动,提高链段沿外力方向跃迁的几率,使分子链的质心 发生有效的位移。因此外力的存在可以使高聚物在较低的 温度下发生流动----降低Tƒ • 对于聚砜、聚碳酸酯等粘流温度很高的工程塑料的加工成 型,一般采用较大的注射压力来降低粘流温度,但不能过 大,以免造成制品表面粗糙或表面破裂。增加外力作用时 间,有利粘性流动,就相当于降低Tƒ
牛顿流体和牛顿流动定律
• 可以把一个流体设想为无数个相互接触着的流动层面组成
的整体,各层面的流速不同,所以液层之间将存在相互运 动。流动得快的液层将对流动较慢的液层施以拉力,而后 者将对前者施以阻力,这种力称为内摩擦力,或称粘滞力, 粘度是流体内部反抗这种流动的内摩擦阻力的宏观表现 • 粘度不随剪切应力和剪切速率而变的流体,称为牛顿流体。 低分子液体和高分子稀溶液属于牛顿流体。 • 低分子流体层流时,流动行为可用牛顿流体定律来表示:
随剪切速度的增加而下降。高聚物熔体的粘度由表观粘度 ηa表示
lgσ s
从曲线上任何一点引斜率 为1的直线,外推到与 logγ=0的直线相交点,该 相交点的纵坐标值为lgηa
相关文档
最新文档