17.1_勾股定理(1)_优质课比赛教案
17.1勾股定理(第一课时)教案
商丘市乡村中小学、幼儿园教师优质课评选17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超2016年6月21日17.1勾股定理(第一课时)教案商丘市城乡一体化示范区七中赵伯超勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。
勾股定理是在学习了三角形有关性质的基础上提出来的,勾股定理揭示了直角三角形的三边之间的数量关系,对前面的知识起到完善,延伸的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
本节课试图通过数学活动,对学生所学知识进行内化与迁移,以发展思维。
同时对勾股定理的学习,对比我国数学家和西方数学家对勾股定理的研究,对学生进行爱国主义的教育,以落实素质教育的目标。
一、教学目标:知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容,会用面积法证明勾股定理。
了解利用拼图验证勾股定理的方法。
数学思考:在勾股定理的探索过程中,让学生经历“观察—猜想—归纳—验证”,培养合情推理能力,体会数形结合和从特殊到一般的思想。
解决问题:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。
2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。
情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,感受数学文化,激发学生的爱国热情,激励学生奋发学习。
2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。
二、重点、难点1.重点:探索和证明勾股定理。
经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值。
2.难点:勾股定理的证明。
经历用不同的拼图方法证明勾股定理。
3.突破方法:发挥学生主体作用,通过学生动手实验,让学生在实验中探索,在探索中领悟,在领悟中理解。
人教版八年级数学下册17.1勾股定理优秀教学案例
2.自主探究:让学生通过观察、实验、推理等方法,发现并证明勾股定理。
3.合作交流:组织学生进行小组讨论,分享学习心得,培养合作精神。
4.巩固练习:设计有针对性的练习题,让学生在实践中掌握勾股定理。
5.课堂讨论:组织学生分享自己的解题心得,丰富数学思维。
3.引导学生认识数学在生活中的应用,提高他们运用数学解决实际问题的能力。
4.培养学生团队协作、沟通交流的能力,增强他们的社会责任感。
三、教学重点与难点
1.教学重点:勾股定理的定义及其证明方法,勾股定理在实际问题中的应用。
2.教学难点:勾股定理的推导过程,运用勾股定理解决复杂直角三角形问题。
四、教学过程
2.生活实例:展示一些生活中常见的直角三角形现象,如建筑物、家具等,让学生感受数学与生活的紧密联系,提高他们运用数学解决实际问题的意识。
3.提问引导:教师提问:“你们知道什么是勾股定理吗?”“勾股定理在我国古代是如何被发现的?”引发学生的思考和讨论。
(二)讲授新知
1.勾股定理的定义:引导学生通过观察、实验、推理等方法,发现并证明勾股定理。例如,可以让学生分组讨论,每组设计一个实验来验证勾股定理。
2.自主探究,培养能力:在讲授新知环节,我引导学生通过观察、实验、推理等方法,自主发现并证明勾股定理。这种自主探究的学习方式,培养了学生的数学思维能力,提高了他们的问题解决能力。
3.小组合作,增强合作精神:在学生小组讨论环节,我将学生分成若干小组,让他们选择一个证明方法进行讨论。这种小组合作的方式,既能够提高学生的团队合作能力,又能够促进学生之间的沟通交流。
1.激发学生兴趣:通过故事、图片等素材,引发学生对勾股定理的好奇心,激发他们学习数学的兴趣。
八年级数学下学期17.1勾股定理优秀教学案例
2.教师鼓励学生在课后进行深入研究,如探究勾股定理在其他领域的应用。
3.教师提醒学生在下次课堂上分享自己的作业成果,增强合作交流能力。
五、案例亮点
1.情景创设:本节课通过展示古代建筑图片,巧妙地引导学生发现三角形稳定性的重要性,激发了学生对勾股定理的好奇心。这种情景创设不仅使学生产生了浓厚的学习兴趣,还让学生体会到了数学在实际生活中的应用价值。
3.学生能够运用现代教育技术,如多媒体课件、网络资源等,获取丰富的学习素材,增强学习的趣味性和互动性。
(三)情感态度与价值观
1.学生能够在学习过程中,体验到数学的趣味性和实用性,提高对数学的兴趣,树立学习数学的信心。
2.学生能够在探究活动中,培养合作精神,提高团队协作能力,增强集体荣誉感。
3.学生能够通过学习勾股定理,感受到数学在古代文明中的重要作用,提高对数学历史的认识,培养民族自豪感。
2.教师提供一些实际问题,如“一个直角三角形两个直角边的长度分别为3cm和4cm,求斜边的长度。”
3.学生分组讨论,交流解题思路,共同解决问题。
(四)总结归纳
1.教师引导学生总结勾股定理的定义、表达式和应用,巩固所学知识。
2.教师强调勾股定理在数学和实际生活中的重要性,激发学生学习兴趣。
(五)作业小结
(三)小组合作
1.教师将学生分成若干小组,每组学生共同探讨、交流勾股定理的证明方法,培养学生的合作精神和团队意识。
2.教师设计小组活动,如一起制作直角三角形模型,让学生动手操作,增强对勾股定理的理解。
3.教师鼓励小组成员之间相互评价、相互学习,提高学生的自我认知和表达能力。
(四)反思与评价
1.1勾股定理 一等奖创新教学设计
1.1勾股定理一等奖创新教学设计《17.1 勾股定理》第一课时教学设计教学内容:人教版八年级数学下册《17.1 勾股定理》第1课时.教材分析:勾股定理是学生在掌握了直角三角形有关性质的基础上进行学习的,在学习中起到承上启下的作用。
勾股定理是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了直角三角形三边之间的数量关系,可以解决直角三角形中的计算问题,是解直角三角形的主要依据之一。
勾股定理的探索和证明蕴含着丰富的数学思想和科学方法,是培养学生良好思想品质的载体,它在数学的发展过程中起着重要的作用,勾股定理是数与形结合的优美典范。
学情分析:从学生的身心发展特点以及认知水平来看,八年级的学生逻辑思维还是比较薄弱的,但是他们已经具备一定的观察、归纳、探索和推理的能力。
因此本节课需要通过形象直观的图形去感受发现新知识。
在小学,他们已经学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补法解决问题的意识和能力还远远不够,因此我采用直观教具、学具,多媒体演示等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
教学目标分析:初中数学课程标准中对勾股定理部分提出如下要求:在研究图形性质和运动等过程中,进一步发展空间观念在多种形式的数学活动中,发展合情推理能力经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
依据对课标、教材及学生的认知特点,确定本节课的教学目标如下:知识与技能目标:了解勾股定理的文化背景,经历探索发现并验证勾股定理的过程。
过程与方法目标:在勾股定理的探索过程中,发展合情推理能力,体会数学思维的严谨性数形结合的数学思想,发展形象思维。
同时,在探究活动中感受解决问题方法的多样性。
情感态度与价值观目标:通过对勾股定理发展历史的了解,尤其是对中国古代数学家对勾股定理的研究,使学生感受数学文化的魅力,激发学生的民族自豪感和学习热情。
八年级数学17.1勾股定理优秀教案
第十七章 勾股定理第1课时——勾股定理〔1〕一、教学目标:1、能用几何图形的性质和代数的计算方法探索勾股定理;2、知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示;3、能运用勾股定理理解用关直角三角形的问题。
二、教学重点:知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示。
教学难点:能用几何图形的性质和代数的计算方法探索勾股定理;三、学习过程:〔一〕导入:勾股定理的探究:1、利用几何图形的性质探索勾股定理:探索一:剪4个与图1完全相同的直角三角形,再将它们拼成如图2所示的图形。
大正方形的面积可以表示为: ;又可以表示为 。
∵两种方法都是表示同一个图形的面积∴ =即 = ∴〔用字母表示〕2、将图2沿中间的正方形的对角线剪开, 得到如下图的梯形:直角梯形的面积可以表示为: ;三个直角三角形的面积和可以表示为: ;利用“直角梯形的面积〞与“三个直角三角形的面积和〞的关系,可以得到:= + +∴ =即 =∴〔用字母表示〕222=+222=+3、利用代数的计算方法探索勾股定理:探索一:如图一,观察图中用阴影画出的三个正方形〔每一个小方格的边长为1〕∵= ,= ;∴ = 即:〔用字母表示〕探索二:利用右图画出一个两条直角边分别为AC=3厘米、BC=4厘米的直角三角形,〔1〕用刻度尺量出斜边的长AB= 厘米,〔2〕计算: = == =即:〔用字母表示〕 3、勾股定理:如果直角三角形的两直角边长分别为,,斜边长为,那么 。
公式变形: c = , a = , b =〔二〕讲授新课:勾股定理的应用:例1. 在Rt △ABC 中,∠C =90°.〔1〕 a =6, b =8,求c ; 〔2〕 a =2, c =5, 求b .解:〔1〕在 中,根据勾股定理,c = = =∴c =〔2〕在 中,根据勾股定理, b = = =∴b =〔三〕课堂练习:1、在Rt △ABC 中,∠C =90°.〔1〕 a =3,b =4,求c ; 〔2〕 c =10, a =6,求b.解:(1)在 中,根据勾股定理, 〔2〕在 中,根据勾股定理, ∴c = = = ∴b = = = ∴c = ∴ b =21S S +3S =+22BC AC +2AB =+a b c 222ABC Rt ∆2ABC Rt ∆2ABC Rt ∆ABC Rt ∆22D C B Ac A 2.求以下图中直角三角形的未知边。
勾股定理优质课一等奖教案
勾股定理优质课一等奖教案一、教学目标1、知识与技能目标让学生理解勾股定理的内容,掌握勾股定理的证明方法。
能够运用勾股定理解决简单的几何问题,如求直角三角形的边长。
2、过程与方法目标通过观察、猜想、验证等过程,培养学生的探究能力和逻辑推理能力。
经历勾股定理的探索过程,让学生体会从特殊到一般的数学思想方法。
3、情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索的精神和合作交流的意识。
通过了解勾股定理的历史,感受数学文化的魅力,增强民族自豪感。
二、教学重难点1、教学重点勾股定理的内容及证明。
运用勾股定理解决实际问题。
2、教学难点勾股定理的证明。
勾股定理在实际问题中的应用。
三、教学方法讲授法、探究法、讨论法四、教学过程1、导入新课展示一张直角三角形的图片,提问:“同学们,你们知道直角三角形的三条边之间有什么关系吗?”引发学生的思考和讨论。
讲述勾股定理的历史背景,如毕达哥拉斯发现勾股定理的故事,激发学生的学习兴趣。
2、探索新知让学生画几个直角三角形,测量其三边的长度,并计算两直角边的平方和与斜边的平方。
引导学生观察计算结果,提出猜想:直角三角形两直角边的平方和等于斜边的平方。
证明勾股定理:方法一:利用赵爽弦图证明。
展示赵爽弦图,引导学生观察图形,讲解证明思路。
方法二:利用面积法证明。
通过将直角三角形拼成一个正方形,利用面积相等来证明勾股定理。
3、巩固练习给出一些简单的直角三角形,让学生运用勾股定理求出未知边的长度。
设计一些实际问题,如测量旗杆的高度、求两点之间的距离等,让学生运用勾股定理进行解决。
4、课堂小结与学生一起回顾勾股定理的内容和证明方法。
总结运用勾股定理解决问题的思路和注意事项。
5、布置作业书面作业:课本上的相关习题。
拓展作业:让学生查阅资料,了解勾股定理在其他领域的应用。
五、教学反思在本节课的教学中,通过引导学生自主探究和合作交流,让学生亲身经历勾股定理的发现和证明过程,培养了学生的探究能力和逻辑推理能力。
17.1勾股定理教案
17.1勾股定理(一)一、教课背景勾股定理是几何中的重要的定理之一,它提示了一个直角三角形三边之间的数目关系,它能够解决很多直角三角形的计算问题,是解直角三角形的重要依照之一,在实质生活顶用途很大,它不单在数学中,并且自其余自然学科中也被宽泛地应用。
二、教课目的1.认识勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培育在实质生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所获得的成就,激发学生的爱国热忱,促其勤劳学习。
三、要点、难点1.要点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
四、教课方法1、图形经过割补拼接后,只需没有重叠,没有缝隙,面积不会改变。
2、经过拼图,发散学生的思想,锻炼学生的着手实践能力;这个古老的出色的证法,出自我国古代无名数学家之手。
激发学生的民族骄傲感,和爱国情怀。
五、教课过程(一)导入新课对于直角三角形 , 你知道哪些方面的知识 ?1.直角三角形叫 Rt△2.两锐角互余∠ A+∠B=90°Abc3.三角形的面积 s=1/2ab=1/2hc4.30 °所对的直角边等于斜边的一半C a B5.证明两个直角三角形全等有“ HL”提出问题:直角三角形还有没有其余性质?小故事:毕达哥拉斯是古希腊有名的哲学家、数学家、天文学家,相传2500 多年前 , 一次 , 毕达哥拉斯去朋友家作客 . 在宴席上 , 其余的来宾都在尽兴欢喜,夸夸而谈 , 只有毕达哥拉斯却看着朋友家的方砖地而倡始呆来.本来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,特别雅观大方.主人看到毕达哥拉斯的样子特别奇异,就想过去问他.谁知毕达哥拉斯打破茅塞顿开的样子,站起来,大笑着跑回家去了.我们也来察看图中的地面,看看有什么发现?正方形 A、 B、 C的面积有什么关系?S A+S B=S CB AB ACC研究:依据表中数据,你获得了什么?A 的面积B 的面积C 的面积CA C49左图ABB右图169结论:S A +S B=S C持续研究:设:直角三角形的三边长分别是a、 b、c。
17.1 第1课时 勾股定理 公开课一等奖教案
17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD =AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD =S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即12b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D 的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.。
人教版数学八年级下册17.1第1课时《 勾股定理》教案
人教版数学八年级下册17.1第1课时《勾股定理》教案一. 教材分析《勾股定理》是中学数学中的一个重要定理,它揭示了直角三角形三边之间的一种简单而美妙的关系。
人教版八年级下册第17.1节《勾股定理》主要介绍了勾股定理的证明和应用。
通过这一节的学习,学生可以加深对勾股定理的理解,提高解决几何问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了相似三角形的性质、全等三角形的判定和性质等基础知识。
但勾股定理的证明和应用需要学生具备较强的逻辑思维能力和空间想象能力。
因此,在教学过程中,教师需要关注学生的学习基础,针对不同学生进行有针对性的教学。
三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的内容。
2.能够运用勾股定理解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.勾股定理的证明过程。
2.勾股定理在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引发学生对勾股定理的思考,激发学生的学习兴趣。
2.演示教学法:通过几何画板等软件,直观地展示勾股定理的证明过程。
3.问题驱动法:引导学生通过解决问题,深入理解勾股定理的内涵。
4.小组合作法:鼓励学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作勾股定理的课件,包括证明过程的动画演示。
2.几何画板:用于展示勾股定理的证明过程。
3.练习题:准备一些有关勾股定理的应用题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如篮球架、自行车等,引导学生思考这些实例中是否存在勾股定理的应用。
让学生感受到勾股定理在现实生活中的重要性。
2.呈现(10分钟)利用几何画板,演示勾股定理的证明过程。
首先,展示一个直角三角形,然后通过动态变化,引导学生发现直角三角形三边之间存在的关系。
最后,给出勾股定理的数学表达式。
3.操练(10分钟)让学生分组讨论,运用勾股定理解决一些实际问题。
《17.1勾股定理》教学设计(第1课时)
《17.1 勾股定理》教学设计(第1课时)一、内容和内容解析1.内容勾股定理的探究、证明及简单应用.2.内容解析勾股定理的内容是:假如直角三角形的两条直角边长分别为a、b,斜边长为c,那么.它揭示了直角三角形三边之间的数量关系.在直角三角形中,已知任意两边长,就能够求出第三边长.勾股定理常用来求解线段长度或距离问题.勾股定理的探究是从专门的等腰直角三角形动身,到网格中的直角三角形,再到一样的直角三角形,表达了从专门到一样的探探究、发觉和证明的过程.证明勾股定理的关键是利用割补法求以斜边为边长的正方形的面积,教学中要注意引导学生通过探究去发觉图形的性质,提出一样的猜想,并获得定理的证明.我国古代在数学方面又许多杰出的研究成果,关于勾股定理的研究确实是一个突出的例子.教学中能够介绍我国古代在勾股定理的证明和应用方面取得的成就和作出的奉献,以培养学生的民族自豪感;围绕证明勾股定理的过程,培养学生学习数学的热情和信心.基于以上分析,确定本节课的教学重点:探究并证明勾股定理.二、目标和目标解析1.教学目标(1)经历勾股定理的探究过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定明白得决一些简单问题.2.目标解析(1)学生通过观看直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.明白得赵爽弦图的意义及其证明勾股定理的思路,能通过割补法构造图形证明勾股定理.了解勾股定理相关的史料,明白我国古代在研究勾股定理上的杰出成就.(2)学生能运用勾股定理进行简单的运算,关键是已知直角三角形的两边长能求第三条边的长度.三、教学问题诊断分析勾股定理是反映直角三角形三边关系的一个专门的结论.在正方形网格中比较容易发觉以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系.但要从等腰直角三角形过渡到网格中的一样直角三角形,提出合理的猜想,学生有较大困难.学生第一次尝试用构造图形的方法来证明定理存在较大的困难,解决问题的关键是要想到用合理的割补方法求以斜边为边的正方形的面积.因此,在教学中需要先引导学生观看网格背景下的正方形的面积关系,然后摸索没有网格背景下的正方形的面积关系,再将这种关系表示成边长之间的关系,这有利于学生自然合理地发觉和证明勾股定理.本节课的教学难点是:勾股定理的探究和证明.四、教学过程设计1. 创设情境复习引入国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”.2021年在北京召开了第24届国际数学家大会.右图确实是大会会徽的图案.你见过那个图案吗?它由哪些我们学过的差不多图形组成?那个图案有什么专门的意义?前面我们学习了有关三角形的知识,我们明白,三角形有三个角和三条边.问题1三个角的数量关系明确吗?三条边的数量关系明确吗?师生活动教师引导,学生回答。
人教版八年级下册17.1勾股定理优秀教学案例
(三)情感态度与价值观
1.学生了解勾股定理在我国古代的发现和应用,感受数学文化的魅力,培养民族自豪感和对数学的热爱。
2.学生通过学习勾股定理,培养对数学的兴趣和好奇心,激发学习数学的内在动力。
3.学生通过解决实际问题,体验数学的价值和意义,认识到数学在生活中的重要性,培养应用数学的意识和能力。
2.学生能够通过观察、分析、推理等数学思维活动,探索并发现勾股定理的规律,提高空间想象能力和逻辑思维能力。
3.学生能够运用勾股定理解决一些简单的几何问题,提高运用数学知识解决实际问题的能力。
(二)过程与方法
1.学生通过观察生活实例,培养从实际问题中抽象出数学模型的能力,提高解决问题的能力。
2.学生在小组合作、讨论交流的过程中,培养团队协作能力和表达能力,提高自主学习能力和合作学习能力。
3.动态演示辅助:运用几何画板等教学工具,动态展示直角三角形中两直角边的变动,让学生直观地观察到斜边的变化规律,帮助学生理解和掌握勾股定理。
(二)问题导向
1.设计问题链:围绕勾股定理的定义、证明和应用,设计一系列递进式问题,引导学生思考和探索,激发学生的好奇心,培养学生的问题解决能力。
2.自主探究引导:引导学生提出问题,鼓励学生自主探究,引导学生通过观察、分析、推理等数学思维活动,探索并发现勾股定理的规律。
3.动态演示辅助:运用几何画板等教学工具,动态展示直角三角形中两直角边的变动,让学生直观地观察到斜边的变化规律,帮助学生理解和掌握勾股定理。
(二)讲授新知
1.勾股定理的定义:通过几何画板工具,展示直角三角形中两直角边的变动,引导学生观察和分析斜边的变化规律,引股定理的证明:引导学生通过小组合作、讨论交流的方式,探索并发现勾股定理的证明方法,引导学生运用几何画板工具,动态展示直角三角形的证明过程,帮助学生理解和掌握勾股定理的证明方法。
人教版数学八年级下册17.1勾股定理(第一课时)优秀教学案例
4.总结归纳:教师组织学生进行总结,让学生分享自己在学习勾股定理过程中的收获和感悟。通过总结归纳,教师帮助学生巩固所学知识,构建知识体系,提高学生的知识运用能力。
2.教师设计具体情境,如测量未知边长的直角三角形,让学生面临实际问题,引出勾股定理的学习需求。
3.教师利用多媒体课件,展示勾股定理的动态演示,帮助学生直观理解勾股定理的含义和应用。
(二)讲授新知
1.教师引导学生从特殊到一般,思考直角三角形边长之间的关系,引导学生发现勾股定理的规律。
2.教师给出勾股定理的定义,解释勾股定理的表达式,并通过几何图形的演示,帮助学生理解勾股定理的含义。
(三)小组合作
1.教师将学生分为若干小组,鼓励学生相互讨论、交流,共同探究勾股定理的证明方法。
2.教师设计合作任务,如共同制作勾股定理的演示道具,让学生在实践中深化对勾股定理的理解。
3.教师组织小组竞赛,激发学生的竞争意识和团队合作精神,提高学生的学习积极性。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如在学习勾股定理的过程中遇到了哪些困难,如何克服等。
2.学生通过教师引导,运用数学归纳法证明勾股定理,培养逻辑思维与推理能力。
3.学生通过解决实际问题,运用勾股定理,提高问题解决能力,培养创新实践能力。
(三)情感态度与价值观
1.学生感受数学文化的魅力,了解勾股定理的历史背景,提高对数学学科的兴趣。
2.学生在探究过程中,培养克服困难、勇于探索的精神,增强自信心。
五、案例亮点
17.1《勾股定理》教案(第1课时)
勾股定理
教学设计说明
“勾股定理”是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切联系起来,它有着丰富的历史背景,在理论上占有重要地位.整节课以“问题情境——分析探究——得出猜想——实践验证——总结升华”为主线,使学生亲身体验勾股定理的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.根据教材的特点,本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.
本节课运用的教学方法是“启发探索”式,采用教师引导启发、学生独立思考、自主探究、师生讨论交流相结合的方式,为学生提供观察、思考、探索、发现的时间和空间.使学生以一个创造者或发明者的身份去探究知识,从而形成自觉实践的氛围,达到收获的目的.。
人教版数学八年级下册17.1勾股定理(第1课时)优秀教学案例
3.教师引导学生运用数形结合的思想,将抽象的数学问题具体化,提高学生的数学思维能力。
(三)情感态度与价值观
1.激发学生对古代数学文化的兴趣,培养学生对数学的热爱,提高学生的学科素养。
2.通过赞美勾股定理的美,让学生感受数学的严谨、精确,树立正确的数学观念。
5.人文素养培养:教师在教学过程中注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。这种教学方式使学生在学习数学知识的同时,也能够提升自己的综合素质,培养自己的审美情趣。
本节课的案例亮点体现了教学的实用性、互动性和人文性,充分调动了学生的积极性、主动性,使学生在探究、合作、交流中收获知识,提高能力。同时,注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示古代中国建筑中的勾股定理应用,如赵州桥、故宫等,让学生感受数学与实际生活的紧密联系。
2.创设有趣的问题情境,如“勾股定理是如何被发现的?”、“你能用勾股定理解决生活中的问题吗?”等,激发学生的好奇心,引发学生的思考。
3.教师总结并提出本节课的学习目标,引导学生明确本节课的学习内容。
(四)反思与评价
1.教师引导学生对所学知识进行总结,让学生明确勾股定理的定义、证明方法及其应用。
2.学生通过自我评价、同伴评价等方式,反思自己在探究过程中的表现,发现自身的不足,提高自我调控能力。
3.教师针对学生的学习情况,给予及时的反馈和评价,关注学生的成长过程,激发学生的学习动力。
在整个教学过程中,教师应以引导者、组织者、合作者的角色,关注学生的个体差异,充分调动学生的积极性、主动性,使学生在探究、合作、交流中收获知识,提高能力。同时,注重培养学生的人文素养,让学生体会数学的博大精深,感受数学的美。
勾股定理公开课优质课教学设计一等奖及点评
勾股定理(第1课时)人教版《义务教育教科书·数学》(八年级下册第十七章17.1)义务教育教科书数学八年级下册(人民教育出版社)17.1勾股定理(第1课时)教学设计一、内容和内容解析1.内容勾股定理的探究、证明及简单应用.2.内容解析勾股定理的内容是:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2.勾股定理是中学数学重要定理之一,它揭示了直角三角形三边之间的数量关系,把形的特征(三角形中有一个角是直角)转化成数量关系:三边之间满足等式:a2+b2=c2,它搭建起了几何图形和数量关系之间的一座桥梁,从而发挥了重要的作用.勾股定理体现了数形结合的思想方法,具有科学创新的重大意义.勾股定理启发了人类对数学的深入思考,促成了在三角学、解析几何学、微积分学的建立,使数学的几何学和代数学两大门类结合起来,对数学进一步的发展拓宽了道路.没有勾股定理,就难以建立起整个数学的大厦.因此,勾股定理不仅被认为是平面几何中最重要的定理之一,也被认为是数学中最重要的定理之一.勾股定理的探究是从特殊的等腰直角三角形出发,到网格中的直角三角形,体现了从特殊到一般的探索的过程,由具体的关系归纳出抽象的猜想,学生亲手实践赵爽的面积证法,证明猜想、发现定理,并以此引导学生探索、发现、证明定理的思路.通过对勾股定理的探究和发现,培养学生学习数学的热情和自信心.我国对勾股定理的研究和其他国家相比是比较早的,在国际上得到肯定.通过对勾股定理历史和我国古代研究勾股定理成就的介绍,以及赵爽证明勾股定理的巧妙弦图,培养学生的民族自豪感,品味数学文化.在直角三角形中,已知任意两边长,就可以求出第三边长.勾股定理常用来求解线段长度或距离问题,这是勾股定理最基础的应用.基于以上分析,确定本节课的教学重点:探索并证明勾股定理.二、目标和目标解析1.目标(1)经历勾股定理的探究、证明过程.了解关于勾股定理的文化历史背景,通过对我国古代研究勾股定理的成就的介绍,培养学生的民族自豪感.(2)能用勾股定理解决一些简单问题.2.目标解析目标(1)要求学生通过观察以直角三角形的三边为边长的正方形面积之间的关系,归纳并合理地用数学语言表示勾股定理的结论.理解赵爽弦图的意义及其证明勾股定理的思路,能通过面积不变的关系和对图形面积的不同算法证明勾股定理.了解勾股定理相关的史料,知道我国古代在研究勾股定理上的杰出成就.(2)学生能运用勾股定理进行简单的计算,关键是已知直角三角形的两边长能求第三条边的长度.三、教学问题诊断分析勾股定理是反映直角三角形三边关系的一个特殊的结论.在正方形网格中比较容易发现以等腰直角三角形三边为边长的正方形的面积关系,进而得出三边之间的关系.但要从等腰直角三角形过渡到网格中的一般直角三角形,提出合理的猜想,学生有较大困难.因此,在教学中先引导学生观察网格背景下的正方形的面积关系,然后思考正方形的面积和直角三角形边的关系,再将这种关系表示成边长之间的关系,归纳出结论.学生第一次尝试用构造图形的方法来证明定理存在较大的困难,小组合作在此发挥了很大的优势,学生间的互助、交流有利于学生自然、合理地发现和证明勾股定理.本节课的教学难点是:勾股定理的探究和证明.四、教学支持条件分析借助PPT动画,动态地演示从网格中的等腰直角三角形,到网格中的一般直角三角形的变化过程,启发学生考虑用割补法求正方形的面积.在学生拼图验证猜想后,播放视频动画再现赵爽弦图的剪拼过程,形象、直观.利用软件的迭代功能,制作出漂亮的勾股树,品味数学之美.教学流程:1、创设情境,导入新课→2、师生互动,探究规律→3、动手实践,验证猜想→4、观察欣赏,感知文化→5、运用定理,巩固新知→6、畅谈收获,归纳小结→7、布置作业,温故新知.五.教学过程设计环节一:情景引入同学们,2002年国际数学家大会在我国的北京召开,下图就是这一届大会会徽的图案.请你仔细的观察这副图案,说一说,它是由哪些基本图形组成的?生:四个直角三角形和正方形组成的师:直角三角形与正方形是我们生活当中比较常见的基本图形,我们已经学过直角三角形两角之间的关系,两个锐角互余,今天这节课来研究直角三角形三边之间的特殊关系评析:本节课由国际数学学家大会的会徽导入,激发学生的兴趣,引入新课教师引导学生发现会徽图案是由直角三角形、正方形组成.引出本节内容是研究直角三角形三边之间的某种特殊关系.环节二:师生互动,探究规律问题1:相传2500多年前,毕达哥拉斯从地砖图案中发现了直角三角形三边之间的某种数量关系.我们也来观察一下这副示意图,我把地砖的颜色给隐藏,可以清楚的发现图中每个小三角形都是等腰直角三角形,假设每个小等腰直角三角形的面积为1.问题1:图中三个正方形A,B,C的面积分别是多少?三个面积之间有什么等量关系?接下来,在网格图中画出一个任意的直角三角形,像刚才的示意图一样,以这个直角三角形的三边为边长向外作出三个正方形,分别记为A,B,C,假设图中每个小正方形的面积为1.问题1:正方形A的面积为?正方形B的面积为?正方形C的面积呢?追问:如何求正方形C的面积呢?师:通过古希腊数学家在朋友家做客,发现朋友家的地板砖三边之间的数量关系,通过图中观察正方形内的三角形是什么三角形?生:等腰直角三角形师:假设每个小的等腰直角三角形的面积为1,请同学们思考A、B、C三角形的面积各位多少?生:正方形A与B的面积为2,正方形C的面积为4师:继续思考正方形A、B、C面积之间有怎样的等量关系?生:正方形A的面积+正方形B的面积=正方形C的面积师:这个结论在等腰直角三角形的前提下成立,反问在一个任意的直角三角形当中是否还成立呢?生:猜想成立问题2:三个正方形A , B ,C 面积之间有什么关系?S A +S B =S C下面,我把这幅示意图中的三个正方形推开,把这个直角三角形的三边记为a ,b ,c ,直角三角形三边之间有什么关系呢?得出猜想:如果直角三角形的两条直角边长分别为a ,b ,斜边长为 c ,那么a 2+b 2=c 2.问题:c 的平方可以表示为什么图形的面积?师:给出任意的直角三角形以各个边向外作正方形A 、B 、C ,假设每个小正方形面积都为1,思考正方形A 、B 、C 的面积为多少?生:正方形A 的面积为16,正方形B 的面积为9 正方形C 的面积为25师:请学生解释一下正方形C 的面积为什么为25?生:正方形A 的面积+正方形B 的面积=正方形C 的面积师:这个规律刚刚是在等腰直角三角形当中得到的,这个三角形是一般的直角三角形,这个结论还能用吗?生:不能师:如何来求正方形C 的面积呢?请同学们思考一下 C BA b a c生:使用割的办法来求正方形C的面积,把正方形C切割成4个直角三角形+一个正方形得到正方形C的面积为25师:请思考一下还有没有其他办法?生:补上4个小的直角三角形,通过大的正方形的面积减去4个直角三角形的面积师:这两种方法都可以求出正方形C的面积,统称为“割补法”师:通过正方形A、B、C的面积数据,有什么等量关系?你们能得出什么结论?生:正方形A的面积+正方形B的面积=正方形C的面积师:把直角三角形的三边记为a、b、c,能否由上面的等式推出直角三角形三边之间的等量关系?生:因为S A+S B=S C,所以a2+b2=c2师:那个同学能够用文字语言来表达一下呢?生:直角三角形两直角边的平方和等于斜边的平方师:如果直角三角形的两条直角边长分别为a、b,斜边长为c,那么a2+b2=c2,这个结论是在网格图当中得到,去掉网格,这个结论还成立吗?评析:由地砖中存在的特殊示意图导入,发现围成等腰直角三角形的三个正方形面积之间存在特殊的数量关系.在正方形的网格图中进一步研究这个示意图,由特殊的直角三角形过渡到一般的直角三角形,面积之间也存在特殊的数量关系.问题1中,教师提出问题,让学生自己独立观察图形,分析数据,思考其中隐含的规律.得出结论:在等腰直角三角形的前提条件下,从这幅示意图中可以得出小正方形A,B的面积之和等于大正方形C的面积.学生很容易通过数格子的方法答出正方形A和正方形B的面积.难点是求由斜边所作的正方形C的面积.环节三:动手实践,验证猜想拼图活动:请同学们拿出课前老师分发的四个直角三角形,拼一拼,摆一摆,看能否得到一个含有边长为c的正方形.请同学上台展示他们的拼图结果。
17.1(1)勾股定理(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在本次勾股定理的教学中,我发现学生们对于定理的理解和应用存在一定难度。首先,他们在理解定理的证明过程中感到困惑,特别是如何从几何和代数两个角度去证明。为了解决这个问题,我在教学中增加了直观的几何图形演示和详细的代数推导过程,希望这样能帮助学生更好地理解勾股定理的原理。
其次,学生在解决实际问题时,往往不知道如何将问题转化为直角三角形问题,运用勾股定理求解。针对这个问题,我设计了一些贴近生活的案例,让学生通过实际操作和讨论,学会如何发现直角三角形,并运用勾股定理解决问题。
2.教学难点
(1)理解勾股定理的证明过程:对于部分学生来说,理解勾股定理的证明过程可能存在一定难度,需要教师引导学生从几何角度和代数角度进行证明,使学生充分理解其背后的数学原理;
(2)在实际问题中灵活运用勾股定理:学生在解决实际问题时,可能难以找到直角三角形,需要教师指导学生如何将问题转化为直角三角形问题,并运用勾股定理求解;
针对难点(2)和(3),教师可以通过以下方式指导学生:
-分析问题,找出关键信息,判断是否可以转化为直角三角形问题;
-逆向运用勾股定理,通过实际例题,让学生学会如何根据已知信息求解未知边长。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量直角三角形边长的情况?”(如测量墙角、梯子长度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
17.1.1《勾股定理》教案
17.1.1《勾股定理》教案《17.1.1 《勾股定理》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容17.1.1《勾股定理》【教材分析】本节课是勾股定理的第1课时,根据课程标准的要求,注意让学生经历探索勾股定理的过程,鼓励学生用不同的方法解决问题,在解决问题的过程中,注意渗透数形结合的思想。
另外,勾股定理具有很高的文化价值,这点要充分体现,以提高学生探索的欲望.【学情分析】学生经历了一年的初中学习,具备了一定的归纳、总结、类比、转化以及数学表达的能力,对现实生活中的数学知识充满了强烈的好奇心与探究欲,并能在老师的指导下通过小组成员间的互助合作,发表自己的见解。
另外,在学本节课时,通过前置知识的学习,学生对直角三角形有了初步的认识,并能从直观把握直角三角形的一些特征,为此在授课时要抓住学生的这些特点,激发学生学习数学的兴趣,建立他们的自信心,为学生空间观念的发展、数学活动经验的积累、个性的发挥提供机会.【教学目标】1.经历探索勾股定理的过程,提高学生的推理能力,体会数形结合的思想.2.理解并掌握勾股定理通过对勾股定理的历史介绍及交流,让学生体会它的文化价值,提高学习数学的兴趣和信心.【教学重点】掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系【教学难点】勾股定理的证明【教学方法】五步教学法、引导探究法【课前准备】三角板【课时设置】一课时【教学过程】活动一:课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。
这个事实可以说明勾股定理的重大意义。
尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。
《勾股定理》优秀教学设计
17.1.1勾股定理(第一课时)一、教材分析(一)教学内容及地位和作用本节课选自人教版《数学》八年级下册第十七章第一节勾股定理第一课时本节课展示了勾股定理的文化,是爱国主义教育的良好素材。
(二)教学目标知识与技能:1.经历勾股定理的探索过程,理解并掌握勾股定理,体会数形结合的思想;2.学会运用勾股定理进行简单的计算。
过程与方法:1.让学生切实经历“观察-探索-猜想-验证-归纳”的探索过程;2.发展合情推理能力,并体会数形结合、由特殊到一般、转化的思想方法。
情感态度与价值观:发展有条理的思考与表达能力,感受勾股定理的文化价值。
(三)教学重点、难点重点:勾股定理的探索过程;难点:探索发现勾股定理的过程及其中以直角三角形斜边为边长的正方形面积计算环节。
二、教法与学法分析学习方法动手实践、自主探索、合作交流问题几何直观引导实验思想方法探索验证教学方法三、教学过程教学环节教学内容师生互动设计意图情境导入观看图片华罗庚教授建议向外太空发送以下图片,探索是否有外星生命的存在。
1.教师展示“外星人”图片并提出问题——外星人存在吗?2.学生观察图片,自由回答。
通过情景创设,寓教于乐,激发学生好奇、探究的欲望。
观察猜想猜想1:相传2500年前,古希腊著名数学家毕达哥拉斯在朋友家做客时,从朋友家的地砖铺成的地面上发现了直角三角形三边的某种数量关系.1.教师展示图片并提出问题——A,B,C的面积有什么关系?2.学生观察图形,通过拼凑的方法得出:CBASSS=+3.通过教师引导,把正方形的面积关系转化为中间三角形的边长关系。
将面积的关系转化为边长之间的关系体现了转化的思想。
为下一步探索复杂图形的面积做铺垫。
猜想2:在网格中,直角三角形三边有怎样的关系?1.教师展示图片并提出问题2.学生自主探究,并填空:(1)正方形A中含有个小方格,即A的面积是个单位面积;(2)正方形B的面积是个单位面积;(3)正方形C的面积是个单位面积。
八年级数学下册17.1勾股定理优秀教学案例
3.关注小组合作过程中的每个学生,充分调动他们的积极性和主动性,让每个学生在合作中得到成长。
(四)反思与评价
1.引导学生对所学知识进行反思,总结勾股定理的发现过程,提高他们的思维品质。
2.组织学生进行自我评价和同伴评价,鼓励他们发现自己的优点和不足,培养他们的自我认知和评价能力。
2.运用小组合作、讨论交流等学习方式,培养学生的团队合作精神、表达能力和解决问题的能力。
3.引导学生运用数形结合的思想方法,将实际问题转化为数学问题,提高学生运用数学知识解决实际问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,感受数学的趣味性与魅力。
2.使学生体会数学与生活的紧密联系,提高他们对数学学科的认同感。
在教学过程中,我以学生的生活经验为基础,设计了一系列具有挑战性和趣味性的活动,激发学生的学习兴趣,培养他们的观察能力、操作能力、推理能力及运用数学解决实际问题的能力。同时,我注重引导学生体会数学与生活的紧密联系,感受数学的趣味性与魅力,提高他们对数学学科的认同感。
本节课的教学目标是使学生了解勾股定理的来历,理解并掌握勾股定理,能运用勾股定理解决直角三角形相关问题。通过本节课的学习,学生将能更好地理解数学与生活的联系,提高他们的数学素养。
3.教师对学生的学习过程和结果进行客观、公正的评价,关注学生的个体差异,激发他们的学习动力。
四、教学内容与过程
(一)导入新课
1.开场白:以我国古代著名数学家毕达哥拉斯的发现为背景,引入本节课的学习主题——勾股定理。
2.创设情境:利用实物模型、图片等教学资源,展示直角三角形的实际应用场景,让学生感受到数学与生活的紧密联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:18.1勾股定理(1)
博兴五中蔡海妹
教学目标
1、知识目标:了解勾股定理的文化背景,体验勾股定理的探索过程及定理简单应用;
2、能力目标:在定理的证明中培养学生的拼图能力,并通过解决问题,提高学
生的运算能力、转换能力及实际应用能力;
3、情感目标:通过对勾股定理历史的了解,感受数学文化,激发学习热情;教学重点探索勾股定理及定理简单应用;
教学难点用拼图方法证明勾股定理。
教学流程安排
教学过程设计
一、创设情境,引入课题
三月风筝飞满天,同学们都放过风筝,风筝的线是已知的,地面上的距离是可测的,风筝的飞行的高度能求吗?学了今天的知识,我们就能解决了。
师生互动:教师通过学生喜欢的放风筝活动,激发学生的兴趣,设置悬念,引起学生的好奇心和求知欲。
二、探索研究,得出结论
1、探索勾股定理
活动1:
相传2500年前,古希腊数学家毕达哥拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边之间的某种数值关系。
思考:
(1)你能发现图中的三个正方形的面积之间有什么关系吗?
(2)你能发现图中的等腰直角三角形三边之间有什么关系吗?
(3)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点?
师生互动:教师解说并提出问题,引导学生观察图案,学生观察、交流、回答问题,师生共同评价,归纳结论,总结发现方法。
活动2:
类比上述方法在方格纸上探索两条直角边不相等的直角三角形三边的数量关系。
2 若每一个小方格面积为1个单位面积,那么正方形A 、B 、C 的面积为多少?你能从中发现什么结论呢?
由上述方法猜想直角三角形三边的数量关系。
命题:如果直角三角形的两条直角边分别为a 和b ,
斜边为c ,那么222c b a =+
师生互动:教师提出问题,学生思考、动手探索、计
算回答问题,师生共同评价,归纳结论。
活动3
拼图证明勾股定理
请同学们拿出我们课前准备的四个全等的直角三角形,以小组为单位,拼出一个大正方形,并用面积法证明这个命题。
小组代表展示实践结果;师生共同评价,概括归纳勾股定理。
师生互动:教师组织学生拼图验证结论,通过拼图,培养学生的动手操作能力,并让学生有一个直观的感受,在拼图和证明的过程中培养学生的团队意识。
小组代表展示实践结果;师生共同评价,概括归纳勾股定理。
三、应用实际,加深理解
通过简单的应用,使学生对勾股定理的内容有一个进一步深化,理解的过程,同时培养学生的计算能力。
四、课堂小结,系统归结
请同学畅所欲言谈谈本节课的收获
师生互动:教师提出问题,学生回答,教师补充共同归纳。
五、布置作业,巩固提高
课本P 69,习题18.1第1、2题 18.1勾 股 定 理(1)
定理:…………………………… 练习1、……………………… …………………………… ……………………… 拼图验证…………………… 练习2、………………………。